Eclipse油藏数值模拟应用实例

合集下载

ECLIPSE 高级油藏数值模拟器

ECLIPSE 高级油藏数值模拟器
合) • 三维重力分离流动模拟 • 天然裂缝型油藏模型,双孔/双渗模型、改进的双孔模型 • 局部网格加密和粗化 • 油气藏特性的静态和动态分区 • 复杂的网格系统,可模拟垂直、倾斜和旋转断层系统 • 功能丰富的井、井组和油田生产控制功能 • 直井、斜井、水平井、多分支井模拟 • 提高采收率(聚合物、表面活性剂、溶剂、泡沫) • 混相驱和非混相驱 • API追踪 • 矿化度追踪 • 示踪剂追踪 • 煤层气 • 分子扩散 • 饱和度表端点标定 • 初始平衡选择 • 井筒摩擦 • 气田操作 • 气体非达西流动 • GI-拟组分 • 五点和九点格式 • 非邻点连接 • 岩石弹性模型 • 方向和滞后相对渗透率 • 气体非达西流动 • 储层压实 • 温度效应 • 垂直平衡 • 井筒内窜流 • 流量边界 • 并行计算 • 用户自定义变量UDA,UDQ,UDT,自定义结果输出及灵活的开发方案设计
流线模拟直观的井组关系显示
精确的井组注采关系量化模拟结果
5
ECLIPSE - 先进的油藏数值模拟研究工具
ECLIPSE Office 一体化数模管理软件
ECLIPSE Office 提供了一个完全桌面化的解决方案,实现快速的模型创建,高效的数据管理, 便捷的运行控制和灵活的结果输出。
ECLIPSE Office 在一个界面下实现所有ECLIPSE 模块的管理。可以管理ECLIPSE数模家族的 任意软件(包括ECLIPSE前后处理程序)模块,允许快捷的创建新的或打开已有的模拟模型,输 入、调用或编辑模型数据,并提交运行;允许在数模运行中随时查看模拟结果,并且生成结果报 告。
热采模型涉及到热化学处理、泡沫、表面活性剂、摩擦力、热损失和沥青质等各种不同的技 术问题。ECLIPSE的热采模型考虑了热传导物理学的所有方法:包括温度与相对渗透率关系、温 度与粘度关系、温度与岩石和流体属性的相互关系等。

ECLIPSE 油藏数值模拟基础操作手册

ECLIPSE 油藏数值模拟基础操作手册

4
ECLIPSE 数值模拟基础操作手册
Office 操作练习 结果如下图:
Schlumberger
5 选择 View Edit History...来显示应用到属性关键字的所有编辑步骤。 注意:Edit | Delete Edit History 将所有编辑整合为一个关键字。 所有部分都需要一个 GRID 文件,用以显示模型建立过程中的分区和属性数 据。.GRID 和.EGRID 是非格式化的二进制几何文件,而.FGRID 和.FEGRID 为 ASCII 格式化几何文件。输出文件的格式可以在 Run Manager 中设置。 6 为了确保 GRID 文件作为输出文件的一部分,点击 Keyword Types 里面 的 Operational Keywords。 7 确信 GRIDFILE 在该列表中。 8 选择 GRID Keyword Section: Edit | Insert Keyword. 9 在相同的列表中,加入 INIT 关键字来输出静态属性数据,该文件后缀名 为 .INIT 和 .FINIT。 10 点击 Apply。 11 点击 File | Close 退出 Grid Keywords 面板。 12 点击 Grid Section: File | Save... 来保存几何数据。 13 选择 Grid Section: GridView | From Keywords 为 2D 和 3D 显示生成几何 文件。 14 点击 YES 来生成 GRIDFILE。 15 选择 Grid Section: GridView | 3D 来查看模拟网格的 3D 形态。 16 关闭 3D Viewer 窗口。 17 选择 Grid Section: File | Close 退出。
模型描述

Eclipse油藏数值模拟软件基本操作讲解总PPT课件

Eclipse油藏数值模拟软件基本操作讲解总PPT课件

65
66
67
68
69
70
71
72
73
74
75
76
77
开井时率
78
79
80
要点: 1.加输出内容的关键 词。
选择输出项
81
Data –Summary
添加输出关键字
注释
82
Data –Summary
关键字 FOPR/FWPR/WIR/FGPR/FGIR/FGSR /FWCT/FGOR/FTPRFGS/FTPRIWT/F TIRIWT/FAQRWOPR /WWPR/WWIR /WGPR
Eclipse油藏数值 模拟软件基本操作讲解
山东省油气勘探开发工程技术技术研究中心
1
第一部分
整体概述
THE FIRST PART OF THE OVERALL OVERVIEW, PLEASE SUMMARIZE THE CONTENT
2
新建一个office
3
4
点击Data
5
模型设置
6
General
551720 6801007 2000.00 2000.00
551720 6801007 3057.79 3057.79
551720 6801007 3078.62 3078.62
551720 6801007 3099.45 3099.45
551720 6801007 3120.29 3120.29
34
点击Schedule
35
Schedule
要点 一.导入数据
1.准备 生产历史数据文件(*.vol)、 措施数据文件(*.ev)、 井斜数据文件(*.cnt & *.dev) 网格数据文件(*.grid) 属性数据文件(*.init)

Eclipse 100 油藏数模软件使用手册(关键字汇总)

Eclipse 100 油藏数模软件使用手册(关键字汇总)

Eclipse 100 油藏数模软件使用手册二OO四年十月目录1 Eclipse 油藏模拟软件特点 (1)1.1Eclipse软件91年A版本的新进展概况 (1)1.2Eclipse100软件特点 (1)2 数据文件综述 (12)2.1 RUNSPEC部分 (15)2.2 GRID部分 (19)2.3 EDIT部分 (24)2.4 PROPS部分 (25)2.5 REGIONS部分 (31)2.6 SOLUTION部分 (32)2.7 SUMMARY(汇总)部分 (35)2.8 SCHEDULE部分 (42)3 关键字描述(按字母顺序排列) (47)ACTNUM 活节点的识别 (47)ADD 在当前BOX中指定的数组加一个常数 (48)ADDREG 给某一流动区域内指定的数组加一个常数 (49)ADDZCORN 给角点深度数组加一个常数 (49)APIGROUP 给API追踪中的油PVT表分组 (51)APIVD API追踪平衡的深度与原油比重(API)的关系 (51)AQANTRC 指定分析水层的示踪剂浓度 (51)AQUANCON 定义分析水层的相关数据 (52)AQUCON 数值化水层与油藏的连接 (53)AQUCT 说明Carter—Tracy水层的特征数据 (54)AQUFET Tetkovich水层说明数据 (55)AQUFETP 说明Fetkovich水层的特征数据 (56)AQUNUM 给一个网格块赋值一个数值化水层 (57)AQUTAB Carter—Tracy水层的影响函数表 (58)BDENSITY 盐水地面密度 (59)BOUNDARY 定义在打印网格表中显示的网格范围 (59)BOX 重新定义当前输入的BOX (60)CECON 生产井射开节点的经济极限 (61)COLLAPSE 识别在压缩VE选择中可压塌的单元 (62)COLUMNS 设置输入数据文件的左右范围 (62)COMPDAT 井完井段说明数据 (63)COMPFLSH 井射孔段的闪蒸转化比 (65)COMPIMB 井射开网格的渗吸表号 (67)COMPINJK 用户定义的注入井相对渗透率 (68)COMPLUMP 为自动修井而将射开网格归在一起 (69)COMPRP 重新标定井射开节点的饱和度数据 (70)COMPVE 垂直平衡(V.E.)运行时,井射孔深度的重设定 (72)COORD 坐标线 (75)COORDSYS 坐标系统信息 (76)COPY 从一个数组拷贝数据到另一数组 (77)COPYBOX 从一个BOX向另外一个拷贝一组网格数据 (77)CRITPERM 对VE节点压缩的渗透率标准 (78)DATE 输出日期到汇总文件 (79)DATES 模拟者事先指定报告日期 (79)DATUM 基准面深度,用于深度校正压力的输出 (80)BEBUG 控制检测输出 (80)DENSITY 地面条件下流体密度 (81)DEPTH 网块中心深度 (82)DIFFC 每一个PVT区域的分子扩散数据 (82)DIFFDP 在双重介质运行中,限制分子扩散 (83)DIFFMMF 基质一裂缝的扩散乘子 (83)DIFFMR R方向的扩散乘子 (83)DIFFMTHT θ方向扩散系数乘子 (84)DIFFMX X方向的扩散乘子 (84)DIFFMY Y方向的扩散乘子 (85)DIFFMZ Z方向的扩散乘子 (85)DIFFR R方向的扩散系数 (86)DIFFTHT θ方向的扩散系数 (86)DIFFX X方向扩散系数 (87)DIFFY Y方向扩散系数 (87)DIFFZ Z方向扩散系数 (88)DPGRID 对裂缝单元使用基质单元的网格数据 (88)DR R方向网格的大小 (88)DRSDT 溶解GOR的增加的最大速度 (89)DRV R方向网格大小(矢量) (89)DRVDT 挥发油的OGR的增加的最大速度 (90)DTHETA θ方向的网格大小 (90)DTHETAV 网格的角度大小(向量) (91)DX X方向的网格大小 (91)DXV X方向网格大小(向量) (91)DY Y方向网格大小 (92)DYV Y方向网格大小(向量) (92)DZ Z方向网格大小 (92)DZMTRX 基质块的垂直尺寸 (93)DZMTRXV 基质岩体块的垂直尺寸(向量) (93)DZNET 净厚度 (93)ECHO 接通重复输出开关 (94)EDITNNC 改变非相邻连接 (94)EHYSTR 滞后作用参数和模型选择 (95)END 标志SCHEDULE部分的结束 (95)ENDBOX 将BOX恢复到包含全部网格 (95)ENDNUM 端点标定与深度区域号 (95)ENKRVD 相对渗透率端点与深度关系表 (96)ENPTVD 饱和度端点与深度关系表 (97)EQLNUM 平衡区号数 (98)EQUALS 在目前的BOX中设置数组为常数 (99)EQUIL 平衡数据详述 (99)EXTRAPMS 对表的外插请求预告信息 (101)FIPNUM 流体储量区域号 (102)GCONINJE 对井组井/油田注入率的控制/限制 (102)GCONPRI 为“优先”而设的井组或油田产量限制 (104)GCONPROD 井组或油田的产率控制或限制 (104)GCONSALE 井组或油田的售气控制产率 (107)GCONSUMP 井组的气消耗率和引进率 (109)GCONTOL 井组控制目标(产率)允许差额 (110)GECON 井组或油田的经济极限数据 (111)GLIFTLIM 最大井组人工举升能力 (112)GRAVITY 地面条件下的流体密度 (113)GRIDFILE 控制几何文件网格的容量 (113)GRUPRIG 给井组配置修井设备 (113)GRUPTREE 建立多级井组控制的树状结构 (114)GSEPCOND 井组设置分离器 (115)IMBNUM 渗吸饱和度函数据区域号 (115)IMBNUMMF 基质—裂缝渗吸区域号 (116)IMPES 建立IMPES求解过程 (117)IMPLICIT 重建全隐式求解 (117)INCLUDE 包含数据文件名 (117)INIT 要求输出初始文件 (118)INRAD 径向模型的内径 (118)KRG 标定气相对渗透率的端点 (118)KRNUM 方向性相对渗透率表格数 (119)KRNUMMF 基岩—裂缝流动饱和度表号 (120)KRO 标定油相对渗透率端点 (120)KRW 标定水相对渗透率端点 (121)LOAD 调入一个SAVE文件以便执行一个快速重起动 (122)MESSAGES 重设置打印和停止限定的信息 (123)MINPV 设置活动网格的最小孔隙体积 (124)MINPVV 建立一个有效网格的最小孔隙空间 (124)MISCNUM 混合区数目 (125)MONITOR 请求实时显示输出 (125)MULTIPLY 当前定义区中的数组 (126)MULTR R方向传导率乘子 (126)MULTTHT THETA方向传导率乘子 (127)MULTX X方向传导率乘子 (127)MULTY Y方向传导率乘子 (127)MULTZ Z方向传导率乘子 (128)NEWTON 输出迭代计数到汇总文件 (128)NEWTRAN 标定使用块拐角传导率 (128)NEXTSTEP 建立下一时间步最大值 (129)NNC 非相邻连接的直接输入 (129)NOECHO 关闭输出的响应 (130)NOGGF 压缩网格几何模型文件 (130)NODPPM 非双孔的渗透率乘子 (130)NOWARN 压制ECLIPSE警报信息 (130)NTG 厚度净毛比 (130)OILAPI 初始原油API值,以便API示踪选择 (131)OLDTRAN 标定块中心传导率 (131)OLDTRANR 标定任意一块中心传导率 (131)OPTIONS 开启特别程序选择 (132)OUTRAD 径向模型外半径 (134)OVERBURD 岩石负载压力表 (135)PERMR R方向绝对渗透率 (135)PERMTHT θ方向绝对渗透率 (136)PERMX X方向绝对渗透率 (136)PERMY Y方向绝对渗透率 (136)PERMZ Z方向绝对渗透率 (137)PINCH 建立尖灭层上下的连接 (137)PINCHOUT 建立尖灭层上下的连接 (138)PMAX 模拟中的最大压力 (138)PMISC 与压力有关的可混性表 (138)PORO 网格孔隙度 (139)PORV 网格孔隙体积 (140)PRESSURE 初始压力 (140)PRIORITY 为井的优先级选项设置系数 (140)PRVD 原始压力与深度关系表 (142)PSEUDOS 为PSEUDO包要求输出的数据 (142)PVCO 含气原油PVT性质 (142)PVDG 干气的PVT性质(无挥发油) (144)PVDO 死油的PVT性质(无挥发气) (145)PVTG 湿气的PVT性质(有挥发油) (145)PVTNUM PVT区数目 (146)PVTO 活性油的PVT^性质(有溶解气) (147)PVTW 水PVT性质 (148)PVTWSALT 含盐的水PVT函数 (149)QDRILL 在钻井队列中安置井 (150)RESTART 设置重启动 (151)RESVNUM 对一给定油藏输入角点坐标数据 (153)ROCK 岩石压缩系数 (153)ROCKNUM 岩石压实表格区数 (154)ROCKTAB 岩石压实数据表 (154)ROCKTABH 滞后岩石压实数据表 (155)RPTGRID 从GRID部分输出控制 (156)RPTONLY 摘要输出的常规限制 (158)RPTPROPS 控制PROPS部分的输出 (158)RPTREGS 控制REGIONS部分的输出 (159)RPTRST 输到RESTART文件的控制 (159)RPTRUNSP 控制RUNSPEC部分的数据输出 (160)RPTSCHED 控制SCHEDULE部分的输出 (160)RPTSMRY 控制SUMARY部分的输出 (163)RPTSOL 控制SOLUTION部分的输出 (163)RS 初始溶解气油比 (165)RSCONST 为死油设置的一个常数Rs值 (165)RSCONSTT 为每一个死油PVT表设置的一个常数Rs值 (166)RSVD 用于平衡选择的RWJ深度关系表 (166)RUNSUM 所需的SUMMARY数据的制表输出 (167)RV 初始挥发油气比 (167)RVCONST 为干气设置的一个常数Rv值 (167)RVCONSTT 为每个干气PVT表设置一个常数Rv值 (168)RVVD 用于平衡选择的Rv与深度关系表 (168)SALT 初始盐浓度 (169)SALTVD 用于平衡的盐浓度与深度关系 (169)SAVE 用于快速重启文件而需输出的SAVE文件 (170)SCALELIM 设置饱和度表的标度限制 (170)SDENSITY 在地面条件的混相气密度 (170)SEPVALS 分离测试的Bo和Rs值 (171)SGAS 初始气饱和度 (173)SGCR 临界气饱和度的标度 (173)SGFN 气体饱和度函数 (174)SGL 原生气饱和度的标度 (175)SGOF 气/油饱和度函数与气饱和度 (176)SGU 最大气饱和度的饱和度表的标度 (177)SIGMA 双重孔隙基岩—裂缝的连结 (178)SIGMAV 双重孔隙度基岩—裂缝的连结(向量) (178)SLGOF 气/油饱和度函数与液体饱和度 (179)SOF2 油饱和度函数(2相) (180)SOF3 油饱和度参数(3相) (181)SOGCR 临界的气中含油饱和度的标度 (182)SOMGAS STONE1模型中含油饱和度最小值 (183)SOMWAT STONE1模型中最小油饱和度值 (184)SORWMIS 混相残余油饱和度数表 (185)SOWCR 标度临界水中含油的饱和度值 (186)SPECGRID 网格特性的详细说明 (187)STOG 油气表面张力与压力 (187)STONE1 三相油相对渗透率模型 (188)STONE2 三相油相对渗透率模型 (188)STOW 油水表面张力与对应压力 (188)SWAT 初始水饱和度 (189)SWATINIT 标定毛管压力的初始水饱和度 (190)SWCR 临界水饱和度的标度 (190)SWFN 水饱和度函数 (191)SWL 原生水饱和度的标定 (192)SWLPC 仅对毛管压力曲线标定原生水饱和度 (193)SWOF 水/油饱和度函数和对应的水饱和度 (193)SWU 饱和度数表中最大的含水饱和度的标定 (195)TBLK 示踪剂的初始浓度 (196)THPRES 门限压力 (196)TLMIXPAR Todd-Longstaff混合参数 (197)TNUM 示踪剂浓度区 (198)TOPS 每个网格的顶面深度 (198)TRACER 被动的示踪剂名 (199)TRACTVD 为示踪剂要求“流率极限传输” (199)TRANR R方向的传导率 (199)TRANTHT θ方向的传导率 (200)TRANX X方向的传导率 (200)TRANY Y方向的传导率 (201)TRANZ Z方向的传导率 (201)TSTEP 把模拟器推向新的报告时间 (202)TUNING 设置模拟器控制参数 (202)TVDP 初始示踪浓度与深度表 (204)TZONE 过度带控制选择 (205)VAPPARS 油挥发控制 (205)VEDEBUG 对垂向平衡和压缩垂向平衡选择控制调整 (205)VEFRAC 垂向平衡曲线系数的应用 (206)VEFRACP 垂向平衡拟毛管压力系数的使用 (207)VEFRACPV 垂向平衡拟毛管压力系数的使用 (207)VFPINJ 对注水井输入V.F.P表 (208)VFPPROD 对生产井输入V.F.P表 (209)WBOREVOL 对井筒贮存设置体积 (212)WCONHIST 历史拟合井观测产量 (213)WCONINJ 设有组控制的注入井的控制数据 (215)WCONINJE 对注入井控制数据 (217)WCONPROD 对生产井控制数据 (218)WCUTBACK 井减少限制 (220)WCYCLE 井自动循环开与关 (222)WDRILRES 防止在同一网格中同时开两口井 (222)WDRILTIM 新井自动开钻的控制条件 (223)WECON 生产井的经济极限数据 (224)WEFAC 设置井的效率系数(为停工期) (226)WELDEBUG 个别井的跟踪输出控制 (226)WELDRAW 设置生产井的最大允许压差 (227)WELOPEN 关闭或重开井或井的射开层 (228)WELPI 设置井的生产/注入指数值 (229)WELPRI 设置井的优先数 (229)WELSOMIN 自动开井的最小含油饱和度 (230)WELSPECS 井的综合说明数据 (230)WELTARG 重新设置井的操作目标或限制 (232)WGASPROD 为控制销气而设置的特别产气井 (233)WGRUPCON 为井组控制而给井设置指导产率 (234)WHISTCTL 给历史拟合井设置覆盖控制 (235)WLIFT 自动换管串和升举的开关数据 (235)WLIMTOL 经济和其它限制的容差分数 (236)WORKLIM 每次自动修井所花的时间 (237)WPIMULT 用给定值乘以井射开层地地层系数 (237)WPLUG 设置井的回堵长度 (238)WSALT 设置注入井的盐浓度 (238)WTEST 命令对已关着的井进行周期性测试 (239)WTRACER 给注水井设置示踪剂浓度 (240)ZCORN 网格块角点的深度 (241)1Eclipse 油藏模拟软件特点1.1Eclipse软件91年A版本的新进展概况详细说明见附录B11.新功能(1)提供了可供选择的通用的油PVT数据和饱和度数据的输入关键词;(2)对每一个PVT区设计了恒量Rs或Rv值;(3)分子扩散选择能模拟气的扩散和油的组份;(4)盐水选择能模拟不同矿化度盐水的流动。

ECLIPSE油藏数值模拟软件使用经验

ECLIPSE油藏数值模拟软件使用经验

ECLIPSE油藏数值模拟软件使用经验ECLIPSE 油藏数值模拟软件使用经验第一:ECLIPSE 介绍ECLIPSE100,ECLIPSE300和FrontSim是主模拟器。

ECLISPE100是对黑油模型进行计算,ECLISPE300是对组分模型和热采模拟进行计算,FrontSim是流线法模拟器。

前处理模块有Flogrid,PVTi,SCAL,Schedule,VFPi等。

Flogrid用于为数值模拟建立模拟模型,包括油田构造模型和属性模型;PVTi用于为模拟准备流体的PVT参数,对于黑油模型,主要是流体的属性随地层压力的变化关系表,对于组分模型是状态方程;SCAL为模型准备岩石的相渗曲线和毛管压力输入参数;Schedule处理油田的生产数据,输出ECLIPSE需要的数据格式(关键字);VFPi是生成井的垂直管流曲线表,用于模拟井筒管流。

ECLIPSE OFFICE和FLOVIZ 是后处理模块,进行计算曲线和三维场数据显示和分析,ECLIPSE OFFICE同时也是ECLIPSE的集成平台。

对于初学者,不但要学主模型,也需要学前后处理。

对于ECLISPE的初学者,应该先从ECLISPE OFFICE学起,把ECLISPE OFFICE的安装练习做完。

然后再去学Flogrid,Schedule 和SCAL。

PVTi主要用于组分模型,做黑油模型可以不用。

第二:做油藏数值模拟都需要准备什么参数在照着软件提供的安装例子做练习时经常遇到的问题是:虽然一步一步按照手册的说明做,但做的时候不明白每一步在做什么,为什么要这么做。

这时候的重点在于你要知道你一开始做的工作都是为数值模拟计算提供满足软件格式要求的基础参数。

有了这些基础参数你才能开始进行模拟计算。

这些基础参数包括以下几个部分:1。

模拟工作的基本信息:设定是进行黑油模拟,还是热采或组分模拟;模拟采用的单位制(米制或英制);模拟模型大小(你的模型在X,Y,Z三方向的网格数);模拟模型网格类型(角点网格,矩形网格,径向网格或非结构性网格);模拟油藏的流体信息(是油,气,水三相还是油水或气水两相,还可以是油或气或水单相,有没有溶解气和挥发油等);模拟油田投入开发的时间;模拟有没有应用到一些特殊功能(局部网格加密,三次采油,端点标定,多段井等);模拟计算的解法(全隐式,隐压显饱或自适应)。

油藏数值模拟技术

油藏数值模拟技术
建立油藏模拟软件,一般包括: (1)质量守恒原理 (2)能量守恒原理 (3)运动方程(达西定律) (4)状态方程 (5)辅助方程(如饱和度方程,毛管力 方程等)
油藏模拟的作用
1)剩余油分布研究。 2)优化井网、开发层系、井数和井位。 3)选择注水方式。 4)对油藏和流体性质的敏感性进行研究 5)实施方案的可行性评价
在每个区域,需要设置最大、最小及临界饱 和度值。
用于定义过渡带的饱和度。
岩石数据
岩石数据是特定的岩心分析试验的结果, 该数据用于: 设置每一流体相的最大、最小饱和度,该 值用于定义平衡区的相饱和度。 定义过渡带的范围及属性。 描述各相在网格块间流动时的动态表现。
数据准备方法
1、网格描述 2、PVT分析 3、岩心分析 4、平衡区 5、油藏工程方法 6、数据文件实例
如果上述条件不能完全满足,则需要使 用全组分模拟器。
数据准备方法
1、网格描述 2、PVT分析 3、岩心分析 4、平衡区 5、油藏工程方法 6、数据文件实例
岩心分析
来源于SCAL(special core analysis)分析, 数据主要是以表的方式描述属性与饱和度的 关系。
对于油藏的不同部分,可分用不同的相渗曲 线。
建立能较准确描述油藏 特征的地质模型。
(一) 网格的概念及设计方法
建立地质模型的网格设计方法:
1、选择模型的几何描述
(1)研究区域的大小及形态 (2)需要的研究精度 (3)所得数据的详细程度 (4)断层结构的复杂性 (5)断层两边地层的接触关系及属性 (6)存在倾斜及下降断层 (7)建模的时间限制
4、 在初始化(initialization)时,计算油藏每一层的静压力 剃度,并给每一个网格赋每一相的饱和度值

Eclipse-100-油藏数模软件使用手册

Eclipse-100-油藏数模软件使用手册

Eclipse 100 油藏数模软件使用手册二OO四年十月目录1 Eclipse 油藏模拟软件特点 (1)1.1Eclipse软件91年A版本的新进展概况 (1)1.2Eclipse100软件特点 (1)2 数据文件综述 (12)2.1 RUNSPEC部分 (15)2.2 GRID部分 (19)2.3 EDIT部分 (24)2.4 PROPS部分 (25)2.5 REGIONS部分 (31)2.6 SOLUTION部分 (32)2.7 SUMMARY(汇总)部分 (35)2.8 SCHEDULE部分 (42)3 关键字描述(按字母顺序排列) (47)ACTNUM 活节点的识别 (47)ADD 在当前BOX中指定的数组加一个常数 (48)ADDREG 给某一流动区域内指定的数组加一个常数 (49)ADDZCORN 给角点深度数组加一个常数 (49)APIGROUP 给API追踪中的油PVT表分组 (51)APIVD API追踪平衡的深度与原油比重(API)的关系 (51)AQANTRC 指定分析水层的示踪剂浓度 (51)AQUANCON 定义分析水层的相关数据 (52)AQUCON 数值化水层与油藏的连接 (53)AQUCT 说明Carter—Tracy水层的特征数据 (54)AQUFET Tetkovich水层说明数据 (55)AQUFETP 说明Fetkovich水层的特征数据 (56)AQUNUM 给一个网格块赋值一个数值化水层 (57)AQUTAB Carter—Tracy水层的影响函数表 (58)BDENSITY 盐水地面密度 (59)BOUNDARY 定义在打印网格表中显示的网格范围 (59)BOX 重新定义当前输入的BOX (60)CECON 生产井射开节点的经济极限 (61)COLLAPSE 识别在压缩VE选择中可压塌的单元 (62)COLUMNS 设置输入数据文件的左右范围 (62)COMPDAT 井完井段说明数据 (63)COMPFLSH 井射孔段的闪蒸转化比 (65)COMPIMB 井射开网格的渗吸表号 (67)COMPINJK 用户定义的注入井相对渗透率 (68)COMPLUMP 为自动修井而将射开网格归在一起 (69)COMPRP 重新标定井射开节点的饱和度数据 (70)COMPVE 垂直平衡(V.E.)运行时,井射孔深度的重设定 (72)COORD 坐标线 (75)COORDSYS 坐标系统信息 (76)COPY 从一个数组拷贝数据到另一数组 (77)COPYBOX 从一个BOX向另外一个拷贝一组网格数据 (77)CRITPERM 对VE节点压缩的渗透率标准 (78)DATE 输出日期到汇总文件 (79)DATES 模拟者事先指定报告日期 (79)DATUM 基准面深度,用于深度校正压力的输出 (80)BEBUG 控制检测输出 (80)DENSITY 地面条件下流体密度 (81)DEPTH 网块中心深度 (82)DIFFC 每一个PVT区域的分子扩散数据 (82)DIFFDP 在双重介质运行中,限制分子扩散 (83)DIFFMMF 基质一裂缝的扩散乘子 (83)DIFFMR R方向的扩散乘子 (83)DIFFMTHT θ方向扩散系数乘子 (84)DIFFMX X方向的扩散乘子 (84)DIFFMY Y方向的扩散乘子 (85)DIFFMZ Z方向的扩散乘子 (85)DIFFR R方向的扩散系数 (86)DIFFTHT θ方向的扩散系数 (86)DIFFX X方向扩散系数 (87)DIFFY Y方向扩散系数 (87)DIFFZ Z方向扩散系数 (88)DPGRID 对裂缝单元使用基质单元的网格数据 (88)DR R方向网格的大小 (88)DRSDT 溶解GOR的增加的最大速度 (89)DRV R方向网格大小(矢量) (89)DRVDT 挥发油的OGR的增加的最大速度 (90)DTHETA θ方向的网格大小 (90)DTHETAV 网格的角度大小(向量) (91)DX X方向的网格大小 (91)DXV X方向网格大小(向量) (91)DY Y方向网格大小 (92)DYV Y方向网格大小(向量) (92)DZ Z方向网格大小 (92)DZMTRX 基质块的垂直尺寸 (93)DZMTRXV 基质岩体块的垂直尺寸(向量) (93)DZNET 净厚度 (93)ECHO 接通重复输出开关 (94)EDITNNC 改变非相邻连接 (94)EHYSTR 滞后作用参数和模型选择 (95)END 标志SCHEDULE部分的结束 (95)ENDBOX 将BOX恢复到包含全部网格 (95)ENDNUM 端点标定与深度区域号 (95)ENKRVD 相对渗透率端点与深度关系表 (96)ENPTVD 饱和度端点与深度关系表 (97)EQLNUM 平衡区号数 (98)EQUALS 在目前的BOX中设置数组为常数 (99)EQUIL 平衡数据详述 (99)EXTRAPMS 对表的外插请求预告信息 (101)FIPNUM 流体储量区域号 (102)GCONINJE 对井组井/油田注入率的控制/限制 (102)GCONPRI 为“优先”而设的井组或油田产量限制 (104)GCONPROD 井组或油田的产率控制或限制 (104)GCONSALE 井组或油田的售气控制产率 (107)GCONSUMP 井组的气消耗率和引进率 (109)GCONTOL 井组控制目标(产率)允许差额 (110)GECON 井组或油田的经济极限数据 (111)GLIFTLIM 最大井组人工举升能力 (112)GRAVITY 地面条件下的流体密度 (113)GRIDFILE 控制几何文件网格的容量 (113)GRUPRIG 给井组配置修井设备 (113)GRUPTREE 建立多级井组控制的树状结构 (114)GSEPCOND 井组设置分离器 (115)IMBNUM 渗吸饱和度函数据区域号 (115)IMBNUMMF 基质—裂缝渗吸区域号 (116)IMPES 建立IMPES求解过程 (117)IMPLICIT 重建全隐式求解 (117)INCLUDE 包含数据文件名 (117)INIT 要求输出初始文件 (118)INRAD 径向模型的内径 (118)KRG 标定气相对渗透率的端点 (118)KRNUM 方向性相对渗透率表格数 (119)KRNUMMF 基岩—裂缝流动饱和度表号 (120)KRO 标定油相对渗透率端点 (120)KRW 标定水相对渗透率端点 (121)LOAD 调入一个SAVE文件以便执行一个快速重起动 (122)MESSAGES 重设置打印和停止限定的信息 (123)MINPV 设置活动网格的最小孔隙体积 (124)MINPVV 建立一个有效网格的最小孔隙空间 (124)MISCNUM 混合区数目 (125)MONITOR 请求实时显示输出 (125)MULTIPLY 当前定义区中的数组 (126)MULTR R方向传导率乘子 (126)MULTTHT THETA方向传导率乘子 (127)MULTX X方向传导率乘子 (127)MULTY Y方向传导率乘子 (127)MULTZ Z方向传导率乘子 (128)NEWTON 输出迭代计数到汇总文件 (128)NEWTRAN 标定使用块拐角传导率 (128)NEXTSTEP 建立下一时间步最大值 (129)NNC 非相邻连接的直接输入 (129)NOECHO 关闭输出的响应 (130)NOGGF 压缩网格几何模型文件 (130)NODPPM 非双孔的渗透率乘子 (130)NOWARN 压制ECLIPSE警报信息 (130)NTG 厚度净毛比 (130)OILAPI 初始原油API值,以便API示踪选择 (131)OLDTRAN 标定块中心传导率 (131)OLDTRANR 标定任意一块中心传导率 (131)OPTIONS 开启特别程序选择 (132)OUTRAD 径向模型外半径 (134)OVERBURD 岩石负载压力表 (135)PERMR R方向绝对渗透率 (135)PERMTHT θ方向绝对渗透率 (136)PERMX X方向绝对渗透率 (136)PERMY Y方向绝对渗透率 (136)PERMZ Z方向绝对渗透率 (137)PINCH 建立尖灭层上下的连接 (137)PINCHOUT 建立尖灭层上下的连接 (138)PMAX 模拟中的最大压力 (138)PMISC 与压力有关的可混性表 (138)PORO 网格孔隙度 (139)PORV 网格孔隙体积 (140)PRESSURE 初始压力 (140)PRIORITY 为井的优先级选项设置系数 (140)PRVD 原始压力与深度关系表 (142)PSEUDOS 为PSEUDO包要求输出的数据 (142)PVCO 含气原油PVT性质 (142)PVDG 干气的PVT性质(无挥发油) (144)PVDO 死油的PVT性质(无挥发气) (145)PVTG 湿气的PVT性质(有挥发油) (145)PVTNUM PVT区数目 (146)PVTO 活性油的PVT^性质(有溶解气) (147)PVTW 水PVT性质 (148)PVTWSALT 含盐的水PVT函数 (149)QDRILL 在钻井队列中安置井 (150)RESTART 设置重启动 (151)RESVNUM 对一给定油藏输入角点坐标数据 (153)ROCK 岩石压缩系数 (153)ROCKNUM 岩石压实表格区数 (154)ROCKTAB 岩石压实数据表 (154)ROCKTABH 滞后岩石压实数据表 (155)RPTGRID 从GRID部分输出控制 (156)RPTONLY 摘要输出的常规限制 (158)RPTPROPS 控制PROPS部分的输出 (158)RPTREGS 控制REGIONS部分的输出 (159)RPTRST 输到RESTART文件的控制 (159)RPTRUNSP 控制RUNSPEC部分的数据输出 (160)RPTSCHED 控制SCHEDULE部分的输出 (160)RPTSMRY 控制SUMARY部分的输出 (163)RPTSOL 控制SOLUTION部分的输出 (163)RS 初始溶解气油比 (165)RSCONST 为死油设置的一个常数Rs值 (165)RSCONSTT 为每一个死油PVT表设置的一个常数Rs值 (166)RSVD 用于平衡选择的RWJ深度关系表 (166)RUNSUM 所需的SUMMARY数据的制表输出 (167)RV 初始挥发油气比 (167)RVCONST 为干气设置的一个常数Rv值 (167)RVCONSTT 为每个干气PVT表设置一个常数Rv值 (168)RVVD 用于平衡选择的Rv与深度关系表 (168)SALT 初始盐浓度 (169)SALTVD 用于平衡的盐浓度与深度关系 (169)SAVE 用于快速重启文件而需输出的SAVE文件 (170)SCALELIM 设置饱和度表的标度限制 (170)SDENSITY 在地面条件的混相气密度 (170)SEPVALS 分离测试的Bo和Rs值 (171)SGAS 初始气饱和度 (173)SGCR 临界气饱和度的标度 (173)SGFN 气体饱和度函数 (174)SGL 原生气饱和度的标度 (175)SGOF 气/油饱和度函数与气饱和度 (176)SGU 最大气饱和度的饱和度表的标度 (177)SIGMA 双重孔隙基岩—裂缝的连结 (178)SIGMAV 双重孔隙度基岩—裂缝的连结(向量) (178)SLGOF 气/油饱和度函数与液体饱和度 (179)SOF2 油饱和度函数(2相) (180)SOF3 油饱和度参数(3相) (181)SOGCR 临界的气中含油饱和度的标度 (182)SOMGAS STONE1模型中含油饱和度最小值 (183)SOMWAT STONE1模型中最小油饱和度值 (184)SORWMIS 混相残余油饱和度数表 (185)SOWCR 标度临界水中含油的饱和度值 (186)SPECGRID 网格特性的详细说明 (187)STOG 油气表面张力与压力 (187)STONE1 三相油相对渗透率模型 (188)STONE2 三相油相对渗透率模型 (188)STOW 油水表面张力与对应压力 (188)SWAT 初始水饱和度 (189)SWATINIT 标定毛管压力的初始水饱和度 (190)SWCR 临界水饱和度的标度 (190)SWFN 水饱和度函数 (191)SWL 原生水饱和度的标定 (192)SWLPC 仅对毛管压力曲线标定原生水饱和度 (193)SWOF 水/油饱和度函数和对应的水饱和度 (193)SWU 饱和度数表中最大的含水饱和度的标定 (195)TBLK 示踪剂的初始浓度 (196)THPRES 门限压力 (196)TLMIXPAR Todd-Longstaff混合参数 (197)TNUM 示踪剂浓度区 (198)TOPS 每个网格的顶面深度 (198)TRACER 被动的示踪剂名 (199)TRACTVD 为示踪剂要求“流率极限传输” (199)TRANR R方向的传导率 (199)TRANTHT θ方向的传导率 (200)TRANX X方向的传导率 (200)TRANY Y方向的传导率 (201)TRANZ Z方向的传导率 (201)TSTEP 把模拟器推向新的报告时间 (202)TUNING 设置模拟器控制参数 (202)TVDP 初始示踪浓度与深度表 (204)TZONE 过度带控制选择 (205)VAPPARS 油挥发控制 (205)VEDEBUG 对垂向平衡和压缩垂向平衡选择控制调整 (205)VEFRAC 垂向平衡曲线系数的应用 (206)VEFRACP 垂向平衡拟毛管压力系数的使用 (207)VEFRACPV 垂向平衡拟毛管压力系数的使用 (207)VFPINJ 对注水井输入V.F.P表 (208)VFPPROD 对生产井输入V.F.P表 (209)WBOREVOL 对井筒贮存设置体积 (212)WCONHIST 历史拟合井观测产量 (213)WCONINJ 设有组控制的注入井的控制数据 (215)WCONINJE 对注入井控制数据 (217)WCONPROD 对生产井控制数据 (218)WCUTBACK 井减少限制 (220)WCYCLE 井自动循环开与关 (222)WDRILRES 防止在同一网格中同时开两口井 (222)WDRILTIM 新井自动开钻的控制条件 (223)WECON 生产井的经济极限数据 (224)WEFAC 设置井的效率系数(为停工期) (226)WELDEBUG 个别井的跟踪输出控制 (226)WELDRAW 设置生产井的最大允许压差 (227)WELOPEN 关闭或重开井或井的射开层 (228)WELPI 设置井的生产/注入指数值 (229)WELPRI 设置井的优先数 (229)WELSOMIN 自动开井的最小含油饱和度 (230)WELSPECS 井的综合说明数据 (230)WELTARG 重新设置井的操作目标或限制 (232)WGASPROD 为控制销气而设置的特别产气井 (233)WGRUPCON 为井组控制而给井设置指导产率 (234)WHISTCTL 给历史拟合井设置覆盖控制 (235)WLIFT 自动换管串和升举的开关数据 (235)WLIMTOL 经济和其它限制的容差分数 (236)WORKLIM 每次自动修井所花的时间 (237)WPIMULT 用给定值乘以井射开层地地层系数 (237)WPLUG 设置井的回堵长度 (238)WSALT 设置注入井的盐浓度 (238)WTEST 命令对已关着的井进行周期性测试 (239)WTRACER 给注水井设置示踪剂浓度 (240)ZCORN 网格块角点的深度 (241)1Eclipse 油藏模拟软件特点1.1Eclipse软件91年A版本的新进展概况详细说明见附录B11.新功能(1)提供了可供选择的通用的油PVT数据和饱和度数据的输入关键词;(2)对每一个PVT区设计了恒量Rs或Rv值;(3)分子扩散选择能模拟气的扩散和油的组份;(4)盐水选择能模拟不同矿化度盐水的流动。

Eclipse油藏数值模拟经验PPT课件

Eclipse油藏数值模拟经验PPT课件

RUNSPEC GRID EDIT PROPS
REGIONS
SOLUTION SUMMARY SCHEDULE
――定义模型的一般特征,必须有。
――定义网格的几何形态及岩石物性数据,必须有。
――对GRID部分属性进行修改,可选项。
――定义PVT数据、岩石的压缩性、相渗曲线及毛管压
力,必须有。
――按照一般属性及报告输出的需要定义子区域,可选
10
拟合对象
拟合对象 包括产量 含水、压 力等
11
拟合步骤
一般把产量作为已知条件来拟合其它动态参数
开始
初始平衡状态检查
拟合油田平均压力
拟合单井压力
拟合油田综合含水
拟合单井含水
结束
12
可调参数
1、岩石数据: a.渗透率 b.孔隙度 c.厚度 d.饱和度
2、流体数据: a.压缩性 b.PVT数据
3、相对渗透率数据
Eclipse 数值模拟经验
1
油藏数值模拟的作用
1 研究剩余油分布 2 开发方案优化
2
油藏数值模拟工作流程
数据文件准备 初始化计算 历史拟合 动态预测 结果输出
3
所需的数据
1、静态油藏描述数据 提供每一个网格单元的尺寸、深度、孔隙度及渗透率。
2、PVT及岩石性质数据 提供流体的地层体积系数、黏度、密度、气油比、岩石及油水
下降。
此后,也
3产产(水的25达 3B向带没切在力50水油0由 进及就H000最前 到 有 换1支0P量 量天于 入0注是62定水产含推上p低推 达 提 到在持0—520之固下水)入s在天提支定产B0在0油的水进在0限 自 量0样2i升限进 该 供 压1—使天降0。3H00间定 降0区 。水6天3—供持下水前 率量0,2保,动的做00天在3的井足力0B,0P此0,50,, ,0s0之0下缘 上0B开H—在的开降量0量时井不的持井 切 控可时又st0水 , 够 控,30B时pbt30—此压H到0Pbp间5降继 升sH达/在的 换 制天0使始1压始,固到水的能压,切p/大前 但 的 制siPd的外0d—以04时sPi力1时稳a续 。,上0至到a控 到 上,得i0稳,力下而定到于缘 还 压 。最体支维力4B换井。yy部上p,控,的 。。少制 产 。产HBs低及持持,到。HiP制上0又 水 这水。P又限注已所该0B。0此H降入经需井天产P 水量

油藏数值模拟实践

油藏数值模拟实践

7、数值模拟研究流程
流体性质
模型:黑油 /组分/其它
地质模型 油藏工程基 础参数研究 油藏动态参 数整理分析
返回是正 常的
返回是不 正常的
参数调整
历史拟合
方案预测 1)开发方式优选 2)井网部署及调整 3)开发层系调整 3)开发指标预测 机理研究 1)井网密度研究 2)不同开发方式采收率
3)驱油效率研究
不同强度水体在数值模拟中的描述技术
预测和模拟底水锥进速度与隔夹层的密度、分布范围、厚度、射孔位置及打 开程度等数值模拟技术
纵向上多油藏开发方式优化技术 采油速度、打开程度、无水采出程度预测技术
HE-01井
Ben_1
隔夹层发育
Ben_2
夹层分布范围较大
Ben_ 3
概述
CNPC International Research Center
模拟模型选择
CNPC International Research Center
2、相图与油藏分类
各类油藏在相图上的分布
油藏
P 7
凝析气藏
65 4
3
C
气藏
21
泡点线
1. 干气藏 2. 湿气藏 3. 低含凝析油凝析气藏 4. 高含凝析油凝析气藏 5. 临界态油气藏 6. 挥发性油藏 7. 黑油油藏
T
参数修改
Update更新
概述
CNPC International Research Center
4、数值模拟的基本理论基础

应用数值模拟方法来研究油田开发问题,就是根据油藏的实际渗流
情况建立相应的数学模型,即建立基本渗流方程式及相应的定解条件,
形成一个完整的数学方程组:

提高油藏数值模拟的拟合精度

提高油藏数值模拟的拟合精度

提高油藏数值模拟的拟合精度某油田S2层注水量噼分不合理,有效注水量难以确定,导致数值模拟结果误差较大。

根据单井生产动态曲线,注水量,产液量,吸水剖面和液体产量剖面,采用动态循环分析法结合Petrel- RE数值模拟技术确保了全区的拟合精度。

该区拟合准确率为98.59%,单井历史准确率为93.02%,S2层有效累计注水量为2724×104m3,累计注采比为1.2。

应用此方法得出的剩余油储量分布与实际地层情况更接近,保证了后期方案预测和增产措施的准确性。

标签:笼统注水1;动态循环法2;方案预测3;有效累计注水量4某油田已生产近40年,采用笼统注水方式,单井注水量噼分不合理。

油田套管腐蚀、损坏严重,注水漏失现象普遍,几十年的水驱使油水井间更易形成高渗通道,微构造较发育等因素,使得S2层有效注水量难以确定,导致数值模拟困难,模拟结果误差较大。

国内外注水开采基本采用模糊权重系数法,根据经验给出了一套具体的水库加权系数。

采用动态循环分析法结合Petrel- RE数值模拟技术,充分结合动态资料和地层属性,反复多次的调整各层注水数据,注入单层的水量越来越精确,历史拟合的精度大大提高。

1 概况某油田地质构造比较简单,为近东西向的宽缓长轴背斜构造,滨海沉积,地层自上而下发育:在古生代石炭纪,中生代三叠纪,侏罗纪,白垩纪和新生代,共有11个含油地层。

油田采用反九点法进行普通注水,平均井距400m。

S2储油层位于侏罗系地层,埋深1866-1982 m,有效厚度4-10 m,孔隙度0.12-0.28,渗透率2.4-4087 mD,平均约105 mD,层内非均质性强,渗透系数变异系数为0.82。

原始储层压力18.7 MPa,饱和压力16.3 MPa,温度83.6℃,地层水盐度高。

它已达到140000-165000毫克/升,属中低渗中高渗高温高盐构造储层。

2 注水开发阶段划分截至2014年12月底,在S2层钻探了333口井,其中288口井已用于石油开采,37口井已转化为注入井,并且已钻探45口新井。

eclipse上机实习二

eclipse上机实习二

完善开发方案、再计算、再观察………. 直到自己认为比较合理 结束模拟 编写简单分析报告
2 网格划分(油藏格架).txt
2
1
2、油藏地质模型
打开原始数据文件“2a DX.txt”,全选、复制
点右键
拖动滚动条,观察数据的完整性 (换层的时候需要按apply按钮)
换1层,apply----进行下一层的输入。
在每一层的DX相同时,下面的2-5层可以不输如数据, 缺省时默认与上一层相同。
拖动滚动条,观察数据的完整性,看是不是每层都有数据。
(换层的时候需要按apply按钮)
用同样的方法输入2-5层的孔隙度数据
2选1,退出
告知对2-5层的DX、DY、TOPs是如何处理的
纵向放大、缩小
旋转:按住左键不放,拖动,放开左键
显示/不显示网格线
ቤተ መጻሕፍቲ ባይዱ
平移:按住中间键不放,拖动,放开左键
加入分区数据(也可以在Regions部分做这项工作)
保存、退出
4、特殊岩心分析数据
插入第二张表
用同样的方法输入第二张表的数据。
原始数据在文件“4 特殊岩心分析数据(SCAL).txt”中。
加入饱和度方程分区
保存、退出
5、输入初始化数据(定义初始条件)
加入平衡区分区
加入其他井
加入时间
用相同的方法插入1年的时间
保存、退出
采用编辑SCH文件的办法,加快时间输入速度。
修改
再进入Schedule就看到加入的时间了
8、汇总数据输出控制
指定输出油藏的开发指标
指定输出单井的生产指标
保存、退出
三、运行模拟器
四、查看结果
加载模拟结果中的油藏地质体数据

Eclipse-100-油藏数模软件使用手册

Eclipse-100-油藏数模软件使用手册

Eclipse 100 油藏数模软件使用手册二OO四年十月目录1 Eclipse 油藏模拟软件特点 (1)1.1Eclipse软件91年A版本的新进展概况 (1)1.2Eclipse100软件特点 (1)2 数据文件综述 (12)2.1 RUNSPEC部分 (15)2.2 GRID部分 (19)2.3 EDIT部分 (24)2.4 PROPS部分 (25)2.5 REGIONS部分 (31)2.6 SOLUTION部分 (32)2.7 SUMMARY(汇总)部分 (35)2.8 SCHEDULE部分 (42)3 关键字描述(按字母顺序排列) (47)ACTNUM 活节点的识别 (47)ADD 在当前BOX中指定的数组加一个常数 (48)ADDREG 给某一流动区域内指定的数组加一个常数 (49)ADDZCORN 给角点深度数组加一个常数 (49)APIGROUP 给API追踪中的油PVT表分组 (51)APIVD API追踪平衡的深度与原油比重(API)的关系 (51)AQANTRC 指定分析水层的示踪剂浓度 (51)AQUANCON 定义分析水层的相关数据 (52)AQUCON 数值化水层与油藏的连接 (53)AQUCT 说明Carter—Tracy水层的特征数据 (54)AQUFET Tetkovich水层说明数据 (55)AQUFETP 说明Fetkovich水层的特征数据 (56)AQUNUM 给一个网格块赋值一个数值化水层 (57)AQUTAB Carter—Tracy水层的影响函数表 (58)BDENSITY 盐水地面密度 (59)BOUNDARY 定义在打印网格表中显示的网格范围 (59)BOX 重新定义当前输入的BOX (60)CECON 生产井射开节点的经济极限 (61)COLLAPSE 识别在压缩VE选择中可压塌的单元 (62)COLUMNS 设置输入数据文件的左右范围 (62)COMPDAT 井完井段说明数据 (63)COMPFLSH 井射孔段的闪蒸转化比 (65)COMPIMB 井射开网格的渗吸表号 (67)COMPINJK 用户定义的注入井相对渗透率 (68)COMPLUMP 为自动修井而将射开网格归在一起 (69)COMPRP 重新标定井射开节点的饱和度数据 (70)COMPVE 垂直平衡(V.E.)运行时,井射孔深度的重设定 (72)COORD 坐标线 (75)COORDSYS 坐标系统信息 (76)COPY 从一个数组拷贝数据到另一数组 (77)COPYBOX 从一个BOX向另外一个拷贝一组网格数据 (77)CRITPERM 对VE节点压缩的渗透率标准 (78)DATE 输出日期到汇总文件 (79)DATES 模拟者事先指定报告日期 (79)DATUM 基准面深度,用于深度校正压力的输出 (80)BEBUG 控制检测输出 (80)DENSITY 地面条件下流体密度 (81)DEPTH 网块中心深度 (82)DIFFC 每一个PVT区域的分子扩散数据 (82)DIFFDP 在双重介质运行中,限制分子扩散 (83)DIFFMMF 基质一裂缝的扩散乘子 (83)DIFFMR R方向的扩散乘子 (83)DIFFMTHT θ方向扩散系数乘子 (84)DIFFMX X方向的扩散乘子 (84)DIFFMY Y方向的扩散乘子 (85)DIFFMZ Z方向的扩散乘子 (85)DIFFR R方向的扩散系数 (86)DIFFTHT θ方向的扩散系数 (86)DIFFX X方向扩散系数 (87)DIFFY Y方向扩散系数 (87)DIFFZ Z方向扩散系数 (88)DPGRID 对裂缝单元使用基质单元的网格数据 (88)DR R方向网格的大小 (88)DRSDT 溶解GOR的增加的最大速度 (89)DRV R方向网格大小(矢量) (89)DRVDT 挥发油的OGR的增加的最大速度 (90)DTHETA θ方向的网格大小 (90)DTHETAV 网格的角度大小(向量) (91)DX X方向的网格大小 (91)DXV X方向网格大小(向量) (91)DY Y方向网格大小 (92)DYV Y方向网格大小(向量) (92)DZ Z方向网格大小 (92)DZMTRX 基质块的垂直尺寸 (93)DZMTRXV 基质岩体块的垂直尺寸(向量) (93)DZNET 净厚度 (93)ECHO 接通重复输出开关 (94)EDITNNC 改变非相邻连接 (94)EHYSTR 滞后作用参数和模型选择 (95)END 标志SCHEDULE部分的结束 (95)ENDBOX 将BOX恢复到包含全部网格 (95)ENDNUM 端点标定与深度区域号 (95)ENKRVD 相对渗透率端点与深度关系表 (96)ENPTVD 饱和度端点与深度关系表 (97)EQLNUM 平衡区号数 (98)EQUALS 在目前的BOX中设置数组为常数 (99)EQUIL 平衡数据详述 (99)EXTRAPMS 对表的外插请求预告信息 (101)FIPNUM 流体储量区域号 (102)GCONINJE 对井组井/油田注入率的控制/限制 (102)GCONPRI 为“优先”而设的井组或油田产量限制 (104)GCONPROD 井组或油田的产率控制或限制 (104)GCONSALE 井组或油田的售气控制产率 (107)GCONSUMP 井组的气消耗率和引进率 (109)GCONTOL 井组控制目标(产率)允许差额 (110)GECON 井组或油田的经济极限数据 (111)GLIFTLIM 最大井组人工举升能力 (112)GRAVITY 地面条件下的流体密度 (113)GRIDFILE 控制几何文件网格的容量 (113)GRUPRIG 给井组配置修井设备 (113)GRUPTREE 建立多级井组控制的树状结构 (114)GSEPCOND 井组设置分离器 (115)IMBNUM 渗吸饱和度函数据区域号 (115)IMBNUMMF 基质—裂缝渗吸区域号 (116)IMPES 建立IMPES求解过程 (117)IMPLICIT 重建全隐式求解 (117)INCLUDE 包含数据文件名 (117)INIT 要求输出初始文件 (118)INRAD 径向模型的内径 (118)KRG 标定气相对渗透率的端点 (118)KRNUM 方向性相对渗透率表格数 (119)KRNUMMF 基岩—裂缝流动饱和度表号 (120)KRO 标定油相对渗透率端点 (120)KRW 标定水相对渗透率端点 (121)LOAD 调入一个SAVE文件以便执行一个快速重起动 (122)MESSAGES 重设置打印和停止限定的信息 (123)MINPV 设置活动网格的最小孔隙体积 (124)MINPVV 建立一个有效网格的最小孔隙空间 (124)MISCNUM 混合区数目 (125)MONITOR 请求实时显示输出 (125)MULTIPLY 当前定义区中的数组 (126)MULTR R方向传导率乘子 (126)MULTTHT THETA方向传导率乘子 (127)MULTX X方向传导率乘子 (127)MULTY Y方向传导率乘子 (127)MULTZ Z方向传导率乘子 (128)NEWTON 输出迭代计数到汇总文件 (128)NEWTRAN 标定使用块拐角传导率 (128)NEXTSTEP 建立下一时间步最大值 (129)NNC 非相邻连接的直接输入 (129)NOECHO 关闭输出的响应 (130)NOGGF 压缩网格几何模型文件 (130)NODPPM 非双孔的渗透率乘子 (130)NOWARN 压制ECLIPSE警报信息 (130)NTG 厚度净毛比 (130)OILAPI 初始原油API值,以便API示踪选择 (131)OLDTRAN 标定块中心传导率 (131)OLDTRANR 标定任意一块中心传导率 (131)OPTIONS 开启特别程序选择 (132)OUTRAD 径向模型外半径 (134)OVERBURD 岩石负载压力表 (135)PERMR R方向绝对渗透率 (135)PERMTHT θ方向绝对渗透率 (136)PERMX X方向绝对渗透率 (136)PERMY Y方向绝对渗透率 (136)PERMZ Z方向绝对渗透率 (137)PINCH 建立尖灭层上下的连接 (137)PINCHOUT 建立尖灭层上下的连接 (138)PMAX 模拟中的最大压力 (138)PMISC 与压力有关的可混性表 (138)PORO 网格孔隙度 (139)PORV 网格孔隙体积 (140)PRESSURE 初始压力 (140)PRIORITY 为井的优先级选项设置系数 (140)PRVD 原始压力与深度关系表 (142)PSEUDOS 为PSEUDO包要求输出的数据 (142)PVCO 含气原油PVT性质 (142)PVDG 干气的PVT性质(无挥发油) (144)PVDO 死油的PVT性质(无挥发气) (145)PVTG 湿气的PVT性质(有挥发油) (145)PVTNUM PVT区数目 (146)PVTO 活性油的PVT^性质(有溶解气) (147)PVTW 水PVT性质 (148)PVTWSALT 含盐的水PVT函数 (149)QDRILL 在钻井队列中安置井 (150)RESTART 设置重启动 (151)RESVNUM 对一给定油藏输入角点坐标数据 (153)ROCK 岩石压缩系数 (153)ROCKNUM 岩石压实表格区数 (154)ROCKTAB 岩石压实数据表 (154)ROCKTABH 滞后岩石压实数据表 (155)RPTGRID 从GRID部分输出控制 (156)RPTONLY 摘要输出的常规限制 (158)RPTPROPS 控制PROPS部分的输出 (158)RPTREGS 控制REGIONS部分的输出 (159)RPTRST 输到RESTART文件的控制 (159)RPTRUNSP 控制RUNSPEC部分的数据输出 (160)RPTSCHED 控制SCHEDULE部分的输出 (160)RPTSMRY 控制SUMARY部分的输出 (163)RPTSOL 控制SOLUTION部分的输出 (163)RS 初始溶解气油比 (165)RSCONST 为死油设置的一个常数Rs值 (165)RSCONSTT 为每一个死油PVT表设置的一个常数Rs值 (166)RSVD 用于平衡选择的RWJ深度关系表 (166)RUNSUM 所需的SUMMARY数据的制表输出 (167)RV 初始挥发油气比 (167)RVCONST 为干气设置的一个常数Rv值 (167)RVCONSTT 为每个干气PVT表设置一个常数Rv值 (168)RVVD 用于平衡选择的Rv与深度关系表 (168)SALT 初始盐浓度 (169)SALTVD 用于平衡的盐浓度与深度关系 (169)SAVE 用于快速重启文件而需输出的SAVE文件 (170)SCALELIM 设置饱和度表的标度限制 (170)SDENSITY 在地面条件的混相气密度 (170)SEPVALS 分离测试的Bo和Rs值 (171)SGAS 初始气饱和度 (173)SGCR 临界气饱和度的标度 (173)SGFN 气体饱和度函数 (174)SGL 原生气饱和度的标度 (175)SGOF 气/油饱和度函数与气饱和度 (176)SGU 最大气饱和度的饱和度表的标度 (177)SIGMA 双重孔隙基岩—裂缝的连结 (178)SIGMAV 双重孔隙度基岩—裂缝的连结(向量) (178)SLGOF 气/油饱和度函数与液体饱和度 (179)SOF2 油饱和度函数(2相) (180)SOF3 油饱和度参数(3相) (181)SOGCR 临界的气中含油饱和度的标度 (182)SOMGAS STONE1模型中含油饱和度最小值 (183)SOMWAT STONE1模型中最小油饱和度值 (184)SORWMIS 混相残余油饱和度数表 (185)SOWCR 标度临界水中含油的饱和度值 (186)SPECGRID 网格特性的详细说明 (187)STOG 油气表面张力与压力 (187)STONE1 三相油相对渗透率模型 (188)STONE2 三相油相对渗透率模型 (188)STOW 油水表面张力与对应压力 (188)SWAT 初始水饱和度 (189)SWATINIT 标定毛管压力的初始水饱和度 (190)SWCR 临界水饱和度的标度 (190)SWFN 水饱和度函数 (191)SWL 原生水饱和度的标定 (192)SWLPC 仅对毛管压力曲线标定原生水饱和度 (193)SWOF 水/油饱和度函数和对应的水饱和度 (193)SWU 饱和度数表中最大的含水饱和度的标定 (195)TBLK 示踪剂的初始浓度 (196)THPRES 门限压力 (196)TLMIXPAR Todd-Longstaff混合参数 (197)TNUM 示踪剂浓度区 (198)TOPS 每个网格的顶面深度 (198)TRACER 被动的示踪剂名 (199)TRACTVD 为示踪剂要求“流率极限传输” (199)TRANR R方向的传导率 (199)TRANTHT θ方向的传导率 (200)TRANX X方向的传导率 (200)TRANY Y方向的传导率 (201)TRANZ Z方向的传导率 (201)TSTEP 把模拟器推向新的报告时间 (202)TUNING 设置模拟器控制参数 (202)TVDP 初始示踪浓度与深度表 (204)TZONE 过度带控制选择 (205)VAPPARS 油挥发控制 (205)VEDEBUG 对垂向平衡和压缩垂向平衡选择控制调整 (205)VEFRAC 垂向平衡曲线系数的应用 (206)VEFRACP 垂向平衡拟毛管压力系数的使用 (207)VEFRACPV 垂向平衡拟毛管压力系数的使用 (207)VFPINJ 对注水井输入V.F.P表 (208)VFPPROD 对生产井输入V.F.P表 (209)WBOREVOL 对井筒贮存设置体积 (212)WCONHIST 历史拟合井观测产量 (213)WCONINJ 设有组控制的注入井的控制数据 (215)WCONINJE 对注入井控制数据 (217)WCONPROD 对生产井控制数据 (218)WCUTBACK 井减少限制 (220)WCYCLE 井自动循环开与关 (222)WDRILRES 防止在同一网格中同时开两口井 (222)WDRILTIM 新井自动开钻的控制条件 (223)WECON 生产井的经济极限数据 (224)WEFAC 设置井的效率系数(为停工期) (226)WELDEBUG 个别井的跟踪输出控制 (226)WELDRAW 设置生产井的最大允许压差 (227)WELOPEN 关闭或重开井或井的射开层 (228)WELPI 设置井的生产/注入指数值 (229)WELPRI 设置井的优先数 (229)WELSOMIN 自动开井的最小含油饱和度 (230)WELSPECS 井的综合说明数据 (230)WELTARG 重新设置井的操作目标或限制 (232)WGASPROD 为控制销气而设置的特别产气井 (233)WGRUPCON 为井组控制而给井设置指导产率 (234)WHISTCTL 给历史拟合井设置覆盖控制 (235)WLIFT 自动换管串和升举的开关数据 (235)WLIMTOL 经济和其它限制的容差分数 (236)WORKLIM 每次自动修井所花的时间 (237)WPIMULT 用给定值乘以井射开层地地层系数 (237)WPLUG 设置井的回堵长度 (238)WSALT 设置注入井的盐浓度 (238)WTEST 命令对已关着的井进行周期性测试 (239)WTRACER 给注水井设置示踪剂浓度 (240)ZCORN 网格块角点的深度 (241)1Eclipse 油藏模拟软件特点1.1Eclipse软件91年A版本的新进展概况详细说明见附录B11.新功能(1)提供了可供选择的通用的油PVT数据和饱和度数据的输入关键词;(2)对每一个PVT区设计了恒量Rs或Rv值;(3)分子扩散选择能模拟气的扩散和油的组份;(4)盐水选择能模拟不同矿化度盐水的流动。

ECLIPSE 高级油藏数值模拟器

ECLIPSE 高级油藏数值模拟器
FrontSim把流线模拟技术同直观的、交互的3D模型相结合,工程师与地质师能快速评价精细 地质模型对流体流动影响,用于地质模型评价、历史拟合预处理、油藏井组管理和配产配注、历 史产量辟分、生产管理、动态监测、提高采收率研究等。
FrontSim流线模拟可以帮您快速、准确弄清来水方向,精确掌握井组注采关系。
ECLIPSE Office 提供了五种特色功能,方便用户控制管理数值模拟的整个进程。 • 项目管理-在Office环境下管理各种模拟研究项目 • 数据管理-创建和编辑一个完整的ECLIPSE模型 • 运行管理-启动及监测模拟运行环境 • 结果浏览-二维和三维结果显示 • 报告输出
6
ECLIPSE - 先进的油藏数值模拟研究工具
合) • 三维重力分离流动模拟 • 天然裂缝型油藏模型,双孔/双渗模型、改进的双孔模型 • 局部网格加密和粗化 • 油气藏特性的静态和动态分区 • 复杂的网格系统,可模拟垂直、倾斜和旋转断层系统 • 功能丰富的井、井组和油田生产控制功能 • 直井、斜井、水平井、多分支井模拟 • 提高采收率(聚合物、表面活性剂、溶剂、泡沫) • 混相驱和非混相驱 • API追踪 • 矿化度追踪 • 示踪剂追踪 • 煤层气 • 分子扩散 • 饱和度表端点标定 • 初始平衡选择 • 井筒摩擦 • 气田操作 • 气体非达西流动 • GI-拟组分 • 五点和九点格式 • 非邻点连接 • 岩石弹性模型 • 方向和滞后相对渗透率 • 气体非达西流动 • 储层压实 • 温度效应 • 垂直平衡 • 井筒内窜流 • 流量边界 • 并行计算 • 用户自定义变量UDA,UDQ,UDT,自定义结果输出及灵活的开发方案设计
块中心网格
角点网格
非结构化网格
7
ECLIPSE - 先进的油藏数值模拟研究工具
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Eclipse软件应用实例
油藏基本条件
该油藏面积为10923×11225×384feet,为背斜油藏。两 条南北向的主断层穿过油藏,分别为Fault1和Fault2,另有一 条东西向的次断层Fault3。已知油藏顶面构造等值线图(TOPS1 -TOPS6)和各层的孔隙度、渗透率等属性参数表。
该油藏共有5层,其中层2是一砂泥岩混合层,渗透率和孔隙 度较低,层3存在不整合超覆,整个油藏的Kv/Kh比为0.05, 纵向上净厚比为1。
1、启动度数据
定义水体数据
计算储量
储量报告
导入生产动态数据
模拟计算


FloGrid(地质模型网格化) Office(数值模拟数据管理) Schedule(生产动态数据管理)
另外提供流体PVT参数、岩心分析数据、井生产动态数据及 井管理数据等。


FloGrid(地质模型网格化) Office(模拟数据管理平台) Schedule(生产动态数据管理)
选择路径
导入地质体数据
地质体数据
Edit原点
原点数据
地质体数据
地质面属性
创建地质面
导入生产动态数据
导入井事件数据
导入网格数据
导入井轨迹数据
导入网格属性数据
该油藏是一饱和油藏,一个小的气顶存在油藏上部。油气界 面深度为2300feet,油水界面深度为3000feet,在油水界面处 地层初始压力为4000psia。油藏的泡点压力为3814.7psia,在 2000feet和4000feet处分别测得Rs为0.77Mscf/stb。在油藏 第4层的边缘大约3700feet处附有一小水体,提供底水驱能量。
2 1
导入断层数据
导入井轨迹数据
断层数据处理
地质体模型网格化
1
2 3
建立模型边界
断层处理
建立平面网格
建立纵向网格
导出网格数据


FloGrid(地质模型网格化) Office(数值模拟数据管理) Schedule(生产动态数据管理)
相关文档
最新文档