三角形解答题达标检测(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形解答题达标检测(Word 版 含解析)
一、八年级数学三角形解答题压轴题(难)
1.如图①,在△ABC 中,CD 、CE 分别是△ABC 的高和角平分线,∠BAC =α,∠B =β(α>β).
(1)若α=70°,β=40°,求∠DCE 的度数;
(2)试用α、β的代数式表示∠DCE 的度数(直接写出结果);
(3)如图②,若CE 是△ABC 外角∠ACF 的平分线,交BA 延长线于点E ,且α﹣β=30°,求∠DCE 的度数.
【答案】(1)15°;(2)DCE 2
αβ
-∠=;(3)75°.
【解析】 【分析】
(1)三角形的内角和是180°,已知∠BAC 与∠ABC 的度数,则可求出∠BAC 的度数,然后根据角平分线的性质求出∠BCE ,再利用三角形的一个外角等于和它不相邻的两个内角的和求出∠DEC 的度数,进而求出∠DCE 的度数; (2)∠DCE =
2
αβ
- .
(3)作∠ACB 的内角平分线CE′,根据角平分线的性质求出∠ECE′=∠ACE+∠ACE′=12∠ACB+1
2
∠ACF=90°,进而求出∠DCE 的度数. 【详解】
解:(1)因为∠ACB =180°﹣(∠BAC+∠B )=180°﹣(70°+40°)=70°, 又因为CE 是∠ACB 的平分线, 所以1
352
ACE ACB ∠=
∠=︒. 因为CD 是高线, 所以∠ADC =90°,
所以∠ACD =90°﹣∠BAC =20°,
所以∠DCE =∠ACE ﹣∠ACD =35°﹣20°=15°. (2)DCE 2
αβ
-∠=

(3)如图,作∠ACB 的内角平分线CE′, 则152
DCE αβ
-'=
=︒∠.
因为CE是∠ACB的外角平分线,
所以∠ECE′=∠ACE+∠ACE′=11
+
22
ACB ACF
∠∠=
1
(+)
2
ACB ACF
∠∠=90°,
所以∠DCE=90°﹣∠DCE′=90°﹣15°=75°.
即∠DCE的度数为75°.
【点睛】
本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.解决(3),作辅助线是关键.
2.如图四边形ABCD中,AD∥BC,∠BCD=90°,∠BAD的平分线AG交BC于点G.
(1)求证:∠BAG=∠BGA;
(2)如图2,∠BCD的平分线CE交AD于点E,与射线GA相交于点F,∠B=50°.
①若点E在线段AD上,求∠AFC的度数;
②若点E在DA的延长线上,直接写出∠AFC的度数;
(3)如图3,点P在线段AG上,∠ABP=2∠PBG,CH∥AG,在直线AG上取一点M,使∠PBM=∠DCH,请直接写出∠ABM:∠PBM的值.
【答案】(1)证明见解析;(2)①20°;②160°;(3)1
3

7
3
【解析】
【分析】
(1)根据AD//BC可知∠GAD=∠BGA,由AG平分∠BAD可知∠BAG=∠GAD,即可得答案.(2)①根据CF平分∠BCD,∠BCD=90°,可求出∠GCF的度数,由AD//BC可求出∠AEF 和∠DAB的度数,根据三角形外角的性质求出∠AFC的度数即可;②根据三角形外角性质求出即可;(3)根据M点在BP的上面和下面两种情况讨论,分别求出∠PBM和∠ABM 的值即可.
【详解】
(1)∵AD∥BC,
∴∠GAD=∠BGA,
∵AG平分∠BAD,
∴∠BAG=∠GAD,
∴∠BAG=∠BGA;
(2)①∵CF平分∠BCD,∠BCD=90°,
∴∠GCF=45°,
∵AD∥BC,∠ABC=50°,
∴∠AEF=∠GCF=45°;∠DAB=180°﹣50°=130°,
∵AG平分∠BAD,
∴∠BAG=∠GAD=65°,
∴∠AFC=65°﹣45°=20°;
②如图:
∵∠AGB=65°,∠BCF=45°,
∴∠AFC=∠CGF+∠BCF=115°+45°=160°;
(3)有两种情况:
①当M在BC的下方时,如图:∵∠ABC=50°,∠ABP=2∠PBG,
∴∠ABP=(100
3
)°,∠PBG=(50
3
)°,
∵AG∥CH,
∴∠BCH=∠AGB=65°,∵∠BCD=90°,∴∠DCH=∠PBM=90°﹣65°=25°,
∴∠ABM=∠ABP+∠PBM=(100
3
+25)°=(
175
3
)°,
∴∠ABM:∠PBM=(175
3
)°:25°=7
3

②当M在BC的上方时,如图:
同理得:∠ABM=∠ABP﹣∠PBM=(100
3
﹣25)°=(25
3
)°,
∴∠ABM:∠PBM=(25
3
)°:25°=1
3

综上,∠ABM:∠PBM的值是1
3

7
3

【点睛】
本题考查平行线的性质和三角形外角性质,熟练掌握平行线性质是解题关键.
3.如图1,在△ABC中,∠B=90°,分别作其内角∠ACB与外角∠DAC的平分线,且两条角平分线所在的直线交于点E.
(1)∠E= °;
(2)分别作∠EAB与∠ECB的平分线,且两条角平分线交于点F.
①依题意在图1中补全图形;
②求∠AFC的度数;
(3)在(2)的条件下,射线FM在∠AFC的内部且∠AFM=∠AFC,设EC与AB的交点为H,射线HN在∠AHC的内部且∠AHN=∠AHC,射线HN与FM交于点P,若
∠FAH,∠FPH和∠FCH满足的数量关系为∠FCH=m∠FAH+n∠FPH,请直接写出m,n的值.
【答案】(1)45;(2)67.5°;(3)m=2,n=﹣3.
【解析】
【分析】
(1)根据角平分线的定义可得∠CAF=1
2
∠DAC,∠ACE=
1
2
∠ACB,设∠CAF=x,∠ACE=y,
根据已知可推导得出x﹣y=45,再根据三角形外角的性质即可求得答案;(2)①根据角平分线的尺规作图的方法作出图形即可;
②如图2,由CF平分∠ECB可得∠ECF=1
2
y,再根据∠E+∠EAF=∠F+∠ECF以及
∠E+∠EAB=∠B+∠ECB,可推导得出45°+45
2
y
+
=∠F+
1
2
y,由此即可求得答案;
(3)如图3,设∠FAH=α,根据AF平分∠EAB可得∠FAH=∠EAF=α,根据已知可推导得出
∠FCH=α﹣22.5①,α+22.5=30+2
3
∠FCH+∠FPH②,由此可得∠FPH=
22.5
3
α+
,再根据
∠FCH=m∠FAH+n∠FPH,即可求得答案.【详解】
(1)如图1,
∵EA平分∠DAC,EC平分∠ACB,
∴∠CAF=1
2
∠DAC,∠ACE=
1
2
∠ACB,
设∠CAF=x,∠ACE=y,
∵∠B=90°,
∴∠ACB+∠BAC=90°,
∴2y+180﹣2x=90,
x﹣y=45,
∵∠CAF=∠E+∠ACE,
∴∠E=∠CAF﹣∠ACE=x﹣y=45°,故答案为:45;
(2)①如图2所示,
②如图2,∵CF平分∠ECB,
∴∠ECF=1
2 y,
∵∠E+∠EAF=∠F+∠ECF,
∴45°+∠EAF=∠F+1
2
y ①,
同理可得:∠E+∠EAB=∠B+∠ECB,∴45°+2∠EAF=90°+y,
∴∠EAF=45
2
y
+
②,
把②代入①得:45°+45
2
y
+
=∠F+
1
2
y,
∴∠F=67.5°,
即∠AFC=67.5°;
(3)如图3,设∠FAH=α,
∵AF平分∠EAB,
∴∠FAH=∠EAF=α,
∵∠AFM=1
3
∠AFC=
1
3
×67.5°=22.5°,
∵∠E+∠EAF=∠AFC+∠FCH,∴45+α=67.5+∠FCH,
∴∠FCH=α﹣22.5①,
∵∠AHN=1
3
∠AHC=
1
3
(∠B+∠BCH)=1
3
(90+2∠FCH)=30+2
3
∠FCH,
∵∠FAH+∠AFM=∠AHN+∠FPH,
∴α+22.5=30+2
3
∠FCH+∠FPH,②
把①代入②得:∠FPH=
22.5
3
α+

∵∠FCH=m∠FAH+n∠FPH,
α﹣22.5=mα+n
22.5·
3
α+

解得:m=2,n=﹣3.
【点睛】
本题考查了三角形内角和定理、三角形外角的性质、基本作图——角平分线等,熟练掌握三角形内角和定理以及三角形外角的性质、结合图形进行求解是关键.
4.如图,已知,在△ABC中,∠B<∠C,AD平分∠BAC,E的线段AD(除去端点A、D)上一动点,EF⊥BC于点F.
(1)若∠B=40°,∠DEF=10°,求∠C的度数.
(2)当E在AD上移动时,∠B、∠C、∠DEF之间存在怎样的等量关系?请写出这个等量关系,并说明理由.
【答案】(1)∠C=60°.
(2)∠C-∠B=2∠DEF.理由见解析
【解析】
试题分析:(1)已知:EF⊥BC,∠DEF=10°可以求得∠EDF的度数,∠EDF又是∆ABD的外角,已知∠B的度数,可求得∠BAD的值,AD平分∠BAC,所以∠BAC的值也可求出,从而求出∠C。

(2)EF⊥BC,可得到∠EDF=90°-∠DEF,∠EDF又是∆ABD的外角,可得到∠BAD=∠EDF-∠B=90°-∠DEF-∠B,然后可将∠ BAC用含∠DEF、∠B的角来表示,即∠BAC =2(90°-∠DEF-∠B),最后利用∠B、∠ BAC、∠C的和为180°求得三角之间的等量关系。

试题解析:(1)∵EF⊥BC,∠DEF=10°,
∴∠EDF=80°.
∵∠B=40°,
∴∠BAD=∠EDF-∠B=80°-40°=40°.
∵AD平分∠BAC,∴∠BAC=80°.
∴∠C=180°-40°-80°=60°.
(2)∠C-∠B=2∠DEF.理由如下:
∵EF⊥BC,∴∠EDF=90°-∠DEF.
∵∠EDF=∠B+∠BAD,
∴∠BAD=90°-∠DEF-∠B.
∵AD平分∠BAC,
∴∠BAC=2∠BAD=180°-2∠DEF-2∠B.
∴∠B+180°-2∠DEF-2∠B+∠C=180°.
∴∠C-∠B=2∠DEF.
【点睛】本题主要考查考生对三角形外角和性质得理解及灵活运用,以及对三角形内角和,角平分线的定义的理解。

此为易考点及重点。

考查考生等量代换思想的形成及掌握,在解题过程中涉及到角与角之间的转换。

此为难点。

5.等边△ABC边长为6,P为BC上一点,含30°、60°的直角三角板60°角的顶点落在点P上,使三角板绕P点旋转。

(1)如图1,当P为BC的三等分点,且PE⊥AB时,判断△EPF的形状;并说明理由;(2)在(1)问的条件下,FE、PB的延长线交于点G,如图2,求△EGB的面积.
【答案】(1)△EPF是等边三角形,理由见解析;(2)S△GBE3
【解析】
试题分析:(1)要证三角形EPF是等边三角形,已知∠EPF=60°,只需要证PE=PF即可,可通过证△PBE和△PFC全等来得出结论,是证明全等,则需要证明FP⊥BC和
BE=PC;
(2)由(1)不难得出∠CFG=90°,那么在△CFG中,有∠C的度数,可以根据CF的长求出GC的长,从而求出GB的长,下面的关键就是求GB边上的高,过E作EH⊥BC,那么EH就是所求的高,在直角△BEP中,有BP的长,有∠ABC的度数,可以求出BE、EP 的长,再根据三角形面积的不同表示方法求出EH的长,即可求出△GBE的面积;
试题解析:(1)△EPF是等边三角形,理由如下:
∵PE⊥AB,∠B=60°,因此Rt△PEB中,BE=1
2
BP=
1
3
BC=PC,∴∠BPE=30°,
∵∠EPF=60°,∴FP⊥BC,∵∠B=∠C=60°,BE=PC,∠PEB=∠FPC=90°,∴△BEP≌△CPF,∴EP=PF,∵∠EPF=60°,∴△EPF是等边三角形.
(2)过E作EH⊥BC于H,由(1)可知:FP⊥BC,FC=BP=2
3
BC=4,BE=CP=
1
3
BC=2,在三角
形FCP中,∠PFC=90°-∠C=30°,∵∠PFE=60°,∴∠GFC=90°,Rt△FGC中,∠C=60°,CF=4,∴GC=2CF=8,∴GB=GC-BC=2,Rt△BEP中∠EBP=60°,BP=4,
3BE=2,∴EH=BE•PE÷3,∴S△GBE=1
2
3
点睛:本题主要考查了全等三角形的判定和等边三角形的性质,熟练掌握全靠三角形的判定方法和等边三角形的性质是解题的关键.
6.(1)如图①∠1+∠2与∠B+∠C有什么关系?为什么?
(2)把图①△ABC沿DE折叠,得到图②,填空:∠1+∠2_______∠B+∠C(填
“>”“<”“=”),当∠A=40°时,∠B+∠C+∠1+∠2=______.
(3)如图③,是由图①的△ABC沿DE折叠得到的,如果∠A=30°,则
x+y=360°-(∠B+∠C+∠1+∠2)=360°-= ,猜想∠BDA+∠CEA与∠A的关系

【答案】见解析. 【解析】 【分析】
试题分析:(1)根据三角形内角是180度可得出,∠1+∠2=∠B+∠C ;(2)△ABC 沿DE 折叠,∠1+∠2=∠B+∠C ,从而求出当∠A=40°时,∠B+∠C+∠1+∠2=140×2=280°,(3)根据以上计算可归纳出一般规律:∠BDA+∠CEA=2∠A . 试题解析:
解:(1)∠1+∠2 = ∠B+∠C ,理由如下: 在△ADE 中,∠1+∠2 = 180°- ∠A 在△ABC 中,∠B+∠C = 180°- ∠A ∴ ∠1+∠2 = ∠B+∠C
(2)∵∠1+∠2+∠BDE+∠CED=∠B+∠C+∠BDE+∠CED=360°,∴∠1+∠2=∠B+∠C ,当∠A=40°时,∠B+∠C+∠1+∠2=140×2=280°
(3)如果∠A=30°,则x+y=360°-(∠B+∠C+∠1+∠2)=360°-300°=60°,所以∠BDA+∠CEA 与∠A 的关系为:∠BDA+∠CEA=2∠A.
考点:1.翻折变换(折叠问题);2. 三角形内角和. 【详解】
请在此输入详解!
7.如图①.ABC 中,AB AC =,P 为底边BC 上一点,PE AB ⊥,PF AC ⊥,
CH AB ⊥,垂足分别为E 、F 、H .易证PE PF CH +=.证明过程如下:
如图①,连接AP .∵PE AB ⊥,PF AC ⊥,CH AB ⊥,∴1
2
ABP
S
AB PE =
⋅,1
2
ACP
S
AC PF =
⋅,1
2
ABC
S AB CH =
⋅ 又∵ABP
ACP
ABC
S
S
S
+=,∴AB PE AC PF AB CH ⋅+⋅=⋅
∵AB AC =,∴PE PF CH +=.
如图②,P 为BC 延长线上的点时,其它条件不变,PE 、PF 、CH 又有怎样的数量关系?请写出你的猜想,并加以证明.
【答案】PE PF CH -= 【解析】 【分析】
参考题设的证明过程,主要思路就是等面积法:ABP
ACP
ABC
S S
S
+=,同样,P 为BC
延长线上的点时,也可以用类似的等面积法:ABP
ACP
ABC
S S
S
=-,即可得出结论.
【详解】
∵PE AB ⊥,PF AC ⊥,CH AB ⊥,∴1
2
ABP
S
AB PE =
⋅,1
2
ACP
S AC PF =
⋅,1
2
ABC
S
AB CH =
⋅ 又∵ABP
ACP
ABC
S
S
S
=-,∴AB PE AC PF AB CH ⋅-⋅=⋅
∵AB AC =,∴PE PF CH -=. 故答案为:PE PF CH -=. 【点睛】
本题考查几何图形中等面积法的应用,读懂题目,灵活运用题设条件是解题的关键.
8.已知,如图甲,在△ABC 中,AE 平分∠BAC(∠C>∠B),F 为AE 上一点,且FD⊥BC 于D .
(1)试说明:∠EFD=(∠C﹣∠B);
(2)当F 在AE 的延长线上时,如图乙,其余条件不变,(1)中的结论还成立吗?请说明理由.
【答案】(1)见详解;(2)成立,证明见详解.
【解析】
【分析】
(1) 根据三角形内角和定理以及角平分线的定义得到
∠BAE=1
2
∠BAC=
1
2
(180°﹣∠B﹣∠C)=90°﹣1
2
(∠B+∠C),然后根据三角形的外角的
性质可以得到∠FEC=∠B+∠BAE,求得∠FEC,再根据直角三角形的两个锐角互余即可求得结论;
(2)根据(1)可以得到∠AEC=90°+1
2
(∠B﹣∠C),根据对顶角相等即可求得∠DEF,然后利
用直角三角形的两个锐角互余即可求解.【详解】
解:(1)∵AE平分∠BAC,
∴∠BAE=1
2
∠BAC=
1
2
(180°﹣∠B﹣∠C)
=90°﹣1
2
(∠B+∠C),
∵∠FEC=∠B+∠BAE,
则∠FEC=∠B+90°﹣1
2
(∠B+∠C)
=90°+1
2
(∠B﹣∠C),
∵FD⊥EC,
∴∠EFD=90°﹣∠FEC,
则∠EFD=90°﹣[90°+1
2
(∠B﹣∠C)]
=1
2
(∠C﹣∠B);
(2)成立.
证明:同(1)可证:∠AEC=90°+1
2
(∠B﹣∠C),
∴∠DEF=∠AEC=90°+1
2
(∠B﹣∠C),
∴∠EFD=90°﹣[90°+1
2
(∠B﹣∠C)]
=1
2
(∠C﹣∠B).
【点睛】
此题主要考查了角平分线的性质、三角形内角和定理和直角三角形的性质,命题时经常将多个知识点联系在一起进行考查,这样更能训练学生的解题能力.
9.如图,90CDE CED ∠+∠=︒,EM 平分CED ∠,并与CD 边交于点M .DN 平分CDE ∠,
并与EM 交于点N .
(1)依题意补全图形,并猜想EDN NED ∠+∠的度数等于 ;
(2)证明以上结论.
证明:∵ DN 平分CDE ∠,EM 平分CED ∠,
∴ 12
EDN CDE ∠=∠, NED ∠= .
(理由: )
∵ 90CDE CED ∠+∠=︒,
∴EDN NED ∠+∠= ×(∠ +∠ )= ×90°= °.
【答案】(1)45度;
(2)
1,2CED ∠ 角平分线的定义, 12 ,CDE,CED, 12
, 45. 【解析】 试题分析:
(1)按要求画∠CDE 的角平分线交ME 于点N ,根据题意易得∠EDN+∠NED=45°; (2)根据已有的证明过程添上相应空缺的部分即可;
试题解析:
(1)补充画图如下:猜想:∠EDN+∠NED 的度数=45°;
(2)将证明过程补充完整如下:
证明:∵ DN 平分CDE ∠,EM 平分CED ∠,
∴ 12EDN CDE ∠=∠,NED ∠=12
∠CED .(理由:角平分线的定义) ∵ 90CDE CED ∠+∠=︒,
∴EDN NED ∠+∠=
12×(∠CDE+∠CED )= 12
×90°=45°. 故原空格处依次应填上:12∠CED 、角平分线的定义、CDE 、CED 、12和45.
10.已知:如图,等边三角形ABD 与等边三角形ACE 具有公共顶点A ,连接CD ,BE ,交于点P .
(1)观察度量,BPC ∠的度数为____.(直接写出结果)
(2)若绕点A 将△ACE 旋转,使得180BAC ∠=︒,请你画出变化后的图形.(示意图)
(3)在(2)的条件下,求出BPC ∠的度数.
【答案】(1)120°;(2)作图见解析;(3)∠BPC =120°.
【解析】
分析:(1)∠BPC 的度数为120°,理由为:由△ABD 与△ACE 都是等边三角形,利用等边三角形的性质得到∠DAB=∠ABD=∠CAE=60°,AD=AB ,AC=AE ,利用等式的性质得到夹角相等,利用SAS 得出三角形DAC 与三角形BAE 全等,由全等三角形的对应角相等得到∠ADC=∠ABE ,利用外角性质,等量代换即可得到所求;(2)作出相应的图形,如图所示;(3)解法同(1),求出∠BPC 的度数即可.
本题解析:
(1)∠BPC 的度数为120°,理由为:
证明:∵△ABD 与△ACE 都是等边三角形,
∴∠DAB=∠ABD=∠CAE=60°,AD=AB ,AC=AE ,
∴∠DAB+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE,
在△DAC 与△BAE 中,
{AD AB
DAC BAE AC AE
=
∠=∠
=
,∴△DAC≌△BAE(SAS),
∴∠ADC=∠ABE,∵∠ADC+∠CDB=60°,∴∠ABE+∠CDB=60°,∴∠BPC=∠DBP+∠PDB=∠ABE+∠CDB+∠ABC=120°;
(2)作出相应的图形,如图所示;
(3)∵△ABD与△ACE都是等边三角形,
∴∠ADB=∠BAD=∠ABD=∠CAE=60°,AD=AB,AC=AE,
∴∠DAB+∠DAE=∠CAE+∠DAE,即∠DAC=∠BAE,
在△DAC与△BAE中,
{AD AB
DAC BAC AC AE
=
∠=∠
=
,∴△DAC≌△BAE(SAS),∴∠ADC=∠ABE,∵∠ABE+∠DBP=60°,
∴∠ADC+∠DBP=60°,∴∠BPC=∠BDP+∠PBD=∠ADC+∠DBP+∠ADB=120°.
点睛:本题考查了等边三角形的性质,外角性质,以及全等三角形的判定与性质,熟练掌握等边三角形的性质是解本题的关键.。

相关文档
最新文档