2018年高考数学 考点一遍过 专题48 推理与证明 文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点48推理与证明
(十八)推理与证明
1.合情推理与演绎推理
(1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用. (2)了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理. (3)了解合情推理和演绎推理之间的联系和差异. 2.直接证明与间接证明
(1)了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点. (2)了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点
.
一、推理 1.推理
(1)定义:根据一个或几个已知的判断来确定一个新的判断的思维过程就是推理.推理一般包含两个部分:一是前提,是指已知的事实(或假设);二是结论,是由已知判断推出的新的判断,即推理的形式为“前提⇒结论”.
(2)分类:推理⎩
⎪⎨⎪⎧合情推理演绎推理.
2.合情推理
(1)定义:根据已有的事实,经过观察、分析、比较、联想,再进行归纳类比,然后提出猜想的推理叫做合情推理. (2)特点:
①合情推理的结论是猜想,不一定正确; ②合情推理是发现结论的推理. (3)分类:合情推理⎧⎨
⎩归纳推理类比推理

(4)归纳推理和类比推理的定义、特征及步骤
3.演绎推理
(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理,简言之,演绎推理是由一般到特殊的推理.
(2)特点:
①演绎推理在大前提、小前提和推理形式都正确时,得到的结论一定正确;若大前提、小前提、推理
形式三者中有一个是错误的,所得的结论就是错误的.
②演绎推理是证明结论的推理.
(3)模式:三段论是演绎推理的一般模式,即
①大前提——已知一般的原理;
②小前提——所研究的特殊情况;
③结论——根据一般原理,对特殊情况作出的判断.
【注】三段论常用的格式为:
大前提:M是P.
小前提:S是M.
结论:S是P.
二、证明
1.直接证明——综合法与分析法
(1)综合法
①定义:利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证
明的结论成立,这种证明方法叫做综合法.
②框图表示:(其中P表示已知条件、已有的定义、定
理、公理等,Q表示要证的结论)
③思维过程:由因导果.
(2)分析法
①定义:从要证明的结论出发,逐步寻求使它成立的充分条件,直到最后,把要证明的结论归结为判
定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.
②框图表示:(其中P表示要证明的结
论)
③思维过程:执果索因.
2.间接证明——反证法
(1)定义:一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.
(2)反证法中的矛盾主要是指以下几方面:
①与已知条件矛盾;
②与假设矛盾;
③与定义、公理、定理矛盾;
④与公认的简单事实矛盾;
⑤自相矛盾.
考向一合情推理
常见的类比、归纳推理及求解策略:
(1)在进行类比推理时,不仅要注意形式的类比,还要注意方法的类比,且要注意以下两点:
①找两类对象的对应元素,如:三角形对应三棱锥,圆对应球,面积对应体积等等;
②找对应元素的对应关系,如:两条边(直线)垂直对应线面垂直或面面垂直,边相等对应面积相等.(2)归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个
3
体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法
.
典例1有一个奇数组成的数阵排列如下:
1 3 7 13 21 … 5 9 15 23 … … 11 17 25 … … … 19 27 … … … … 29 … … … … … … … … … … …
则第30行从左到右第3个数是________. 【答案】
1051
【技巧点拨】解决此类数阵问题时,通常利用归纳推理,其步骤如下: ①明确各行、各列数的排列顺序; ②分别归纳各行、各列中数的规律;
③按归纳出的规律写出第n 行第m 个数.解决此类问题一般需要转化为求数列的通项公式或前n 项和等
.
1.设ABC △的三边长分别为a 、b 、c ,ABC △的面积为S ,内切圆半径为r ,则2S
r a b c
=
++,类比这
个结论可知,四面体S −ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球半径为R ,四面体S −ABC 的体积为V ,则R 等于 A .
1234
V
S S S S +++
B .
1234
2V
S S S S +++
5
C .
1234
3V
S S S S +++
D .
1234
4V
S S S S +++
考向二演绎推理
(1)演绎推理是从一般到特殊的推理;其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略.
(2)演绎推理的结论是否正确,取决于该推理的大前提、小前提和推理形式是否全部正确,因此,分析推理中的错因实质就是判断大前提、小前提和推理形式是否正确
.
典例2有一段“三段论”,推理是这样的:对于可导函数()f x ,如果0()0f x '=,那么0x x =是函数()f x 的极值点.因为3
()f x x =在0x =处的导数值(0)0f '=,所以0x =是函数3
()f x x =的极值点.以上推理中
A .大前提错误
B .小前提错误
C .推理形式错误
D .结论正确
【答案】
A
2.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖.有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖了”.四位歌手的话只有两句是对的,则获奖的歌手是.
考向三直接证明
利用综合法、分析法证明问题的策略: (1)综合法的证明步骤如下:
①分析条件,选择方向:确定已知条件和结论间的联系,合理选择相关定义、定理等;
②转化条件,组织过程:将条件合理转化,书写出严密的证明过程.特别地,根据题目特点选取合适的证法可以简化解题过程.
(2)分析法的证明过程是:确定结论与已知条件间的联系,合理选择相关定义、定理对结论进行转化,直
到获得一个显而易见的命题即可.
(3)实际解题时,用分析法思考问题,寻找解题途径,用综合法书写解题过程,或者联合使用分析法与综合法,即从“欲知”想“已知”(分析),从“已知”推“可知”(综合),双管齐下,两面夹击,找到沟通已知条件和结论的途径.
典例3已知0a >12a a
-≥+-. 【答案】见解析.
即证2
2
2211142)2a a a a a a
+
+≥+++++,
从而只需要证1
)a a
≥+, ∴只需要证2
222114()2(2)a a a a
+≥++, 即2
2
1
2a a +
≥,而上述不等式显然成立,故原不等式成立. 【名师点睛】①逆向思考是用分析法证明的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.
②证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.
7
3.已知3
3
0,0,2a b a b >>+=,证明: (1)()()
554a b a b ++≥; (2)2a b +≤.
考向四间接证明
1.用反证法证明不等式要把握的三点
(1)必须先否定结论,即肯定结论的反面.
(2)必须从否定结论进行推理,即应把结论的反面作为条件,且必须依据这一条件进行推证. (3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与已知事实矛盾等,且推导出的矛盾必须是明显的. 2
.反证法的一般步骤
用反证法证明命题时,要从否定结论开始,经过正确的推理,导出逻辑矛盾,从而达到新的否定(即肯定原命题)的过程.这个过程包括下面三个步骤:
(1)反设——假设命题的结论不成立,即假设原结论的反面为真; (2
)归谬——由“反设”作为条件,经过一系列正确的推理,得出矛盾; (3)存真——由矛盾结果断定反设错误,从而肯定原结论成立
即反证法的证明过程可以概括为:反设——归谬——存真
.
典例4 用反证法证明某命题时,对结论“自然数a ,b ,c 中恰有一个偶数”正确的反设是 A .自然数a ,b ,c 中至少有两个偶数
B .自然数a ,b ,c 中至少有两个偶数或都是奇数
C .自然数a ,b ,c 都是奇数
D .自然数a ,b ,c 都是偶数 【答案】B
【解析】“恰有一个偶数”的反面应是“至少有两个偶数或都是奇数”,故选B.
【名师点睛】反证法证明“至少”“至多”型命题,可减少讨论情况,目标明确.否定结论时需弄清楚结论的否定是什么,避免出现错误.需注意“至少有一个”的否定为“一个都没有”,“至多有一个”的否定为
“至少有两个”.
4.设{}n a 是公比为q 的等比数列. (1)推导{}n a 的前n 项和公式;
(2)设q ≠1,证明:数列{}1n a +不是等比数列.
1.“有些指数函数是减函数,2x
y =是指数函数,所以2x
y =是减函数”上述推理 A .大前提错误
B .小前提错误
C .推理形式错误
D .以上都不是
2.用反证法证明命题“若220a b +=,则,a b 全为()0,a b ∈R ”,其反设正确的是 A .,a b 至少有一个不为0 B .,a b 至少有一个为0 C .,a b 全不为0
D .,a b 中只有一个为0
3.若数列{}n a 是等差数列,则数列{}n b (12n
n a a a b n
++
+=
)也是等差数列,类比这一性质可知,若
正项数列{}n c 是等比数列,且{}n d 也是等比数列,则n d 的表达式应为 A .12n
n c c c d n
++
+=
B .12n
n c c c d n
++
+=
C .n d =
D .n d =
4.已知3323332333326
1220
12()123(
)1234()222
+=++=+++=,,,,
若 3333312343025n ++++
+=,则n =
A .8
B .9
C .10
D .11
5.袋子里有编号为2,3,4,5,6的五个球,某位教师从袋中任取两个不同的球.教师把所取两球编号的和只
9
告诉甲,其乘积只告诉乙,让甲、乙分别推断这两个球的编号. 甲说:“我无法确定.” 乙说:“我也无法确定.”
甲听完乙的回答以后,甲又说:“我可以确定了.” 根据以上信息,你可以推断出抽取的两球中 A .一定有3号球 B .一定没有3号球 C .可能有5号球
D .可能有6号球
6.对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:
3331373159517
1149
312⎧⎧⎪⎧⎪⎪⎨⎨⎨⎩⎪⎪⎩⎪⎩,,,仿此,若3m 的“分裂数”中有一个是73,则m 的值为
A .8
B .9
C .10
D .11
7.如图,在梯形ABCD 中,()AB DC AB a CD b a b ==>∥,,.若EF AB ∥,EF 到CD 与AB 的距离之比为:m n ,则可推算出:ma nb
EF m n
+=
+,试用类比的方法,推想出下述问题的结果.在上面的梯形
ABCD 中,延长梯形两腰,AD BC 相交于O 点,设OAB △,OCD △的面积分别为12S S ,,EF AB
∥且EF
到CD 与AB 的距离之比为:m n ,则OEF △的面积0S 与12S S ,的关系是
A .12
0mS nS S m n
+=
+
B .12
0nS
mS S m n
+=
+
C
=
D =
8.已知甲、乙、丙三人中,一人是数学老师、一人是英语老师、一人是语文老师.若丙的年龄比语文老师大;甲的年龄和英语老师不同;英语老师的年龄比乙小.根据以上情况,下列判断正确的是
A .甲是数学老师、乙是语文老师、丙是英语老师
B .甲是英语老师、乙是语文老师、丙是数学老师
C .甲是语文老师、乙是数学老师、丙是英语老师
D .甲是语文老师、乙是英语老师、丙是数学老师
9.图一是美丽的“勾股树”,它是分别以一个直角三角形的每一边向外作正方形而得到的.图二是第1代“勾股树”,重复图二的作法,得到图三为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第n 代“勾股树”所有正方形的面积的和为
A .n
B .2n
C .1n -
D .1n +
10.已知函数()31
1
f x x x =+
+,[]0,1x ∈. (1)用分析法证明:()2
1f x x x ≥-+; (2)证明:()34
f x >.
1.(2017年高考新课标II卷)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则
A.乙可以知道四人的成绩B.丁可以知道四人的成绩
C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩
2.(2016年高考北京卷)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.
在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则A.2号学生进入30秒跳绳决赛B.5号学生进入30秒跳绳决赛
C.8号学生进入30秒跳绳决赛D.9号学生进入30秒跳绳决赛
3.(2016年高考新课标II卷)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是. 4.(2015年高考陕西卷)观察下列等式
11
-=
1
22
11111
1
-+-=+
23434
11111111
-+-+-=++
1
23456456
……
据此规律,第n个等式可为.
5.(2014年高考新课标I卷)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;
乙说:我没去过C城市;
丙说:我们三人去过同一城市.
由此可判断乙去过的城市为.
11
1.【答案】C
【解析】设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,由平面图形中r 的求解过程类比空间图形中R 的求解过程可得四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为12341
()3
S ABC V V S S S S R -==
+++四面体,∴12343V R S S S S =
+++.故选C.
【规律总结】类比推理的一般模式为:A 类事物具有性质a ,b ,c ,d ,B 类事物具有性质a ′,b ′,
c ′(a ,b ,c 分别与a ′,b ′,c ′相似或相同),所以B 类事物可能具有性质
d ′(d 与d ′相似或相同).
2.【答案】丙
3.【答案】(1)见解析;(2)见解析. 【解析】(1)
()
2
22
4ab a b =+-
13
4≥.
(2)因为

所以

因此2a b +≤.
4.【答案】(1)11,1(1),11n n na q S a q q q =⎧⎪
=-⎨≠⎪-⎩
;(2)见解析
.
①-②得,11(1)n n q S a a q -=-,
∴S n =1(1)1n a q q
--,
∴11,1(1),11n n na q S a q q q =⎧⎪
=-⎨≠⎪-⎩
(2)假设{}1n a +是等比数列,则对任意的k ∈N *
,()()()2
12111k k k a a a +++=++,
即21122211k k k k k k a a a a a a ++++++=+++,2211111111112k k k k k k a q
a q a q a q a q a q -+-++=⋅++, ∵a 1≠0,
∴112k k k q q q -+=+.
∵q ≠0,
∴2
210q q +=-,
∴q =1,这与已知矛盾.
∴假设不成立,故{}1n a +不是等比数列.
1.【答案】C
【解析】∵大前提的形式:“有些指数函数是减函数”,不是全称命题,∴不符合三段论推理形式,∴推理形式错误,故选C. 2.【答案】A
【解析】由反证法的定义:证明命题“若220a b +=,则,a b 全为()0,a b ∈R ”,其反设为,a b 至少有一个不为0.本题选择A 选项. 3.【答案】D
【解析】数列{}n a 是等差数列,∴121 (2)
n n
n a a a a a b n ++++=
=
,且{}n b 也为等差数列,正项数列{}n c 是等比数列,设首项为1c ,公比为q ,1
2
1n n d c q
-∴===,
}{n d ∴是等比数列,故选D. 4.【答案】C
【解析】观察所提供的式子可知,等号左边最后一个数是3
n
()1552
n n +=,n=10.本题选择C 选项.
5.【答案】D
【名师点睛】本题是一道通俗易懂的合情推理题目,主要考查同学们的逻辑思维能力和推理能力,问题难度不大,认真审题是关键. 6.【答案】B
15
【解析】由题意可得3m 的“分裂数”为m 个连续奇数,设3m 的“分裂数”中第一个数为m a ,则由题
意可得:2
(1)11m a m m m m =-+=-+,∴当9m =时,73m a =,即73是39的“分裂数”中的第一
个数,故本题选B. 7.【答案】C
【解析】在平面几何中类比几何性质时,一般为:由平面几何点的性质,类比推理线的性质;由平面几何中线段的性质,类比推理空间几何中面积的性质. ∵,AB DC EF AB ∥∥,∴OCD OFE OBA △∽△∽△,∴
221200(),()S S AB CD S EF S EF ==,
,AB
EF
=
CD EF =,
∴mAB nCD ma nb EF EF EF
+=+=
,∵ma nb
EF m n +=+,∴m a n b m n EF +=+,
∴m n =+
=
. 故由:“ma nb
EF m n
+=
+”,类比到关于△OEF 的面积0S 与12S S ,
的结论是:=.
本题选择C 选项. 8.【答案】
C
9.【答案】D
【解析】最大的正方形面积为1,当n =1时,由勾股定理知正方形面积的和为2,依次类推,可得所有正方形面积的和为1n +,选D. 10.【答案】(1)见解析;(2)见解析.
【解析】(1)由01x ≤≤,得112x ≤+≤,
要证()2
1f x x x ≥-+,
只需证()()()
321111x x x x x ⋅++≥+⋅-+, 只需证43311x x x ++≥+, 只需证40x ≥, 因为40x ≥恒成立, 所以()2
1f x x x ≥-+成立.
(2)因为2
21331244x x x ⎛
⎫-+=-+≥ ⎪⎝
⎭,当且仅当12x =时取等号,
又112193
283244f ⎛⎫=+=
>
⎪⎝⎭
, 所以由(1)得()3
4
f x >
. 【思路点拨】(1)要证原不等式成立,先将函数的表达式代入原不等式,两边乘以1x +,可以得到一个显然成立的结论,由此证得原不等式成立.
(2)利用(1)的结论,将(1)右边的二次函数配方,求出其最小值,
而13
24
f ⎛⎫>

⎝⎭,由此可得()34f x >.
1.【答案】D
【名师点睛】合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.合情推理仅是“合乎情理”的推理,它得到的结论不一定正确.而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下). 2.【答案】B
【解析】将确定的30秒跳绳成绩按从大到小的顺序排列,分别是3,6,7,10,1、5并列,4,其中,3,
17
6,7号进入立定跳远的决赛,此时可确定3,6,7号进入30秒跳绳比赛决赛的名单,现还需3个编号为1~8的同学进入决赛,而1、5并列,2与8的成绩仅相隔1,故只能1,5进入30秒跳绳的决赛,故选B. 3.【答案】1和3
【解析】由题意分析可知甲的卡片上的数字为1和3,乙的卡片上的数字为2和3,丙的卡片上的数字为1和2.
【名师点睛】逻辑推理即演绎推理,就是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程. 4.【答案】111
1111
11234
21212
2n n n n n
-
+-++
-=+++
-++ 【解析】观察所给等式的左、右两边可以归纳出
1111111
11234
21212
2n n n n n
-+-++
-=+++
-++. 5.【答案】A
【解析】本题考查逻辑推理,意在考查考生分析问题、解决问题的能力.根据甲和丙的回答推测乙没去过B 城市,又知乙没去过C 城市,故乙去过A 城市.。

相关文档
最新文档