高等数学(II-1)-(-第2次-)
《高等数学(二)》中线性代数部分考题分析

⼀、试卷中线性代数部分所占⽐例变化 1.题量 在题量上2004年1⽉以后试卷的题量由原来的32道题⽬减少为26道题⽬,⽽线性代数的题⽬总量由原来的13道题,变为12道题⽬,仅减少了⼀道简答题。
2.分值 整份试卷的总分仍然为100分,但是两部分在分值上所占的⽐例发⽣了变化,线性代数题⽬合计分数原来是41分,⽽2004年1⽉以后变为 48分。
与概率统计内容在合计分数上的差距减少,原来两部分相差18分,⽽2004年1⽉以后两部分内容相差变为4分。
⼆、试卷中涉及到的线性代数知识点 1.试卷中曾经出现过知识点 综合10次⾃学考试《⾼等数学(⼆)》试卷分析可以得到10次考试中涉及到的线性代数考试的知识点为: n阶⾏列式计算;解求由阶⾏列式确定的⽅程;矩阵的⾏列式;代数余⼦式;伴随矩阵;矩阵运算;逆矩阵;解矩阵⽅程;初等变换与初等矩阵;求矩阵的秩;向量的线性表⽰;线性相关判断;线性⽆关判断;求向量的极⼤⽆关组;求向量空间的基;线性⽅程组解的讨论;求线性⽅程组的解;利⽤初等变换解⽅程组、求逆矩阵、求秩;⾮奇异矩阵;特征向量;特征根;对称矩阵;相似矩阵;合同矩阵;正交向量;正交阵;正交变换;实⼆次型;合同阵;正定矩阵等。
2.试卷中出现较多的章节 根据出现频次统计,试卷中出现较多的知识点主要集中在教材中的以下章节:1.3⾏列式的计算;2.2矩阵的计算;2.3逆矩阵;3.2线性相关与线性⽆关;3.3极⼤⽆关组;3.4秩;3.5线性⽅程组解的讨论;3.6线性⽅程组解的结构;4.4向量的正交化;4.5正交矩阵;5.1特征值与特征向量;5.2相似矩阵;5.3实⼆次型与矩阵的合同;5.6正定⼆次型与正定矩阵。
三、各种题型中涉及的线性代数知识点 根据《⾼等数学(⼆)》试卷中的五种试题类型涉及到的知识点,按照知识点出现的频次的多少,可以得到五种类型试题中以往考试的重点章节和内容。
1.单选题 单选题的试题曾经出现在1.3⾏列式的计算;2.2矩阵的计算;2.3逆矩阵;2.5初等变换与初等矩阵;3.2线性相关与线性⽆关;3.3极⼤⽆关组;3.4秩;3.5线性⽅程组解的讨论;3.6线性⽅程组解的结构;4.1线性空间与基;4.4向量的正交化;4.5正交矩阵;5.2相似矩阵;5.3实⼆次型与矩阵的合同;5.6正定⼆次型与正定矩阵。
高等数学无穷级数

【例9-6】讨论级数
n2
n
1 ln p
n
的敛散性,其中 p>0.
(2)比较法的应用 现在我们已经知道一些级数的敛散性,主要是等比 级数和p级数,便可以利用这些级数作为比较对象, 判断某些级数的敛散性了。
n1
v
n
收敛;
如果
n1
vn
发散,则 n1un
发散。
(2)比较判别法的极限形式(定理9-3的推论9-2)
n1un 与
n1
vn
是正项级数,并设
n1
v
n从某一
项之后是严格正项的。设
lim un l n vn
(i) (0l) 两个级数有相同的敛散性。
(ii)(l 0)
如果
n1un 发散,则
n1
下面给出三个相对具体或可操作的判别法,除了判
别法自身的意义,还分别与这两类级数密切相关。
3.积分判别法与p级数
n
1
1 np
(1)积分判别法(定理9-2):
非负函数 f (x) 在
[1,)上单调递减,则
n1
f(n)
与反常积分 1f(x)dx有相同的敛散性。
【例9-5】证明p-级数 n 1n 1p121p n 1p
(2)改变(包括增加和减少)级数中有限项, 不改变级数的敛散性,但可能改变收敛级数和的 值(性质3)。 (3)收敛级数可以任意增加括号,不改变收敛性 与级数和。 可称之为单向结合律,因为: 在有括号收敛的情况下,去括号可能改变敛散性; 由此可知,发散级数加括号也可能改变敛散性。 如果括号中各项符号一样,收敛级数可以去括号!
9.2.正项级数敛散性判别法
高等数学(II)(第十章、重积分)

27
Z
A ( x )
(x)
z f ( x, y)
2
1
(x)
f ( x , y ) dy
y
1( x )
所以:
2(x)
2 (x)
D
f(x,y)dxdy
b
A(x)dx
a
[
a
b
f(x .y ) dy ]dx
1 (x)
3-12
28
注意: 1)上式说明: 二重积分可化为二次定 积分计算;
2)积分次序: X-型域 3)积分限确定法: 先Y后X;
域中一线穿—定内限, 域边两线夹—定外限
为方便,上式也常记为:
b
dx
a
2 (x)
f(x .y ) dy
1 (x)
29
3、Y-型域下二重积分的计算:
同理:
d
x 1( y)
D
x 2( y)
c
D
f ( x, y )d
6
得 (3) 求和. 将这 n 个小平顶柱体的体积相加,
到原曲顶柱体体积的近似值,即
V
i1
n
V i f ( i , i ) i .
i1
n
(4) 取极限. 将区域 D 无限细分且每一个子域趋 向于缩成一点, 这个近似值就趋向于曲顶柱体的体
积, 即
V lim
0
将区域 D 任意分成 n 个小区域
任取一点 若存在一个常数 I , 使 记作
则称 f ( x , y )
可积 , 称 I 为 f ( x , y ) 在D上的二重积分.
2021年成考专升本高等数学二重点及解析精简版

高等数学(二)重点知识及解析(占80分左右)I 、函数、极限一、 基本初等函数(又称简朴函数):(1)常值函数:y = c (2)幕函数:y = (3)指数函数:y = / (“〉0,且d H1)(4) 对数函数:y = \og a x (u ) 0,且oHl )(5) 三角函数:y = sin x > y = cosx> y = tanx » y = cot x(6) 反三角 函数:y = arcsin x, y = arccosx> y = arctan x» y = arc cot x二、 复合函数:要会判断一种复合函数是由哪几种简朴函数复合而成。
例如:|y = lncosx 是由y = ln“ , u = cosx 这两个个简朴函数复合而成. 例如:|y = arctan e'x 是由y = arctan u > u = e 和y = 3x 这三个简朴函数复合而成. 该某些是背而求导核心!三、 极限计算1、运用函数持续性求极限(代入法):对于普通极限式(即非未定式),只要将凡代 入到函数表达式中,函数值即是极限值,即lim/(x ) = /(x 0).XT 心注意:(1)常数极限等于她自身,与自变量变化趋势无关,即limC = C o(2)该办法使用前提是当x->x 0时候,而xts 时则不能用此办法。
例lim 4 = 4, lim-3 = -3, Iimlg2 = lg2, lim/r = /r, ------ A —»-XA —>-l .TfX J 〜丸•1弋2.未定式极限运算法(1)对于+未定式:分子、分母提取公因式,然后消去公因式后,将代入后函数值即是极限值。
x 2 +3x-l~x+i02+3>0-l _o+i- 丽^1曲空41k 空—1------- 22 X-l 2-1(非特殊角三角函数值不用讣算出来)ini西计算黒m …•…存定式’提取公因式解:原式二 lim- V ~3)( V + 3)23X -3(2)对于三未定式:分子、分母同步除以未知量最髙次幫,然后运用无穷大倒数是无穷小 Q0这一关系进行讣算。
高等数学 教学日历

周
次
日
期
教学环节
内容
课内学时
课外学时
备
注
2
授课
第一章微积分的理论基础绪论、集合与映射
2
2
授课
函数
2
2~3
授课
数列的极限
2
3
授课
函数的极限
3
3~4
授课
习题课:数列极限与函数极限
2
4
授课
无穷小量与无穷大量
2
4~5
授课
连续函数
3
5
授课
习题课:无穷小量与连续函数
2
5
授课
第二章一元函数微分学及其应用导数的概念
4
2
16
授课
习题课:常系数线性微分方程
高阶变系数线性微分方程(2学时)
2
机动
2
注:讲课共66学时,习题课共14学时,数学实验4学时,上机4学时,机动2,共90学时。
数学实验内容:《MATLAB软件与基础数学实验》实验5---实验10任选两个。
第三章一元函数积分学及其应用定积分概念与性质
2
10
授课
微积分基本定理与不定积分
2
10
授课
习题课:定积分概念、性质及微积分基本定理
2
11
授课
两种基本积分法
4
11~12
授课
习题课:各类积分的积分法
2
12
授课
定积分的应用
3
12~13
授课
反常积分
3
13~14
授课
几类简单的微分方程
4
14
授课
习题课:定积分应用与简单的微分方程
《高等数学II》教学大纲

《高等数学II》课程教学大纲一、课程基本信息课程代码:课程名称:高等数学II英文名称:Higher mathematics II课程类别:公共课学时:64学分:4适用对象: 理工科专业考核方式:考试先修课程:高等数学I二、课程简介《高等数学II》是高等学校理工科专业学生的必修课。
通过本课程的学习,使学生掌握高等数学的基本概念、基本理论和基本运算技能,为学习后续课程和获得进一步的数学知识奠定必要的基础。
通过知识内容的传授,培养学生的运算能力、抽象思维能力、逻辑推理能力、空间想象能力及综合运用所学知识去分析问题和解决问题的能力。
其具体内容包括:空间解析几何与向量代数;多元函数微积分学(多元函数微分学、重积分、曲线积分和曲面积分);无穷级数。
Higher mathematics II is a compulsory course for students majoring in science and engineering in institutions of higher learning. Through learning of this course, make the students master the basic concepts of higher mathematics and the basic theory and basic computing skills, for learning the follow-up courses and further the mathematics knowledge to lay the necessary foundation. Through the knowledge content of teaching, cultivate students' operation ability, abstract thinking ability, logical reasoning ability, space imagination ability and the integrated use of knowledge to the ability to analyze and solve problems. The specific contents include: spatial analytic geometry and vector algebra; Multifunction calculus (multifunction differential calculus, reintegration, curvilinear integral and surface integral); Infinite series.三、课程性质与教学目的目前,《高等数学II》已成为理工科类及部分经济、管理类专业的主干学科基础课程,是教育部审定的核心课程和硕士研究生入学考试“数学1”和“数学2”的必考科目,对学好其它专业课程意义重大。
2020年春季学期课程作业高等数学(II-1)第2次13616540-重庆大学网络教育学院-参考资料

重庆大学网络教育学院-2020年春季学期课程作业高等数学(II-1)第2次-参考资料
请认真阅读一下说明然后下载:题库有可能会换,不保证全部都有!请仔细核对是不是您需要的题目再下载!!!!
本文档的说明:如果题目顺序和你的试卷不一样,按CTRL+F在题库中逐一搜索每一道题的答案,预祝您取得好成绩百!
一、单项选择题 (共 30 题、63 / 90 分 )
1、
若,则的取值范围是()。
A、
B、
C、
D、
参考答案是:A
2、
骆驼被称为“沙漠之舟”,其体温随时间的变化而变化,则下列量可以视为常量的是()。
A、
气温
B、
体温
C、
时间
D、
骆驼的体重
参考答案是:D
3、
在定义区间的最小值是()。
A、
B、
C、
1
D、
不存在
参考答案是:D
4、
曲线所围平面图形的面积为( )。
A、
B、。
高等数学(II-1)

D. 4
重庆大学网络教育学院
76. 数列
的极限为( )。
A. 1
B. -1
C. 0
D. 不存在
77. 区间[0,+∞)表示不等式( )。
A.
B.
C.
D.
78. 若函数 在某点 极限存在,则( )。
A.
在 的函数值必存在且等于极限值
B.
在 函数值必存在,但不一定等于极限值
C.
在 的函数值可以不存在
D. 如果
的反函数为_____。 , ______ 。
所围成的图形的面积为______
38.
______
39. 已知 40. 曲线
,则
______。
在 处的切线方程为______
四、计算题(本大题共 0 分,共 20 小题,每小题 0 分)
1. 判定曲线
的凹凸性。
C. 单调函数
D. 周期函数
54. 关于不定积分的性质,下列表述错误的是 ( ) 。
A.
B.
C.
D.
55. 设 在
的左右导数存在且相等是 在
A. 充分必要的条件
B. 必要非充分的条件
C. 必要且充分的条件 D. 既非必要又非充分的条件
56. 函数
A. 单调增加 B. 单调减少 C. 有界
在定义域内( )。
4. 单调有界数列必有极限。( )
5. 任意两点割线的斜率大于其中一点切线的斜率.( )
6. 函数的极值点一定是函数的驻点。
7. 两个无穷小量的和是无穷小量。
8. 由参数方程确定的函数具备函数的两个要素。(
)
9. 若
,则
。()
10.
2014年9月份考试高等数学(II-1)第二次作业

错
20. 设,则与相同.
(本题分数:2 分,本题得分:0 分。)
A、正确 B、错误
题目信息
难度: 2
正确答案: B
解题方案: 定义域不同
错
难度: 4
正确答案: B
解题方案: 分别求一阶导数和二阶导数,然后根据这些信息解题
选B
13. 函数在[-2,2]上的最大值为( )
(本题分数:3 分,本题得分:0 分。)
A、 0
B、 1
C、 2
D、 -2
题目信息
难度: 4
正确答案: C
解题方案: 先求极值,再求端点的函数值,将极值和端点的函数值进行比较,大的为最大值,小的为最小值
选C
14. 满足的x的取值范围是( )
(本题分数:3 分,本题得分:0 分。)
A、
B、
C、
D、
题目信息
难度: 4
正确答案: D
解题方案: 利用反三角函数定义解题
B、
C、
D、
题目信息
难度: 4
正确答案: C
解题方案: 无穷大的倒数是无穷小
选 C
12. 曲线( )
(本题分数:3 分,本题得分:0 分。)
A、有四个极值
B、有两个极值
C、有三个拐点
D、对称原点
题目信息
难度: 5
正确答案: D
解题方案:
19. 函数的反函数是( )
(本题分数:3 分,本题得分:0 分。)
A、
B、
C、
D、
《高等数学讲义》(上、下册)--目录 樊映川等编

第一篇解析几何《高等数学讲义》 (上、下册) -- 目录第五章极坐标樊映川等编12.平面束的方程第一章行列式及线性方程组1.二阶行列式和二元线性方程组2.三阶行列式3.三阶行列式的主要性质4.行列式的按行按列展开5.三元线性方程组6.齐次线性方程组7.高阶行列式概念第二章平面上的直角坐标曲线及其方程1.轴和轴上的线段2.直线上点的坐标数轴3.平面数的点的笛卡儿直角坐标4.坐标变换问题5.两点间的距离6.线段的定比分点7.平面上曲线方程的概念8.两曲线的交点第三章直线与二元一次方程1.过定点有定斜率的直线方程2.直线的斜截式方程3.直线的两点式方程4.直线的截距式方程5.直线的一般方程6.两直线的交角7.直线平息及两直线垂直的条件8.点到直线的距离9.直线束第四章圆锥曲线与二元一次方程1.圆的一般方程2.椭圆及其标准方程3.椭圆形状的讨论4.双曲线及其标准方程5.双曲线形状的讨论6.抛物线及其标准方程7.抛物线形状的讨论8.椭圆及双曲线的准线9.利用轴的平移简化二次方程10.利用轴的旋转简化二次方程11.一般二元二次方程的简化1.极坐标的概念2.极坐标与直角的关系3.曲线的极坐标方程4.圆锥曲线的极坐标方才第六章参数方程1.参数方程的概念2.曲线的参数方程3.参数方程的作图法第七章控件直角坐标与矢量代数1.间点的直角坐标2.基本问题3.矢量的概念矢径4.矢量的加减法5.矢量与数量的乘法6.矢量在轴上的投影投影定理7.矢量的分解与矢量的坐标8.矢量的模矢量的方向余弦与方向数9.两矢量的数量积10.两矢量的夹角11.两矢量的矢量积12.矢量的混合积第八章曲面方程与曲线方程1.曲面方程的概念2.球面方程3.母线平行于坐标的柱面方程二次柱面4.控件曲线作为两曲面的交线5.空间曲线的参数方程6.空间曲线在坐标面上的投影第九章空间的平面于曲线1.过一点并已知一法线矢量的平面方程2.平面的一般方程的研究3.平面的截距式方程4.点到平面的距离5.两平面的夹角6.直线作为两平面的交线7.直线的方程8.两直线的夹角9.直线与平面的夹角10.直线与平面的交点11.杂例第十章二次曲面1.旋转曲面2.椭秋面3.单叶双曲面4.双叶双曲面5.椭圆抛物面6.双曲抛物面7.二次锥面第二篇第一章函数及其图形1.实数与数轴2.区间3.实数的绝对值邻域4.常量与变量5.函数概念6.函数的表示法7.函数的几种特性8.反函数概念9.基本初等函数的图形10.复合函数初等函数第二章数列的极限及函数的极限1.数列及其简单性质2.数列的极限3.函数的极限4.无穷大无穷小5.关于无穷小的定理6.极限的四则运算7.极限存在的准则两个重要极限8.双曲函数9.无穷小的比较第三章函数的连续性1.函数连续性的定义2.函数的间断点3.闭区间上连续函数的基本性质4.连续函数的和积及商的连续性5.反函数与复合函数的连续性6.初等函数的连续性第四章导数及微分1.几个物力学上的概念2.导数概念3.导数的几何意义4.求导数的例题导数的基本公式表5.函数的和积商的导数6.反函数的导数7.复合函数的导数8.高阶导数9.参数方程所确定的函数的导数10.微分概念11.微分的求法微分形式不变性12.微分应用与近似计算及误差的估计第五章中值定理1.中值定理2.罗必塔法则3.泰勒公式第六章导数的应用1.函数的单调增减性的判定法2.函数的极值及其求法3.最大值及最小值的求法4.曲线的凹性及其判定法5.曲线的拐点及其求法6.曲线的渐进线7.函数图形的描绘方法8.弧微分曲率9.曲率半径曲率中心10.方程的近似解第七章不定积分1.原函数与不定积分的概念2.不定积分的性质3.基本积分表4.换元积分法5.分步积分法6.有理函数的分解7.有理函数的积分8.三角函数的有理式的积分9.简单无理函数的积分10.二项微分式的积分11.关于积分问题的一些补充说明第八章定积分1.曲边梯形的面积变力所作的功2.定积分的概念3.定积分的简单性质中值定理4.牛顿-莱布尼兹公式5.用换元法计算定积分6.用分部积分法计算定积分7.定积分的近似公式8.广义积分第九章定积分的应用1.平面图形的面积2.体积3.曲线的弧长4.定积分在物力力学上的应用第十章级数I. 常数项级数1.无穷级数概念2.无穷级数的基本性质收敛的必要条件3. 正项级数收敛性的充分判定法4.任意项级数绝对收敛5.广义积分的收敛性6.T- 函数II. 函数项级数7.函数项级数的一般概念8.一致收敛及一致收敛级数的基本性质III 幂级数9.幂级数的收敛半径10.幂级数的运算11.泰勒级数12.初等函数的展开式13.泰勒级数在近似计算上的应用14.复变量的指数函数欧拉公式第十一章傅立叶级数1.三角级数三角函数系的正交性2.欧拉-傅立叶公式3.傅立叶级数4.偶函数及奇函数的傅立叶级数5.函数展开为正弦和余弦级数6.任意区间上的傅立叶级数第十二章多元函数的微分法及其应用1.一般概念2.二元函数的极限及连续性3.偏导数4.全增量及全微分5.方向导数6.复合函数的微分法7.隐函数及其微分法8.空间曲线的切线及法平面9.曲面的切平面及法线10.高阶偏导数11.二元函数的泰勒公式12.多元函数的极值13.条件极值--拉格朗日乘数法则第十三章重积分1.体积问题二重积分2.二重积分的简单性质中值定理3.二重积分计算法4.利用极坐标计算二重积分5.三重积分及其计算法6.柱面坐标和球面坐标7.曲面的面积8.重积分在静力学中的应用第十四章曲线积分及曲面积分1.对坐标的曲线积分2.对弧长的曲线积分3.格林公式4.曲线积分与路线无关的条件5.曲面积分6.奥斯特罗格拉特斯公式第十五章微分方程1.一般概念2.变量可分离的微分方程3.齐次微分方程4.一阶线性方程5.全微分方程6.高阶微分方程的几个特殊类型7.线性微分方程解的结构8.常系数齐次线性方程9.常系数非齐次线性方程10.欧拉方程11.幂级数解法举例12.常系数线性微分方程组。
《高等数学》(II-1)考试大纲.

《高等数学》(II-1)考试大纲总要求考生应按大纲要求了解“微积分”中的函数、极限和连续、一元函数积分学基本概念、基本理论与基本运算;逐步地学会、掌握或熟练掌握上述各部分的基本方法。
应注意各部分之间的知识结构与内在联系;能运用基本概念、基本理论和基本方法正确地判断和证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。
各章要求第一章一、考试内容函数的概念及表示法函数的几何性质、复合函数、反函数、分段函数、初等函数基本初等函数的性质及其图形简单应用问题的函数关系的建立二、考试要求1.理解函数概念,掌握其表示法,能建立简单应用问题中的函数关系式.2.了解函数的奇偶性、单调性、周期性和有界性.3.理解、掌握复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及图形.三、考试重点建立简单应用问题中的函数关系式基本初等函数的性质及图形第二章一、考试内容1、基本概念数列极限与函数极限的定义以及它们的性质函数的左极限与右极限无穷小和无穷大的概念及关系函数连续的概念函数间断点的类型2、基本理论无穷小的性质及无穷小的比较极限存在的两个准则:单调有界准则和夹逼准则两个重要极限(略)初等函数的连续性闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)3、基本运算极限的四则运算两个重要极限求极限的方法.无穷小的比较方法函数连续性的概念(含左连续与右连续),判别函数间断点的类型二、考试要求1、基本概念:理解数列与函数极限的概念,理解函数的左与右极限概念,及其与函数极限存在的关系.理解无穷小、无穷大以及阶的概念,理解函数连续性的概念会判别函数间断点的类型2、基本理论:掌握极限的性质及四则运算法则.理解极限存在的两个准则,并会利用它们求极限,了解初等函数的性质和初等函数的连续性了解闭区间上连续函数的性质3、基本运算:掌握极限的性质及四则运算法则掌握用两个重要极限求极限的方法.掌握无穷小的比较方法4、考试重点:函数极限与左、右极限的关系.极限的性质及四则运算法则两个重要极限求极限的方法判别函数的连续点与间断点以及间断点的类型第三章一、考试内容1、基本概念:导数和微分的概念导数的几何意义和物理意义平面曲线的切线和法线高阶导数的概念,2、基本理论函数的可导性与连续性之间的关系基本初等函数的导数导数和微分的四则运算复合函数与反函数的求导法则3、基本运算基本初等函数的导数导数和微分的四则运算复合函数与反函数的求导法则二、考试要求1、基本概念:理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.了解高阶导数的概念,2、基本理论:掌握导数的四则运算法则掌握复合函数的求导法则,掌握基本初等函数的导数公式。
《高等数学》(1-3章)教学教案(全)

高等数学教学教案第1章函数、极限与连续授课序号01(是一个给定的非空数集.若对任意的授课序号02的左邻域有定义,如果自变量为当0x x →时函数授课序号032n n ++)(1,2,n x =授课序号04授课序号05授课序号06高等数学教学教案第2章导数与微分授课序号01授课序号02授课序号03授课序号04高等数学教学教案第3章微分中值定理与导数的应用授课序号01授课序号02授课序号03!n +!n +()()!n x n +!n +!n +[cos (x θ+=21)2!!x n α-++)(1(1)!n n αθ-++()nx R x +授课序号04(1)在生产实践和工程技术中,经常会遇到求在一定条件下,怎样才能使“成本最低”、“利润最高”、“原材料最省”等问题.这类问题在数学上可以归结为建立一个目标函数,求这个函数的最大值或最小值问题.(2)对于实际问题,往往根据问题的性质就可以断定函数()f x 在定义区间内部存在着最大值或最小值.理论上可以证明这样一个结论:在实际问题中,若函数()f x 的定义域是开区间,且在此开区间内只有一个驻点0x ,而最值又存在,则可以直接确定该驻点0x 就是最值点,0()f x 即为相应的最值. 四.例题讲解例1.讨论函数32()29123f x x x x =-+-的单调增减区间. 例2.判断函数3()=f x x 的单调性.例3.设3,0,()arctan ,0.x x f x x x x ⎧-<=⎨≥⎩确定()f x 的单调区间.例4.证明:当0x >时,e 1x x >+. 例5.求函数32()(1)f x x x =-的极值.例6.求函数22()ln f x x x =-的极值.例7.求函数233()2f x x x =+在区间1[8]8-,上的最大值与最小值.例8.水槽设计问题有一块宽为2a 的长方形铁皮如图3.8所示,将宽所在的两个边缘向上折起,做成一个开口水槽,其横截面为矩形,问横截面的高取何值时水槽的流量最大(流量与横截面积成正比). 图3.8例9.用料最省问题要做一圆柱形无盖铁桶,要求铁桶的容积V 是一定值,问怎样设计才能使制造铁桶的用料最省? 例10.面积最大问题将一长为2L 的铁丝折成一个长方形,问如何折才能使长方形的面积最大.授课序号05授课序号06教学基本指标教学课题第3章第6节弧微分与曲率课的类型新知识课教学方法讲授、课堂提问、讨论、启发、自学教学手段黑板多媒体结合教学重点曲率的计算公式教学难点曲率的计算参考教材同济七版《高等数学》上册作业布置课后习题大纲要求了解曲率和曲率半径的概念,会计算曲率和曲率半径。
高等数学基础教材课后答案解析

高等数学基础教材课后答案解析1. 引言高等数学作为大学中必修的一门学科,旨在培养学生的数学思维能力和解决实际问题的能力。
课后习题是学生巩固所学知识的重要环节,而答案解析则为学生提供了参考。
本文对高等数学基础教材中的部分课后习题答案进行解析,帮助学生更好地理解和掌握相关知识。
2. 函数与极限2.1 习题解析2.1.1 习题1:计算极限$$\lim_{x\to0}\frac{1-\cos x}{x}$$解析:这是一个常见的极限问题,在计算中可以应用泰勒级数展开式来求解。
首先将$\cos x$用它的泰勒级数展开式替代,然后简化表达式,得到最终的极限结果为1。
2.1.2 习题2:求函数$f(x)=\ln(x^2+1)$的倒数函数$f^{-1}(x)$解析:要求函数的倒数函数,需要进行函数的反函数求解。
首先,将$f(x)$表示为$y$,然后交换$x$和$y$,解出$y$,最后将$y$表示为$x$,得到函数$f^{-1}(x)$。
3. 导数与微分3.1 习题解析3.1.1 习题1:求函数$f(x)=\sin^2 x + \cos^2 x$的导数$f'(x)$解析:根据函数的求导法则,对于$\sin^2 x$和$\cos^2 x$来说,其导数都可以通过链式法则求得。
根据求导法则和链式法则,可以得到$f'(x)$的最终结果为0。
3.1.2 习题2:已知曲线$y=x^3-3x^2+1$上的点$A(1, -1)$,求该曲线在点$A$处的切线方程。
解析:要求曲线在指定点处的切线方程,需要计算曲线在该点处的斜率,并利用斜率公式得到切线的方程。
首先,计算点$A$处的斜率,然后利用点斜式得到切线的方程。
4. 微分学应用4.1 习题解析4.1.1 习题1:一座高200米的塔楼,从塔底以角度$30°$向上仰望塔顶,再向上仰望$15°$找不到塔顶。
求塔楼的高度。
解析:根据题意,可以通过建立三角函数的关系式求解该题。
《高等数学(一)微积分》讲义

5. 复合函数
给定函数链 f : D1 → f (D1) g : D → g(D) ⊂ D1
则复合函数为 f o g : D → f [g(D) ]
6. 初等函数 由基本初等函数经有限次四则运算与复合而成的由一个表达式表示的函
数。
4/69
二、 极限 (1.概念回顾 2、极限的求法,)
=
lim
x→π
1 cos x
sin x
-2 ⋅ 2(π
−
2 x)=
lim
x→π
1 -4 sin
cos x
x(π − 2x)
2
2
2
=
lim
x→π
1 -4 sin
x
⋅
cos
lxi→mπ(π −
2xx )=
1 -4
lim
x→π
−
sin −2
x =
−
1 8
2
2
2
13/69
注:使用洛必达法则必须判断所求的极限是分式型的未定式 ∞ 、 0 。 ∞0
例 5:
求 lim x→∞
x+5 x2 − 9
.
解:
lim
x→∞
x+5 x2 − 9
=
lim
x→∞
1 x
+
5 x2
1−
9 x2
=
1 lim( x→∞ x
+
5 x2
)
=
0
=
0.
lim(1 −
x→∞
9 x2
)
1
知识点:设a0 ≠ 0, b0 ≠ 0, m, n ∈ N ,
(超级总结,吐血推荐)2013考研数学二经典知识点,题型,技巧总结(高数线代)综合网上及个人线代心得

高等数学(数二)整理人:刘超说明:本文只适合内部流传,严禁外传,来源于网各个专家分析,其中线性代数为本人的心得感悟理解,另附网上9个大题的猜测:必考题型及2013可能会考的题型;及李永乐,王式安的基础导学班题型分析。
一.重点知识标记高等数学科目大纲章节知识点题型重要度等级高等数学第一章函数、极限、连续1 .等价无穷小代换、洛必达法则、泰勒展开式求函数的极限★★★★★2 .函数连续的概念、函数间断点的类型3 .判断函数连续性与间断点的类型★★★第二章一元函数微分学1 .导数的定义、可导与连续之间的关系按定义求一点处的导数,可导与连续的关系★★★★2 .函数的单调性、函数的极值讨论函数的单调性、极值★★★★3.闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用★★★★★第三章一元函数积分学1 .积分上限的函数及其导数变限积分求导问题★★★★★2 .有理函数、三角函数有理式、简单无理函数的积分计算被积函数为有理函数、三角函数有理式、简单无理函数的不定积分和定积分★★第四章多元函数微分学1 .隐函数、偏导数、的存在性以及它们之间的因果关系2 .函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连续性的讨论与它们之间的因果关系★★3 .多元复合函数、隐函数的求导法求偏导数,全微分★★★★★第五章多元函数积分学1. 二重积分的概念、性质及计算2.二重积分的计算及应用★★第六章常微分方程1.一阶线性微分方程、齐次方程,2.微分方程的简单应用,用微分方程解决一些应用问题★★★★一、函数、极限、连续部分:极限的运算法则、极限存在的准则(单调有界准则和夹逼准则)、未定式的极限、主要的等价无穷小、函数间断点的判断以及分类,还有闭区间上连续函数的性质(尤其是介值定理),这些知识点在历年真题中出现的概率比较高,属于重点内容,但是很基础,不是难点,因此这部分内容一定不要丢分。
高等数学教案(高职高专)

石家庄工程职业学院计算机数学(理论)教案系部:任课教师:林远健教师职称:授课对象:11造价2班课程学时:60学年学期:2011-2012学年第二学期第 1 次课 学时 2 授课题目(章,节) 第一章 函数与极限§1 函数授课类型(请打√) 理论课√□ 研讨课□ 习题课□ 复习课□ 其他□教学目的:1、理解函数的概念,掌握函数定义域、值域的求解方法;2、掌握函数的表示方法,会求解函数的奇偶性,周期性,单调性。
教学方法、手段:讲授法,师生互动,板书,课件展示 教学重点、难点:重点、定义域的求解;函数的几种特性; 难点、定义域的求解;奇偶性的判断。
教学内容及过程设计补充内容和时间分配 一、新教程序言为什么要重视数学学习(1)文化基础——数学是一种文化,它的准确性、严格性、应用广泛性,是现代社会文明的重要思维特征,是促进社会物质文明和精神文明的重要力量;(2)开发大脑——数学是思维训练的体操,对于训练和开发我们的大脑(左脑)有全面的作用;(3)知识技术——数学知识是学习自然科学和社会科学的基础,是我们生活和工作的一种能力和技术;(4)智慧开发——数学学习的目的是培养人的思维能力,这种能力为人的一生提供持续发展的动力。
二、讲授新课 利用现实生活中的一个实例(匀速运动),引起学生的兴趣,进一步使学生想了解什么是函数,好奇心吸引学生们认真听课。
顺利引出函数。
1、函数的定义(课件展示)说明:函数是变量间的一种对应关系(单值对应),函数的表达式如下:Dx x f y ∈=,)((1)定义域:自变量的取值集合(D )。
(2)值域:函数值的集合,即)(000x f y y x x ===。
2、函数的二要素(板书)构成函数的两个重要因素:定义域和对应法则。
如果两个函数定义域相同,对应法则也相同,那么这两个函数是相同的。
(熟记) 注意:为了使定义域在数学上有意义,要求, (1)分母不能为0。
如1()f x x=时(2)偶次根号下非负。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学(II-1)-(-第2次-)
第2次作业
一、单项选择题(本大题共60分,共 20 小题,每小题 3 分)
1.
设,则( )。
A. 10
B. 5
C. 20
D. 0
2.
( ) 。
A.
B.
C.
D.
3. ()。
A.
B.
C.
D.
4. 下列函数在给定区间上不满足拉格朗日中值定理的是()。
A.
B.
C.
D.
5.
为连续的奇函数,又,则( )。
A.
B.
C. 非零常数
D. 0
6.
( ) 。
A.
B.
C.
D.
7.
根据定积分的几何意义,( )。
A. 6
B. 8
C. 12
D.
16
8.
曲线与轴所围成的图形的面积可表示为()。
A.
B.
C.
D.
9. ()。
A.
B.
C. 0
D. 1
10.
( )。
A.
B.
C.
D.
11. 若是函数的极值,则在处必有( )。
A. 连续
B. 可导
C. 不可导
D. 有定义
12.
函数在上的最小值为()。
A.
B.
C.
D.
13. 关于函数的凹凸性,下列叙述正确的是( ) 。
A.
在上是凹的,在上是凸的
B. 在上是凸的,在上是凹的
C.
在上是凸的
D. 在上是凹的
14.
= ( ) 。
A.
B.
C.
D.
15. 关于函数单调性,下列说法正确的是( )。
A. 在上单调减少,在上单调增加
B.
在上单调增加,在上单调减少
C. 在上单调增加
D. 在上单调减少
16. 已知,则它的最大值,最小值是()。
A.
最大值不存在,最小值为1/2
B. 最大值是1/2,最小值不存在
C. C最大值是 -1,最小值是 -13
D. 最大值是1,最小值是 -1
17.
在凑微分中,( )。
A.
B.
C.
D.
18.
( ) 。
A.
B.
C.
D.
19. 已知的一个原函数为,的一个原函数为,则的一个原函数为 ( )。
A.
B.
C.
D.
20. = ( ) 。
A. [P_15A9D92B9736852BFACFC1043CCEAAFE]
B. 3
C. 0
D. 1
二、判断题(本大题共40分,共 20 小题,每小题 2 分)
1.
微积分基本公式表明等于一个原函数在积分区间上的增量。
()
2.
若,则。
()
3.
在求曲边梯形面积的近似值时, 矩形越多,矩形总面积越接近曲边梯形面积。
()
4.
罗尔定理成立的三个条件缺一不可。
()
5.
若,则有。
()
6.
已知)是函数在内的最大值,则对于,必有。
()7.
设在区间上有界,且只有有限个间断点,则在上一定可积。
()
8. 利用微元法求某一量的必要条件是在某区间上具有可加性(累加特性)。
()
9. 设有两个函数:,,则是
的
10.
函数在上的一个原函数为常数,则在上=0。
()
11.。
()
12.
满足拉格朗日中值定理条件的函数f(x)的曲线C上至少存在一点M,在点M处的切线平行于连接两断点的弦。
()
13.
去掉罗尔定理条件,即是拉格朗日中值定理条件。
()
14.
若,则必有。
()
15.
如果曲线始终在轴的下方,如果定积分存在,则定积分。
()
16.
, 使得 如果函数在闭区间上连续,则在积分区间上至少存在一个点。
()
17.
若极限不存在,则极限也不存在( )。
18.
在求曲边梯形面积的近似值时,,其中的为小曲边梯形的宽度。
()
19.
函数在上连续是在内存在最大值的必要条件。
()
20. 函数在上连续是在内存在极值的必要条件。
()
答案:
一、单项选择题(60分,共 20 题,每小题 3 分)
1. B
2. B
3. D
4. B
5. A
6. B
7. C
8. C
9. A 10. A 11. D 12. B 13. B 14.
C 15. A 16. C 17. A 18.
D 19. B 20. B
二、判断题(40分,共 20 题,每小题 2 分)
1. √
2. ×
3. √
4. √
5. ×
6. √
7. √
8. √
9. × 10. √ 11. × 12. √ 13. √ 14. × 15. √ 16. √ 17. × 18. √ 19. × 20. ×。