北师大版八年级上册数学第三章位置与坐标测试题(全章)
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章位置与坐标周周测2
一、选择题(每小题3分,共30分)
1.在平面直角坐标系中,已知点P(2,-3),则点P在()
A.第一象限B.第二象限C.第三象限D.第四象限
2.在平面直角坐标系中,将点M(1,2)向左平移2个单位长度后得到点N,则点N的坐标是()
A.(-1,2)B.(3,2)C.(1,4)D.(1,0)
A. 10个B. 12个C. 15个D. 18个
10.二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,图象与x轴交点都在点(﹣3,0)的右边,下列结论:①b2>4ac,②abc>0,③2a+b﹣c>0,④a+b+c<0,其中正确的是( )
A.①②B.①②④C.②③D.①②③④
(1)分别写出小金鱼身上点A,B,C,D,E,F的坐标;
(2)小金鱼身上的点的纵坐标都乘以-1,横坐标不变,作出相应图形,它与原图案相比有哪些变化?
(3)小金鱼身上的点的横坐标都乘-1,所得图形与原图形相比有哪些变化?
解:(1)A(0,-4),B(4,-1),C(4,-7),D(10,-3),E(10,-5),F(8,-4)
10.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标不可能是()
A.(4,0)B.(1,0)C.(-2 ,0)D.(2,0)
二、填空题(每小题3分,共24分)
11.点P(1,2)关于x轴的对称点P1的坐标是____,点P(1,2)关于y轴的对称点P2的坐标是___.
22.(10分)如图,三角形BCO是三角形BAO经过某种变换得到的.
(1)写出A,C的ห้องสมุดไป่ตู้标;
(2)图中A与C的坐标之间的关系是什么?
(3)如果三角形AOB中任意一点M的坐标为(x,y),那么它的对应点N的坐标是什么?
23.(10分)小金鱼在直角坐标系中的位置如图所示,根据图形解答下面的问题:
(1)分别写出小金鱼身上点A,B,C,D,E,F的坐标;
解:(1)公园(3,-1),游艺场(3,2),学校(1,3)
(2)邮局——移动通讯——幼儿园——消防队——火车站——学校——糖果店
21.(10分)(2015·山师二附中)如图,OA=8,OB=6,∠xOB=120°,求A,B两点的坐标.
解:过A作AC⊥x轴,作BD⊥x轴,在Rt△AOC中,AC2+OC2=OA2,即2OC2=64,解得OC=4 ,即A(4 ,4 ).在Rt△BOD中,∠BOD=60°,所以∠DBO=30°,所以OD= OB=3,因为BD2+OD2=OB2,所以BD2=62-32=27,解得BD=3 ,即B(-3,3 )
5.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于 MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()
A.a=bB.2a+b=-1C.2a-b=1D.2a+b=1
,第5题图) ,第7题图) ,第10题图)
15.如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为__.
A. B. C. D.
7.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为( )
A.(x+1)(x+2)=18B. x2﹣3x+16=0C.(x﹣1)(x﹣2)=18D. x2+3x+16=0
12.线段AB=3,且AB∥x轴,若A点的坐标为(-1,2),则点B的坐标是__.
13.在平面直角坐标系中,一青蛙从点A(-1,0)处向右跳2个单位长度,在向上跳2个单位长度到点A′处,则点A′的坐标为__.
14.如图,如果 所在的位置坐标为(-1,-2), 所在的位置坐标为(2,-2),则 所在的位置坐标为___
20.(8分)图中标明了小强家附近的一些地方.
(1)写出公园、游艺场和学校的坐标;
(2)早晨,小强从家里出发,沿(-3,-1),(-1,-2),(0,-1),(2,-2),(1,0),(1,3),(-1,2)路线转了一下,又回到家里,写出他路上经过的地方.
21.(10分)(2015·山师二附中)如图,OA=8,OB=6,∠xOB=120°,求A,B两点的坐标.
,第14题图) ,第15题图) ,第17题图) ,第18题图)
18.(2016·恩施模拟)如图,在平面直角坐标系xOy中,分别平行x,y轴的两直线a,b相交于点A(3,4).连接OA,若在直线a上存在点P,使△AOP是等腰三角形,那么所有满足条件的点P的坐标是__(8,4)或(-2,4)或(-3,4)或(- ,4)__.
8.在平面直角坐标系中,A,B,C三点的坐标分别为(0,0),(0,-5),(-2,-2),以这三点为平行四边形的三个顶点,则第四个顶点不可能在()
A.第一象限B.第二象限C.第三象限D.第四象限
9.已知点M到x轴的距离为1,到y轴的距离为2,则M点的坐标为()
A.(1,2)B.(-1,-2)
C.(1,-2)D.(2,1),(2,-1),(-2,1),(-2,-1)
二、填空题(每小题3分,共24分)
11.点P(1,2)关于x轴的对称点P1的坐标是__(1,-2)__,点P(1,2)关于y轴的对称点P2的坐标是__(-1,2)__.
12.线段AB=3,且AB∥x轴,若A点的坐标为(-1,2),则点B的坐标是__(2,2)或(-4,2)__.
13.(2016·玉林模拟)在平面直角坐标系中,一青蛙从点A(-1,0)处向右跳2个单位长度,在向上跳2个单位长度到点A′处,则点A′的坐标为__(1,2)__.
九年级(上)期末数学试卷
一.选择题(共10小题)
1.在比例尺为1:n的某市地图上,A,B两地相距5cm,则A,B之间的实际距离为()
A. n cmB. cmC.5ncmD.25 cm
2.如图,是由四个完全相同的小正方形组成的立体图形,它的俯视图是()
A. B. C. D.
3.有三张正面分别写有数字1,2,﹣3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,记录卡片上的数字,然后放回卡片,再将这三张卡片背面朝上洗匀后随机抽取一张,记录卡片上的数字,则记录的两个数字乘积是正数的概率是( )
22.(10分)如图,三角形BCO是三角形BAO经过某种变换得到的.
(1)写出A,C的坐标;
(2)图中A与C的坐标之间的关系是什么?
(3)如果三角形AOB中任意一点M的坐标为(x,y),那么它的对应点N的坐标是什么?
解:(1)A(5,3),C(5,-3)
(2)关于x轴对称
(3)N(x,-y)
23.(10分)小金鱼在直角坐标系中的位置如图所示,根据图形解答下面的问题:
16.已知点A,B的坐标分别为(2,0),(2,4),以A,B,P为顶点有三角形与△ABO全等,写出一个符合条件的点P的坐标为__答案不唯一,如P(4,0)或P(0,4),或P(4,4)等__
17.如图所示,在直角坐标系中,△OBC的顶点O(0,0),B(-6,0),且∠OCB=90°,OC=BC,则点C关于y轴对称点C′的坐标是__(3,3)__.
(2)与原图案关于x轴对称
(3)与原图案关于y轴对称
24.(10分)如图,分别说明:△ABC从(1)→(2),再从(2)→(3)…一直到(5),它的横、纵坐标依次是如何变化的?
解:(1)→(2)纵坐标不变,横坐标都加1
(2)→(3)横坐标不变,纵坐标都加1
(3)→(4)横、纵坐标都乘以-1
(4)→(5)横坐标不变,纵坐标都乘以-1
16.已知点A,B的坐标分别为(2,0),(2,4),以A,B,P为顶点有三角形与△ABO全等,写出一个符合条件的点P的坐标为__
17.如图所示,在直角坐标系中,△OBC的顶点O(0,0),B(-6,0),且∠OCB=90°,OC=BC,则点C关于y轴对称点C′的坐标是__.
,第14题图) ,第15题图) ,第17题图) ,第18题图)
(2)小金鱼身上的点的纵坐标都乘以-1,横坐标不变,作出相应图形,它与原图案相比有哪些变化?
(3)小金鱼身上的点的横坐标都乘-1,所得图形与原图形相比有哪些变化?
24.(10分)如图,分别说明:△ABC从(1)→(2),再从(2)→(3)…一直到(5),它的横、纵坐标依次是如何变化的?
答案:
一1-5DABBB 6—10 BCADB
三、解答题(共66分)
19.(6分)(2015·曹县)有一张图纸被损坏,但上面有如图所示的两个标志点A(-3,1),B(-3,-3)可见,而主要建筑C(3,2)破损,请通过建立直角坐标系找到图中C的位置.
解:如图:
20.(8分)图中标明了小强家附近的一些地方.
(1)写出公园、游艺场和学校的坐标;
(2)早晨,小强从家里出发,沿(-3,-1),(-1,-2),(0,-1),(2,-2),(1,0),(1,3),(-1,2)路线转了一下,又回到家里,写出他路上经过的地方.
18.(2016·恩施模拟)如图,在平面直角坐标系xOy中,分别平行x,y轴的两直线a,b相交于点A(3,4).连接OA,若在直线a上存在点P,使△AOP是等腰三角形,那么所有满足条件的点P的坐标是__.
三、解答题(共66分)
19.(6分)(2015·曹县)有一张图纸被损坏,但上面有如图所示的两个标志点A(-3,1),B(-3,-3)可见,而主要建筑C(3,2)破损,请通过建立直角坐标系找到图中C的位置.
8.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A,B分别在x轴,y轴的负半轴上,∠ABC=90°,CA⊥x轴,点C在函数y= (x<0)的图象上,若AB=1,则k的值为( )
A. 1B.﹣1C. D.
9.在一个不透明的袋子里装有 个黑球和若干白球,它们除颜色外都相同.在不允许将球倒出来数的前提下,小明为估计其中白球数,采用如下办法:随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,记下颜色,…不断重复上述过程.小明共摸 次,其中 次摸到黑球.根据上述数据,小明估计口袋中白球大约有()
14.如图,如果 所在的位置坐标为(-1,-2), 所在的位置坐标为(2,-2),则 所在的位置坐标为__(-3,3)__.
15.(4分)(2015·甘孜州)如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为__(5,-5)__.
3.如果M(m+3,2m+4)在y轴上,那么点M的坐标是()
A.(-2,0)B.(0,-2)C.(1,0)D.(0,1)
4.如果P点的坐标为(a,b),它关于y轴的对称点为P1,P1关于x轴的对称点为P2,已知P2的坐标为(-2,3),则点P的坐标为()
A.(-2,-3)B.(2,-3)C.(-2,3)D.(2,3)
6.一个矩形,长为6、宽为4,若以该矩形的两条对称轴为坐标轴建立平面直角坐标系,下面哪个点不在矩形上()
A.(3,-2)B.(-3,3)C.(-3,2)D.(0,-2)
7.如图,点A的坐标为(-1,0),点B在第一、三象限的角平分线上运动,当线段AB最短时,点B的坐标为()
A.(0,0)B.( ,- )C.(- ,- )D.(- ,- )
A. B. C. D.
4.若菱形的一条边长为5cm,则这个菱形的周长为( )
A. 20cmB. 18cmC. 16cmD. 12cm
5.一元二次方程 可转化为两个一元一次方程,其中一个一元一次方程是 ,则另一个一元一次方程是【】
A B. C. D.
6.如图, 中, 、 分别在 、 上,下列条件中不能判断 的是()
一、选择题(每小题3分,共30分)
1.在平面直角坐标系中,已知点P(2,-3),则点P在()
A.第一象限B.第二象限C.第三象限D.第四象限
2.在平面直角坐标系中,将点M(1,2)向左平移2个单位长度后得到点N,则点N的坐标是()
A.(-1,2)B.(3,2)C.(1,4)D.(1,0)
A. 10个B. 12个C. 15个D. 18个
10.二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,图象与x轴交点都在点(﹣3,0)的右边,下列结论:①b2>4ac,②abc>0,③2a+b﹣c>0,④a+b+c<0,其中正确的是( )
A.①②B.①②④C.②③D.①②③④
(1)分别写出小金鱼身上点A,B,C,D,E,F的坐标;
(2)小金鱼身上的点的纵坐标都乘以-1,横坐标不变,作出相应图形,它与原图案相比有哪些变化?
(3)小金鱼身上的点的横坐标都乘-1,所得图形与原图形相比有哪些变化?
解:(1)A(0,-4),B(4,-1),C(4,-7),D(10,-3),E(10,-5),F(8,-4)
10.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标不可能是()
A.(4,0)B.(1,0)C.(-2 ,0)D.(2,0)
二、填空题(每小题3分,共24分)
11.点P(1,2)关于x轴的对称点P1的坐标是____,点P(1,2)关于y轴的对称点P2的坐标是___.
22.(10分)如图,三角形BCO是三角形BAO经过某种变换得到的.
(1)写出A,C的ห้องสมุดไป่ตู้标;
(2)图中A与C的坐标之间的关系是什么?
(3)如果三角形AOB中任意一点M的坐标为(x,y),那么它的对应点N的坐标是什么?
23.(10分)小金鱼在直角坐标系中的位置如图所示,根据图形解答下面的问题:
(1)分别写出小金鱼身上点A,B,C,D,E,F的坐标;
解:(1)公园(3,-1),游艺场(3,2),学校(1,3)
(2)邮局——移动通讯——幼儿园——消防队——火车站——学校——糖果店
21.(10分)(2015·山师二附中)如图,OA=8,OB=6,∠xOB=120°,求A,B两点的坐标.
解:过A作AC⊥x轴,作BD⊥x轴,在Rt△AOC中,AC2+OC2=OA2,即2OC2=64,解得OC=4 ,即A(4 ,4 ).在Rt△BOD中,∠BOD=60°,所以∠DBO=30°,所以OD= OB=3,因为BD2+OD2=OB2,所以BD2=62-32=27,解得BD=3 ,即B(-3,3 )
5.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于 MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()
A.a=bB.2a+b=-1C.2a-b=1D.2a+b=1
,第5题图) ,第7题图) ,第10题图)
15.如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为__.
A. B. C. D.
7.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为( )
A.(x+1)(x+2)=18B. x2﹣3x+16=0C.(x﹣1)(x﹣2)=18D. x2+3x+16=0
12.线段AB=3,且AB∥x轴,若A点的坐标为(-1,2),则点B的坐标是__.
13.在平面直角坐标系中,一青蛙从点A(-1,0)处向右跳2个单位长度,在向上跳2个单位长度到点A′处,则点A′的坐标为__.
14.如图,如果 所在的位置坐标为(-1,-2), 所在的位置坐标为(2,-2),则 所在的位置坐标为___
20.(8分)图中标明了小强家附近的一些地方.
(1)写出公园、游艺场和学校的坐标;
(2)早晨,小强从家里出发,沿(-3,-1),(-1,-2),(0,-1),(2,-2),(1,0),(1,3),(-1,2)路线转了一下,又回到家里,写出他路上经过的地方.
21.(10分)(2015·山师二附中)如图,OA=8,OB=6,∠xOB=120°,求A,B两点的坐标.
,第14题图) ,第15题图) ,第17题图) ,第18题图)
18.(2016·恩施模拟)如图,在平面直角坐标系xOy中,分别平行x,y轴的两直线a,b相交于点A(3,4).连接OA,若在直线a上存在点P,使△AOP是等腰三角形,那么所有满足条件的点P的坐标是__(8,4)或(-2,4)或(-3,4)或(- ,4)__.
8.在平面直角坐标系中,A,B,C三点的坐标分别为(0,0),(0,-5),(-2,-2),以这三点为平行四边形的三个顶点,则第四个顶点不可能在()
A.第一象限B.第二象限C.第三象限D.第四象限
9.已知点M到x轴的距离为1,到y轴的距离为2,则M点的坐标为()
A.(1,2)B.(-1,-2)
C.(1,-2)D.(2,1),(2,-1),(-2,1),(-2,-1)
二、填空题(每小题3分,共24分)
11.点P(1,2)关于x轴的对称点P1的坐标是__(1,-2)__,点P(1,2)关于y轴的对称点P2的坐标是__(-1,2)__.
12.线段AB=3,且AB∥x轴,若A点的坐标为(-1,2),则点B的坐标是__(2,2)或(-4,2)__.
13.(2016·玉林模拟)在平面直角坐标系中,一青蛙从点A(-1,0)处向右跳2个单位长度,在向上跳2个单位长度到点A′处,则点A′的坐标为__(1,2)__.
九年级(上)期末数学试卷
一.选择题(共10小题)
1.在比例尺为1:n的某市地图上,A,B两地相距5cm,则A,B之间的实际距离为()
A. n cmB. cmC.5ncmD.25 cm
2.如图,是由四个完全相同的小正方形组成的立体图形,它的俯视图是()
A. B. C. D.
3.有三张正面分别写有数字1,2,﹣3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,记录卡片上的数字,然后放回卡片,再将这三张卡片背面朝上洗匀后随机抽取一张,记录卡片上的数字,则记录的两个数字乘积是正数的概率是( )
22.(10分)如图,三角形BCO是三角形BAO经过某种变换得到的.
(1)写出A,C的坐标;
(2)图中A与C的坐标之间的关系是什么?
(3)如果三角形AOB中任意一点M的坐标为(x,y),那么它的对应点N的坐标是什么?
解:(1)A(5,3),C(5,-3)
(2)关于x轴对称
(3)N(x,-y)
23.(10分)小金鱼在直角坐标系中的位置如图所示,根据图形解答下面的问题:
16.已知点A,B的坐标分别为(2,0),(2,4),以A,B,P为顶点有三角形与△ABO全等,写出一个符合条件的点P的坐标为__答案不唯一,如P(4,0)或P(0,4),或P(4,4)等__
17.如图所示,在直角坐标系中,△OBC的顶点O(0,0),B(-6,0),且∠OCB=90°,OC=BC,则点C关于y轴对称点C′的坐标是__(3,3)__.
(2)与原图案关于x轴对称
(3)与原图案关于y轴对称
24.(10分)如图,分别说明:△ABC从(1)→(2),再从(2)→(3)…一直到(5),它的横、纵坐标依次是如何变化的?
解:(1)→(2)纵坐标不变,横坐标都加1
(2)→(3)横坐标不变,纵坐标都加1
(3)→(4)横、纵坐标都乘以-1
(4)→(5)横坐标不变,纵坐标都乘以-1
16.已知点A,B的坐标分别为(2,0),(2,4),以A,B,P为顶点有三角形与△ABO全等,写出一个符合条件的点P的坐标为__
17.如图所示,在直角坐标系中,△OBC的顶点O(0,0),B(-6,0),且∠OCB=90°,OC=BC,则点C关于y轴对称点C′的坐标是__.
,第14题图) ,第15题图) ,第17题图) ,第18题图)
(2)小金鱼身上的点的纵坐标都乘以-1,横坐标不变,作出相应图形,它与原图案相比有哪些变化?
(3)小金鱼身上的点的横坐标都乘-1,所得图形与原图形相比有哪些变化?
24.(10分)如图,分别说明:△ABC从(1)→(2),再从(2)→(3)…一直到(5),它的横、纵坐标依次是如何变化的?
答案:
一1-5DABBB 6—10 BCADB
三、解答题(共66分)
19.(6分)(2015·曹县)有一张图纸被损坏,但上面有如图所示的两个标志点A(-3,1),B(-3,-3)可见,而主要建筑C(3,2)破损,请通过建立直角坐标系找到图中C的位置.
解:如图:
20.(8分)图中标明了小强家附近的一些地方.
(1)写出公园、游艺场和学校的坐标;
(2)早晨,小强从家里出发,沿(-3,-1),(-1,-2),(0,-1),(2,-2),(1,0),(1,3),(-1,2)路线转了一下,又回到家里,写出他路上经过的地方.
18.(2016·恩施模拟)如图,在平面直角坐标系xOy中,分别平行x,y轴的两直线a,b相交于点A(3,4).连接OA,若在直线a上存在点P,使△AOP是等腰三角形,那么所有满足条件的点P的坐标是__.
三、解答题(共66分)
19.(6分)(2015·曹县)有一张图纸被损坏,但上面有如图所示的两个标志点A(-3,1),B(-3,-3)可见,而主要建筑C(3,2)破损,请通过建立直角坐标系找到图中C的位置.
8.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A,B分别在x轴,y轴的负半轴上,∠ABC=90°,CA⊥x轴,点C在函数y= (x<0)的图象上,若AB=1,则k的值为( )
A. 1B.﹣1C. D.
9.在一个不透明的袋子里装有 个黑球和若干白球,它们除颜色外都相同.在不允许将球倒出来数的前提下,小明为估计其中白球数,采用如下办法:随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,记下颜色,…不断重复上述过程.小明共摸 次,其中 次摸到黑球.根据上述数据,小明估计口袋中白球大约有()
14.如图,如果 所在的位置坐标为(-1,-2), 所在的位置坐标为(2,-2),则 所在的位置坐标为__(-3,3)__.
15.(4分)(2015·甘孜州)如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为__(5,-5)__.
3.如果M(m+3,2m+4)在y轴上,那么点M的坐标是()
A.(-2,0)B.(0,-2)C.(1,0)D.(0,1)
4.如果P点的坐标为(a,b),它关于y轴的对称点为P1,P1关于x轴的对称点为P2,已知P2的坐标为(-2,3),则点P的坐标为()
A.(-2,-3)B.(2,-3)C.(-2,3)D.(2,3)
6.一个矩形,长为6、宽为4,若以该矩形的两条对称轴为坐标轴建立平面直角坐标系,下面哪个点不在矩形上()
A.(3,-2)B.(-3,3)C.(-3,2)D.(0,-2)
7.如图,点A的坐标为(-1,0),点B在第一、三象限的角平分线上运动,当线段AB最短时,点B的坐标为()
A.(0,0)B.( ,- )C.(- ,- )D.(- ,- )
A. B. C. D.
4.若菱形的一条边长为5cm,则这个菱形的周长为( )
A. 20cmB. 18cmC. 16cmD. 12cm
5.一元二次方程 可转化为两个一元一次方程,其中一个一元一次方程是 ,则另一个一元一次方程是【】
A B. C. D.
6.如图, 中, 、 分别在 、 上,下列条件中不能判断 的是()