人教七年级下册数学期末复习及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教七年级下册数学期末复习及答案
一、选择题
1.如图,下面结论正确的是( )
A .1∠和2∠是同位角
B .2∠和3∠是内错角
C .3∠和4∠是同旁内角
D .1∠和4∠是内错角 2.下列运动属于平移的是( )
A .汽车在平直的马路上行驶
B .吹肥皂泡时小气泡变成大气泡
C .铅球被抛出
D .红旗随风飘扬 3.在平面直角坐标系中,点P (5,﹣1)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中错误的有( )
A .②③
B .②④
C .③④
D .②③④ 5.直线12//l l ,125A ∠=︒,85B ∠=︒,115∠=︒,则2∠=( )
A .15°
B .25°
C .35
D .20° 6.下列等式正确的是( ) A .93-=- B .49714412=± C .23(8)4-= D .327382--
=- 7.如图,直线l 1∥l 2且与直线l 3相交于A 、C 两点.过点A 作AD ⊥AC 交直线l 2于点D .若∠BAD =35°,则∠ACD =( )
A .35°
B .45°
C .55°
D .70°
8.如图,在平面直角坐标系内原点O (0,0)第一次跳动到点A 1(0,1),第二次从点A 1跳动到点A 2(1,2),第三次从点A 2跳动到点A 3(-1,3),第四次从点A 3跳动到点A 4(-1,4),……,按此规律下去,则点A 2021的坐标是( ).
A .(673,2021)
B .(674,2021)
C .(-673,2021)
D .(-674,2021)
九、填空题
9.25的算术平方根是 _______ .
十、填空题
10.点(3,0)关于y 轴对称的点的坐标是_______
十一、填空题
11.如图,AD 、AE 分别是△ABC 的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.
十二、填空题
12.如图,//AB CD ,CE 平分ACD ∠,交AB 于E ,若50ACD ∠=︒,则1∠的度数是______°.
十三、填空题
13.把一张长方形纸条按如图所示折叠后,若70AOB '∠=︒,则OGD ∠=_______;
十四、填空题
14.对于有理数a ,b ,规定一种新运算:a ※b=ab+b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上). 十五、填空题
15.点()2,28M a a +-是第四象限内一点,若点M 到两坐标轴的距离相等,则点M 的坐标为__________.
十六、填空题
16.如图,一个点在第一象限及x 轴、y 轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],那么第42秒时质点所在位置的坐标是______.
十七、解答题
17.计算:
(13116+84
(2)3232-.
十八、解答题
18.已知:215a ab +=,210b ab +=,1a b -=,求下列各式的值:
(1)a b +的值;
(2)22a b +的值.
十九、解答题
19.已知如图,//BC EF ,80AOB ∠=︒,1160C ∠+∠=︒,60B ∠=︒,求证:A D ∠=∠. 完成下面的证明过程:
证明:∵80AOB ∠=︒,
∴80COD AOB ∠=∠=︒(______________________________)
∵____________________(已知)
∴1180COD ∠+∠=︒.(______________________________)
∴1100∠=︒.
∵1160C ∠+∠=︒,(已知)
∴1601______C ∠=︒-∠=
又∵60B ∠=︒,
∴B C ∠=∠,
∴//AB CD ,(______________________________)
∴A D ∠=∠.(______________________________)
二十、解答题
20.如图,ABC 的三个顶点坐标分别为()2,3A -,()0,1B ,()2,2C .
(1)在平面直角坐标系中,画出ABC ;
(2)将ABC 向下平移4个单位长度,得到111A B C △,并画出111A B C △,并写出点1A 的坐标.
二十一、解答题
21.在学习《实数》内容时,我们通过“逐步逼近”2的近似值,得出
1.42 1.5.利用“逐步逼近“法,请回答下列问题:
(117介于连续的两个整数a 和b 之间,且a <b ,那么a = ,b = . (2)x 17的小数部分,y 171的整数部分,求x = ,y = . (317x )y 的平方根.
二十二、解答题
22.如图,8块相同的小长方形地砖拼成一个大长方形,
(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)
(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?
二十三、解答题
23.已知:如图,直线AB //CD ,直线EF 交AB ,CD 于P ,Q 两点,点M ,点N 分别是直线CD ,EF 上一点(不与P ,Q 重合),连接PM ,MN .
(1)点M ,N 分别在射线QC ,QF 上(不与点Q 重合),当∠APM +∠QMN =90°时, ①试判断PM 与MN 的位置关系,并说明理由;
②若PA 平分∠EPM ,∠MNQ =20°,求∠EPB 的度数.(提示:过N 点作AB 的平行线) (2)点M ,N 分别在直线CD ,EF 上时,请你在备用图中画出满足PM ⊥MN 条件的图形,并直接写出此时∠APM 与∠QMN 的关系.(注:此题说理时不能使用没有学过的定理) 二十四、解答题
24.如图1,O 为直线AB 上一点,过点O 作射线,30OC AOC ︒∠=,将一直角三角板(30M ︒∠=)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方,将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周.
(1)几秒后ON与OC重合?
MN AB,求此时t的值.
(2)如图2,经过t秒后,//
(3)若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC与OM重合?请画图并说明理由.
?请画图并说明理由.
(4)在(3)的条件下,求经过多长时间OC平分MOB
二十五、解答题
25.模型与应用.
(模型)
(1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°.
(应用)
(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为.
如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为.
(3)如图④,已知AB ∥CD ,∠AM 1M 2的角平分线M 1 O 与∠CM n M n -1的角平分线M n O 交于点O ,若∠M 1OM n =m °.
在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n -1的度数.(用含m 、n 的代数式表示)
【参考答案】
一、选择题
1.D
解析:D
【分析】
根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角;内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角;同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角作答
【详解】
解:A 、由同位角的概念可知,∠1与∠2不是同位角,故A 选项错误;
B 、由内错角的概念可知,∠2与∠3不是内错角,故B 选项错误;
C 、3∠ 和4∠ 是对顶角,故C 错误;
D 、由内错角的概念可知,∠1与∠4是内错角,故D 选项正确.
故选:D .
【点睛】
本题考查了同位角、内错角、同旁内角的概念;解题的关键是理解三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定在复杂的图
形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形.
2.A
【分析】
根据平移的定义,对选项进行一一分析,排除错误答案.
【详解】
解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A 选项符合;
B、吹肥皂泡时小气泡变成大气泡,不属于平移
解析:A
【分析】
根据平移的定义,对选项进行一一分析,排除错误答案.
【详解】
解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合;
B、吹肥皂泡时小气泡变成大气泡,不属于平移,故B选项不符合;
C、铅球被抛出是旋转与平移组合,故C选项不符合;
D、随风摆动的红旗,不属于平移,故D选项不符合.
故选:A.
【点睛】
此题主要考查了平移定义,平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.
3.D
【分析】
根据点的横纵坐标的符号可得所在象限.
【详解】
解:∵点P的横坐标是正数,纵坐标是负数,
∴点P(5,-1)在第四象限,
故选:D.
【点睛】
本题主要考查点的坐标,熟练掌握各象限内点的坐标的特点是解本题的关键,第一、二、三、四象限内的点的坐标符号分别是(+,+)、(-,+)、(-,-)、(+,-).
4.D
【分析】
根据对顶角的定义对①③进行判断;根据过直线外一点有且只有一条直线与已知直线平行对②进行判断;根据平行线的性质对④进行判断.
【详解】
对顶角相等,所以①正确,不符合题意;
过直线外一点有且只有一条直线与已知直线平行,所以②不正确,符合题意;
相等的角不一定为对顶角,所以③不正确,符合题意;
两直线平行,同位角相等,所以④不正确,符合题意,
故选:D.
【点睛】
本题考查了命题与定理,主要是判断命题的真假,属于基础题,熟练掌握这些定理是解题的关键.
5.A
【分析】
分别过A、B作直线1l的平行线AD、BC,根据平行线的性质即可完成.
【详解】
分别过A、B作直线1l∥AD、1l∥BC,如图所示,则AD∥BC
∵
l∥2l
1
∴
l∥BC
2
∴∠CBF=∠2
∵
l∥AD
1
∴∠EAD=∠1=15゜
∴∠DAB=∠EAB-∠EAD=125゜-15゜=110゜
∵AD∥BC
∴∠DAB+∠ABC=180゜
∴∠ABC=180゜-∠DAB=180゜-110゜=70゜
∴∠CBF=∠ABF-∠ABC=85゜-70゜=15゜
∴∠2=15゜
故选:A.
【点睛】
本题考查了平行线的性质与判定等知识,关键是作两条平行线.
6.C
【分析】
根据算术平方根、立方根的定义计算即可
【详解】
A、负数没有平方根,故错误
B
7
12
,故错误
C,故正确
D、
33
22
⎛⎫
--=
⎪
⎝⎭
,故错误
故选:C
【点睛】
本题考查算术平方根、立方根的计算,熟知任何数都有立方根、负数没有平方根是关键7.C
【分析】
由题意易得∠CAD=90°,则有∠CAB=125°,然后根据平行线的性质可求解.
【详解】
解:∵AD⊥AC,
∴∠CAD=90°,
∵∠BAD=35°,
∴∠CAB=∠BAD+∠CAD=125°,
∵l1∥l2,
∴∠ACD+∠CAB=180°,
∴∠ACD=55°;
故选C.
【点睛】
本题主要考查垂线的定义及平行线的性质,熟练掌握垂线的定义及平行线的性质是解题的关键.
8.B
【分析】
根据已知点的坐标寻找规律并应用解答即可.
【详解】
解:∵A1(0,1),A2(1,2),A3(-1,3),A4(-1,4),
∴A5(2,5),A6(-2,6),A7(-2,7),A
解析:B
【分析】
根据已知点的坐标寻找规律并应用解答即可.
【详解】
解:∵A1(0,1),A2(1,2),A3(-1,3),A4(-1,4),
∴A5(2,5),A6(-2,6),A7(-2,7),A8(3,8),
∴A3n-1(n,3n-1),A3n(-n,3n),A3n+1(-n,3n+1)(n为正整数),
∵3×674-1=2021,
∴n=674,所以A 2021(674,2021).
【点睛】
本题主要考查了点的坐标规律,根据已知点坐标找到A3n-1(n,3n-1),A3n(-n,3n),A3n+1(-n,3n+1)(n为正整数)的规律是解答本题的关键.
九、填空题
9.5
【详解】
试题分析:根据算术平方根的定义即可求出结果,算术平方根只有一个正根.∵52=25,∴25的算术平方根是5.
考点:算术平方根.
解析:5
【详解】
试题分析:根据算术平方根的定义即可求出结果,算术平方根只有一个正根.
∵52=25,∴25的算术平方根是5.
考点:算术平方根.
十、填空题
10.(-3,0)
【分析】
根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.
【详解】
解:点(m,n)关于y轴对称点的坐标(-m,n),
所以点(3,0)关于y轴
解析:(-3,0)
【分析】
根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.
【详解】
解:点(m,n)关于y轴对称点的坐标(-m,n),
所以点(3,0)关于y轴对称的点的坐标为(-3,0).
故答案为:(-3,0).
【点睛】
本题考查平面直角坐标系点的对称性质:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
十一、填空题
11.;
解:由题意可知,∠B=60°,∠C=70°,所以°,
所以°,
在三角形BAE 中,°,所以∠EAD=5°
故答案为:5°.
【点睛】
本题属于对角平分线和角度基本知识的变换求解.
解析:5︒;
【详解】
解:由题意可知,∠B=60°,∠C=70°,所以18013050A ∠=-=°,
所以25BAD ∠=°,
在三角形BAE 中,906030BAE ∠=-=°,所以∠EAD=5°
故答案为:5°.
【点睛】
本题属于对角平分线和角度基本知识的变换求解.
十二、填空题
12.25
【分析】
根据平行线的性质和角平分线的定义求解即可得到答案.
【详解】
解:∵AB ∥CD ,
∴∠1=∠ECD ,
∵CE 平分∠ACD ,∠ACD=50°,
∴=25°,
∴∠1=25°,
故答案为
解析:25
【分析】
根据平行线的性质和角平分线的定义求解即可得到答案.
【详解】
解:∵AB ∥CD ,
∴∠1=∠ECD ,
∵CE 平分∠ACD ,∠ACD =50°, ∴12
ECD ACD ∠=∠=25°, ∴∠1=25°,
故答案为:25.
【点睛】
本题主要考查了角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.
十三、填空题
13.55°
【分析】
直接根据补角的定义可知∠AOB′+∠BOG+∠B′OG=180°,再由图形翻折变换的性质可知∠BOG=∠B′OG ,再由平行线的性质可得出结论.
【详解】
解:∵∠AOB′=70°,
解析:55°
【分析】
直接根据补角的定义可知∠AOB ′+∠BOG +∠B ′OG =180°,再由图形翻折变换的性质可知∠BOG =∠B ′OG ,再由平行线的性质可得出结论.
【详解】
解:∵∠AOB ′=70°,∠AOB ′+∠BOG +∠B ′OG =180°,
∴∠BOG +∠B ′OG =180°-70°=110°.
∵∠B ′OG 由∠BOG 翻折而成,
∴∠BOG =∠B ′OG ,
∴∠BOG =180702 =55°. ∵AB ∥CD ,
∴∠OGD =∠BOG =55°.
故答案为:55°.
【点睛】
本题考查的是平行线的性质,熟知图形翻折不变性的性质是解答此题的关键. 十四、填空题
14.①③
【分析】
题目中各式利用已知的新定义公式计算得到结果,即可做出判断.
【详解】
(−3)※4=−3×4+4=−8,所以①正确;
a ※b=ab+
b ,b ※a=ab+a ,若 a=b ,两式相等,若
解析:①③
【分析】
题目中各式利用已知的新定义公式计算得到结果,即可做出判断.
【详解】
(−3)※4=−3×4+4=−8,所以①正确;
a ※b=ab+
b ,b ※a=ab+a ,若 a=b ,两式相等,若 a≠b ,则两式不相等,所以②错误; 方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确;
左边=(a ※b) ※c=(a×b+b) )※c=(a×b+b)·
c+c=abc+bc+c 右边=a ※(b ※c )=a ※(b×c+c)=a(b×c+c) +(b×c+c)=abc+ac+bc+c 2
两式不相等,所以④错误.
综上所述,正确的说法有①③.
故答案为①③.
【点睛】
有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.
十五、填空题
15.【分析】
根据点是第四象限内一点且到两坐标轴距离相等,点M 的横坐标与纵坐标互为相反数列方程求出a 的值,再求解即可.
【详解】
∵点是第四象限内一点且到两坐标轴距离相等,
∴点M 的横坐标与纵坐标互为
解析:()4,4-
【分析】
根据点()2,28M a a +-是第四象限内一点且到两坐标轴距离相等,点M 的横坐标与纵坐标互为相反数列方程求出a 的值,再求解即可.
【详解】
∵点()2,28M a a +-是第四象限内一点且到两坐标轴距离相等,
∴点M 的横坐标与纵坐标互为相反数
∴()228a =a +--
解得,2a =
∴M 点坐标为(4,-4).
故答案为(4,-4)
【点睛】
本题考查了点的坐标,理解点M 是第四象限内一点且到两坐标轴距离相等,则点M 的横坐标与纵坐标互为相反数是解题的关键.
十六、填空题
16.(6,6)
【分析】
根据质点移动的各点的坐标与时间的关系,找出规律即可解答.
【详解】
由题意可知质点移动的速度是1个单位长度╱秒,
到达(1,0)时用了3秒,到达(2,0)时用了4秒,
从(2,
解析:(6,6)
【分析】
根据质点移动的各点的坐标与时间的关系,找出规律即可解答.
【详解】
由题意可知质点移动的速度是1个单位长度╱秒,
到达(1,0)时用了3秒,到达(2,0)时用了4秒,
从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒,从(0,3)到(3,0)有六个单位长度,则到(3,0)时用了9+6=15秒,
以此类推到(4,0)用了16秒,到(0,4)用了16+8=24秒,到(0,5)用了25秒,到(5,0)用了25+10=35秒,
故第42秒时质点到达的位置为(6,6),
故答案为:(6,6).
【点睛】
本题主要考查了点的坐标的变化规律,得出运动变化的规律进而得出第42秒时质点所在位置的坐标是解题关键.
十七、解答题
17.(1)5;(2)4﹣.
【分析】
(1)直接利用二次根式以及立方根的性质分别化简得出答案;
(2)直接去绝对值进而计算得出答案.
【详解】
(1)原式=4+2﹣
=5;
(2)原式=3﹣(﹣)
=3
;(2)
解析:(1)51
2
【分析】
(1)直接利用二次根式以及立方根的性质分别化简得出答案;
(2)直接去绝对值进而计算得出答案.
【详解】
(1)原式=4+2﹣1
2
=512;
(2)原式=
=
=
【点睛】
此题主要考查了实数运算,正确化简各数是解题关键. 十八、解答题
18.(1)±5;(2)13
【分析】
(1)将已知两式相减,再利用完全平方公式得到,可得结果;
(2)根据完全平方公式可得=,代入计算即可
【详解】
解:(1)∵①,②,
①+②得:,即,
∴;
(2)
解析:(1)±5;(2)13
【分析】
(1)将已知两式相减,再利用完全平方公式得到()2
25a b +=,可得结果;
(2)根据完全平方公式可得22a b +=()()2212a b a b ⎡⎤++-⎣⎦,代入计算即可 【详解】
解:(1)∵215a ab +=①,210b ab +=②,
①+②得:22225a b ab ++=,即()225a b +=,
∴5a b +=±;
(2)∵1a b -=,
∴22a b +=()()2212a b a b ⎡⎤++-⎣⎦=()221512
⎡⎤±+⎣⎦=13. 【点睛】
本题主要考查了完全平方公式的变式应用,熟练应用完全平方公式的变式进行计算是解决本题的关键.
十九、解答题
19.见解析
【分析】
根据平行线的判定和性质定理以及对顶角相等即可得到结论.
【详解】
解:证明:∵∠AOB=80°,
∴∠COD=∠AOB=80°(对顶角相等).
∵BC∥EF(已知),
∴∠COD+
解析:见解析
【分析】
根据平行线的判定和性质定理以及对顶角相等即可得到结论.
【详解】
解:证明:∵∠AOB=80°,
∴∠COD=∠AOB=80°(对顶角相等).
∵BC∥EF(已知),
∴∠COD+∠1=180°(两直线平行,同旁内角互补).
∴∠1=100°.
∵∠1+∠C=160°(已知),
∴∠C=160°-∠1=60°.
又∵∠B=60°,
∴∠B=∠C.
∴AB∥CD(内错角相等,两直线平行).
∴∠A=∠D(两直线平行,内错角相等).
【点睛】
本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了对顶角的定义.
二十、解答题
20.(1)见解析;(2)见解析,A1(-2,-1).
【分析】
(1)先根据坐标描出A、B、C三点,然后顺次连接即可;
(2)先根据平行描出A1、B1、C1三点,然后顺次连接即可得到,最后直接读出A点坐
解析:(1)见解析;(2)见解析,A1(-2,-1).
【分析】
(1)先根据坐标描出A、B、C三点,然后顺次连接即可;
(2)先根据平行描出A1、B1、C1三点,然后顺次连接即可得到111
△,最后直接读出A
A B C
点坐标即可.
【详解】
解:(1)如图:△ABC即为所求;
(2)如图:111
△即为所求,点A1的坐标为(-2,-1).
A B C
【点睛】
本题主要考查了坐标与图形、图形的平移等知识点,根据坐标描出图形是解答本题的关键.
二十一、解答题
21.(1)4;5;(2);3;(3)±8.
【分析】
(1)首先估算出的取值范围,即可得出结论;
(2)根据 (1)的结论,得到,即可求得答案;
(3)根据(2)的结论代入计算即可求得答案.
【详解】
解析:(1)4;5;(2174;3;(3)±8.
【分析】
(117的取值范围,即可得出结论;
(2)根据 (1)的结论4175
<<,即可求得答案;
<<,得到61727
(3)根据(2)的结论代入计算即可求得答案.
【详解】
解:(1)∵16<17<25,
∴4175
<,
∴a=4,b=5.
故答案为:4;5
(2)∵4175
<<,
∴61727
<<,
172的整数部分为6174,
∴174
x=,3
y=.
174;3
y=时,代入,
(3)当174
x,3
)3
3)4464y x ⎤===⎦. ∴64的平方根为:8±.
【点睛】
本题考查了平方和平方根估算无理数大小应用,正确计算是解题的关键,注意平方根是一对互为相反数的两个数.
二十二、解答题
22.(1) 长是1.5m,宽是0.5m.;(2)不能.
【解析】
【分析】
(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;
(2)把正方形的边长与大长方形的长比较即可.
【详解】
解:
解析:(1) 长是1.5m,宽是0.5m.;(2)不能.
【解析】
【分析】
(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;
(2)把正方形的边长与大长方形的长比较即可.
【详解】
解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:
32
x y x y =⎧⎨+=⎩, 解得: 1.50.5x y =⎧⎨=⎩
, ∴长是1.5m,宽是0.5m.
(2)∵正方形的面积为7平方米,
∴米,
∵
∴他不能剪出符合要求的桌布.
【点睛】
本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.
二十三、解答题
23.(1)①PM ⊥MN ,理由见解析;②∠EPB 的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°.
【分析】
(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条
解析:(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM
+∠QMN=90°或∠APM -∠QMN=90°.
【分析】
(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到PM⊥MN;
②过点N作NH∥CD,利用角平分线的定义以及平行线的性质求得∠MNH=35°,即可求解;
(2)分三种情况讨论,利用平行线的性质即可解决.
【详解】
解:(1)①PM⊥MN,理由见解析:
∵AB//CD,
∴∠APM=∠PMQ,
∵∠APM+∠QMN=90°,
∴∠PMQ +∠QMN=90°,
∴PM⊥MN;
②过点N作NH∥CD,
∵AB//CD,
∴AB// NH∥CD,
∴∠QMN=∠MNH,∠EPA=∠ENH,
∵PA平分∠EPM,
∴∠EPA=∠MPA,
∵∠APM+∠QMN=90°,
∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°,
∴∠MNQ +∠MNH +∠MNH=90°,
∵∠MNQ=20°,
∴∠MNH=35°,
∴∠EPA=∠ENH=∠MNQ +∠MNH=55°,
∴∠EPB=180°-55°=125°,
∴∠EPB的度数为125°;
(2)当点M,N分别在射线QC,QF上时,如图:
∵PM⊥MN,AB//CD,
∴∠PMQ +∠QMN=90°,∠APM=∠PMQ,
∴∠APM +∠QMN=90°;
当点M,N分别在射线QC,线段PQ上时,如图:
∵PM⊥MN,AB//CD,
∴∠PMN=90°,∠APM=∠PMQ,
∴∠PMQ -∠QMN=90°,
∴∠APM -∠QMN=90°;
当点M,N分别在射线QD,QF上时,如图:
∵PM⊥MN,AB//CD,
∴∠PMQ +∠QMN=90°,∠APM+∠PMQ=180°,
∴∠APM+90°-∠QMN=180°,
∴∠APM -∠QMN=90°;
综上,∠APM +∠QMN=90°或∠APM -∠QMN=90°.
【点睛】
本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键.
二十四、解答题
24.(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解
析
【分析】
(1)用角的度数除以转动速度即可得;
(2)求出∠AON=60°,结合旋转速度可得时间t;(3)设∠AON=3
解析:(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)70
3
秒,画图见解析
【分析】
(1)用角的度数除以转动速度即可得;
(2)求出∠AON=60°,结合旋转速度可得时间t;
(3)设∠AON=3t,则∠AOC=30°+6t,由题意列出方程,解方程即可;(4)根据转动速度关系和OC平分∠MOB,由题意列出方程,解方程即可.【详解】
解:(1)∵30÷3=10,
∴10秒后ON与OC重合;
(2)∵MN∥AB
∴∠BOM=∠M=30°,
∵∠AON+∠BOM=90°,
∴∠AON=60°,
∴t=60÷3=20
∴经过t秒后,MN∥AB,t=20秒.
(3)如图3所示:
∵∠AON+∠BOM=90°,∠BOC=∠BOM,
∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON=3t,则∠AOC=30°+6t,
∵OC与OM重合,
∵∠AOC+∠BOC=180°,
可得:(30°+6t)+(90°-3t)=180°,
解得:t=20秒;
即经过20秒时间OC与OM重合;
(4)如图4所示:
∵∠AON+∠BOM=90°,∠BOC=∠COM,
∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON=3t,∠AOC=30°+6t,∵∠BOM+∠AON=90°,
∴∠BOC=∠COM=1
2∠BOM=1
2
(90°-3t),
由题意得:180°-(30°+6t)=1
2
( 90°-3t),
解得:t=70
3
秒,
即经过70
3
秒OC平分∠MOB.
【点睛】
此题考查了平行线的判定与性质,角的计算以及方程的应用,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.
二十五、解答题
25.(1)证明见解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【详解】
【模型】
(1)证明:过点E作EF∥CD,
∵AB∥CD,
∴EF∥AB,
∴∠1+∠MEF
解析:(1)证明见解析;(2)900°,180°(n-1);(3)(180n-180-2m)°
【详解】
【模型】
(1)证明:过点E作EF∥CD,
∵AB∥CD,
∴EF∥AB,
∴∠1+∠MEF=180°,
同理∠2+∠NEF=180°
∴∠1+∠2+∠MEN=360°
【应用】
(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;
由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),
故答案是:900°, 180°(n-1);
(3)过点O作SR∥AB,
∵AB∥CD,
∴SR∥CD,
∴∠AM1O=∠M1OR
同理∠C M n O=∠M n OR
∴∠A M1O+∠CM n O=∠M1OR+∠M n OR,
∴∠A M1O+∠CM n O=∠M1OM n=m°,
∵M1O平分∠AM1M2,
∴∠AM1M2=2∠A M1O,
同理∠CM n M n-1=2∠CM n O,
∴∠AM1M2+∠CM n M n-1=2∠AM1O+2∠CM n O=2∠M1OM n=2m°,
又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CM n M n-1=180°(n-1),
∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°
点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.。