元宝山区高中2018-2019学年上学期高三数学10月月考试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
元宝山区高中2018-2019学年上学期高三数学10月月考试题
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1.设a=0.5,b=0.8,c=log20.5,则a、b、c的大小关系是()
c D.b<a<c
则几何体的体积为()
4
意在考查学生空间想象能力和计算能
)
k的最大值为()
5. 已知命题:()(0x
p f x a a =>且1)a ≠是单调增函数;命题5:(,)44
q x ππ
∀∈,sin cos x x >.
则下列命题为真命题的是( )
A .p q ∧
B .p q ∨⌝ C. p q ⌝∧⌝ D .p q ⌝∧ 6. 如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,O
C ,O
D 为直径作四个 圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )
A .
π
1
B .
π21 C .π121- D .π
2141- 【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.
7. 如图甲所示, 三棱锥P ABC - 的高8,3,30PO AC BC ACB ===∠= ,,M N 分别在BC 和PO 上,且(),203CM x PN x x ==∈(,,图乙的四个图象大致描绘了三棱锥N AMC -的体积y 与 的变化关系,其中正确的是( )
D
A
B
C
O
A .
B . C. D .1111]
8. 已知函数,则
=( )
A .
B .
C .
D .
9. 已知()(2)(0)x b g x ax a e a x =-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则b a
的 取值范围是( )
A .(1,)-+∞
B .(1,0)- C. (2,)-+∞ D .(2,0)-
10.复数2
(2)i z i
-=(i 为虚数单位),则z 的共轭复数为( )
A .43i -+
B .43i +
C .34i +
D .34i -
【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力.
11.已知函数⎩⎨⎧≤>=)0(|
|)
0(log )(2x x x x x f ,函数)(x g 满足以下三点条件:①定义域为R ;②对任意R x ∈,有
1
()(2)2
g x g x =+;③当]1,1[-∈x 时,()g x 则函数)()(x g x f y -=在区间]4,4[-上零
点的个数为( )
A .7
B .6
C .5
D .4
【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.
12.已知点A (0,1),B (3,2),C (2,0),若AD →=2DB →,则|CD →
|为( )
A .1 B.4
3
C.53
D .2 二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全 校学生中抽取1名学生,抽到高二年级女生的概率为19.0,先采用分层抽样(按年级分层)在全校抽取
100人,则应在高三年级中抽取的人数等于 . 14.若全集,集合
,则
15.
17.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x=1对称.
16.若x 、y 满足约束条件⎩⎪⎨⎪
⎧x -2y +1≤02x -y +2≥0x +y -2≤0
,z =3x +y +m 的最小值为1,则m =________.
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.已知函数()2
ln f x x bx a x =+-.
(1)当函数()f x 在点()()
1,1f 处的切线方程为550y x +-=,求函数()f x 的解析式; (2)在(1)的条件下,若0x 是函数()f x 的零点,且()*
0,1,x n n n N ∈+∈,求的值;
(3)当1a =时,函数()f x 有两个零点()1212,x x x x <,且12
02
x x x +=,求证:()00f x '>.
18.(本小题满分13分)
椭圆C :22
221(0)x y a b a b
+=>>的左、右焦点分别为1F 、2F ,直线:1l x my =-经过点1F 与椭圆C 交于点
M ,点M 在x 轴的上方.当0m =
时,1||MF =
(Ⅰ)求椭圆C 的方程;
(Ⅱ)若点N 是椭圆C 上位于x 轴上方的一点, 12//MF NF ,且12
12
3MF F NF F S S ∆∆=,求直线l 的方程.
19.(本小题满分12分)
两个人在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中 放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设,,x y z 分别表示甲,乙,丙3个 盒中的球数.
(1)求0x =,1y =,2z =的概率;
(2)记x y ξ=+,求随机变量ξ的概率分布列和数学期望.
【命题意图】本题考查频离散型随机变量及其分布列等基础知识,意在考查学生的统计思想和基本的运算能力.
20.如图1,∠ACB=45°,BC=3,过动点A 作AD ⊥BC ,垂足D 在线段BC 上且异于点B ,连
接AB ,沿AD 将△ABD 折起,使∠BDC=90°(如图2所示),
(1)当BD 的长为多少时,三棱锥A ﹣BCD 的体积最大;
(2)当三棱锥A ﹣BCD 的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小。
21.(本小题满分12分)已知函数()2
ln f x ax bx x =+-(,a b ∈R ).
(1)当1,3a b =-=时,求函数()f x 在1,22
⎡⎤⎢⎥⎣⎦
上的最大值和最小值;
(2)当0a =时,是否存在实数b ,当(]0,e x ∈(e 是自然常数)时,函数()f x 的最小值是3,若存在,求出b 的值;若不存在,说明理由;
22.等差数列{a n }的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4。
(1)求{a n }的通项公式;
(2)设b n =
,求数列{b n }的前n 项和T n 。
元宝山区高中2018-2019学年上学期高三数学10月月考试题(参考答案)
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1.【答案】B
【解析】解:∵a=0.5,b=0.8,
∴0<a<b,
∵c=log20.5<0,
∴c<a<b,
故选B.
【点评】本题主要考查了对数值、指数值大小的比较,常常与中间值进行比较,属于基础题.
2.【答案】D
【解析】
3.【答案】A
【解析】解:由已知中几何体的直观图,
我们可得侧视图首先应该是一个正方形,故D不正确;
中间的棱在侧视图中表现为一条对角线,故C不正确;
而对角线的方向应该从左上到右下,故B不正确
故A选项正确.
故选:A.
4.【答案】A
解析:模拟执行程序框图,可得
S=0,n=0
满足条,0≤k,S=3,n=1
满足条件1≤k ,S=7,n=2 满足条件2≤k ,S=13,n=3 满足条件3≤k ,S=23,n=4 满足条件4≤k ,S=41,n=5
满足条件5≤k ,S=75,n=6 …
若使输出的结果S 不大于50,则输入的整数k 不满足条件5≤k ,即k <5, 则输入的整数k 的最大值为4. 故选:
5. 【答案】D
【解析】
考点:1、指数函数与三角函数的性质;2、真值表的应用. 6. 【答案】C
【解析】设圆O 的半径为2,根据图形的对称性,可以选择在扇形OAC 中研究问题,过两个半圆的交点分别向OA ,OC 作垂线,则此时构成一个以1为边长的正方形,则这个正方形内的阴影部分面积为
12
-π
,扇形OAC 的面积为π,所求概率为π
π
π
12112
-=
-=P . 7. 【答案】A 【解析】
考
点:几何体的体积与函数的图象.
【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题.
8. 【答案】B
【解析】解:因为>0,所以f ()==﹣2,又﹣2<0,所以f (﹣2)=2﹣2=;
故选:B .
【点评】本题考查了分段函数的函数值求法;关键是明确自变量所属的范围,代入对应的解析式计算即可.
9. 【答案】A
【解析】
考
点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值.
【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小).
10.【答案】A
【解析】根据复数的运算可知43)2()2(22
--=--=-=i i i i
i z ,可知z 的共轭复数为43z i =-+,故选A.
11.【答案】D
第
Ⅱ卷(共100分)[.Com]
12.【答案】
【解析】解析:选C.设D 点的坐标为D (x ,y ), ∵A (0,1),B (3,2),AD →=2DB →
,
∴(x ,y -1)=2(3-x ,2-y )=(6-2x ,4-2y ),
∴⎩
⎪⎨⎪⎧x =6-2x ,y -1=4-2y 即x =2,y =53
,
∴CD →
=(2,53)-(2,0)=(0,53
),
∴|CD →
|=02+(53)2=53
,故选C.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.【答案】25 【
解
析
】
考
点:分层抽样方法.
14.【答案】{|0<<1}
【解析】∵,∴{|0<<1}。
15.【答案】
【解析】解:∵f(x)=a x g(x)(a>0且a≠1),
∴=a x,
又∵f′(x)g(x)>f(x)g′(x),
∴()′=>0,
∴=a x是增函数,
∴a>1,
∵+=.
∴a1+a﹣1=,解得a=或a=2.
综上得a=2.
∴数列{}为{2n}.
∵数列{}的前n项和大于62,
∴2+22+23+…+2n==2n+1﹣2>62,
即2n+1>64=26,
∴n+1>6,解得n>5.
∴n的最小值为6.
故答案为:6.
【点评】本题考查等比数列的前n项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,是一道好题.
16.【答案】
【解析】解析:可行域如图,当直线y=-3x+z+m与直线y=-3x平行,且在y轴上的截距最小时,z才能取最小值,此时l经过直线2x-y+2=0与x-2y+1=0的交点A(-1,0),z min=3×(-1)+0+m=-3+m=1,
∴m=4.
答案:4
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.【答案】(1)()2
6ln f x x x x =--;(2)3n =;(3)证明见解析. 【解析】
试
题解析: (1)()2a
f'x x b x =+-
,所以(1)251(1)106f'b a b f b a =+-=-=-⎧⎧⇒⎨⎨=+==⎩⎩
, ∴函数()f x 的解析式为2()6ln (0)f x x x x x =-->;
(2)22
626
()6ln '()21x x f x x x x f x x x x
--=--⇒=--=,
因为函数()f x 的定义域为0x >,
令(23)(2)3
'()02
x x f x x x +-=
=⇒=-或2x =, 当(0,2)x ∈时,'()0f x <,()f x 单调递减,
当(2,)x ∈+∞时,'()0f x >,函数()f x 单调递增, 且函数()f x 的定义域为0x >,
(3)当1a =时,函数2
()ln f x x bx x =+-,
21111()ln 0f x x bx x =+-=,2
2222()ln 0f x x bx x =+-=,
两式相减可得22
121212()ln ln 0x x b x x x x -+--+=,121212ln ln ()x x b x x x x -=
-+-. 1'()2f x x b x =+-,0001
'()2f x x b x =+-,因为1202x x x +=,
所以12120121212
ln ln 2
'()2()2x x x x f x x x x x x x +-=⋅+-+-
-+ 212121221221122112211
1
21ln ln 2()211ln ln ln 1x x x x x x x x x x x x x x x x x x x x x x ⎡⎤
⎛⎫-⎢⎥ ⎪⎡⎤--⎝⎭⎢⎥=-=--=-⎢⎥⎢⎥-+-+-⎣⎦+⎢⎥⎢⎥⎣⎦
设21
1x
t x =>,2(1)()ln 1t h t t t -=-+,
∴22
222
14(1)4(1)'()0(1)(1)(1)
t t t h t t t t t t t +--=-==>+++, 所以()h t 在(1,)+∞上为增函数,且(1)0h =,
∴()0h t >,又
21
1
0x x >-,所以0'()0f x >.
考点:1、导数几何意义及零点存在定理;2、构造函数证明不等式.
【方法点睛】本题主要考查导数几何意义及零点存在定理、构造函数证明不等式,属于难题.涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路. 18.【答案】
【解析】解:(Ⅰ)由直线:1l x my =-经过点1F 得1c =,
当0m =时,直线l 与x
轴垂直,21||2
b MF a ==
,
由21
2c b a
=⎧⎪⎨=
⎪⎩
解得1a b ⎧=⎪⎨=⎪⎩C 的方程为22
12x y +=. (4分) (Ⅱ)设1122(,),(,)M x y N x y ,120,0y y >>,由12//MF NF 知121211
22
||3||MF F NF F S MF y S NF y ∆∆===.
联立方程22
1
1
2
x my x y =-⎧⎪⎨+=⎪⎩,消去x 得22
(2)210m y my +--=
,解得y =
∴1y =
,同样可求得2y =, (11分) 由1
23y y =得123y y =
3=,解得1m =, 直线l 的方程为10x y -+=. (13分) 19.【答案】
【解析】(1)由0x =,1y =,2z =知,甲、乙、丙3个盒中的球数分别为0,1,2,
此时的概率2
13
111324
P C ⎛⎫=⨯⨯= ⎪⎝⎭.
(4分)
20.【答案】(1)1
(2)60°
【解析】(1)设BD=x,则CD=3﹣x
∵∠ACB=45°,AD⊥BC,∴AD=CD=3﹣x
∵折起前AD⊥BC,∴折起后AD⊥BD,AD⊥CD,BD∩DC=D
∴AD⊥平面BCD
∴V A﹣BCD=×AD×S△BCD=×(3﹣x)××x(3﹣x)=(x3﹣6x2+9x)
设f (x )=(x 3﹣6x 2+9x ) x ∈(0,3),
∵f ′(x )=(x ﹣1)(x ﹣3),∴f (x )在(0,1)上为增函数,在(1,3)上为减函数 ∴当x=1时,函数f (x )取最大值
∴当BD=1时,三棱锥A ﹣BCD 的体积最大; (2)以D 为原点,建立如图直角坐标系D ﹣xyz ,
21.【答案】
【解析】【命题意图】本题考查利用导数研究函数的单调性与最值、不等式的解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、探究能力、运算求解能力.
(2)当0a =时,()ln f x bx x =-.
假设存在实数b ,使()(]()
ln 0,e g x bx x x =-∈有最小值3,
11()bx f x b x x
-'=-
=.………7分 ①当0b ≤时,()f x 在(]0,e 上单调递减,()min 4
()e 13,f x f be b e
==-==(舍去).………8分 ②当10e b <
<时,()f x 在10,b ⎛⎫ ⎪⎝⎭上单调递减,在1,e b ⎛⎤
⎥⎝⎦
上单调递增, ∴2min 1()1ln 3,e f x g b b b ⎛⎫
==+== ⎪⎝⎭
,满足条件.……………………………10分
③当1e b ≥时,()f x 在(]0,e 上单调递减,()min 4
()e e 13,e
f x
g b b ==-==(舍去),………11分
综上,存在实数2
e b =,使得当(]0,e x ∈时,函数()
f x 最小值是3.……………………………12分
22.【答案】
【解析】(1)由a 1=10,a 2为整数,且S n ≤S 4得 a 4≥0,a 5≤0,即10+3d ≥0,10+4d ≤0,解得﹣≤d ≤﹣,
∴d=﹣3,
∴{a n }的通项公式为a n =13﹣3n 。
(2)∵b n ==
,
∴T n =b 1+b 2+…+b n =(﹣+﹣+…+﹣)=(﹣)
=。