苏教版数学九年级上册 期末试卷(培优篇)(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版数学九年级上册 期末试卷(培优篇)(Word 版 含解析)
一、选择题
1.已知一元二次方程2330p p --=,2330q q --=,则p q +的值为( ) A .3-
B .3
C .3-
D .3
2.已知圆锥的底面半径为3cm ,母线为5cm ,则圆锥的侧面积是 ( ) A .30πcm 2
B .15πcm 2
C .
152
π
cm 2 D .10πcm 2
3.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( ) A .
15
B .
25
C .
35
D .
45
4.如图,AB 是⊙O 的弦,半径OC ⊥AB ,D 为圆周上一点,若BC 的度数为50°,则∠ADC 的度数为 ( )
A .20°
B .25°
C .30°
D .50°
5.如图,已知正五边形ABCDE 内接于
O ,连结,BD CE 相交于点F ,则BFC ∠的度
数是( )
A .60︒
B .70︒
C .72︒
D .90︒
6.二次函数()2
0y ax bx c a =++≠的图像如图所示,它的对称轴为直线1x =,与x 轴交点
的横坐标分别为1x ,2x ,且110x -<<.下列结论中:①0abc <;②223x <<;③421a b c ++<-;④方程()2
200ax bx c a ++-=≠有两个相等的实数根;⑤13
a >
.其中正确的有( )
A .②③⑤
B .②③
C .②④
D .①④⑤
7.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则 ①二次函数的最大值为a+b+c ; ②a ﹣b+c <0; ③b 2﹣4ac <0;
④当y >0时,﹣1<x <3,其中正确的个数是( )
A .1
B .2
C .3
D .4
8.二次函数2
2y x x =-+在下列( )范围内,y 随着x 的增大而增大.
A .2x <
B .2x >
C .0x <
D .0x > 9.一个扇形的半径为4,弧长为2π,其圆心角度数是( )
A .45
B .60
C .90
D .180 10.如果两个相似三角形的周长比是1:2,那么它们的面积比是( )
A .1:2
B .1:4
C .12
D 2:1
11.已知反比例函数k
y x
=的图象经过点(m ,3m ),则此反比例函数的图象在( ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第三、四象限 12.下列方程中,关于x 的一元二次方程是( )
A .2x ﹣3=x
B .2x +3y =5
C .2x ﹣x 2=1
D .1
7x x
+=
二、填空题
13.已知tan (α+15°)3
α的度数为______°. 14.已知扇形半径为5cm ,圆心角为60°,则该扇形的弧长为________cm .
15.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是
2200.5s t t =-,飞机着陆后滑行______m 才能停下来.
16.若
a b b -=23,则a
b
的值为________. 17.如图,用一张半径为10 cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8 cm ,那么这张扇形纸板的弧长是________cm .
18.如图,已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上.如果AD :DB=1:2,则CE :CF 的值为____________.
19.如图,在ABCD 中,1
3
BE DF BC ==
,若1BEG S ∆=,则ABF S ∆=__________.
20.在Rt ABC ∆中,90C ∠=︒,12AC =,9BC =,圆P 在ABC ∆内自由移动.若
P 的半径为1,则圆心P 在ABC ∆内所能到达的区域的面积为______.
21.已知关于x 的方程a (x +m )2+b =0(a 、b 、m 为常数,a ≠0)的解是x 1=2,x 2=﹣1,那么方程a (x +m +2)2+b =0的解_____.
22.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =
,点P 在Rt ABC ∆内
部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.
23.如图,点G 为△ABC 的重心,GE ∥AC ,若DE =2,则DC =_____.
24.已知:二次函数y=ax 2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是_____. x … ﹣1 0 1 2 … y

3
4
3

三、解答题
25.经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求两辆车经过这个十字路口时,下列事件的概率: (1)两辆车中恰有一辆车向左转; (2)两辆车行驶方向相同.
26.“早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“卓黑宝”的种植面积达到196亩.
(1)求该基地这两年“早黑宝”种植面积的平均增长率;
(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?
27.如图,在△ABC 中,AB =AC =13,BC =10,求tan B 的值.
28.解方程: (1)x 2﹣2x ﹣1=0;
(2)(2x ﹣1)2=4(2x ﹣1).
29.已知,如图,抛物线2
(0)y ax bx c a =++≠的顶点为(1,9)M ,经过抛物线上的两点
(3,7)A --和(3,)B m 的直线交抛物线的对称轴于点C .
(1)求抛物线的解析式和直线AB 的解析式.
(2)在抛物线上,A M 两点之间的部分(不包含,A M 两点),是否存在点D ,使得
2DAC DCM S S ∆∆=?若存在,求出点D 的坐标;若不存在,请说明理由.
(3)若点P 在抛物线上,点Q 在x 轴上,当以点,,,A M P Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.
30.化简并求值: 22
+244
11
m m m m m ++÷+-,其中m 满足m 2-m -2=0. 31.解下列方程: (1)(y ﹣1)2﹣4=0; (2)3x 2﹣x ﹣1=0.
32.已知二次函数y =-x 2+bx +c (b ,c 为常数)的图象经过点(2,3),(3,0). (1)则b =,c =;
(2)该二次函数图象与y 轴的交点坐标为,顶点坐标为; (3)在所给坐标系中画出该二次函数的图象; (4)根据图象,当-3<x <2时,y 的取值范围是.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
根据题干可以明确得到p,q是方程230
x-=的两根,再利用韦达定理即可求解.【详解】
解:由题可知p,q是方程230
x-=的两根,

,
故选B.
【点睛】
本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键. 2.B
解析:B
【解析】
试题解析:∵底面半径为3cm,
∴底面周长6πc m
∴圆锥的侧面积是1
2
×6π×5=15π(cm2),
故选B.
3.B
解析:B
【解析】
试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到
负数的概率是2 5 .
故选B.
考点:概率.
4.B
解析:B
【解析】
【分析】
利用圆心角的度数等于它所对的弧的度数得到∠BOC=50°,利用垂径定理得到=
AC BC,然后根据圆周角定理计算∠ADC的度数.
【详解】
∵BC的度数为50°,
∴∠BOC=50°,
∵半径OC⊥AB,
∴=AC BC , ∴∠ADC=1
2
∠BOC=25°. 故选B . 【点睛】
本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理和圆周角定理.
5.C
解析:C 【解析】 【分析】
连接OA 、OB 、OC 、OD 、OE ,如图,则由正多边形的性质易求得∠COD 和∠BOE 的度数,然后根据圆周角定理可得∠DBC 和∠BCF 的度数,再根据三角形的内角和定理求解即可. 【详解】
解:连接OA 、OB 、OC 、OD 、OE ,如图,则∠COD =∠AOB =∠AOE =360725

=︒, ∴∠BOE =144°, ∴1362DBC COD ∠=
∠=︒,1
722
BCE BOE ∠=∠=︒, ∴18072BFC DBC BCF ∠=︒-∠-∠=︒. 故选:C.
【点睛】
本题考查了正多边形和圆、圆周角定理和三角形的内角和定理,属于基本题型,熟练掌握基本知识是解题关键.
6.A
解析:A 【解析】 【分析】
利用抛物线开口方向得到a <0,利用对称轴位置得到b >0,利用抛物线与y 轴的交点在x 轴下方得c <0,则可对①进行判断;根据二次函数的对称性对②③进行判断;利用抛物线与直线y=2的交点个数对④进行判断,利用函数与坐标轴的交点列出不等式即可判断⑤. 【详解】
∵抛物线开口向下, ∴a <0,
∵对称轴为直线1x = ∴b=-2a >0
∵抛物线与y 轴的交点在x 轴下方, ∴c <-1,
∴abc >0,所以①错误;
∵110x -<<,对称轴为直线1x = ∴
12
12
x x +=故223x <<,②正确; ∵对称轴x=1,∴当x=0,x=2时,y 值相等, 故当x=0时,y=c <0,
∴当x=2时,y=421a b c ++<-,③正确; 如图,作y=2,与二次函数有两个交点,
故方程()2
200ax bx c a ++-=≠有两个不相等的实数根,故④错误;
∵当x=-1时,y=a-b+c=3a+c >0, 当x=0时,y=c <-1 ∴3a >1,
故1
3a >
,⑤正确; 故选A.
【点睛】
本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置. 当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).也考查了二次函数的性质.
7.B
解析:B 【解析】
分析:直接利用二次函数图象的开口方向以及图象与x 轴的交点,进而分别分析得出答
案.
详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,
∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;
②当x=﹣1时,a﹣b+c=0,故②错误;
③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;
④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),
∴A(3,0),
故当y>0时,﹣1<x<3,故④正确.
故选B.
点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.
8.C
解析:C
【解析】
【分析】
先求函数的对称轴,再根据开口方向确定x的取值范围.
【详解】
22
2(1)1
y x x x
=-+=--+,
∵图像的对称轴为x=1,a=-10
<,
∴当x1
<时,y随着x的增大而增大,
故选:C.
【点睛】
此题考查二次函数的性质,当a0a0
<时,对称轴左增右减,当>时,对称轴左减右增. 9.C
解析:C
【解析】
【分析】
根据弧长公式即可求出圆心角的度数.
【详解】
解:∵扇形的半径为4,弧长为2π,

4 2
180

π

=
解得:90
n=,即其圆心角度数是90︒
故选C.
【点睛】
此题考查的是根据弧长和半径求圆心角的度数,掌握弧长公式是解决此题的关键.10.B
解析:B
【解析】
【分析】
直接根据相似三角形的性质即可得出结论.
【详解】
解:∵两个相似三角形的周长比是1:2,
∴它们的面积比是:1:4.
故选:B.
【点睛】
本题考查相似三角形的性质,掌握相似三角形的周长比等于相似比,面积比等于相似比的平方是解题的关键.
11.B
解析:B
【解析】
【分析】
【详解】
解:将点(m,3m)代入反比例函数
k
y
x
得,
k=m•3m=3m2>0;
故函数在第一、三象限,
故选B.
12.C
解析:C
【解析】
【分析】
利用一元二次方程的定义判断即可.
【详解】
A、方程2x﹣3=x为一元一次方程,不符合题意;
B、方程2x+3y=5是二元一次方程,不符合题意;
C、方程2x﹣x2=1是一元二次方程,符合题意;
D、方程x+1
x
=7是分式方程,不符合题意,
故选:C.
【点睛】
本题考查了一元一次方程的问题,掌握一元一次方程的定义是解题的关键.二、填空题
13.15
【解析】
【分析】
直接利用特殊角的三角函数值求出答案. 【详解】
解:tan (α+15°)= ∴α+15°=30°, ∴α=15° 故答案是15 【点睛】
此题主要考查了特殊角的三角函数值,
解析:15 【解析】 【分析】
直接利用特殊角的三角函数值求出答案. 【详解】
解:tan (α+15°)∴α+15°=30°, ∴α=15° 故答案是15 【点睛】
此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.
14.【解析】 【分析】
直接利用弧长公式进行计算. 【详解】 解:由题意得:=, 故答案是: 【点睛】
本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键. 解析:
53
π 【解析】 【分析】
直接利用弧长公式180
n R
l π=进行计算. 【详解】
解:由题意得:605180l π==53
π
, 故答案是:53
π 【点睛】
本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键.
15.200 【解析】 【分析】
要求飞机从滑行到停止的路程就,即求出函数的最大值即可. 【详解】 解:
所以当t=20时,该函数有最大值200. 故答案为200. 【点睛】
本题主要考查了二次函数的应用
解析:200 【解析】 【分析】
要求飞机从滑行到停止的路程就,即求出函数的最大值即可. 【详解】
解:()
()2
2
2
200.50.5404002000.520200s t t t t t =-=--++=--+
所以当t=20时,该函数有最大值200. 故答案为200. 【点睛】
本题主要考查了二次函数的应用,掌握二次函数求最值的方法,即公式法或配方法是解题关键.
16.【解析】 【分析】
根据条件可知a 与b 的数量关系,然后代入原式即可求出答案. 【详解】 ∵=, ∴b=a, ∴=, 故答案为:. 【点睛】
本题考查了分式,解题的关键是熟练运用分式的运算法则.
解析:5 3
【解析】
【分析】
根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】
∵a b
b
-

2
3

∴b=3
5 a,
∴a
b
=
5
33
5
a
a
=
,
故答案为:5 3 .
【点睛】
本题考查了分式,解题的关键是熟练运用分式的运算法则.
17.【解析】
【分析】
首先求出圆锥的底面半径,然后可得底面周长,问题得解.
【详解】
解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,
∴圆锥的底面半径为cm,
∴底面周长为2π×6=12
解析:12π
【解析】
【分析】
首先求出圆锥的底面半径,然后可得底面周长,问题得解.
【详解】
解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,
6
=cm,
∴底面周长为2π×6=12πcm,即这张扇形纸板的弧长是12πcm,
故答案为:12π.
【点睛】
本题考查圆锥的计算,用到的知识点为:圆锥的底面周长=侧面展开扇形的弧长.18.【解析】
【分析】
根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得. 【详解】
解:如图,连接D
解析:4 5
【解析】
【分析】
根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.
【详解】
解:如图,连接DE,DF,
∵△ABC是等边三角形,
∴AB=BC=AC, ∠A=∠B=∠ACB=60°,
由折叠可得,∠EDF=∠ACB=60°,DE=CE,DF=CF
∵∠BDE=∠BDF+∠FDE=∠A+∠AED,
∴∠BDF+60°=∠AED+60°,
∴∠BDF=∠AED,
∵∠A=∠B,
∴△AED∽△BDF,
∴AD AE DE BF BD DF
,
设AD=x,∵AD:DB=1:2,则BD=2x,∴AC=BC=3x,
∵AD AE DE BF BD DF
,
∴AD AE DE DE BF BD DF DF

3
23
x x DE x x DF

4
5 DE
DF
,

4
5 CE
CF
.
故答案为:45
. 【点睛】
本题考查了折叠的性质,利用三角形相似对应边成比例及比例的性质解决问题,能发现相似三角形的模型,即“一线三等角”是解答此题的重要突破口.
19.6 【解析】 【分析】
先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案. 【详解】 解:∵四
解析:6 【解析】 【分析】
先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得ABG S ∆,根据相似三角形的性质可求得AFG S ∆,进而可得答案. 【详解】
解:∵四边形ABCD 是平行四边形, ∴AD=BC ,AD ∥BC , ∴△BEG ∽△FAG , ∵1
3
BE DF BC ==, ∴
1
2
EG BE AG AF ==, ∴2
11,24
BEG BEG ABG AFG S S EG BE S AG S AF ∆∆∆∆⎛⎫==== ⎪⎝⎭, ∵1BEG S ∆=,
∴2ABG S ∆=,4AFG S ∆=, ∴6ABF ABG AFG S S S ∆∆∆=+=.
故答案为:6. 【点睛】
本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键.
20.24 【解析】 【分析】
根据题意做图,圆心在内所能到达的区域为△EFG ,先求出AB 的长,延长BE 交A C 于H 点,作HM ⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根
解析:24 【解析】 【分析】
根据题意做图,圆心P 在ABC ∆内所能到达的区域为△EFG ,先求出AB 的长,延长BE 交AC 于H 点,作HM ⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根据Rt △AMH 中利用勾股定理求出x 的值,作EK ⊥BC 于K 点,利用
△BEK ∽△BHC ,求出BK 的长,即可求出EF 的长,再根据△EFG ∽△BCA 求出FG ,即可求出△EFG 的面积. 【详解】
如图,由题意点O 所能到达的区域是△EFG ,连接BE ,延长BE 交AC 于H 点,作HM ⊥AB 于M ,EK ⊥BC 于K ,作FJ ⊥BC 于J . ∵90C ∠=︒,12AC =,9BC =,
∴15=
根据圆的性质可知BH 平分∠ABC
∴故CH=HM,设CH=x=HM ,则AH=12-x ,BM=BC=9, ∴AM=15-9=6
在Rt △AMH 中,AH 2=HM 2+AM 2 即AH 2=HM 2+AM 2 (12-x )2=x 2+62 解得x=4.5 ∵EK ∥AC , ∴△BEK ∽△BHC ,

EK BK HC BC =,即14.59BK
= ∴BK=2,
∴EF=KJ=BC-BK-JC=9-2-1=6, ∵EG ∥AB ,EF ∥AC ,FG ∥BC ,
∴∠EGF =∠ABC ,∠FEG =∠CAB ,
∴△EFG ∽△ACB ,

EF FG BC AC =,即6912FG
= 解得FG=8
∴圆心P 在ABC ∆内所能到达的区域的面积为12FG×EF=1
2
×8×6=24, 故答案为24.
【点睛】
此题主要考查相似三角形的判定与性质综合,解题的关键是熟知勾股定理、相似三角形的判定与性质.
21.x3=0,x4=﹣3. 【解析】 【分析】
把后面一个方程中的x+2看作整体,相当于前面一个方程中的x 求解. 【详解】
解:∵关于x 的方程a (x+m )2+b =0的解是x1=2,x2=﹣1,(a ,m ,
解析:x 3=0,x 4=﹣3.
【解析】 【分析】
把后面一个方程中的x +2看作整体,相当于前面一个方程中的x 求解. 【详解】
解:∵关于x 的方程a (x +m )2+b =0的解是x 1=2,x 2=﹣1,(a ,m ,b 均为常数,a ≠0),
∴方程a (x +m +2)2+b =0变形为a [(x +2)+m ]2+b =0,即此方程中x +2=2或x +2=﹣1, 解得x =0或x =﹣3. 故答案为:x 3=0,x 4=﹣3. 【点睛】
此题主要考查一元二次方程的解,解题的关键是熟知整体法的应用.
22.【解析】 【分析】
首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根据,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧 72
【解析】 【分析】
首先判定直角三角形∠CAB=30°,∠ABC=60°,
()
2
222
3323AB AC BC =+=+
=,然后根据PAB PBC ∠=∠,得出
∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小,构建圆,利用勾股定理,即可得解. 【详解】
∵90ACB ∠=︒,3AC =,3BC =,
∴()
2
222
3323AB AC BC =
+=+
=
∴∠CAB=30°,∠ABC=60°
∵PAB PBC ∠=∠,∠PAB+∠PAC=30° ∴∠ACB+∠PAC+∠PBC=∠APB=120°
∴定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小 ∴CO ⊥AB ,∠COB=60°,∠ABO=30° ∴OB=2,∠OBC=90° ∴()
2
2
2
2
237OC OB BC =+=+
=
∴72CP OC OP =-=-
故答案为72-.
【点睛】
此题主要考查直角三角形中的动点综合问题,解题关键是找到点P 的位置.
23.【解析】 【分析】
根据重心的性质可得AG:DG=2:1,然后根据平行线分线段成比例定理可得==2,从而求出CE,即可求出结论.
【详解】
∵点G为△ABC的重心,
∴AG:DG=2:1,
∵GE
解析:【解析】
【分析】
根据重心的性质可得AG:DG=2:1,然后根据平行线分线段成比例定理可得CE
DE

AG
DG
=2,从而求出CE,即可求出结论.【详解】
∵点G为△ABC的重心,
∴AG:DG=2:1,
∵GE∥AC,
∴CE
DE

AG
DG
=2,
∴CE=2DE=2×2=4,
∴CD=DE+CE=2+4=6.
故答案为:6.
【点睛】
此题考查的是重心的性质和平行线分线段成比例定理,掌握重心的性质和平行线分线段成比例定理是解决此题的关键.
24.(3,0).
【解析】
分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.
详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,
∴对称轴x==1;
点(﹣1,0)
解析:(3,0).
【解析】
分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.
详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,
∴对称轴x=0+2
2
=1;
点(﹣1,0)关于对称轴对称点为(3,0),
因此它的图象与x轴的另一个交点坐标是(3,0).故答案为(3,0).
点睛:本题考查了抛物线与x 轴的交点,关键是熟练掌握二次函数的对称性.
三、解答题
25.(1)49;(2)13
【解析】 【分析】
此题可以采用列表法求解.可以得到一共有9种情况,两辆车中恰有一辆车向左转的有4种情况,两辆车行驶方向相同有3种情况,根据概率公式求解即可. 【详解】 解:列表得:
相同有3种情况
(1)P (两辆车中恰有一辆车向左转)=49
; (2)P (两辆车行驶方向相同)=3193
=. 【点睛】
列表法可以不重不漏的列举出所有可能发生的情况,列举法适合于两步完成的事件,树状图法适合于两步或两步以上完成的事件.解题时注意看清题目的要求,要按要求解题.概率=所求情况数与总情况数之比.
26.(1)该基地这两年“早黑宝”种植面积的平均增长率为40%.(2)售价应降低3元 【解析】 【分析】
(1)设该基地这两年“早黑宝”种植面积的平均增长率为x ,根据题意列出关于x 的一元二次方程,求解方程即可;(2)设售价应降低y 元,则每天售出(200+50y )千克,根据题意列出关于y 的一元二次方程,求解方程即可. 【详解】
(1)设该基地这两年“早黑宝”种植面积的平均增长率为x ,根据题意得2
100(1)196x +=
解得10.440%x ==,2 2.4x =-(不合题意,舍去) 答:该基地这两年“早黑宝”种植面积的平均增长率为40%. (2)设售价应降低y 元,则每天可售出(20050)y +千克
根据题意,得(2012)(20050)1750y y --+=
整理得,2430y y -+=,解得11y =,23y =
∵要减少库存
∴11y =不合题意,舍去,∴3y =
答:售价应降低3元.
【点睛】
本题考查一元二次方程与销售的实际应用,明确售价、成本、销量和利润之间的关系,正确用一个量表示另外的量然后找到等量关系是列出方程的关键.
27.125
【解析】
【分析】
过A 点作AD ⊥BC ,将等腰三角形转化为直角三角形,利用勾股定理求AD ,利用锐角三角函数的定义求∠B 的正切值.
【详解】
过点A 作AD ⊥BC ,垂足为D ,
∵AB =AC =13,BC =10,
∴BD =DC =
12BC =5, ∴AD 222213512AB BD -=-=,
在Rt △ABD 中,
∴tan B 125
AD BD =
=. 【点睛】 本题考查了勾股定理,等腰三角形的性质和三角函数的应用,关键是将问题转化到直角三角形中求解,并且要熟练掌握好边角之间的关系.
28.(1)x =22;(2)x =
52
或x =12. 【解析】
【分析】
(1)根据配方法即可求出答案.
(2)根据因式分解法即可求出答案.
【详解】
解:(1)∵x 2﹣2x ﹣1=0,
∴x 2﹣2x +1=2,
∴(x ﹣2)2=2,
∴x =

(2)∵(2x ﹣1)2=4(2x ﹣1),
∴(2x ﹣1﹣4)(2x ﹣1)=0,
∴x =
52
或x =12. 【点睛】 此题主要考查一元二次方程的求解,解题的关键是熟知一元二次方程的解法.
29.(1)抛物线的表达式为:2
28y x x =-++,直线AB 的表达式为:21y x =-;
(2)存在,理由见解析;点P (6,16)-或(4,16)--或(12)+或(12)-.
【解析】
【分析】
(1)二次函数表达式为:y=a (x-1)2+9,即可求解;
(2)S △DAC =2S △DCM ,则()()
()()()21112821139112222DAC C A S DH x x x x x x =-=-++-++=--⨯,,即可求解;
(3)分AM 是平行四边形的一条边、AM 是平行四边形的对角线两种情况,分别求解即可.
【详解】
解:(1)二次函数表达式为:()2
19y a x =-+,
将点A 的坐标代入上式并解得:1a =-,
故抛物线的表达式为:228y x x =-++…①,
则点()3,5B ,
将点,A B 的坐标代入一次函数表达式并解得:
直线AB 的表达式为:21y x =-;
(2)存在,理由:
二次函数对称轴为:1x =,则点()1,1C ,
过点D 作y 轴的平行线交AB 于点H ,
设点()
2,28D x x x -++,点(),21H x x -, ∵2DAC DCM S S ∆∆=,
则()()()()()21112821139112222DAC C A S DH x x x x x x =-=-++-++=--⨯, 解得:1x =-或5(舍去5),
故点()1,5D -;
(3)设点(),0Q m 、点(),P s t ,228t s s =-++,
①当AM 是平行四边形的一条边时,
点M 向左平移4个单位向下平移16个单位得到A ,
同理,点(),0Q m 向左平移4个单位向下平移16个单位为()4,16m --,即为点P , 即:4m s -=,6t -=,而228t s s =-++,
解得:6s =或﹣4,
故点()6,16P -或()4,16--;
②当AM 是平行四边形的对角线时,
由中点公式得:2m s +=-,2t =,而228t s s =-++, 解得:17s =± 故点()17,2P 或()17,2;
综上,点()6,16P -或()4,16--或()17,2或()
17,2.
【点睛】
本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏. 30.
12
m m -+,原式=14 【解析】
【分析】 根据分式的运算进行化简,再求出一元二次方程m 2-m -2=0的解,并代入使分式有意义的
值求解.
【详解】
22+24411
m m m m m ++÷+-=2+2(1)(1)1(2)m m m m m +-⋅++=12m m -+, 由m 2-m -2=0
解得,m 1=2,m 2=-1,
因为m =-1分式无意义,
所以m =2时,代入原式=
2122-+=14. 【点睛】
此题主要考查分式的运算及一元二次方程的求解,解题的关键熟知分式额分母不为零.
31.(1)y 1=3,y 2=﹣1;(2)x 1x 2 【解析】
【分析】
(1)先移项,然后利用直接开方法解一元二次方程即可;
(2)利用公式法解一元二次方程即可.
【详解】
解:(1)(y ﹣1)2﹣4=0,
(y ﹣1)2=4,
y ﹣1=±2,
y =±2+1,
y 1=3,y 2=﹣1;
(2)3x 2﹣x ﹣1=0,
a =3,
b =﹣1,
c =﹣1,
△=b 2﹣4ac =(﹣1)2﹣4×3×(﹣1)=13>0,
x =16
±,
x 1=16+,x 2=16
. 【点睛】
此题考查的是解一元二次方程,掌握利用直接开方法和公式法解一元二次方程是解决此题的关键.
32.(1)b =2,c =3;(2)(0,3),(1,4)(3)见解析;(4)-12<y ≤4
【解析】
【分析】
(1)将点(2,3),(3,0)的坐标直接代入y =-x 2+bx +c 即可;
(2)由(1)可得解析式,将二次函数的解析式华为顶点式即可;
(3)根据二次函数的定点、对称轴及所过的点画出图象即可;
(4)直接由图象可得出y 的取值范围.
【详解】
(1)解:把点(2,3),(3,0)的坐标直接代入y =-x 2+bx +c 得
3=-4+2b+c 0=-9+3b+c ⎧⎨⎩,解得23b c =⎧⎨=⎩
, 故答案为:b=2,c=3;
(2)解:令x=0,c=3, 二次函数图像与y 轴的交点坐标为则(0,3),
二次函数解析式为y=y =-x 2+2x +3=-(x-1)²+4,则顶点坐标为(1,4).
(3)解:如图所示

(4)解:根据图像,当-3<x <2时,y 的取值范围是:-12<y ≤4.
【点睛】
本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的图象与性质.。

相关文档
最新文档