高中物理第1章动量守恒研究学案鲁科版选修3_5

合集下载

高中物理第1章动量守恒研究1.3科学探讨_一维弹性碰撞

高中物理第1章动量守恒研究1.3科学探讨_一维弹性碰撞

科学探讨-一维弹性碰撞三维教学目标一、知识与技术:明白动量定理的适用条件和适用范围;二、进程与方式:在理解动量定理的确切含义的基础上正确区分动量改变量与冲量;3、情感、态度与价值观:培育逻辑思维能力,会应用动量定理分析计算有关问题。

教学重点:动量、冲量的概念和动量定理。

教学难点:动量的变化。

教学方式:教师启发、引导,学生讨论、交流。

教学用具:投影片,多媒体辅助教学设备。

一、动量及其转变(1)动量的概念:物体的质量与速度的乘积,称为(物体的)动量。

记为p=mv 单位:kg·m/s读作“千克米每秒”。

理解要点:①状态量:动量包括了“参与运动的物质”与“运动速度”两方面的信息,反映了由这两方面一路决定的物体的运动状态,具有瞬时性。

大家明白,速度也是个状态量,但它是个运动学概念,只反映运动的快慢和方向,而运动,归根结底是物质的运动,没有了物质便没有运动.显然地,动量包括了“参与运动的物质”和“运动速度”两方面的信息,更能从本质上揭露物体的运动状态,是一个动力学概念。

②矢量性:动量的方向与速度方向一致。

综上所述:咱们用动量来描述运动物体所能产生的机械效果强弱和那个效果发生的方向,动量的大小等于质量和速度的乘积,动量的方向与速度方向一致。

(2)动量的转变量:一、概念:若运动物体在某一进程的始、末动量别离为p和p′,则称:△p= p′-p 为物体在该进程中的动量转变。

二、指出:动量转变△p是矢量。

方向与速度转变量△v相同。

一维情形下:Δp=mΔυ= mυ2- mΔυ1 矢量差例1:一个质量是0.1kg的钢球,以6m/s的速度水平向右运动,碰着一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动,碰撞前后钢球的动量有无转变?转变了多少?2、动量定理(1)内容:物体所受合外力的冲量等于物体的动量转变(2)公式:Ft =m'v-mv ='p-p让学生来分析此公式中各量的意义:其中F是物体所受合外力,mv是初动量,m'v是末动量,t是物体从初动量转变到末动量所需时刻,也是合外力F作用的时刻。

高中物理 第1章 动量守恒研究 1.2 动量守恒定律教案 鲁科版选修35

高中物理 第1章 动量守恒研究 1.2 动量守恒定律教案 鲁科版选修35

第2节动量守恒定律1.理解动量守恒定律的确切含义和表达式,知道定律的适用条件和适用范围.2.会用动量定理和牛顿第三定律推导出动量守恒定律.3.能用动量守恒定律解释有关现象,会处理碰撞、爆炸之类中两个相互作用问题(只限于一维情况)4.培养学生严谨的科学态度和实事求是的精神,体会物理学对科技、生活、社会的影响.●教学地位美国的载人航天成就是人类探测太空历史的奇葩,其中发射载人飞船的航天火箭一度扮演着至关重要的角色.按照NASA(美国国家航空航天局)的计划,航天飞机已在2010年全部退役,已经启动的新一代航天工程“星座计划”则包含了载人登月等一系列目标,旨在2015年开始将宇航员送达国际空间站,然后2020年再次载人登月.计划中,战神系列火箭是新一代运输火箭,并在整个工程中居于进度的前列.按照分工定位的不同,战神系列火箭共包括三个型号:战神-1、战神-4和战神-5.“星座计划”是人员货物分运制,这体现在战神各型号火箭的分工上:战神-1是载人航天载具,用于发射新一代载人探索航天器——猎户座飞船,取代NASA 当前使用的航天飞机.战神-4既可以用来发射货物也可以用来发射飞船,送月球着陆器或猎户座飞船进入正确轨道.战神-5目前的定位是货物运载火箭,运载牵牛星号登月舱,以后火星探测计划中其功能将得到进一步扩展,可能将用于人员运输.由于战神系列火箭各个型号在发动机等诸多方面具备通用性,因此战神-1的开发实际上就是后面其他型号的研制前奏.你想知道“战神”系列的工作原理吗?请同学们认真学习本节课内容.●新课导入建议动量守恒定律成立的条件是一个系统不受外力或者系统所受外力的矢量和为0,考虑的是由多个物体组成的系统,因此在应用时需注意区分内力和外力.本节在了解系统、内力和外力的基础上,以一维情况下两个相互作用的小球为例,根据牛顿第二定律和牛顿第三定律,导出具体的动量守恒定律的表达式.这样的处理,使学生对动量守恒定律的理解更深刻,同时也使学生对知识间的联系有了更深入的理解.运用动量守恒定律解决实际问题,只考虑物体相互作用前后的动量,不考虑相互作用过程中各个瞬间细节,即使在牛顿定律适用范围内,它也能解决许多由于相互作用力难以确定而不能直接应用牛顿定律解决的问题.这正是动量守恒定律的特点和优点,同时又为我们解决力学问题提供了一种新的方法和思路.动量守恒定律并不是由牛顿运动定律导出的,而是一条独立的实验定律,它比牛顿运动定律适用范围广泛,是自然界客观存在的基本规律之一.从物理学发展史看,动量守恒的思想早于牛顿运动定律的发现.动量守恒定律的应用是教学的重点高考的热点.●教学流程设计课前预习安排:1.看教材2.填写【课前自主导学】同学之间可进行讨论⇒步骤1:导入新课,本节教学地位分析⇒步骤2:老师提问,检查预习效果可多提问几个学生⇒步骤3:师生互动完成“探究1”除例1外可再变换命题角度,补充一个例题以拓展学生思路⇓步骤7:完成“探究4”让学生进一步体会建模的思想方法和重要性⇐步骤6:完成“探究3”⇐步骤5:师生互动完成“探究2”方式同完成探究1相同⇐步骤4:让学生完成【迁移应用】,检查完成情况并点评⇓步骤8:指导学生完成【当堂双基达标】,验证学习情况⇒步骤8:先由学生自己总结本节的主要知识,教师点评,安排学生课下完成【课后知能检测】课标解读重点难点1.知道牛顿运动定律和动量守恒定律的关系,能用牛顿运动定律推导动量守恒定律.2.理解动量守恒定律的确切含义和表达式.3.知道什么是反冲运动,了解它在实际中的简单应用.4.了解火箭的飞行原理和主要用途.1.理解并掌握动量守恒定律.(重点)2.知道动量守恒定律的运用条件和适用范围.(重点)3.会用动量守恒定律解决简单的实际问题.(难点)动量守恒定律1.(1)动量守恒定律的内容:一个系统不受外力或者所受合外力为零,这个系统的总动量保持不变.(2)动量守恒定律的成立条件①系统不受外力的作用.②系统受外力作用,但合外力为零.③系统受外力的作用,合外力也不为零,但合外力远小于内力.这种情况严格地说只是动量近似守恒,但却是最常见的情况.(3)动量守恒定律的表达式①p=p′(系统相互作用前的总动量p等于相互作用后的总动量p′).②Δp1=-Δp2(相互作用的两个物体组成的系统,一个物体动量的变化量与另一个物体动量的变化量大小相等、方向相反.)③Δp=0(系统总动量的增量为零).④m1v1+m2v2=m1v1′+m2v2′(相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和).2.思考判断(1)如果系统的机械能守恒,则动量也一定守恒.(×)(2)只要系统内存在摩擦力,动量不可能守恒.(×)(3)只要系统受外力做的功为零,动量就守恒.(×)3.探究交流动量守恒定律可由牛顿运动定律和运动学公式(或动量定理)推导出来,那么二者的适用范围是否一样?【提示】牛顿运动定律适用于宏观物体、低速运动(相对光速而言),而动量守恒定律适用于任何物体,任何运动.反冲运动与火箭1.(1)反冲根据动量守恒定律,一个静止的物体在内力的作用下分裂为两个部分,一部分向某一个方向运动,另一部分向相反方向运动的现象.(2)反冲现象的防止及应用①防止:枪身的反冲、高压水枪的反冲等.②应用:喷灌装置、火箭等.(3)火箭①原理:火箭的飞行应用了反冲的原理,靠喷出气流的反冲作用来获得巨大速度.②影响火箭获得速度大小的因素:一是喷气速度,喷气速度越大火箭能达到的速度越大.二是燃料质量越大,负荷越小,火箭能达到的速度也越大.2.思考判断(1)宇航员利用喷气装置实现太空行走是利用反冲的原理.(√)(2)火箭发射时,其速度大小只与喷出气体的质量有关.(×)3.探究交流假如在月球上建一飞机场,应配置喷气式飞机还是螺旋浆飞机呢?【提示】应配置喷气式飞机.喷气式飞机利用反冲原理,可以在真空中飞行,而螺旋桨飞机是靠转动的螺旋浆与空气的相互作用力飞行的,不能在真空中飞行.两物体相互作用前后总动量是否守恒【问题导思】1.教材用气垫导轨探究动量守恒需要哪些实验器材?2.实验探究的基本步骤有哪些?1.实验器材气垫导轨、滑块(3块)、天平、光电门、数字毫秒表等2.实验步骤(1)将两个质量相等的滑块装上相同的挡光板,放在光滑气垫导轨的中部.两滑块靠在一起,压缩其间的弹簧,并用细线栓住,使滑块处于静止状态.烧断细线,两滑块被弹开并朝相反的方向通过光电门,记录挡光板通过光电门的时间,表示出滑块的速度,求出两滑块的总动量p =mv 1-mv 2,如图1-2-1所示.图1-2-1实验结果:两滑块的总动量p =0.(2)增加一滑块,质量与前两块相同,使弹簧一侧滑块的质量是另一侧的2倍,重复(1)步骤,求出两侧滑块的总动量p =mv 1-2mv 2.实验结果:两侧滑块的总动量p =0.(3)把气垫导轨的一半覆盖上牛皮纸,并用胶带固定后,用两块质量相等的滑块重复(1)步骤,求出滑块的总动量p =mv 1-mv 2.实验结果:两滑块的总动量p ≠0.3.实验结论(1)在光滑气垫导轨上无论两滑块质量是否相等,它们被弹开前的总动量为零,分开后的总动量也为零.(2)两滑块构成的系统受到牛皮纸的摩擦力后,两滑块的总动量发生了变化.在用气垫导轨验证动量守恒的实验中,为了减小误差应该将气垫导轨调整到水平,确保两滑块分开后均做匀速直线运动.图1-2-2(2013·莆田检测)如图1-2-2所示,在实验室用两端带竖直挡板C 、D 的气垫导轨和有固定挡板的质量都是M 的滑块A 、B 做“验证动量守恒定律”的实验,实验步骤如下:(1)把两滑块A 、B 紧贴在一起,在A 上放质量为m 的砝码,置于导轨上,用电动卡销卡住A 、B ,在A 、B 的固定挡板间放入一弹簧,使弹簧在水平方向上处于压缩状态.(2)按下电钮使电动卡销放开,同时启动记录两滑块运动时间的电子计时器,在滑块A 、B 与挡板C 、D 碰撞的同时,电子计时器自动停止计时,记下A 至C 的运动时间t 1和B 至D 的运动时间t 2.(3)将两滑块A 、B 仍置于原位置,重复几次上述实验,并对多次实验记录的t 1、t 2分别取平均值.①在调整气垫导轨时,应注意_____________________________________________. ②应测量的数据还有__________________________________________________. ③只要满足关系式________,即可验证动量守恒.【审题指导】 (1)滑块和气垫导轨的摩擦很小可忽略不计.(2)滑块在气垫导轨上的速度可通过距离和时间计算.【解析】 由于滑块和气垫导轨间的摩擦力很小,可以忽略不计,可认为滑块在导轨上做匀速直线运动,因此两滑块作用后的速度可分别表示为:v A =L 1t 1 ,v B =L 2t 2.(L 1为A 至C 板的距离,L 2为B 至D 板的距离) 若(M +m )L 1t 1=M L 2t 2成立, 则(M +m )v A =mv B 成立,即动量守恒.【答案】 (3)①用水平测量仪使导轨水平②A 至C 板的距离L 1,B 至D 板的距离L 2③(M +m )L 1t 1=M L 2t 21.(2013·琼海检测)某同学设计了一个用打点计时器验证两物体碰撞前后总动量是否守恒的实验:在小车A 的前端粘有橡皮泥,推动小车A 使之做匀速直线运动.然后与原来静止在前方的小车B 相碰并粘合成一体,继续做匀速直线运动,他设计的具体装置如图1-2-3所示.在小车A 后连着纸带,电磁打点计时器所用电源频率为50 Hz ,长木板下垫着小木片用以平衡摩擦力.图1-2-3(1)若已得到打点纸带如图1-2-4所示,并将测得的各计数点间距离标在图上,A 点是运动起始的第一点,则应选________段来计算小车A 的碰前速度,应选________段来计算小车A 和小车B 碰后的共同速度.(以上两空填“AB ”或“BC ”或“CD ”或“DE ”)图1-2-4(2)已测得小车A 的质量m A =0.40 kg ,小车B 的质量m B =0.20 kg ,由以上测量结果可得:碰前m A v A +m B v B =________ kg·m/s;碰后m A v A ′+m B v B ′=________ kg·m/s.并比较碰撞前后两个小车质量与速度的乘积之和是否相等.【解析】 (1)因小车做匀速直线运动,纸带上应取打点均匀的一段来计算速度,碰前BC 段点距相等,碰后DE 段点距相等,故取BC 段、DE 段分别计算碰前小车A 的速度和碰后小车A 和小车B 的共同速度.(2)碰前小车A 的速度v A =S BC T =10.50×10-20.02×5m/s =1.05 m/s ,其动量p =m A v A =0.40×1.05 kg·m/s=0.420 kg·m/s,小车B 的速度为零,动量也为零.碰后小车A 和B 的共同速度v A ′=v B ′=v ′=S DE T =6.95×10-20.02×5m/s =0.695 m/s.碰后总动量p ′=(m A +m B )v ′=(0.40+0.20)×0.695 kg·m/s=0.417 kg·m /s.从上面的计算可知:在实验误差允许的范围内,碰撞前后总动量不变.动量守恒定律的理解 1.光滑水平面上,一小球与另一固定小球相碰并反弹,小球的动量守恒吗?2.光滑水平面上,一小球与另一静止小球相碰,碰后两小球系统动量守恒吗?3.光滑水平面上,一小球与另一小球碰后粘在一起运动系统动量守恒吗?1.研究对象:相互作用的物体组成的系统.2.“总动量保持不变”是指系统在整个过程中任意两个时刻的总动量相等.3.动量守恒定律的“五性”(1)矢量性:定律的表达式是一个矢量式.①该式说明系统的总动量在任意两个时刻不仅大小相等,而且方向也相同.②在求系统的总动量p =p 1+p 2+…时,要按矢量运算法则计算.(2)相对性:动量守恒定律中,系统中各物体在相互作用前后的动量,必须相对于同一惯性系,各物体的速度通常均为对地的速度.(3)条件性:动量守恒是有条件的,应用时一定要首先判断系统是否满足守恒条件. ①系统不受外力或所受外力的矢量和为零,系统的动量守恒.②系统受外力,但在某一方向上合外力为零,则系统在这一方向上动量守恒.(4)同时性:动量守恒定律中p 1、p 2……必须是系统中各物体在相互作用前同一时刻的动量,p 1′、p 2′……必须是系统中各物体在相互作用后同一时刻的动量.(5)普遍性:动量守恒定律不仅适用于两个物体组成的系统,也适用于多个物体组成的系统.不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统.(2012·上海高考)A 、B 两物体在光滑水平地面上沿一直线相向而行,A 质量为5 kg ,速度大小为10 m/s ,B 质量为2 kg ,速度大小为5 m/s ,它们的总动量大小为______ kg·m/s;两者相碰后,A 沿原方向运动,速度大小为4 m/s ,则B 的速度大小为______ m/s.【审题指导】 (1)动量是矢量,运算要规定正方向.(2)根据条件判断是否守恒并列方程求解.【解析】 以A 物体的速度方向为正方向.则v A =10 m/s v B =-5 m/s p =p A +p B =5×10 kg·m/s+2×(-5) kg·m/s=40 kg·m/s 碰撞后,由动量守恒定律得p =m A v A ′+m B v B ′ v B ′=10 m/s ,与A 原来的速度方向相同.【答案】 40 10应用动量守恒定律解题的基本步骤1.分析题意,合理地选取研究对象,明确系统是由哪几个物体组成的.2.分析系统的受力情况,分清内力和外力,判断系统的动量是否守恒.3.确定所研究的作用过程.选取的过程应包括系统的已知状态和未知状态,通常为初态到末态的过程,这样才能列出对解题有用的方程.4.对于物体在相互作用前后运动方向都在一条直线上的问题,设定正方向,各物体的动量方向可以用正、负号表示.5.建立动量守恒方程,代入已知量求解.2.(2013·乌鲁木齐检测)图1-2-5如图1-2-5所示,一人站在静止于冰面的小车上,人与车的总质量M =70 kg ,当它遇到一个质量m =20 kg 、以速度v 0=5 m/s 迎面滑来的木箱后,立即以相对于冰面v ′=2 m/s 的速度逆着木箱原来滑行的方向推出(不计冰面阻力).问小车获得的速度是多大?方向如何?【解析】 以v 0方向为正方向,设推出木箱后小车的速度为v ,由动量守恒定律得mv 0=Mv -mv ′v =m v 0+v ′M =20×5+270m/s =2 m/s 与木箱的初速度v 0方向相同.对反冲的进一步理解 1.反冲运动中物体一定不受外力吗?2.反冲运动中,相互作用的两部分动量守恒吗?3.反冲运动的速度是相互作用的两物体的相对速度吗?1.反冲运动的特点(1)物体的不同部分在内力作用下向相反方向运动.(2)反冲运动中,相互作用的内力一般情况下远大于外力,所以可以用动量守恒定律来处理.(3)反冲运动中,由于有其他形式的能转变为机械能,所以系统的总动能增加.2.讨论反冲运动时应注意的问题(1)相对速度问题:在讨论反冲运动时,有时给出的速度是相互作用的两物体的相对速度.由于动量守恒定律中要求速度为对同一参考系的速度(通常为对地的速度),应先将相对速度转换成对地速度后,再列动量守恒定律的方程.(2)变质量问题:在讨论反冲运动时,还常遇到变质量物体的运动,如在火箭的运动过程中,随着燃料的消耗,火箭本身的质量不断减小,此时必须取火箭本身和在相互作用的短时间内喷出的所有气体为研究对象,取相互作用的这个过程为研究过程来进行研究.1.内力的存在不会影响系统的动量守恒. 2.内力做的功往往会改变系统的总动能.图1-2-6(2012·福建高考)如图1-2-6,质量为M 的小船在静止水面上以速率v 0向右匀速行驶,一质量为m 的救生员站在船尾,相对小船静止.若救生员以相对水面速率v 水平向左跃入水中,则救生员跃出后小船的速率为( )A .v 0+mMv B .v 0-m M vC .v 0+m M (v 0+v )D .v 0+m M (v 0-v ) 【审题指导】 解此题的关键是规定正方向和判断人跳出的速度,由于水静止,相对水面的速度即为相对地的速度.【解析】 以向右为正方向,据动量守恒定律有(M +m )v 0=-mv +Mv ′,解得v ′=v 0+m M(v 0+v ),故选C.【答案】 C3.(2013·江苏高考)如图1-2-7所示,进行太空行走的宇航员A 和B 的质量分别为80 kg 和100 kg ,他们携手远离空间站,相对空间站的速度为0.1 m/s.A 将B 向空间站方向轻推后,A 的速度变为0.2 m/s ,求此时B 的速度大小和方向.图1-2-7【解析】 根据动量守恒定律,(m A +m B )v 0=m A v A +m B v B ,代入数值解得v B =0.02 m/s ,离开空间站方向.综合解题方略——人船模型的分析方法(2013·三亚检测)长为L 、质量为M 的小船停在静水中,一个质量为m 的人站立在船头,若不计水的阻力,在人从船头走到船尾的过程中,船和人对地面的位移各是多少?【规范解答】 选人和船组成的系统为研究对象,因系统在水平方向不受外力,所以水平方向动量守恒,人未走时系统的总动量为零,当人走动时,船同时后退;当人速度为零时,船速度也为零.设某时刻人对地的速度为v 1,船对地的速度为v 2,根据动量守恒得mv 1-Mv 2=0①因为在人从船头走到船尾的整个过程中动量守恒,对①式两边同乘以Δt ,得ms 1-Ms 2=0②②式为人对地的位移和船对地的位移关系.由图所示还可看出:s 1+s 2=L ③联立②③两式得⎩⎪⎨⎪⎧ s 1=M M +m Ls 2=m M +m L 【答案】 船对地的位移为m M +m L 人对地的位移为MM +mL1.“人船模型”问题的特征两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题.2.处理“人船模型”问题的关键(1)利用动量守恒定律,确定两物体速度关系,再确定两物体通过的位移的关系.用动量守恒定律求位移的题目大都是系统原来处于静止状态,动量守恒表达式经常写成m 1v 1-m 2v 2=0的形式,式中v 1、v 2是m 1、m 2末状态时的瞬时速率.如果两物体相互作用时间为t ,在这段时间内两物体的位移大小分别为s 1和s 2,则有m 1s 1t -m 2s 2t=0,即m 1s 1-m 2s 2=0.(2)解题时要画出各物体的位移关系草图,找出它们各自相对地面的位移的关系.3.处理“人船模型”问题的两点注意(1)“人船模型”问题中,两物体的运动特点是“人”走“船”行,“人”停“船”停.(2)问题中的“船长”通常理解为“人”相对“船”的位移.而在求解过程中应讨论的是“人”及“船”相对地的位移,即相对于同一参照物的位移【备课资源】(教师用书独具)反冲运动的演示(1)用火箭筒演示拿一个空摩丝瓶,在其底部用大号缝衣针钻一小洞,这样就制成了一个简易的火箭筒.图教1-2-1如图教1-2-1所示,在铁支架的立柱顶端装上顶轴,在旋转臂的两侧各装一只火箭筒,再把旋转系统放在顶轴上.往火箭筒内注入约4 mL的酒精,并在火箭筒下方的棉球上注少量酒精,点燃酒精棉球,片刻火箭筒内的酒精蒸气从尾孔中喷出,并被点燃.这时可以看到火箭旋转起来,带着长长的火舌,并伴随有呼呼的声响.注意棉球上的酒精不要太多,下方的桌上不要放易燃物品.实验完毕,应将筒内剩余的酒精烧尽或倒出.(2)用水火箭演示水火箭用空可乐瓶制作.用一段吸管和透明胶带在瓶上固定一个导向管.瓶口塞一橡皮塞,在橡皮塞上钻一个孔.在塞上固定一只自行车车胎上的进气阀门,并在气门芯内装上小橡皮管(如图教1-2-2).图教1-2-2 实验时,瓶中先注入约13体积的水,用橡皮塞把瓶口塞严.将尼龙线穿过可乐瓶上的导向管,使线的一端拴在门的上框上,另一端拴在板凳腿上,要把线拉直.将瓶的进气阀与打气筒相接,向筒内打气到一定程度时,瓶塞脱开,水从瓶口喷出,瓶向反方向飞去.1.在利用气垫导轨探究碰撞中的不变量时,下列哪些因素可导致实验误差( )A .导轨安放不水平B .小车上挡光片倾斜C .两小车质量不相等D .两小车碰后连在一起【解析】 导轨安放不水平,小车速度将受重力的影响,从而导致实验误差;挡光片倾斜会导致挡光片宽度不等于挡光阶段小车通过的位移,使计算速度出现误差.【答案】 AB2.(2013·海口检测)运送人造地球卫星的火箭开始工作后,火箭做加速运动的原因是( )A .燃料推动空气,空气的反作用力推动火箭B .火箭发动机将燃料燃烧产生的气体向后排出,气体的反作用力推动火箭C .火箭吸入空气,然后向后排出,空气对火箭的反作用力推动火箭D .火箭燃料燃烧发热,加热周围空气,空气膨胀推动火箭【解析】 火箭的工作原理是利用反冲运动,是火箭燃料燃烧产生的高温高压燃气从尾喷管迅速喷出时,使火箭获得反冲速度,故正确答案为B.【答案】 B3.(2012·厦门检测)一个静止的质量为M 的不稳定原子核,当它以速度v 放出一个质量为m 的粒子后,剩余部分的速度为( )A .-vB .-mv /(M -m )C .mv /(M -m )D .-mv /(M +m )【解析】 由动量守恒:mv +(M -m )v ′=0,v ′=-mM -m v ,负号表示与v 的方向相反. 【答案】 B4.(2013·福建高考)将静置在地面上,质量为M (含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( ) A.m M v 0 B.M m v 0C.MM -m v 0 D.m M -m v 0 【解析】 应用动量守恒定律解决本题,注意火箭模型质量的变化.取向下为正方向,由动量守恒定律可得:0=mv 0-(M -m )v ′故v ′=mv 0M -m,选项D 正确. 【答案】 D5.如图1-2-8所示,一质量为M 、长为L 的长方形木板B 放在光滑的水平地面上,其右端放一质量为m 的小木块A (可看成质点),m <M .现以地面为参考系,给A 和B 以大小相等、方向相反的初速度,使A 开始向左运动,B 开始向右运动,最后A 刚好没有滑离B 板.若已知A和B的初速度大小为v0,求它们最后的速度大小和方向.图1-2-8【解析】取水平向右为正方向,设它们最后的共同速度为v,依据动量守恒定律:Mv0-mv0=(M+m)v,解得:v =M-m v0 M+m,方向为水平向右(与木板B方向一致).【答案】M-m v0M+m向右11。

高中物理第1章动量守恒研究1.3科学探究:一维弹性碰撞教案鲁科版选修3_5

高中物理第1章动量守恒研究1.3科学探究:一维弹性碰撞教案鲁科版选修3_5

第3节科学探究——一维弹性碰撞1.了解不同类型的碰撞,知道完全弹性碰撞和完全非弹性碰撞的主要特征. 2.掌握探究碰撞的规律,即在弹性碰撞中动量守恒,动能也守恒. 3.能根据弹性碰撞的规律解释判断有关现象和解决有关的问题.4.通过探究一维弹性碰撞问题,使学生体验科学探究的过程,掌握科学探究的方法. ●教学地位本节内容首先提到了不同类型的碰撞,教学中着重引导学生从“能量转化的情况不同”这一角度去理解不同类型的碰撞,本节重点探讨了完全弹性碰撞的规律,知道在完全弹性碰撞中动量守恒,动能也守恒,教学中要充分利用弹性碰撞的实验培养学生的科学探究能力,可让学生亲自操作以便切身体验弹性碰撞的特点.为了培养学生的表达能力应要求学生准确描述出不同情况下两钢球发生弹性碰撞的特点.碰撞问题是教学的重点,高考的热点.●新课导入建议 演示实验导入五个完全相同的金属球沿直线排列并彼此邻接,把最左端的小球拉高释放,撞击后发现最右端的小球摆高,而其余四球不动,你知道这是为什么吗?让我们共同探究本节课一维弹性碰撞问题吧.●教学流程设计课前预习安排:1.看教材2.填写【课前自主导学】同学之间可进行讨论⇒步骤1:导入新课,本节教学地位分析⇒步骤2:老师提问,检查预习效果可多提问几个学生⇒错误!⇓步骤7:指导学生完成【当堂双基达标】,验证学习情况⇐步骤6:完成“探究重在讲解分析临界问题的关键⇐步骤5:师生互动完成“探究方式同完成探究1相同⇐步骤4:让学生完成【迁移应用】,检查完成情况并点评⇓1.(1)非弹性碰撞碰撞过程中物体往往会发生形变、发热、发声,一般会有动能损失. (2)完全非弹性碰撞碰撞后物体结合在一起,动能损失最大. (3)弹性碰撞碰撞过程中形变能够完全恢复,不发热、发声,没有动能损失. 2.思考判断(1)弹性碰撞过程中动量守恒、动能不守恒.(×) (2)完全非弹性碰撞,动量守恒,动能也守恒.(×) (3)三种碰撞中,动量都守恒.(√) 3.探究交流日常生活中哪些是弹性碰撞,哪些是完全非弹性碰撞? 【提示】 弹性碰撞:两钢球间的碰撞,台球中母球和子球间的碰撞.完全非弹性碰撞:1.(1)实验研究①质量相等的两个钢球发生弹性碰撞,碰撞前后两球的总动能不变,碰撞后两球交换了速度.②质量较大的钢球与静止的质量较小的钢球发生弹性碰撞,碰后两球运动方向相同,碰撞过程中两球总动能不变.③质量较小的钢球与静止的质量较大的钢球发生弹性碰撞,碰后,质量较小的钢球被反弹回来,碰撞过程中两球总动能不变.综上可知,弹性碰撞过程中,系统的动量与动能守恒. (3)理论推导质量m 1的小球以速度v 1与质量m 2的静止小球发生弹性碰撞.根据动量守恒和动能守恒,得m 1v 1=m 1v 1′+m 2v 2′ 12m 1v 21=12m 1v ′21+12m 2v ′22 碰后两球的速度分别为:v ′1=m 1-m 2v 1m 1+m 2,v ′2=2m 1v 1m 1+m 2①若m 1>m 2,v 1′和v 2′都是正值,表示v 1′和v 2′都与v 1方向相同.(若m 1≫m 2,v 1′=v 1,v 2′=2v 1,表示m 1的速度不变,m 2以2v 1的速度被撞出去)②若m 1<m 2,v 1′为负值,表示v 1′与v 1方向相反,m 1被弹回.(若m 1≪m 2,v 1′=-v 1,v 2′=0,表示m 1被反向以原速率弹回,而m 2仍静止)③若m 1=m 2,则有v 1′=0,v 2′=v 1,即碰撞后两球速度互换. 2.思考判断(1)速度不同的两小球碰撞后粘在一起,碰撞过程中没有能量损失.(×)(2)微观粒子在碰撞时并不接触,所以不能算是碰撞.(×)1.在不光滑的水平面上两小球相碰后粘在一起运动,碰撞过程中动量守恒吗? 2.碰撞过程中机械能会增加吗?3.碰撞分几种类型,哪种类型的碰撞动量、动能都守恒?1.发生碰撞的物体间一般作用力很大,作用时间很短,各物体作用前后各自动量变化显著,物体在作用时间内的位移可忽略.2.即使碰撞过程中系统所受合力不等于零,因为内力远大于外力,作用时间又很短,所以外力的作用可忽略,认为系统的动量是守恒的.3.若碰撞过程中没有其他形式的能转化为机械能,则系统碰后的总机械能不可能大于碰前系统机械能.4.对于弹性碰撞,碰撞前后无动能损失;对非弹性碰撞,碰撞前后有动能损失;对于完全非弹性碰撞,碰撞前后动能损失最大.下面关于碰撞的理解正确的是( )A .碰撞是指相对运动的物体相遇时,在极短时间内它们的运动状态发生了显著变化的过程B .在碰撞现象中,一般内力都远远大于外力,所以可以认为碰撞时系统的总动量守恒C .如果碰撞过程中机械能也守恒,这样的碰撞叫做非弹性碰撞D .微观粒子的碰撞由于不发生直接接触,所以不满足动量守恒的条件,不能应用动量守恒定律求解【审题指导】 根据碰撞的特点和动量守恒的条件分析判断【解析】 碰撞过程中机械能守恒的碰撞为弹性碰撞,C 错;动量守恒定律是自然界普遍适用的规律之一.不仅低速、宏观物体的运动遵守这一规律,而且高速、微观物体的运动也遵守这一规律,D 错.【答案】 AB1.在两个物体碰撞前后,下列说法中可以成立的是 ( ) A .作用后的总机械能比作用前小,但总动量守恒 B .作用前后总动量均为零,但总动能守恒 C .作用前后总动能为零,而总动量不为零D .作用前后总动量守恒,而系统内各物体的动量增量的总和不为零【解析】 选项A 是非弹性碰撞,成立.选项B 是完全弹性碰撞,成立;选项C 不成立,因为总动能为零其总动量一定为零;选项D ,总动量守恒则系统所受合外力一定为零,若系统内各物体的动量增量总和不为零的话,则系统一定受到外力的作用,D 错.【答案】1.碰撞过程中动量和动能满足什么条件?2.在爆炸过程中,系统的动量守恒,机械能守恒吗?3.同向运动的两小球相碰后同向运动,两小球的速度满足什么条件? 1.判断依据在所给条件不足的情况下,碰撞结果有各种可能,但不管哪种结果必须同时满足以下三条:(1)系统动量守恒,即p 1+p 2=p ′1+p ′2.(2)系统动能不增加,即E kl +E k2≥E ′kl +E ′k2或p 212m 1+p 222m 2≥p ′212m 1+p ′222m 2.(3)符合实际情况,如果碰前两物体同向运动,则后面的物体速度必大于前面物体的速度,即v 后>v 前,否则无法实现碰撞.碰撞后,原来在前的物体的速度一定增大,且原来在前的物体速度大于或等于原来在后的物体的速度,即v ′前≥v ′后,否则碰撞没有结束.如果碰前两物体相向运动,则碰后两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零.2.爆炸与碰撞的异同(1)共同点:相互作用的力为变力,作用力很大,作用时间极短,均可认为系统满足动量守恒.(2)不同点:爆炸有其他形式的能转化为动能,所以动能增加;弹性碰撞时动能不变,而非弹性碰撞时通常动能要损失,动能转化为内能,动能减小.1.在碰撞过程中,系统的动量守恒,但机械能不一定守恒. 2.在爆炸过程中,系统的动量守恒,机械能一定不守恒.(2013·福州八中检测)在一条直线上,运动方向相反的两球发生碰撞.以球1的运动方向为正,碰前球1、球2的动量分别是p 1=6 kg·m/s,p 2=-8 kg·m/s.若两球所在的水平面是光滑的,碰后各自的动量可能是( )A .p 1′=4 kg·m/s,p 2′=-6 kg·m/sB .p 1′=-4 kg·m/s,p 2′=2 kg·m/sC .p 1′=-8 kg·m/s,p 2′=6 kg·m/sD .p 1′=-12 kg·m/s,p 2′=10 kg·m/s【审题指导】 由于本题为两球碰撞问题,一方面应满足动量守恒,另一方面动能不会增加,还要注意碰后若两球同向运动,则v 前>v 后.【解析】 解答本题时要注意,两球的碰撞不一定是弹性碰撞,所以,它们在碰撞过程中动量守恒,但动能不一定守恒,一般情况下,要有一部分机械能转化为内能,除此之外,还要注意它们的速度关系.经过计算可知,4种情况均符合动量守恒.一般来说,在碰撞过程中,要有一部分机械能转化为内能,即系统会损失一部分机械能,即有p 212m 1+p 222m 2≥p ′212m 1+p ′222m 2经计算知,选项D 不符合上述关系,所以选项D 错误;再仔细分析选项A 、B 、C 中的速度关系,发现在选项A 中,碰后两小球的速度方向不变,好像二者相互穿过一样(如图所示),这显然是不可能的,所以选项A 错误;同样对选项B 、C 进行分析,可以判断B 、C 是正确的.【答案】 BC判断一个碰撞过程能否发生需从以下三个方面入手:1.是否遵守动量守恒定律.2.系统的动能如何变化,如果增加则碰撞不可能发生.3.碰撞的结果与各物体的运动情况是否符合实际,比如A 球去碰静止的B 球,碰后若两球同向,A 球的速度不能大于B 球.2.质量相等的A 、B 两球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是7 kg·m/s,B 球的动量是5 kg·m/s,当A 球追上B 球发生碰撞,则碰撞后A 、B 两球的动量可能值是( )A .p A =6 kg·m/s,pB =6 kg·m/s B .p A =3 kg·m/s,p B =9 kg·m/sC .p A =-2 kg·m/s,p B =14 kg·m/sD .p A =-4 kg·m/s,p B =17 kg·m/s【解析】 从碰撞前后动量守恒p A +p B =p A ′+p B ′验证,A 、B 、C 三种皆有可能,D 不可能;从总动能只有守恒或减少:p 2A 2m +p 2B2m ≥p A ′22m +p B ′22m来看,只有A 可能.(2013·南平检测)两质量分别为M 1和M 2的劈A 和B ,高度相同,放在光滑水平面上,劈A 和B 的倾斜面都是光滑曲面,曲面下端与水平面相切,如图1-3-1所示,一质量为m 的物块位于劈A 的倾斜面上,距水平面的高度为h .物块从静止开始滑下,然后又滑上劈B .求物块在劈B 上能够达到的最大高度.图1-3-1【规范解答】 设物块到达劈A 的底端时,物块和劈A 的速度大小分别为v 和V ,由机械能守恒和动量守恒得mgh =12mv 2+12M 1V 2①M 1V =mv ②设物块在劈B 上达到的最大高度为h ′,此时物块和劈B 的共同速度大小为V ′,由机械能守恒和动量守恒得mgh ′+12(M 2+m )V ′2=12mv 2③mv =(M 2+m )V ′④联立①②③④式得h ′=M 1M 2M 1+mM 2+mh .【答案】M 1M 2M 1+mM 2+mh分析临界问题的关键是寻找临界状态,在与动量相关的临界问题中,临界条件常常表现为两个物体的相对速度关系和相对位移关系,分析时与追及问题模型联系,不难找到这类问题的切入点.【备课资源】(教师用书独具)安全气囊安全气囊是安全气囊系统的一个辅助保护设备,设置在车内前方(正、副驾驶位),侧方(车内前排和后排)和车顶三个方向.装有安全气囊系统的容器外部都印有SRS的字样,直译成中文为图教1-3-1“辅助可充气约束系统”.旨在减轻乘员的伤害程度,当发生碰撞事故时,避免乘员发生二次碰撞,或车辆发生翻滚等危险情况下被抛离座位.汽车在行驶过程中,传感器系统不断向控制装置发送速度变化(或加速度)信息,由控制装置(中央控制器)对这些信息加以分析判断,如果所测的加速度、速度变化量或其他指标超过预定值(即真正发生了碰撞),则控制装置向气体发生器发出点火命令或传感器直接控制点火,点火后发生爆炸反应,产生N2或将储气罐中压缩氮气释放出来充满碰撞气袋.乘员与气袋接触时,通过气袋上排气孔的阻尼吸收碰撞能量,达到保护乘员的目的.汽车的安全气囊内有氮化钠或硝酸铵等物质.当汽车在高速行驶中受到猛烈撞击时,这些物质会迅速发生分解反应,产生大量气体,充满气囊.新型安全气囊加入了可分级充气或释放压力的装置,以防止一次突然点爆产生的巨大压力对人头部产生的伤害,特别在乘客未配戴安全带的时候,可导致生命危险.具体方式有:1.分级点爆方式:气体发生器分两级点爆,第一级产生约40%的气体容积,远低于最大压力,对人头部移动产生缓冲作用,第二级点爆产生剩余气体,并且达到最大压力.总的来说,两级点爆的最大压力小于单级点爆.这种形式的压力逐步增加.2.分级释放压力方式:囊袋上开有泄压孔或可调节压力的孔,分为完全凭借气体压力顶开的方式或电脑控制的拉片Tether.这种方式,一开始压力达到设定极限,然后瞬时释放压力,以避免过大伤害.随着科技的发展和人们对汽车安全重视程度的提高,汽车安全技术中的安全气囊技术近年来也发展得很快,智能化、多安全气囊是今后整体安全气囊系统发展的必然趋势.1.现有甲、乙两滑块,质量分别为3m 和m ,以相同的速率v 在光滑水平面上相向运动,发生了碰撞.已知碰撞后,甲滑块静止不动,那么这次碰撞是( )A .弹性碰撞B .非弹性碰撞C .完全非弹性碰撞D .条件不足,无法确定 【解析】 由动量守恒得3mv -mv =0+mv ′ 所以v ′=2v 碰前总动能为E k =12·3mv 2+12mv 2=2mv 2碰后总动能为E k ′=12mv ′2=2mv 2,E k =E k ′,所以A 对. 【答案】 A图1-3-22.(2013·宁德检测)如图1-3-2所示,光滑水平面上有大小相同的两球在同一直线上运动,m B =2m A ,规定向右为正,A 、B 两球动量均为6 kg·m/s,运动中两球碰撞后,A 球的动量增量为-4 kg·m/s,则( )A .左方是A 球,碰后A 、B 两球速度大小之比为2∶5 B .左方是A 球,碰后A 、B 两球速度大小之比为1∶10C .右方是A 球,碰后A 、B 两球速度大小之比为2∶5D .右方是A 球,碰后A 、B 两球速度大小之比为1∶10【解析】 由于向右为正,而A 球动量增量为-4 kg·m/s,说明A 受冲量向左,知A 球在左方,C 、D 均错,由动量守恒知A 、B 碰后的动量分别为m A v A ′=2 kg·m/s,m B v B ′=10 kg·m/s.则m A v A ′m B v B ′=12·v A ′v B ′=210 因此v A ′v B ′=25,选项A 正确.【答案】 A 3.A 、B 两球在光滑水平面上沿同一直线、同一方向运动,m A =1 kg ,m B =2 kg ,v A =6 m/s ,v B =2 m/s.当A 追上B 并发生碰撞后,A 、B 两球速度的可能值是( )A .v A ′=5 m/s ,vB ′=2.5 m/s B .v A ′=2 m/s ,v B ′=4 m/sC .v A ′=-4 m/s ,v B ′=7 m/sD .v A ′=7 m/s ,v B ′=1.5 m/s 【解析】 虽然题中四个选项均满足动量守恒定律,但A 、D 两项中,碰后A 的速度v A ′大于B 的速度v B ′,必然要发生第二次碰撞,不符合实际,即A 、D 项均错误;C 项中,两球碰后的总动能为E k 后=12m A v A ′2+12m B v B ′2=57 J ,大于碰前的总动能E k 前=22 J ,违背了能量守恒,所以C 项错;而B 项既符合实际情况,也不违背能量守恒,所以B 项对.【答案】 B4.(2013·济南检测)在光滑水平面上,甲、乙两物体的质量分别为m 1、m 2,它们沿同一直线相向运动,其中甲物体运动速度v 1的大小是6 m/s ,乙物体运动速度v 2的大小是2 m/s.已知两物体碰撞后各自沿着相反的方向运动,速度v 的大小都是4 m/s ,甲、乙两物体的质量之比m 1m 2为________.【解析】 选甲物体碰前的速度v 1的方向为正方向,则由动量守恒定律,得m 1v 1-m 2v 2=m 2v -m 1v由上式得:m 1m 2=v +v 2v 1+v =35.【答案】 35图1-3-35.(2012·新课标全国高考)如图1-3-3所示,小球a 、b 用等长细线悬挂于同一固定点O .让球a 静止下垂,将球b 向右拉起,使细线水平.从静止释放球b ,两球碰后粘在一起向左摆动,此后细线与竖直方向之间的最大偏角为60°.忽略空气阻力,求:(1)两球a 、b 的质量之比;(2)两球在碰撞过程中损失的机械能与球b 在碰前的最大动能之比.【解析】 (1)设球b 的质量为m 2,细线长为L ,球b 下落至最低点,但未与球a 相碰时的速率为v ,由机械能守恒定律得m 2gL =12m 2v 2①式中g 是重力加速度的大小.设球a 的质量为m 1;在两球碰后的瞬间,两球共同速度为v ′,以向左为正.由动量守恒定律得m 2v =(m 1+m 2)v ′②设两球共同向左运动到最高处时,细线与竖直方向的夹角为θ,由机械能守恒定律得 12(m 1+m 2)v ′2=(m 1+m 2)gL (1-cos θ)③ 联立①②③式得 m 1m 2=11-cos θ-1④ 代入题给数据得m 1m 2=2-1.⑤ (2)两球在碰撞过程中的机械能损失是 Q =m 2gL -(m 1+m 2)gL (1-cos θ)⑥联立①⑥式,Q 与碰前球b 的最大动能E k ,(E k =12m 2v 2)之比为Q E k =1-m 1+m 2m 2(1-cos θ)⑦联立⑤⑦式,并代入题给数据得 Q E k =1-22.⑧ 【答案】 (1)2-1 (2)1-22。

动量守恒研究导学案 鲁科版选修3-5

动量守恒研究导学案 鲁科版选修3-5

动量守恒研究导学案学案一 第1节 动量定理一、选择题(基础)1、下列说法中正确的是( )A.物体的动量改变,一定是速度大小改变B.物体的动量改变,一定是速度方向改变C.物体的运动状态改变,其动量一定改变D.物体的速度方向改变,其动量一定改变2、在下列各种运动中,任何相等的时间内物体动量的增量总是相同的有( )A.匀加速直线运动B.平抛运动C.匀减速直线运动D.匀速圆周运动3、在物体运动过程中,下列说法不正确...的有( ) A.动量不变的运动,一定是匀速运动 B.动量大小不变的运动,可能是变速运动C.如果在任何相等时间内物体所受的冲量相等(不为零),那么该物体一定做匀变速运动D.若某一个力对物体做功为零,则这个力对该物体的冲量也一定为零4、在距地面高为h ,同时以相等初速V0分别平抛,竖直上抛,竖直下抛一质量相等的物体m ,当它们从抛出到落地时,比较它们的动量的增量△P ,有 ( )A .平抛过程较大B .竖直上抛过程较大C .竖直下抛过程较大D .三者一样大5、对物体所受的合外力与其动量之间的关系,叙述正确的是( )A.物体所受的合外力与物体的初动量成正比;B.物体所受的合外力与物体的末动量成正比;C.物体所受的合外力与物体动量变化量成正比;D.物体所受的合外力与物体动量对时间的变化率成正比6、质量为m 的物体以v 的初速度竖直向上抛出,经时间t ,达到最高点,速度变为0,以竖直向上为正方向,在这个过程中,物体的动量变化量和重力的冲量分别是( )A. -mv 和-mgtB. mv 和mgtC. mv 和-mgtD.-mv 和mgt7、质量为1kg 的小球从高20m 处自由下落到软垫上,反弹后上升的最大高度为5m ,小球接触软垫的时间为1s ,在接触时间内,小球受到的合力大小(空气阻力不计 )为( )A.10NB.20NC.30ND.40N二、填空题8、用8N 的力推动一个物体,力的作用时间是5s ,则力的冲量为______。

2020_2021学年高中物理第一章动量守恒研究第1节动量定理教案4鲁科版选修3_5

2020_2021学年高中物理第一章动量守恒研究第1节动量定理教案4鲁科版选修3_5

动量定理一、教材分析《动量定理》是鲁科版高中物理选修3-5第一章第一节的内容。

从教材编排上看,它是牛顿运动定律及动能定理之后,在动量守恒定律之前。

因此不仅是对牛顿第二定律等知识的巩固运用,同时也为后面学习动量守恒定律打下了坚实的基础,起着承前启后的作用。

从教材内容上看,《动量和动量定理》是牛顿第二定律的进一步展开。

它侧重于力在时间上的累积效果,为解决力学问题开辟了新的途径,尤其是打击和碰撞类的问题。

所以动量定理知识与人们的日常生活,生产技术和科学研究有着密切的关系,因此学习这部分知识有着重要的现实意义。

二、学情分析在高一时,学生已经掌握了牛顿第二定律,又在上一节的学习中初步接触了碰撞中的守恒量,这些知识为本节课的学习奠定了基础。

此外,经过前面的学习,学生已经建立起一定的实验观察能力、抽象思维能力和探究学习能力,而且还掌握了通过建立物理模型探究物理现象的方法。

这也是本节所要强调的、学习和研究动量定理的方法。

由于学生具有这样的知识基础、能力水平和物理思维与方法,再加上他们对未知新事物有较强的探究欲望,所以要掌握动量定理是完全能够实现的。

三、设计思想本节课以教师为主导、学生为主体,运用“建立情境→引导→探究”模式进行教学。

通过生活实例引入课题,激发学生的兴趣。

通过创设物理情境、建立物理模型归纳得出动量定理,并对其进行理解。

运用动量定理解释日常生活中的物理现象,培养学生理论联系实际的能力。

在课堂上鼓励学生主动参与、主动探究、主动思考、主动实践,在教师合理、有效的引导下进行学习,充分体现探究的过程与实现对学生探究能力培养的过程。

四、教学目标知识与技能(1)理解和掌握动量的概念,并能正确计算物体动量的变化。

(2)理解和掌握冲量的概念,强调冲量的矢量性。

(3)理解动量定理的确切含义,知道动量定理的适用条件和适用范围。

(4)会用动量定理解释有关生活现象和计算有关的问题。

过程与方法(1)通过对动量定理的探究过程,尝试用科学探究的方法研究物理问题,认识建立物理模型在物理学研究中的意义。

精选推荐017_2018学年高中物理第1章动量守恒研究1动量定理学案鲁科版选修3_5

精选推荐017_2018学年高中物理第1章动量守恒研究1动量定理学案鲁科版选修3_5

第1节动量定理[目标定位] 1.理解动量的概念,以及动量和动量变化量的矢量性.2.知道冲量的概念,以及冲量的矢量性.3.理解动量定理的确切含义及其表达式.4.会用动量定理解释碰撞、缓冲等生活中的现象.一、动量1.定义运动物体的质量和速度的乘积叫动量;公式p=mv;单位:千克·米/秒,符号:kg·m/s. 2.矢量性方向与物体运动速度的方向相同.运算遵循平行四边形定则.3.动量的变化量物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=mv2-mv1(矢量式).想一想质量相同的两个物体动能相同,它们的动量也一定相同吗?答案不一定.动能和质量相同,则速度大小相同,方向不一定相同,又因为动量是矢量,有方向性,所以动量不一定相同.二、动量定理1.冲量(1)定义:力和力的作用时间的乘积.公式:I=Ft.单位:牛顿·秒,符号:N·s.(2)矢量性:方向与力的方向相同.2.动量定理(1)内容:物体所受合外力的冲量等于物体的动量变化.(2)公式:I=Δp或Ft=mv2-mv1.3.动量与缓冲的实例分析碰撞时可产生冲击力,要增大这种冲击力就要设法减少冲击力的作用时间;要防止冲击力带来的危害,就要减小冲击力,设法延长其作用时间.想一想跳高时在下落处要放厚厚的海绵垫子,跳远时要跳在沙坑中,这样做的目的是什么?答案这样做可以延长作用的时间,以减小地面对人的冲击力.一、对动量的理解1.动量的矢量性:动量的方向与物体的瞬时速度的方向相同.2.动量的变化量:是矢量,其表达式Δp=mv2-mv1=p2-p1为矢量式,运算遵循平行四边形定则,当p2、p1在同一条直线上时,可规定正方向,将矢量运算转化为代数运算.3.与动能的区别与联系:(1)区别:动量是矢量,动能是标量.(2)联系:动量和动能都是描述物体运动状态的物理量,二者大小关系为E k=p22m或p=2mE k. 【例1】关于物体的动量,下列说法中正确的是( )A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向B.物体的动能不变,其动量一定不变C.动量越大的物体,其速度一定越大D.物体的动量越大,其惯性也越大答案 A解析动量具有瞬时性,任一时刻物体动量的方向与该时刻物体的速度方向相同,选项A 正确;动能不变,若速度方向变化,动量也发生变化,B项错误;物体动量的大小由物体质量及速度大小共同决定,不是由物体的速度唯一决定的,故物体的动量大,其速度不一定大,选项C错误;惯性由物体质量决定,物体的动量越大,其质量并不一定越大,惯性也不一定越大,故选项D错误.【例2】质量为0.5 kg的物体,运动速度为3 m/s,它在一个变力作用下速度变为7 m/s,方向和原来方向相反,则这段时间内动量的变化量为( )A.5 kg·m/s,方向与原运动方向相反B.5 kg·m/s,方向与原运动方向相同C.2 kg·m/s,方向与原运动方向相反D.2 kg·m/s,方向与原运动方向相同答案 A解析以原来的方向为正方向,由定义式Δp=mv′-mv得Δp=(-7×0.5-3×0.5) kg·m/s=-5 kg·m/s,负号表示Δp的方向与原运动方向相反.借题发挥关于动量变化量的计算1.若初、末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算.2.若初、末动量不在同一直线上,运算时应遵循平行四边形定则.二、对冲量的理解和计算1.冲量的理解(1)冲量是过程量,它描述的是力作用在物体上的时间累积效应,求冲量时一定要明确所求的是哪一个力在哪一段时间内的冲量.(2)冲量是矢量,当力是恒力时,冲量的方向与力的方向相同;当力是变力时,冲量的方向与动量变化量方向一致.2.冲量的计算(1)求某个恒力的冲量:等于该力和力的作用时间的乘积.(2)求合冲量的两种方法:可分别求每一个力的冲量,再求各冲量的矢量和;另外,如果各个力的作用时间相同,也可以先求合力,再用公式I 合=F 合Δt 求解.图1(3)求变力的冲量:①若力与时间成线性关系,则可用平均力求变力的冲量,平均力F =F 1+F 22.②若给出了力随时间变化的图象如图1所示,可用面积法求变力的冲量,即F ­t 图线与时间轴围成图形的面积在数值上等于力在该段时间内的冲量.③利用动量定理求解.【例3】 如图2所示,在倾角α=37°的斜面上,有一质量为5 kg 的物体沿斜面滑下,物体与斜面间的动摩擦因数μ=0.2,求物体下滑2 s 的时间内,物体所受各力的冲量.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)图2答案 见解析解析 重力的冲量:I G =Gt =mgt =5×10×2 N·s=100 N·s,方向竖直向下. 支持力的冲量:I N =Nt =mg cos α·t =5×10×0.8×2 N·s=80 N·s,方向垂直斜面向上. 摩擦力的冲量:I f =ft =μmg cos α·t =0.2×5×10×0.8×2 N·s=16 N·s,方向沿斜面向上.借题发挥 求各力的冲量或者合力的冲量,首先判断各力是否是恒力,若是恒力,可直接用力与作用时间的乘积、求解,若是变力,要根据力的特点求解,或者利用动量定理求解.三、对动量定理的理解和应用1.动量定理的理解(1)动量定理的表达式Ft =mv 2-mv 1是矢量式,等号包含了大小相等、方向相同两方面的含义.(2)动量定理反映了合外力的冲量是动量变化的原因.(3)公式中的F是物体所受的合外力,若合外力是变力,则F应是合外力在作用时间内的平均值.2.动量定理的应用(1)定性分析有关现象:①物体的动量变化量一定时,力的作用时间越短,力就越大;力的作用时间越长,力就越小.②作用力一定时,力的作用时间越长,动量变化量越大;力的作用时间越短,动量变化量越小.(2)应用动量定理定量计算的一般步骤:①选定研究对象,明确运动过程.②进行受力分析和运动的初、末状态分析.③选定正方向,根据动量定理列方程求解.【例4】跳远时,跳在沙坑里比跳在水泥地上安全,这是由于( )A.人跳在沙坑里的动量比跳在水泥地上的小B.人跳在沙坑里的动量变化比跳在水泥地上的小C.人跳在沙坑里受到的冲量比跳在水泥地上的小D.人跳在沙坑里受到的平均作用力比跳在水泥地上的小答案 D解析人跳远时从一定的高度落下,落地前的速度是一定的,初动量是一定的,所以选项A 错误;落地后静止,末动量一定,人的动量变化是一定的,选项B错误;由动量定理可知人受到的冲量等于人的动量变化,所以两种情况下人受到的冲量相等,选项C错误;落在沙坑里力作用的时间长,落在水泥地上力作用的时间短,根据动量定理,在动量变化一定的情况下,时间t越长则受到的平均作用力F越小,故选项D正确.【例5】质量m=70 kg的撑竿跳高运动员从h=5.0 m高处落到海绵垫上,经Δt1=1 s 后停止,则该运动员身体受到的平均作用力约为多少?如果是落到普通沙坑中,经Δt2=0.1 s停下,则沙坑对运动员的平均作用力约为多少?(g取10 m/s2)答案 1 400 N 7 700 N解析以全过程为研究对象,初、末动量的数值都是0,所以运动员的动量变化量为零,根据动量定理,合力的冲量为零,根据自由落体运动的知识,物体下落到地面上所需要的时间是t=2hg=1 s从开始下落到落到海绵垫上停止时,mg(t+Δt1)-FΔt1=0 代入数据,解得F=1 400 N下落到沙坑中时,mg(t+Δt2)-F′Δt2=0代入数据,解得F′=7 700 N.对动量和冲量的理解1.关于动量,下列说法正确的是( )A.速度大的物体,它的动量一定也大B.动量大的物体,它的速度一定也大C.只要物体运动的速度大小不变,物体的动量也保持不变D.质量一定的物体,动量变化越大,该物体的速度变化一定越大答案 D解析动量由质量和速度共同决定,只有质量和速度的乘积大,动量才大,A、B均错误;动量是矢量,只要速度方向变化,动量就发生变化,选项C错误;由Δp=mΔv知D正确.2. (多选)恒力F作用在质量为m的物体上,如图3所示,由于地面对物体的摩擦力较大,物体没有被拉动,则经时间t,下列说法正确的是( )图3A.拉力F对物体的冲量大小为零B.拉力F对物体的冲量大小为FtC.拉力F对物体的冲量大小是Ft cos θD.合力对物体的冲量大小为零答案BD解析拉力F对物体的冲量大小为Ft,A、C错误,B正确;合力对物体的冲量等于物体动量的变化,即等于零,选项D正确.动量定理的理解和应用3.(多选)一个小钢球竖直下落,落地时动量大小为0.5 kg·m/s,与地面碰撞后又以等大的动量被反弹.下列说法中正确的是( )A.引起小钢球动量变化的是地面给小钢球的弹力的冲量B.引起小钢球动量变化的是地面对小钢球弹力与其自身重力的合力的冲量C.若选向上为正方向,则小钢球受到的合冲量是-1 N·sD.若选向上为正方向,则小钢球的动量变化是1 kg·m/s答案BD解析根据动量定理可知,引起物体动量变化的是合外力的冲量,故A错,B对;若选向上为正方向,则Δp =p 2-p 1=[0.5-(-0.5)]kg·m/s=1 kg·m/s,故C 错,D 对.4.高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动).此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( ) A.m 2gh t +mg B.m 2gh t -mg C.m gh t +mg D.m gh t-mg 答案 A解析 由自由落体运动公式得人下降h 距离时的速度为v =2gh ,在t 时间内对人由动量定理得(F -mg )t =mv ,解得安全带对人的平均作用力为F =m 2gh t+mg ,A 项正确.(时间:60分钟)题组一 对动量和冲量的理解1.(多选)下列说法中正确的是( )A .物体的速度大小改变时,物体的动量一定改变B .物体的速度方向改变时,其动量不一定改变C .物体的动量不变,其速度一定不变D .运动物体在任一时刻的动量方向,一定与该时刻的速度方向相同答案 ACD2.(多选)下列说法中正确的是( )A .动能变化的物体,动量一定变化B .动能不变的物体,动量一定不变C .动量变化的物体,动能一定变化D .动量不变的物体,动能一定不变答案 AD解析 动量是矢量,动能是标量,所以动能变化,则动量的大小一定变化,A 正确;动能不变,速度的大小不变,但方向可能变化,所以动量可能变化,B 错误;当动量的大小不变,只是方向变化时,物体的动能不变,C 错误;动量不变的物体,速度一定不变,则动能一定不变,D 正确.3.“蹦极”运动中,长弹性绳的一端固定,另一端绑在人身上,人从几十米高处跳下,将蹦极过程简化为人沿竖直方向的运动,从绳恰好伸直,到人第一次下降至最低点的过程中,下列分析正确的是( )A.绳对人的冲量始终向上,人的动量先增大后减小B.绳对人的拉力始终做负功,人的动能一直减小C.绳恰好伸直时,绳的弹性势能为零,人的动能最大D.人在最低点时,绳对人的拉力等于人所受的重力答案 A解析从绳恰好伸直,到人第一次下降到最低点的过程中,拉力逐渐增大,由牛顿第二定律mg-F=ma可知,人先做加速度减小的加速运动,当a=0时,F=mg,此时速度最大,动量最大,动能最大,此后人继续向下运动,F>mg,由牛顿第二定律F-mg=ma可知,人做加速度增大的减速运动,动量一直减小直到减为零,全过程中拉力方向始终向上,所以绳对人的冲量始终向上,综上可知A正确,C、D错误;拉力对人始终做负功,动能先增大后减小,故B错误.4.(多选)在任何相等时间内,物体动量的变化总是相等的运动可能是( )A.匀速圆周运动B.匀变速直线运动C.自由落体运动D.平抛运动答案BCD5.在短道速滑接力比赛中,“接棒”的运动员甲提前站在“交棒”的运动员乙前面,并且开始向前滑行,待乙追上甲时,乙猛推甲一把,使甲获得更大的速度向前冲出,在乙推甲的过程中,忽略运动员与冰面间在水平方向上的相互作用,则( )图1A.甲对乙的冲量一定等于乙对甲的冲量B.甲、乙的动量变化一定大小相等方向相反C.甲的动能增加量一定等于乙的动能减少量D.甲对乙做多少负功,乙对甲就一定做多少正功答案 B解析运动员乙推甲的过程中,甲和乙间的相互作用力等大反向,作用时间相等,故甲对乙的冲量和乙对甲的冲量大小相等,方向相反,A错,B对;“交棒”过程中甲和乙的速度不一定相等,在乙推甲的过程中位移不一定相等,因而甲对乙做的负功和乙对甲做的正功的绝对值不一定相等,由动能定理,其动能变化量的绝对值也不一定相等,C、D错.题组二动量定理的理解及定性分析6.(多选)从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是( )A .掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小B .掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小C .掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢D .掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时相互作用时间长答案 CD解析 玻璃杯是否被撞碎,取决于撞击地面时,地面对玻璃杯的撞击力大小.规定竖直向上为正方向,设玻璃杯下落高度为h ,它们从h 高度落地瞬间的速度大小为2gh ,设玻璃杯的质量为m ,则落地前瞬间的动量大小为p =m 2gh ,与水泥或草地接触Δt 时间后,玻璃杯停下,在此过程中,玻璃杯的动量变化Δp =0-(-m 2gh )相同,再由动量定理可知(F -mg )·Δt =0-(-m 2gh ),所以F =m 2gh Δt+mg .由此可知,Δt 越小,玻璃杯所受撞击力越大,玻璃杯就越容易碎,玻璃杯掉在草地上作用时间较长,动量变化慢,作用力小,因此玻璃杯不易碎,故A 、B 错误,C 、D 正确.7.从高处跳到低处时,为了安全,一般都是先让脚尖着地,这样做是为了( )A .减小冲量B .减小动量的变化量C .增大与地面的冲击时间,从而减小冲力D .增大人对地面的压强,起到安全作用答案 C解析 脚尖先着地,接着逐渐到整只脚着地,延长了人落地时动量变化所用的时间,由动量定理可知,人落地动量变化一定,这样就减小了地面对人的冲力,故C 正确.8.如图2所示,一铁块压着一纸条放在水平桌面上,当以速度v 抽出纸条后,铁块掉到地面上的P 点,若以2v 速度抽出纸条,则铁块落地点( )图2A .仍在P 点B .在P 点左侧C .在P 点右侧不远处D .在P 点右侧原水平位移的两倍处答案 B解析 以2v 速度抽出纸条时,纸条对铁块作用时间减少,而纸条对铁块的摩擦力不变,故与以速度v 抽出相比,纸条对铁块的冲量I 减小,铁块获得的动量减小,平抛的速度减小,水平射程减小,故落在P 点的左侧.题组三 动量定理的定量计算9.质量为m 的钢球自高处落下,以速度大小v 1碰地,竖直向上弹回,碰撞时间极短,离地的速度大小为v 2.在碰撞过程中,地面对钢球的冲量的方向和大小为( )A .向下,m (v 1-v 2)B .向下,m (v 1+v 2)C .向上,m (v 1-v 2)D .向上,m (v 1+v 2)答案 D解析 物体以大小为v 1的竖直速度与地面碰撞后以大小为v 2的速度反弹.物体在与地面碰撞过程的初、末状态动量皆已确定.根据动理定理便可以求出碰撞过程中钢球受到的冲量.设垂直地面向上的方向为正方向,对钢球应用动量定理得Ft -mgt =mv 2-(-mv 1)=mv 2+mv 1. 由于碰撞时间极短,t 趋于零,则mgt 趋于零.所以Ft =m (v 2+v 1),即弹力的冲量方向向上,大小为m (v 2+v 1).10.质量为0.5 kg 的小球沿光滑水平面以5 m/s 的速度冲向墙壁后又以4 m/s 的速度反向弹回,如图3所示,若球跟墙的作用时间为0.05 s ,则小球所受到的平均力大小为________N.图3答案 90解析 选定小球与墙碰撞的过程,取v 1的方向为正方向,对小球应用动量定理得Ft =-mv 2-mv 1所以,F =-mv 2-mv 1t =-0.5×4-0.5×50.05N =-90 N “-”号说明F 的方向与v 1的方向相反.11.如图4所示,质量为1 kg 的钢球从5 m 高处自由下落,又反弹到离地面3.2 m 高处,若钢球和地面之间的作用时间为0.1 s ,求钢球对地面的平均作用力大小.(g 取10 m/s 2)图4答案 190 N解析 钢球落到地面时的速度大小为v 0=2gh 1=10 m/s ,反弹时向上运动的速度大小为v t=2gh 2=8 m/s ,分析物体和地面的作用过程,取向上为正方向,因此有v 0的方向为负方向,v t 的方向为正方向,再根据动量定理得(N -mg )t =mv t -(-mv 0),代入数据,解得N =190 N ,由牛顿第三定律知钢球对地面的平均作用力大小为190 N.12.一辆轿车强行超车时,与另一辆迎面驶来的轿车相撞,两车车身因相互挤压,皆缩短了0.5 m ,据测算两车相撞前速度均为30 m/s ,则:(1)假设两车相撞时人与车一起做匀减速运动,试求车祸中车内质量约60 kg 的人受到的平均冲力是多大?(2)若此人系有安全带,安全带在车祸过程中与人体的作用时间是1 s ,求这时人体受到的平均冲力为多大?答案 (1)5.4×104 N (2)1.8×103N解析 (1)两车相撞时认为人与车一起做匀减速运动直到停止,位移为0.5 m. 设运动的时间为t ,则由x =v 02t 得,t =2x v 0=130s. 根据动量定理得Ft =Δp =-mv 0,解得F =-mv 0t =-60×30130N =-5.4×104 N ,方向与运动方向相反. (2)若人系有安全带,则F ′=-mv 0t ′=-60×301N =-1.8×103 N ,方向与运动方向相反. 13.一质量为0.5 kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图5所示.物块以v 0=9 m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7 m/s ,碰后以6 m/s 的速度反向运动直至静止.g 取10 m/s 2.图5(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05 s ,求碰撞过程中墙面对物块平均作用力的大小F ;(3)求物块在反向运动过程中克服摩擦力所做的功W .答案 (1)0.32 (2)130 N (3)9 J解析 (1)对小物块从A 运动到B 处的过程中应用动能定理-μmgs =12mv 2-12mv 20 代入数值解得μ=0.32(2)取向右为正方向,碰后滑块速度v ′=-6 m/s由动量定理得:F Δt =mv ′-mv学习K12教育资料学习K12教育资料 解得F =-130 N其中“-”表示墙面对物块的平均力方向向左.(3)对物块反向运动过程中应用动能定理得-W =0-12mv ′2 解得W =9 J。

2020-2021学年高中物理 第一章 动量守恒研究 第2节 动量守恒定律教案3 鲁科版选修3-5

2020-2021学年高中物理 第一章 动量守恒研究 第2节 动量守恒定律教案3 鲁科版选修3-5

动量守恒定律一、教学核心素养1.物理观念:掌握动量守恒定律的内容,学会判断守恒定律成立的条件。

2.科学思维在学习动量守恒定律的过程中,重点培养学生利用公式推导物理定律的能力,培养学生会用周围简单的实验器材研究物理问题的能力。

3.实验探究本节课设计了多个物理实验,从引入新课到简单碰撞中的动量守恒,从简单碰撞到复杂碰撞,每一个环节都是建立在学生观察,理论推导的基础上,重在培养学生的科学探究能力和抽象思维能力,让学生通过实验、推导、再实验的过程充分认识动量守恒定律。

4.科学态度与责任在推导定律的过程中让学生对物理定律建立的严谨性有充分的认识并且通过动量守恒定律在生活中的应用激发学生学习物理的兴趣,从物理走向生活。

二、教学重点1.动量守恒定律的推导2.系统、内力、外力的概念建立3.动量守恒定律成立的条件判断三、教具牛顿摆、碰撞小球若干、气垫导轨及附件、自制喷气小车、反冲演示器。

四、教学过程【导入新课】《人体牛顿摆》视频引入,新奇搞笑的视频立马抓住学生的兴趣,引出牛顿摆的原理——动量守恒。

【进行新课】一、知识回顾通过三个gif图片复习第一节课的实验,利用气垫导轨探究两滑块碰撞过程不变量,三种碰撞过程尽管能量可能会变,但是总的动量都是不变的。

提出问题:动量作用前后不变在所有相互作用的过程中都会成立吗?有没有成立的条件呢?二、实验观察●教师活动:演示实验,将其中一个滑块靠近气垫导轨一端,让另一个滑块以某一速度撞向该滑块,请学生观察两滑块在作用前和作用后总动量是否仍然一样。

●学生活动:观察实验,并得出结论:这种情况下动量不相同。

●引导学生找出“外力”的影响,并借此定义“系统”“外力”“内力”的概念,并针对刚刚实验让学生说出系统包含哪些,“外力”“内力”分别是什么?●提出猜想:有“外力”作用系统的总动量会改变;没有“外力”作用,即只有内力,系统动量不会改变。

●提出问题:能不能用理论推导证明自己的猜想。

三、小组讨论:m21、动量定理的内容2、相互作用前后滑块1动量为什么会改变?滑块2动量为什么会改变?3、两滑块之间的相互作用力有什么关系?4、两滑块的动量改变有什么关系?● 带领学生一起推导普遍的动量守恒定律。

【方向】高中物理第1章动量守恒研究1动量定理学案鲁科版选修35

【方向】高中物理第1章动量守恒研究1动量定理学案鲁科版选修35

【关键字】方向第1节动量定理[目标定位] 1.理解动量的概念,以及动量和动量变化量的矢量性.2.知道冲量的概念,以及冲量的矢量性.3.理解动量定理的确切含义及其表达式.4.会用动量定理解释碰撞、缓冲等生活中的现象.一、动量1.定义运动物体的质量和速度的乘积叫动量;公式p=mv;单位:千克·米/秒,符号:kg·m/s. 2.矢量性方向与物体运动速度的方向相同.运算遵循平行四边形定则.3.动量的变化量物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=mv2-mv1(矢量式).想一想质量相同的两个物体动能相同,它们的动量也一定相同吗?答案不一定.动能和质量相同,则速度大小相同,方向不一定相同,又因为动量是矢量,有方向性,所以动量不一定相同.二、动量定理1.冲量(1)定义:力和力的作用时间的乘积.公式:I=Ft.单位:牛顿·秒,符号:N·s.(2)矢量性:方向与力的方向相同.2.动量定理(1)内容:物体所受合外力的冲量等于物体的动量变化.(2)公式:I=Δp或Ft=mv2-mv1.3.动量与缓冲的实例分析碰撞时可产生冲击力,要增大这种冲击力就要设法减少冲击力的作用时间;要防止冲击力带来的危害,就要减小冲击力,设法延长其作用时间.想一想跳高时在下落处要放厚厚的海绵垫子,跳远时要跳在沙坑中,这样做的目的是什么?答案这样做可以延长作用的时间,以减小地面对人的冲击力.一、对动量的理解1.动量的矢量性:动量的方向与物体的瞬时速度的方向相同.2.动量的变化量:是矢量,其表达式Δp=mv2-mv1=p2-p1为矢量式,运算遵循平行四边形定则,当p2、p1在同一条直线上时,可规定正方向,将矢量运算转化为代数运算.3.与动能的区别与联系:(1)区别:动量是矢量,动能是标量.(2)联系:动量和动能都是描述物体运动状态的物理量,二者大小关系为Ek=或p=.【例1】关于物体的动量,下列说法中正确的是( )A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向B.物体的动能不变,其动量一定不变C.动量越大的物体,其速度一定越大D.物体的动量越大,其惯性也越大答案 A解析动量具有瞬时性,任一时刻物体动量的方向与该时刻物体的速度方向相同,选项A 正确;动能不变,若速度方向变化,动量也发生变化,B项错误;物体动量的大小由物体质量及速度大小共同决定,不是由物体的速度唯一决定的,故物体的动量大,其速度不一定大,选项C错误;惯性由物体质量决定,物体的动量越大,其质量并不一定越大,惯性也不一定越大,故选项D错误.【例2】质量为的物体,运动速度为/s,它在一个变力作用下速度变为/s,方向和原来方向相反,则这段时间内动量的变化量为( )A.·m/s,方向与原运动方向相反B.·m/s,方向与原运动方向相同C.·m/s,方向与原运动方向相反D.·m/s,方向与原运动方向相同答案 A解析以原来的方向为正方向,由定义式Δp=mv′-mv得Δp=(-7×0.5-3×0.5) kg·m/s =-·m/s,负号表示Δp的方向与原运动方向相反.借题发挥关于动量变化量的计算1.若初、末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算.2.若初、末动量不在同一直线上,运算时应遵循平行四边形定则.二、对冲量的理解和计算1.冲量的理解(1)冲量是过程量,它描述的是力作用在物体上的时间累积效应,求冲量时一定要明确所求的是哪一个力在哪一段时间内的冲量.(2)冲量是矢量,当力是恒力时,冲量的方向与力的方向相同;当力是变力时,冲量的方向与动量变化量方向一致.2.冲量的计算(1)求某个恒力的冲量:等于该力和力的作用时间的乘积.(2)求合冲量的两种方法:可分别求每一个力的冲量,再求各冲量的矢量和;另外,如果各个力的作用时间相同,也可以先求合力,再用公式I 合=F 合Δt 求解.图1(3)求变力的冲量:①若力与时间成线性关系,则可用平均力求变力的冲量,平均力F =F 1+F 22.②若给出了力随时间变化的图象如图1所示,可用面积法求变力的冲量,即F ­t 图线与时间轴围成图形的面积在数值上等于力在该段时间内的冲量.③利用动量定理求解.【例3】 如图2所示,在倾角α=37°的斜面上,有一质量为5 kg 的物体沿斜面滑下,物体与斜面间的动摩擦因数μ=0.2,求物体下滑2 s 的时间内,物体所受各力的冲量.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)图2答案 见解析解析 重力的冲量:I G =Gt =mgt =5×10×2 N·s=100 N·s,方向竖直向下. 支持力的冲量:I N =Nt =mg cos α·t =5×10×0.8×2 N·s=80 N·s,方向垂直斜面向上. 摩擦力的冲量:I f =ft =μmg cos α·t =0.2×5×10×0.8×2 N·s=16 N·s,方向沿斜面向上.借题发挥 求各力的冲量或者合力的冲量,首先判断各力是否是恒力,若是恒力,可直接用力与作用时间的乘积、求解,若是变力,要根据力的特点求解,或者利用动量定理求解.三、对动量定理的理解和应用1.动量定理的理解(1)动量定理的表达式Ft =mv 2-mv 1是矢量式,等号包含了大小相等、方向相同两方面的含义.(2)动量定理反映了合外力的冲量是动量变化的原因.(3)公式中的F 是物体所受的合外力,若合外力是变力,则F 应是合外力在作用时间内的平均值.2.动量定理的应用(1)定性分析有关现象:①物体的动量变化量一定时,力的作用时间越短,力就越大;力的作用时间越长,力就越小. ②作用力一定时,力的作用时间越长,动量变化量越大;力的作用时间越短,动量变化量越小.(2)应用动量定理定量计算的一般步骤:①选定研究对象,明确运动过程.②进行受力分析和运动的初、末状态分析.③选定正方向,根据动量定理列方程求解.【例4】跳远时,跳在沙坑里比跳在水泥地上安全,这是由于( )A.人跳在沙坑里的动量比跳在水泥地上的小B.人跳在沙坑里的动量变化比跳在水泥地上的小C.人跳在沙坑里受到的冲量比跳在水泥地上的小D.人跳在沙坑里受到的平均作用力比跳在水泥地上的小答案 D解析人跳远时从一定的高度落下,落地前的速度是一定的,初动量是一定的,所以选项A 错误;落地后静止,末动量一定,人的动量变化是一定的,选项B错误;由动量定理可知人受到的冲量等于人的动量变化,所以两种情况下人受到的冲量相等,选项C错误;落在沙坑里力作用的时间长,落在水泥地上力作用的时间短,根据动量定理,在动量变化一定的情况下,时间t越长则受到的平均作用力F越小,故选项D正确.【例5】质量m=70 kg的撑竿跳高运动员从h=5.0 m高处落到海绵垫上,经Δt1=1 s 后停止,则该运动员身体受到的平均作用力约为多少?如果是落到普通沙坑中,经Δt2=0.1 s停下,则沙坑对运动员的平均作用力约为多少?(g取10 m/s2)答案 1 400 N 7 700 N解析以全过程为研究对象,初、末动量的数值都是0,所以运动员的动量变化量为零,根据动量定理,合力的冲量为零,根据自由落体运动的知识,物体下落到地面上所需要的时间是t=2hg=1 s从开始下落到落到海绵垫上停止时,mg(t+Δt1)-FΔt1=0代入数据,解得F=1 400 N下落到沙坑中时,mg(t+Δt2)-F′Δt2=0代入数据,解得F′=7 700 N.对动量和冲量的理解1.关于动量,下列说法正确的是( )A.速度大的物体,它的动量一定也大B.动量大的物体,它的速度一定也大C.只要物体运动的速度大小不变,物体的动量也保持不变D.质量一定的物体,动量变化越大,该物体的速度变化一定越大答案 D解析动量由质量和速度共同决定,只有质量和速度的乘积大,动量才大,A、B均错误;动量是矢量,只要速度方向变化,动量就发生变化,选项C错误;由Δp=mΔv知D正确.2. (多选)恒力F 作用在质量为m 的物体上,如图3所示,由于地面对物体的摩擦力较大,物体没有被拉动,则经时间t ,下列说法正确的是( )图3A .拉力F 对物体的冲量大小为零B .拉力F 对物体的冲量大小为FtC .拉力F 对物体的冲量大小是Ft cos θD .合力对物体的冲量大小为零答案 BD解析 拉力F 对物体的冲量大小为Ft ,A 、C 错误,B 正确;合力对物体的冲量等于物体动量的变化,即等于零,选项D 正确.动量定理的理解和应用3.(多选)一个小钢球竖直下落,落地时动量大小为0.5 kg·m/s,与地面碰撞后又以等大的动量被反弹.下列说法中正确的是( )A .引起小钢球动量变化的是地面给小钢球的弹力的冲量B .引起小钢球动量变化的是地面对小钢球弹力与其自身重力的合力的冲量C .若选向上为正方向,则小钢球受到的合冲量是-1 N·sD .若选向上为正方向,则小钢球的动量变化是1 kg·m/s答案 BD解析 根据动量定理可知,引起物体动量变化的是合外力的冲量,故A 错,B 对;若选向上为正方向,则Δp =p 2-p 1=[0.5-(-0.5)]kg·m/s=1 kg·m/s,故C 错,D 对.4.高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动).此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( ) A.m 2gh t+mg B.m 2gh t -mg C.m gh t +mg D.m gh t -mg 答案 A解析 由自由落体运动公式得人下降h 距离时的速度为v =2gh ,在t 时间内对人由动量定理得(F -mg )t =mv ,解得安全带对人的平均作用力为F =m 2gh t+mg ,A 项正确. (时间:60分钟)题组一 对动量和冲量的理解1.(多选)下列说法中正确的是( )A.物体的速度大小改变时,物体的动量一定改变B.物体的速度方向改变时,其动量不一定改变C.物体的动量不变,其速度一定不变D.运动物体在任一时刻的动量方向,一定与该时刻的速度方向相同答案ACD2.(多选)下列说法中正确的是( )A.动能变化的物体,动量一定变化B.动能不变的物体,动量一定不变C.动量变化的物体,动能一定变化D.动量不变的物体,动能一定不变答案AD解析动量是矢量,动能是标量,所以动能变化,则动量的大小一定变化,A正确;动能不变,速度的大小不变,但方向可能变化,所以动量可能变化,B错误;当动量的大小不变,只是方向变化时,物体的动能不变,C错误;动量不变的物体,速度一定不变,则动能一定不变,D正确.3.“蹦极”运动中,长弹性绳的一端固定,另一端绑在人身上,人从几十米高处跳下,将蹦极过程简化为人沿竖直方向的运动,从绳恰好伸直,到人第一次下降至最低点的过程中,下列分析正确的是( )A.绳对人的冲量始终向上,人的动量先增大后减小B.绳对人的拉力始终做负功,人的动能一直减小C.绳恰好伸直时,绳的弹性势能为零,人的动能最大D.人在最低点时,绳对人的拉力等于人所受的重力答案 A解析从绳恰好伸直,到人第一次下降到最低点的过程中,拉力逐渐增大,由牛顿第二定律mg-F=ma可知,人先做加速度减小的加速运动,当a=0时,F=mg,此时速度最大,动量最大,动能最大,此后人继续向下运动,F>mg,由牛顿第二定律F-mg=ma可知,人做加速度增大的减速运动,动量一直减小直到减为零,全过程中拉力方向始终向上,所以绳对人的冲量始终向上,综上可知A正确,C、D错误;拉力对人始终做负功,动能先增大后减小,故B错误.4.(多选)在任何相等时间内,物体动量的变化总是相等的运动可能是( )A.匀速圆周运动B.匀变速直线运动C.自由落体运动D.平抛运动答案BCD5.在短道速滑接力比赛中,“接棒”的运动员甲提前站在“交棒”的运动员乙前面,并且开始向前滑行,待乙追上甲时,乙猛推甲一把,使甲获得更大的速度向前冲出,在乙推甲的过程中,忽略运动员与冰面间在水平方向上的相互作用,则( )图1A .甲对乙的冲量一定等于乙对甲的冲量B .甲、乙的动量变化一定大小相等方向相反C .甲的动能增加量一定等于乙的动能减少量D .甲对乙做多少负功,乙对甲就一定做多少正功答案 B解析 运动员乙推甲的过程中,甲和乙间的相互作用力等大反向,作用时间相等,故甲对乙的冲量和乙对甲的冲量大小相等,方向相反,A 错,B 对;“交棒”过程中甲和乙的速度不一定相等,在乙推甲的过程中位移不一定相等,因而甲对乙做的负功和乙对甲做的正功的绝对值不一定相等,由动能定理,其动能变化量的绝对值也不一定相等,C 、D 错. 题组二 动量定理的理解及定性分析6.(多选)从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是( )A .掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小B .掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小C .掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢D .掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时相互作用时间长答案 CD解析 玻璃杯是否被撞碎,取决于撞击地面时,地面对玻璃杯的撞击力大小.规定竖直向上为正方向,设玻璃杯下落高度为h ,它们从h 高度落地瞬间的速度大小为2gh ,设玻璃杯的质量为m ,则落地前瞬间的动量大小为p =m 2gh ,与水泥或草地接触Δt 时间后,玻璃杯停下,在此过程中,玻璃杯的动量变化Δp =0-(-m 2gh )相同,再由动量定理可知(F -mg )·Δt =0-(-m 2gh ),所以F =m 2gh Δt+mg .由此可知,Δt 越小,玻璃杯所受撞击力越大,玻璃杯就越容易碎,玻璃杯掉在草地上作用时间较长,动量变化慢,作用力小,因此玻璃杯不易碎,故A 、B 错误,C 、D 正确.7.从高处跳到低处时,为了安全,一般都是先让脚尖着地,这样做是为了( )A .减小冲量B .减小动量的变化量C .增大与地面的冲击时间,从而减小冲力D .增大人对地面的压强,起到安全作用答案 C解析 脚尖先着地,接着逐渐到整只脚着地,延长了人落地时动量变化所用的时间,由动量定理可知,人落地动量变化一定,这样就减小了地面对人的冲力,故C 正确.8.如图2所示,一铁块压着一纸条放在水平桌面上,当以速度v 抽出纸条后,铁块掉到地面上的P 点,若以2v 速度抽出纸条,则铁块落地点( )图2A .仍在P 点B .在P 点左侧C .在P 点右侧不远处D .在P 点右侧原水平位移的两倍处答案 B解析 以2v 速度抽出纸条时,纸条对铁块作用时间减少,而纸条对铁块的摩擦力不变,故与以速度v 抽出相比,纸条对铁块的冲量I 减小,铁块获得的动量减小,平抛的速度减小,水平射程减小,故落在P 点的左侧.题组三 动量定理的定量计算9.质量为m 的钢球自高处落下,以速度大小v 1碰地,竖直向上弹回,碰撞时间极短,离地的速度大小为v 2.在碰撞过程中,地面对钢球的冲量的方向和大小为( )A .向下,m (v 1-v 2)B .向下,m (v 1+v 2)C .向上,m (v 1-v 2)D .向上,m (v 1+v 2)答案 D解析 物体以大小为v 1的竖直速度与地面碰撞后以大小为v 2的速度反弹.物体在与地面碰撞过程的初、末状态动量皆已确定.根据动理定理便可以求出碰撞过程中钢球受到的冲量.设垂直地面向上的方向为正方向,对钢球应用动量定理得Ft -mgt =mv 2-(-mv 1)=mv 2+mv 1. 由于碰撞时间极短,t 趋于零,则mgt 趋于零.所以Ft =m (v 2+v 1),即弹力的冲量方向向上,大小为m (v 2+v 1).10.质量为0.5 kg 的小球沿光滑水平面以5 m/s 的速度冲向墙壁后又以4 m/s 的速度反向弹回,如图3所示,若球跟墙的作用时间为0.05 s ,则小球所受到的平均力大小为________N.图3答案 90解析 选定小球与墙碰撞的过程,取v 1的方向为正方向,对小球应用动量定理得Ft =-mv 2-mv 1所以,F =-mv 2-mv 1t =-0.5×4-0.5×50.05 N =-90 N“-”号说明F 的方向与v 1的方向相反.11.如图4所示,质量为1 kg 的钢球从5 m 高处自由下落,又反弹到离地面3.2 m 高处,若钢球和地面之间的作用时间为0.1 s ,求钢球对地面的平均作用力大小.(g 取10 m/s 2)图4答案 190 N解析 钢球落到地面时的速度大小为v 0=2gh 1=10 m/s ,反弹时向上运动的速度大小为v t =2gh 2=8 m/s ,分析物体和地面的作用过程,取向上为正方向,因此有v 0的方向为负方向,v t 的方向为正方向,再根据动量定理得(N -mg )t =mv t -(-mv 0),代入数据,解得N =190 N ,由牛顿第三定律知钢球对地面的平均作用力大小为190 N.12.一辆轿车强行超车时,与另一辆迎面驶来的轿车相撞,两车车身因相互挤压,皆缩短了0.5 m ,据测算两车相撞前速度均为30 m/s ,则:(1)假设两车相撞时人与车一起做匀减速运动,试求车祸中车内质量约60 kg 的人受到的平均冲力是多大?(2)若此人系有安全带,安全带在车祸过程中与人体的作用时间是1 s ,求这时人体受到的平均冲力为多大?答案 (1)5.4×104 N (2)1.8×103 N解析 (1)两车相撞时认为人与车一起做匀减速运动直到停止,位移为0.5 m. 设运动的时间为t ,则由x =v 02t 得,t =2x v 0=130s. 根据动量定理得Ft =Δp =-mv 0,解得F =-mv 0t =-60×30130N =-5.4×104 N ,方向与运动方向相反. (2)若人系有安全带,则F ′=-mv 0t ′=-60×301N =-1.8×103 N ,方向与运动方向相反. 13.一质量为0.5 kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图5所示.物块以v 0=9 m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7 m/s ,碰后以6 m/s 的速度反向运动直至静止.g 取10 m/s 2.图5(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05 s ,求碰撞过程中墙面对物块平均作用力的大小F ;(3)求物块在反向运动过程中克服摩擦力所做的功W .答案 (1)0.32 (2)130 N (3)9 J解析 (1)对小物块从A 运动到B 处的过程中应用动能定理-μmgs =12mv 2-12mv 20 代入数值解得μ=0.32(2)取向右为正方向,碰后滑块速度v ′=-6 m/s 由动量定理得:F Δt =mv ′-mv解得F =-130 N其中“-”表示墙面对物块的平均力方向向左.(3)对物块反向运动过程中应用动能定理得-W =0-12mv ′2 解得W =9 J此文档是由网络收集并进行重新排版整理.word 可编辑版本!。

高中物理 第1章 动量守恒研究 第2节 动量守恒定律教师用书 鲁科版选修3-5

高中物理 第1章 动量守恒研究 第2节 动量守恒定律教师用书 鲁科版选修3-5

第2节动量守恒定律学习目标知识脉络1.知道牛顿运动定律和动量守恒定律的关系,能用牛顿运动定律推导动量守恒定律.(重点)2.理解动量守恒定律的确切含义和表达式.(重点)3.知道什么是反冲运动,了解它在实际中的简单应用.(重点)4.了解火箭的飞行原理和主要用途.(难点)动量守恒定律[先填空]1.动量守恒定律的内容:一个系统不受外力或者所受合外力为零,这个系统的总动量保持不变.2.动量守恒定律的成立条件(1)系统不受外力的作用.(2)系统受外力作用,但合外力为零.(3)系统受外力的作用,合外力也不为零,但合外力远小于内力.这种情况严格地说只是动量近似守恒,但却是最常见的情况.(4)系统受外力,但在某一方向上合外力为零,则系统在这一方向上,动量守恒.3.动量守恒定律的表达式(1)p=p′(系统相互作用前的总动量p等于相互作用后的总动量p′).(2)Δp1=-Δp2(相互作用的两个物体组成的系统,一个物体动量的变化量与另一个物体动量的变化量大小相等、方向相反.)(3)Δp=0(系统总动量的增量为零).(4)m1v1+m2v2=m1v1′+m2v2′(相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和).4.适用范围:动量守恒定律是自然界普遍适用的基本规律之一,不仅适用于低速、宏观物体的运动,而且适用于高速、微观物体的运动.[再判断](1)一个系统初、末状态动量大小相等,即动量守恒.(×)(2)两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒.(√)(3)系统动量守恒也就是系统的动量变化量为零.(√)[后思考]动量守恒定律可由牛顿运动定律和运动学公式(或动量定理)推导出来,那么二者的适用范围是否一样?【提示】牛顿运动定律适用于宏观物体、低速运动(相对光速而言),而动量守恒定律适用于任何物体,任何运动.[核心点击]1.研究对象:相互作用的物体组成的系统(1)系统:相互作用的几个物体所组成的整体.(2)内力:系统内各物体之间的相互作用力.(3)外力:系统外其他物体对系统的作用力.2.守恒条件的深入挖掘(1)系统不受外力作用.(2)系统受外力作用,但外力的合力为零.(3)系统受外力作用,合外力也不为零,但合外力远小于系统内力.这种情况严格地说只是动量近似守恒,但却是最常见的情况.(4)系统所受到的合外力不为零,但在某一方向上合外力为零,或在某一方向上外力比内力小得多,则系统在该方向上动量守恒.3.对“系统的总动量保持不变”的四点理解(1)系统的总动量指系统内各物体动量的矢量和;(2)总动量保持不变指的是大小和方向始终不变;(3)系统的总动量保持不变,但系统内每个物体的动量可能在不断变化;(4)系统在整个过程中任意两个时刻的总动量都相等,不能误认为只是初、末两个状态的总动量相等.4.动量守恒定律的四个特性(1)矢量性:动量守恒定律的表达式是一个矢量关系式,对作用前后物体的运动方向都在同一直线上的问题,要选取一个正方向,凡与正方向相同的动量取正值,与正方向相反的动量取负值,将矢量运算转化为代数运算.(2)相对性:应用动量守恒定律列方程时,各物体的速度和动量必须相对于同一参考系,通常以地面为参考系.(3)同时性:动量是状态量,动量守恒反映的是系统某两个状态的动量是相同的,应用动量守恒定律解题一定要注意同一时刻的动量才能相加,不是同一时刻的动量不能相加.(4)普遍性:动量守恒定律不仅适用于两个物体组成的系统,也适用于多个物体组成的系统,不仅适用于低速宏观物体组成的系统,也适用于高速微观粒子组成的系统.1.如图1­2­1所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是( )图1­2­1A.两手同时放开后,系统总动量始终为零B.先放开左手,后放开右手,此后动量不守恒C.先放开左手,后放开右手,总动量向左D.无论是否同时放手,只要两手都放开后,在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量一定为零E.只要不同时放手,系统总动量一定不为零【解析】当两手同时放开时,系统的合外力为零,所以系统的动量守恒,又因为开始时总动量为零,故系统总动量始终为零,选项A正确;先放开左手,左边的小车就向左运动,当再放开右手后,系统所受合外力为零,故系统的动量守恒,放开左手时总动量方向向左,放开右手后总动量方向也向左,故选项B、D错误,选项C、E均正确.【答案】ACE2.A、B两物体在光滑水平地面上沿一直线相向而行,A质量为5 kg,速度大小为10 m/s,B质量为2 kg,速度大小为5 m/s,它们的总动量大小为______ kg·m/s;两者相碰后,A沿原方向运动,速度大小为4 m/s,则B的速度大小为______ m/s.【解析】以A物体的速度方向为正方向.则v A=10 m/s,v B=-5 m/s,p=p A+p B=5×10 kg·m/s+2×(-5) kg·m/s=40 kg·m/s.碰撞后,由动量守恒定律得p=m A v A′+m B v B′,v B′=10 m/s,与A的速度方向相同.【答案】40 103.如图1­2­2所示为竖直放置的四分之一圆弧轨道,O点是其圆心,半径R=0.8 m.OA 水平、OB竖直,轨道底端距水平地面的高度h=0.8 m.从轨道顶端A由静止释放一个质量m=0.1 kg的小球,小球到达轨道底端B时,恰好与静止在B点的另一个相同的小球发生碰撞,碰后它们粘在一起水平飞出,落地点C与B点之间的水平距离x=0.4 m.忽略空气阻力,重力加速度g取10 m/s2.求:【导学号:18850005】图1­2­2(1)两球从B 点飞出时的速度大小v 2;(2)碰撞前瞬间入射小球的速度大小v 1;(3)从A 到B 的过程中小球克服阻力做的功W f .【解析】 (1)两球做平抛运动竖直方向上h =12gt 2 解得t =0.4 s水平方向上x =v 2t解得v 2=1 m/s.(2)两球碰撞,根据动量守恒定律mv 1=2mv 2解得v 1=2 m/s.(3)入射小球从A 运动到B 的过程中,根据动能定理mgR -W f =12mv 21-0 解得W f =0.6 J.【答案】 (1)v 2=1 m/s (2)v 1=2 m/s (3)W f =0.6 J关于动量守恒定律理解的三个误区(1)误认为只要系统初、末状态的动量相同,则系统动量守恒.产生误区的原因是没有正确理解动量守恒定律,系统在变化的过程中每一个时刻动量均不变,才符合动量守恒定律.(2)误认为两物体作用前后的速度在同一条直线上时,系统动量才能守恒.产生该错误认识的原因是没有正确理解动量守恒的条件,动量是矢量,只要系统不受外力或所受合外力为零,则系统动量守恒,系统内各物体的运动不一定共线.(3)误认为动量守恒定律中,各物体的动量可以相对于任何参考系.出现该误区的原因是没有正确理解动量守恒定律,应用动量守恒定律时,各物体的动量必须是相对于同一惯性参考系,一般情况下,选地面为参考系.反冲运动与火箭[先填空]1.反冲运动根据动量守恒定律,一个静止的物体在内力的作用下分裂为两个部分,一部分向某一个方向运动,另一部分向相反方向运动的现象.2.火箭(1)原理:火箭的飞行应用了反冲的原理,靠喷出气流的反作用来获得巨大速度.(2)影响火箭获得速度大小的因素:一是喷气速度,喷气速度越大,火箭能达到的速度越大;二是燃料质量越大,负荷越小,火箭能达到的速度也越大.3.反冲运动的应用和防止(1)灌溉喷水器、反击式水轮机、喷气式飞机、火箭等都是利用了反冲运动.(2)消防高压水枪、射击步枪等的反冲作用都必须采取措施加以防止.[再判断]1.反冲运动可以用动量守恒定律来解释.(√)2.一切反冲现象都是有益的.(×)3.章鱼、乌贼的运动利用了反冲的原理.(√)[后思考]假如在月球上建一飞机场,应配置喷气式飞机还是螺旋桨飞机呢?【提示】应配置喷气式飞机.喷气式飞机利用反冲原理,可以在真空中飞行,而螺旋桨飞机是靠转动的螺旋桨与空气的相互作用力飞行的,不能在真空中飞行.[核心点击]1.反冲运动的特点(1)物体的不同部分在内力作用下向相反方向运动.(2)反冲运动中,相互作用的内力一般情况下远大于外力,所以可以用动量守恒定律来处理.(3)反冲运动中,由于有其他形式的能转化为动能,所以系统的总动能增加.2.讨论反冲运动时应注意的问题(1)相对速度问题:在讨论反冲运动时,有时给出的速度是相互作用的两物体的相对速度.由于动量守恒定律中要求速度为对同一参考系的速度(通常为对地的速度),应先将相对速度转换成对地速度后,再列动量守恒定律的方程.(2)变质量问题:在讨论反冲运动时,还常遇到变质量物体的运动,如在火箭的运动过程中,随着燃料的消耗,火箭本身的质量不断减小,此时必须取火箭本身和在相互作用的短时间内喷出的所有气体为研究对象,取相互作用的这个过程为研究过程来进行研究.4.一枚火箭搭载着卫星以速率v 0进入太空预定位置,由控制系统使箭体与卫星分离.已知前部分的卫星质量为m 1,后部分的箭体质量为m 2,分离后箭体以速率v 2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v 1为________.图1­2­3【解析】 以速度v 0的方向为正方向,由动量守恒定律可得:(m 1+m 2)v 0=m 1v 1+m 2v 2,解得分离后卫星的速率v 1=v 0+m 2m 1(v 0-v 2). 【答案】 v 0+m 2m 1(v 0-v 2)5.质量为M 的热气球吊筐中有一质量为m 的人,共同静止在距地面为h 的高空中.现从气球上放下一根质量不计的软绳,为使此人沿软绳能安全滑到地面,则软绳至少有多长?【导学号:18850006】【解析】 如图所示,设绳长为L ,人沿软绳滑至地面的时间为t ,由图可知,L =x 人+x 球.设人下滑的平均速度为v 人,气球上升的平均速度为v 球,由动量守恒定律得:0=Mv 球-mv 人,即0=M ⎝ ⎛⎭⎪⎫x 球t -m ⎝ ⎛⎭⎪⎫x 人t ,又有x 人=h ,解以上各式得:L =M +m M h . 【答案】 M +m Mh“人船模型”及其应用1.“人船模型”问题:两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题.2.处理“人船模型”问题的两个关键(1)处理思路:利用动量守恒定律,先确定两物体的速度关系,再确定两物体通过的位移的关系.①用动量守恒定律求位移的题目,大都是系统原来处于静止状态,然后系统内物体相互作用,此时动量守恒表达式经常写成m 1v 1-m 2v 2=0的形式,式中v 1、v 2是m 1、m 2末状态时的瞬时速率.②此种状态下动量守恒的过程中,任意时刻的系统总动量为零,因此任意时刻的瞬时速率v 1和v 2都与各物体的质量成反比,所以全过程的平均速度也与质量成反比,即有m 1v 1-m 2v 2=0.③如果两物体相互作用的时间为t ,在这段时间内两物体的位移大小分别为x 1和x 2,则有m 1x 1t -m 2x 2t=0,即m 1x 1-m 2x 2=0. (2)画出各物体的位移关系图,找出它们相对地面的位移的关系.探究两物体相互作用前后总动量是否守恒[核心点击]1.实验器材气垫导轨、滑块(3块)、天平、光电门、数字毫秒表等2.实验步骤(1)将两个质量相等的滑块装上相同的挡光板,放在光滑气垫导轨的中部.两滑块靠在一起,压缩其间的弹簧,并用细线拴住,使滑块处于静止状态.烧断细线,两滑块被弹开并朝相反的方向通过光电门,记录挡光板通过光电门的时间,表示出滑块的速度,求出两滑块的总动量p =mv 1-mv 2,如图1­2­3所示.图1­2­3实验结果:两滑块的总动量p =0.(2)增加一滑块,质量与前两块相同,使弹簧一侧滑块的质量是另一侧的2倍,重复(1)步骤,求出两侧滑块的总动量p =mv 1-2mv 2.实验结果:两侧滑块的总动量p =0.(3)把气垫导轨的一半覆盖上牛皮纸,并用胶带固定后,用两块质量相等的滑块重复(1)步骤,求出滑块的总动量p =mv 1-mv 2.实验结果:两滑块的总动量p ≠0.3.实验结论(1)在光滑气垫导轨上无论两滑块质量是否相等,它们被弹开前的总动量为零,分开后的总动量也为零.(2)两滑块构成的系统受到牛皮纸的摩擦力后,两滑块的总动量发生了变化.6.某同学利用打点计时器和气垫导轨做验证动量守恒定律的实验.气垫导轨装置如图1­2­4(甲)所示,所用的气垫导轨装置由导轨、滑块、弹射架等组成.在空腔导轨的两个工作面上均匀分布着一定数量的小孔,向导轨空腔内不断通入压缩空气,压缩空气会从小孔中喷出,使滑块稳定地漂浮在导轨上,如图(乙)所示,这样就大大减少了因滑块和导轨之间的摩擦引起的误差.图1­2­4(1)下面是实验的主要步骤:①安装好气垫导轨,调节气垫导轨的调节旋钮,使导轨水平.②向气垫导轨通入压缩空气.③把打点计时器固定在紧靠气垫导轨左端弹射架的外侧,将纸带穿过打点计时器越过弹射架并固定在滑块1的左端,调节打点计时器的高度,直至滑块拖着纸带移动时,纸带始终在水平方向.④使滑块1挤压导轨左端弹射架上的橡皮绳.⑤把滑块2(所用滑块1、2如图(丙)所示)放在气垫导轨的中间.⑥先____________,然后____________,让滑块带动纸带一起运动.⑦取下纸带,重复步骤④⑤⑥,选出较理想的纸带如图(丁)所示.⑧用天平测得滑块1(包括撞针)的质量为310 g ,滑块2(包括橡皮泥)的质量为205 g .试完成实验步骤⑥的内容.(2)已知打点计时器每隔0.02 s 打一个点,试计算两滑块相互作用以前系统的总动量为________kg·m/s;两滑块相互作用以后系统的总动量为________kg·m/s.(保留三位有效数字).(3)试说明(2)问中两结果不完全相同的主要原因是_____________________.【解析】 (1)使用打点计时器时,应先接通电源,待打点计时器正常工作后,再放开滑块.(2)由纸带上打出的点迹可知两滑块相互作用前滑块1的速度v 1=20.0×10-20.02×5m/s =2 m/s.系统的总动量p 1=m 1v 1=0.310×2 kg·m/s=0.620 kg·m/s相互作用后,两滑块的速度v 2=16.8×10-20.02×7m/s =1.2 m/s. 系统的总动量p 2=(m 1+m 2)v 2=(310+205)×10-3×1.2 kg·m/s=0.618 kg·m/s.(3)系统相互作用前后的总动量不完全相同的主要原因是纸带与打点计时器的限位孔之间有摩擦.【答案】 (1)接通电源 放开滑块(2)0.620 0.618 (3)纸带与打点计时器限位孔之间有摩擦7.某同学用图1­2­5甲所示装置通过半径相同的A 、B 两球的碰撞来验证动量守恒定律,图中EQ 是斜槽,QR 为水平槽,实验时先使A 球从斜槽上某一固定位置G 由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹,重复上述操作10次,得到10个落点痕迹,再把B 球放在水平槽上靠近末端的地方,让A 球仍从位置G 由静止开始向下运动,和B球碰撞后,A、B球分别在记录纸上留下各自的落点痕迹,重复这种操作10次,O点是水平槽末端R在记录纸上的垂直投影点,B球落点痕迹如图乙所示,其中米尺水平放置,且平行于G、R、O所在的平面,米尺的零点与O点对齐.【导学号:18850007】甲乙图1­2­5(1)碰撞后B球的水平射程应取为________cm.(2)在以下选项中,哪些是本实验必须进行测量的?答________(填选项号).A.测量A球和B球的质量(或两球质量之比)B.测量G点相对于水平槽面的高度C.测量R点相对于水平地面的高度D.A球与B球碰撞后,测量A球落点位置M到O点的距离与B球落点N到O点的距离E.水平槽上未放B球时,测量A球落点位置P到O点的距离F.测量A球或B球的直径【解析】(1)用一个最小的圆圈包围10个点痕,圆心所对应的刻度是84.7 cm(84.5~84.9 cm).(2)根据本实验的实验原理表达式m A·OP=m A·OM+m B·ON,可知答案为A、D、E.【答案】(1)84.7(84.5~84.9) (2)ADE。

2020_2021学年高中物理第一章动量守恒研究第1节动量定理教案1鲁科版选修3_5

2020_2021学年高中物理第一章动量守恒研究第1节动量定理教案1鲁科版选修3_5

动量定理一、教学目标:〔一〕知识与技能:1、理解动量和动量的变化与其矢量性,会计算一维情况下的动量变化量。

2、理解冲量的概念,理解动量定理与其表达式。

3、能够利用动量定理解释有关现象和解决实际问题。

〔二〕过程与方法:1、培养学生的推理能力和说明说理能力。

2、学会用动量定理解释现象和处理问题。

〔三〕情感态度与价值观:培养学生学习物理的兴趣,激发其探求知识的欲望和学习的积极性、主动性,领悟科学研究的根本方法。

二、教学重点、难点:〔一〕教学重点:动量定理的推导与理解〔二〕教学难点:应用动量定理解释实际问题三、教学过程〔一〕回顾根底知识1、冲量〔I〕:在物理学中,物体受到的力与力的作用时间的乘积叫做力的冲量。

I=F·t,单位—牛·秒〔N·S〕它是矢量,方向与力的方向一样。

物理意义:描述力在时间上的累积效应。

2、动量〔P 〕:运动物体的质量与它的速度的乘积叫做物体的动量。

P=mv 单位:千克米每秒〔kg ·ms-1〕, 它是矢量,方向与速度的方向一样。

物理意义:描述物体的运动状态。

3、动量的变化(1)定义:物体的末动量与初动量之矢量差叫做物体动量的变化。

(2)表达式:v m p p p ∆=-=∆12(3)动量变化的三种情况:大小变化、方向改变或大小和方向都改变。

对△P 理解要点:①动量变化△p 是矢量。

方向与速度变化量△v 一样。

②一维情况下:12mv mv v m p -=∆=∆ ,是矢量差,需要先规定正方向。

〔二〕演示引入新课演示:粉笔落地让粉笔从一样的高度分别落到水泥地上和垫有厚布的地上,观察会有怎样的现象发生。

结果:落在水泥地上的粉笔断了,而落在垫有厚布的地上却没有断在日常生活中,有不少这样的事例:跳远时要跳在沙坑里;跳高时在下落处要放海绵垫子;从高处往下跳,落地后双腿往往要弯曲;轮船边缘与轮渡的码头上都装有橡皮轮胎等。

这样做的目的是为了缓冲。

而在某些情况下,我们又不希望缓冲,比如用铁锤钉钉子。

高中物理 第1章 动量守恒研究 实验 验证动量守恒定律教学案 鲁科版选修3-5-鲁科版高二选修3-5

高中物理 第1章 动量守恒研究 实验 验证动量守恒定律教学案 鲁科版选修3-5-鲁科版高二选修3-5

实验验证动量守恒定律一、实验目的验证碰撞中的动量守恒.二、实验原理1.质量为m1和m2的两个小球发生正碰,假设碰前m1运动,m2静止,根据动量守恒定律应有:m1v1=m1v1′+m2v2′.2.因小球从斜槽上滚下后做平抛运动,由平抛运动知识可知,只要小球下落的高度相同,在落地前运动的时间就相同.那么小球的水平速度假设用飞行时间作时间单位,在数值上就等于小球飞出的水平距离.所以只要测出小球的质量及两球碰撞前后飞出的水平距离,代入公式,即m1OP=m1OM+m2ON.假设在实验误差允许X围内成立,就验证了两小球组成的系统碰撞前后总动量守恒.式中OP、OM和ON的意义如下图.三、实验器材斜槽,大小相等质量不同的小钢球两个,重垂线一条,白纸,复写纸,天平一台,刻度尺,圆规,三角板.四、实验步骤1.用天平测出两小球的质量,并选定质量大的小球为碰撞球.2.按照图所示安装实验装置,调整固定斜槽,调整时应使斜槽末端水平.3.白纸在下,复写纸在上且在适当位置铺放好,记下重垂线所指的位置O.4.不放被碰小球,让入射小球从斜槽上某固定高度处自由滚下,重复10次,用圆规画尽量小的圆把所有的小球落点圈在里面.圆心P就是小球落点的平均位置.5.把被碰小球放在槽口上,让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤4的方法,标出碰后入射小球落点的平均位置M和被碰小球落点的平均位置N,如下图.6.连接ON,测量线段OP、OM、ON的长度,将测量数据填入表中,最后代入m1OP=m1OM +m2ON,看在误差允许的X围内是否成立.五、须知1.斜槽轨道末端的切线必须水平,判断是否水平的方法是将小球放在斜槽轨道平直部分任一位置,假设小球均能保持静止,那么说明斜槽末端已水平.2.入射小球每次都必须从斜槽轨道同一位置由静止释放,可在斜槽适当高度处固定一挡板,使小球靠着挡板,然后释放小球.3.入射球的质量应大于被碰球的质量.4.实验过程中确保实验桌、斜槽、记录所用的白纸的位置要始终保持不变.5.在计算时一定要注意m1、m2与OP、OM和ON的对应关系.6.应尽可能的在斜槽较高的地方由静止释放入射小球.六、误差分析1.小球落点位置确定的是否准确是产生误差的一个原因,因此在确定落点位置时,应严格按步骤中的4、5去做.2.入射小球每次是否从同一高度无初速度滑下是产生误差的另一原因.3.两球的碰撞假设不是对心正碰那么会产生误差.4.线段长度的测量产生误差.5.入射小球释放的高度太低,两球碰撞时内力较小也会产生误差.实验的操作与数据处理如图,用“碰撞实验器〞可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系.(1)实验中,直接测定小球碰撞前后的速度是不容易的,但是,可以通过仅测量________(填选项前的序号),间接地解决这个问题.A .小球开始释放高度hB .小球抛出点距地面的高度HC .小球做平抛运动的射程(2)图中O 点是小球抛出点在地面上的垂直投影.实验时,先让入射球m 1多次从斜轨上S 位置静止释放,找到其平均落地点的位置P ,测量平抛射程OP .然后,把被碰小球m 2静置于轨道的水平部分,再将入射球m 1从斜轨上S 位置静止释放,与小球m 2相碰,并多次重复.接下来要完成的必要步骤是________.(填选项前的符号)A .用天平测量两个小球的质量m 1、m 2B .测量小球m 1开始释放的高度hC .测量抛出点距地面的高度HD .分别找到m 1、m 2相碰后平均落地点的位置M 、NE .测量平抛射程OM 、ON(3)假设两球相碰前后的动量守恒,其表达式可表示为______________________________(用(2)中测量的量表示);假设碰撞是弹性碰撞,那么还应满足的表达式为________________(用(2)中测量的量表示).(4)经测定,m 1=45.0 g ,m 2=7.5 g ,小球落地点的平均位置距O 点的距离如下图.碰撞前、后m 1的动量分别为p 1与p 1′,那么p 1∶p 1′=________∶11;假设碰撞结束时m 2的动量为p 2′,那么p 1′∶ p 2′=11∶________.实验结果说明,碰撞前、后总动量的比值p 1p 1′+p 2′为________. (5)有同学认为,在上述实验中仅更换两个小球的材质,其他条件不变,可以使被碰小球做平抛运动的射程增大,请你用(4)中的数据,分析和计算出被碰小球m 2平抛运动射程ON 的最大值为________cm .[思路点拨] 此题可根据平抛运动、能量守恒定律等知识求解.[解析] (1)该实验是验证动量守恒定律,也就是验证两球碰撞前后动量是否相等,即验证m 1v 1=m 1v 1′+m 2v 2′,由题图中装置可以看出,不放被碰小球m 2时,m 1从抛出点下落高度与放上m 2两球相碰后下落的高度H 相同,即在空中做平抛运动的下落时间t 相同,故有v 1=OP t ,v 1′=OM t ,v 2′=ON t,代入m 1v 1=m 1v 1′+m 2v 2′,可得m 1·OP =m 1·OM +m 2·ON ,只需验证该式成立即可,在实验中不需测出速度,只需测出小球做平抛运动的水平位移即可. (2)需先找出落地点才能测量小球的水平位移,测量小球的质量无先后之分. (3)假设是弹性碰撞,还应满足能量守恒, 即12m 1v 21=12m 1v 1′2+12m 2v 2′2, 即m 1·OP 2=m 1·OM 2+m 2·ON 2.(4)p 1p 1′=m 1·OP m 1·OM =OP OM =44.835.2=14∶11. p 1′p 2′=m 1·OM m 2·ON =45.0×35.207.5×55.68=11∶2.9. p 1p 1′+p 2′=m 1·OP m 1·OM +m 2·ON=45.0×44.8045.0×35.20+7.5×55.68≈1(1~1.01均可). (5)当两球发生弹性碰撞时,碰后m 2的速度最大,射程最大,由m 1·OP =m 1·OM +m 2·ON 与m 1·OP 2=m 1·OM 2+m 2·ON 2可解出ON 的最大值为76.8 cm .[答案] (1)C (2)ADE 或DEA 或DAE(3)m 1·OM +m 2·ON =m 1·OPm 1·OM 2+m 2·ON 2=m 1·OP 2 (4)14 2.9 1(1~1.01均可)(5)76.8实验的改进与创新如下图为气垫导轨上两个滑块A 、B 相互作用后运动过程的频闪照片,频闪的频率为10 Hz .开始时两个滑块静止,它们之间有一根被压缩的轻弹簧,滑块用绳子连接,绳子烧断后,两个滑块向相反方向运动.滑块A 、B 的质量分别为200 g 、300 g ,根据照片记录的信息,A 、B 离开弹簧后,A 滑块做________运动,其速度大小为________m /s ,本实验中得出的结论是________________________________________________________________________________________________________________________________________________.[解析] 由题图可知,A 、B 离开弹簧后,均做匀速直线运动,开始时v A =0,v B =0,A 、B 被弹开后,v A ′=0.09 m /s ,v B ′=0.06 m /s ,m A v A ′=0.2×0.09 kg ·m /s =0.018 kg ·m /sm B v B ′=0.3×0.06 kg ·m /s =0.018 kg ·m /s 由此可得:m A v A ′=m B v B ′,即0=m B v B ′-m A v A ′结论:两滑块组成的系统在相互作用过程中质量与速度乘积的矢量和守恒.[答案] 匀速直线 0.09 两滑块组成的系统在相互作用过程中质量与速度乘积的矢量和守恒1.(多项选择)在利用气垫导轨探究碰撞中的不变量实验中,哪些因素可导致实验误差( )A .导轨安放不水平B .小车上挡光板倾斜C .两小车质量不相等D .两小车碰后连在一起解析:选AB .选项A 中,导轨不水平,小车速度将受重力的影响,从而导致实验误差;选项B 中,挡光板倾斜会导致挡光板宽度不等于挡光阶段小车通过的位移,使计算速度出现误差,所以答案应为A 、B .2.(多项选择)在做利用悬线悬挂等大的小球探究碰撞中的不变量的实验中,以下说法正确的选项是( )A .悬挂两球的细线长度要适当且等长B .由静止释放小球以便较准确地计算小球碰前的速度C .两小球必须都是刚性球且质量相同D .两小球碰后可以粘合在一起共同运动解析:选ABD .两线等长能保证两球正碰,也就是对心碰撞,以减小实验误差,所以A正确.由于计算碰撞前速度时用到了mgh =12mv 2-0,即初速度为0时碰前的速度为v =2gh ,B 正确.本实验中对小球的材质性能无要求,C 错误.两球正碰后,有各种运动情况,所以D 正确.3.(多项选择)在用打点计时器做“探究碰撞中的不变量〞实验时,以下哪些操作是正确的( )A .相互作用的两车上,一个装上撞针,一个装上橡皮泥,是为了改变两车的质量B .相互作用的两车上,一个装上撞针,一个装上橡皮泥,是为了碰撞后粘在一起C .先接通打点计时器的电源,再释放拖动纸带的小车D .先释放拖动纸带的小车,再接通打点计时器的电源 解析:选BC .车的质量可以用天平测量,没有必要一个用撞针而另一个用橡皮泥配重.这样做的目的是为了碰撞后两车粘在一起有共同速度,选项B 正确;打点计时器的使用原那么是先接通电源,C 项正确.4.在利用平抛运动做“探究碰撞中的不变量〞实验中,安装斜槽轨道时,应让斜槽末端的切线保持水平,这样做的目的是( )A .入射球得到较大的速度B .入射球与被碰球对心碰撞后速度均为水平方向C .入射球与被碰球碰撞时动能无损失D .入射球与被碰球碰撞后均能从同一高度飞出解析:选B .实验中小球能水平飞出是实验成功的关键,只有这样才能使两个小球在空中运动时间相等.5.“探究碰撞中的不变量〞的实验中,入射小球质量m 1=15 g ,原来静止的被碰小球质量m 2=10 g ,由实验测得它们在碰撞前后的x -t 图象如下图,由图可知,入射小球碰撞前的m 1v 1是________,入射小球碰撞后的m 1v ′1是________,被碰小球碰撞后的m 2v ′2是________.由此得出结论________________________________________________________________________.解析:由题图可知碰撞前m 1的速度大小v 1=0.20.2m/s =1 m/s 故碰撞前的m 1v 1=0.015×1 kg ·m/s =0.015 kg ·m/s碰撞后m 1的速度大小v ′1=0.3-0.20.4-0.2m/s =0.5 m/s m 2的速度大小v ′2=0.35-0.20.4-0.2m/s =0.75 m/s 故m 1v ′1=0.015×0.5 kg ·m/s =0.007 5 kg ·m/sm2v′2=0.01×0.75 kg·m/s=0.007 5 kg·m/s可知m1v1=m1v′1+m2v′2.答案:0.015 kg·m/s 0.007 5 kg·m/s0.007 5 kg·m/s 碰撞中mv的矢量和是守恒的量6.用如下图的装置可以完成“探究碰撞中的不变量〞实验.(1)假设实验中选取的A、B两球半径相同,为了使A、B发生一维碰撞,应使两球悬线长度________,悬点O1、O2之间的距离等于________.(2)假设A、B两球的半径不相同,利用本装置能否完成实验?如果你认为能完成,请说明如何调节?解析:(1)为了保证一维碰撞,碰撞点应与两球在同一条水平线上.故两球悬线长度相等,O1、O2之间的距离等于球的直径.(2)如果两球的半径不相等,也可完成实验.调整装置时,应使O1、O2之间的距离等于两球的半径之和,两球静止时,球心在同一水平高度上.答案:(1)相等球的直径(2)见解析7.把两个大小相同、质量不等的金属球用细线连接起来,中间夹一被压缩了的轻弹簧,置于摩擦可以忽略不计的水平桌面上,如下图,现烧断细线,观察两球的运动情况,进行必要的测量,探究物体间发生相互作用时的不变量.测量过程中:(1)还必须添加的器材有________________________________________________________________________.(2)需直接测量的数据是________________________________________________________________________.解析:两球被弹开后,分别以不同的速度离开桌面做平抛运动,两球做平抛运动的时间相等,均为t=2hg(h为桌面离地的高度).根据平抛运动规律,由两球落地点距抛出点的水平距离x=v·t,知两物体水平速度之比等于它们的射程之比,即v1∶v2=x1∶x2,因此本实验中只需测量x1、x2即可.测量x1、x2时需准确记下两球落地点的位置,故需要直尺、纸、复写纸、图钉、细线、铅锤和木板等.假设要探究m1x1=m2x2或m1x21=m2x22或x1m1=x2m2是否成立,还需要用天平测量两球的质量m1、m2.答案:(1)直尺、纸、复写纸、图钉、细线、铅锤、木板、天平(2)两球的质量m1、m2以及它们做平抛运动的射程x1、x28.某同学设计了一个用打点计时器探究碰撞过程中不变量的实验:在小车甲的前端粘有橡皮泥,推动小车甲使之做匀速直线运动.然后与原来静止在前方的小车乙相碰并粘合成一体,而后两车继续做匀速直线运动,他设计的具体装置如下图.在小车甲后连着纸带,打点计时器打点频率为50 Hz,长木板下垫着小木片用以平衡摩擦力.(1)假设已得到打点纸带如下图,并测得各计数点间距并标在图上,A为运动起始的第一点,那么应选________段计算小车甲的碰前速度,应选________段来计算小车甲和乙碰后的共同速度(以上两空选填“AB〞“BC〞“CD〞或“DE〞).(2)已测得小车甲的质量m甲=0.40 kg,小车乙的质量m乙=0.20 kg,由以上测量结果可得:碰前m甲v甲+m乙v乙=________kg·m/s;碰后m甲v′甲+m乙v′乙=________kg·m/s.(3)通过计算得出的结论是什么?________________________________________________________________________ ________________________________________________________________________ 解析:(1)观察打点计时器打出的纸带,点迹均匀的阶段BC应为小车甲与乙碰前的阶段,CD段点迹不均匀,故CD应为碰撞阶段,甲、乙碰撞后一起匀速直线运动,打出间距均匀的点,故应选DE段计算碰后共同的速度.(2)v甲=BCΔt=1.05 m/s,v′=DEΔt=0.695 m/sm甲v甲+m乙v乙=0.420 kg·m/s碰后m甲v′甲+m乙v′乙=(m甲+m乙)v′=0.60×0.695 kg·m/s=0.417 kg·m/s.(3)在误差允许X围内,碰撞前后两个小车的mv之和是相等的.答案:(1)BCDE(2)0.420 0.417(3)在误差允许X围内,碰撞前后两个小车的mv之和是相等的。

鲁科版物理选修3-5 第1章 动量守恒研究 第2节 动量守恒定律 第1课时

鲁科版物理选修3-5 第1章 动量守恒研究 第2节 动量守恒定律 第1课时

2.讨论反冲运动应注意的两个问题 (1)速度的反向性 对于原来静止的整体,抛出部分具有速度时,剩 余部分的反冲速度方向与抛出部分的速度方向必然相 反. (2)速度的相对性 一般都指对地速度.
【例4】 质量相等的A、B两球之间压缩一根轻质弹簧, 静置于光滑水平桌面上,当用板挡住小球A而只释放B球时, B球被弹出落到距桌边水平距离为s的地面上,如图所 示.若再次以相同力压缩该弹簧,取走A左边的挡板,将A、 B同时释放,则B球的落地点距桌边 ( )
想一想 如图所示,在风平浪静的水面上,停着一艘 帆船,船尾固定一台电风扇,正在不停地把风吹向帆 面,船能向前行驶吗?为什么?
• 答案 不能.把帆船和电风扇看做一个系统,电风扇 和帆船受到空气的作用力大小相等、方向相反,这是 一对内力,系统总动量守恒,船原来是静止的,总动 量为零,所以在电风扇吹风时,船仍保持静止.
s A. 2 C.s
B. 2s 2 D. s 2
答案 D
解析 挡板挡住A球时,弹簧的弹性势能全部转化为B球的动
1 2 能,有Ep= mv B ,挡板撤走后,由于两球及弹簧系统机械能守 2 恒,弹性势能转化为两球的动能,且二者动能相等,则有Ep= 1 2 2 2× mvB′ ,由以上两式解得vB′= v ,由于B球抛出后做 2 2 B 平抛运动,s=v0t=v0 2t g 所以D对.
针对训练2 (2014·福建高考)一枚火箭搭载着卫星以速 率v0进入太空预定位置,由控制系统使箭体与卫星分 离.已知前部分的卫星质量为m1,后部分的箭体质量 为m2,分离后箭体以速率v2沿火箭原方向飞行,若忽 略空气阻力及分离前后系统质量的变化,则分离后卫 星的速率v1为________.(填选项前的字母)
解析 碰撞过程中,两小球组成的系统所受合外力为零,动 量守恒.设向右为正方向,则各小球速度为 v1= 30 cm/s, v2 =-10 cm/s;v2′=0. 由动量守恒定律列方程m1v1+m2v2=m1v1′+m2v2′, 代入数据得v1′=-20 cm/s. 故小球m1碰后的速度的大小为20 cm/s,方向向左.

高中物理 第1章 动量守恒研究 第3讲 实验 探究动量是

高中物理 第1章 动量守恒研究 第3讲 实验 探究动量是

第3讲 实验 探究动量是否守恒实验目的:探究物体碰撞前后两物体组成的系统总动量的关系.实验器材:气垫导轨、滑块(3块)、弹片、天平、光电门、数字毫秒计.实验过程:实验一:实验装置如图1所示,用天平称出两质量相等的滑块,装上相同的挡光板,放在气垫导轨的中部.两滑块靠在一起,用细线拴住后中间压入弹片,处于静止状态.烧断细线,两滑块被弹开并朝相反的方向通过光电门,记录挡光板通过光电门的时间,由v =Δl Δt计算滑块的速度,求出两滑块的总动量p =mv 1-mv 2.图1计算p 的值,并与分开前的总动量比较得出结论.实验二:增加其中一个滑块的质量,使其质量是另一侧的2倍,重复实验一的操作,求出两侧滑块的总动量p =mv 1-2mv 2.计算p 的值,并与分开前的总动量比较,得出结论.实验三:把气垫导轨的一半覆盖上牛皮纸,并用胶带固定后,用两块质量相等的滑块,重复实验一的操作,求出两滑块的总动量p =mv 1-mv 2.计算p 的值,并与分开前的总动量比较,得出结论.结论:(1)在光滑气垫导轨上无论两滑块质量是否相等,它们被弹开前的总动量为零,弹开后的总动量也为零.(2)两滑块构成的系统受到牛皮纸的摩擦力(外力)后,两滑块相互作用后的总动量不为零,即碰撞前后的总动量发生了变化.温馨提示 要探究两物体碰撞前后总动量是否守恒,需要测出相互作用前两物体的总动量和相互作用后两物体的总动量.要测动量,需要测出两个物体的质量,质量可以利用天平测量,还要测出相互作用前后两物体运动的速度,速度可以在气垫导轨上利用光电门和数字毫秒计计时测量.例1 现利用图2(a)所示的装置验证动量守恒定律.在图2(a)中,气垫导轨上有A 、B 两个滑块,滑块A 右侧带有一弹簧片,左侧与打点计时器(图中未画出)的纸带相连;滑块B 左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间.图2实验测得滑块A 的质量m 1=0.310 kg ,滑块B 的质量m 2=0.108 kg ,遮光片的宽度d =1.00 cm ;打点计时器所用交流电的频率f =50.0 Hz.将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰.碰后光电计时器显示的时间为Δt B =3.500 ms ,碰撞前后打出的纸带如图2(b)所示.若实验允许的相对误差绝对值(|碰撞前后总动量之差碰前总动量|×100%)最大为5%,本实验是否在误差范围内验证了动量守恒定律?写出运算过程.答案 见解析解析 滑块运动的瞬时速度大小v 为v =Δs Δt① 式中Δs 为滑块在时间Δt 内走过的路程.设纸带上打出相邻两点的时间间隔为T ,则T =1f=0.02 s② 设在A 碰撞前后瞬时速度大小分别为v 0、v 1,则由图给实验数据代入①式可得:v 0=4.00×10-20.02m/s =2.00 m/s③ v 1=1.94×10-20.02m/s =0.970 m/s④ 设B 在碰撞后的速度大小为v 2,由①式有 v 2=d Δt B⑤ 代入题中所给的数据可得:v 2=2.86 m/s⑥设两滑块在碰撞前后的动量分别为p 和p ′,则p =m 1v 0⑦p ′=m 1v 1+m 2v 2⑧两滑块在碰撞前后总动量相对误差的绝对值为δγ=|p -p ′p|×100%⑨ 联立③④⑥⑦⑧⑨式并代入有关数据,可得:δγ=1.7%<5%⑩因此,本实验在允许的误差范围内验证了动量守恒定律.例2 某同学利用气垫导轨探究两物体作用前后动量是否守恒,气垫导轨装置如图3所示,所用的气垫导轨装置由导轨、滑块、弹射架、光电门等组成.图3(1)下面是实验的主要步骤:①安装好气垫导轨,调节气垫导轨的调节旋钮,使导轨水平;②向气垫导轨通入压缩空气;③接通光电计时器;④把滑块2静止放在气垫导轨的中间;⑤滑块1挤压导轨左端弹射架上的橡皮绳;⑥释放滑块1,滑块1通过光电门1后与左侧固定弹簧的滑块2碰撞,碰后滑块1和滑块2依次通过光电门2,两滑块通过光电门后依次被制动;⑦读出滑块通过两个光电门的挡光时间分别为滑块1通过光电门1的挡光时间Δt 1=10.01 ms ,通过光电门2的挡光时间Δt 2=49.99 ms ,滑块2通过光电门2的挡光时间Δt 3=8.35 ms ;⑧测出挡光片的宽度d =5 mm ,测得滑块1(包括撞针)的质量为m 1=300 g ,滑块2(包括弹簧)质量为m 2=200 g ;(2)数据处理与实验结论:①实验中气垫导轨的作用是:A.________________________________________________,B .__________________________.②碰撞前滑块1的速度v 1为________m/s ;碰撞后滑块1的速度v 2为________m/s ;滑块2的速度v 3为________m/s ;(结果保留两位有效数字)③在误差允许的范围内,通过本实验,同学们能否得出两物体相互作用前后总动量是守恒的? 答案 (2)①A.大大减小了因滑块和导轨之间的摩擦而引起的误差B .保证两个滑块的碰撞是一维的②0.50 0.10 0.60③能解析①A.大大减小了因滑块和导轨之间的摩擦而引起的误差.B.保证两个滑块的碰撞是一维的.②滑块1碰撞之前的速度v1=dΔt1=5×10-310.01×10-3m/s=0.50 m/s;滑块1碰撞之后的速度v2=dΔt2=5×10-3-49.99×10-3m/s=0.10 m/s;滑块2碰撞后的速度v3=dΔt3=5×10-38.35×10-3m/s=0.60 m/s;③两物体相互作用前后总动量守恒.原因:系统碰撞之前的质量与速度的乘积m1v1=0.15 kg·m/s,系统碰撞之后的质量与速度的乘积之和m1v2+m2v3=0.15 kg·m/s1.利用气垫导轨“探究两物体相互作用前后动量是否守恒”时,不需要测量的物理量是( )A.滑块的质量 B.挡光时间C.挡光片的宽度 D.滑块移动的距离答案 D解析根据实验原理可知,滑块的质量、挡光时间、挡光片的宽度都是需要测量的物理量,其中滑块的质量用天平测量,挡光时间用光电计时器测量,挡光片的宽度可事先用刻度尺测量;只有滑块移动的距离不需要测量,故选项D正确.2.某同学设计了一个用打点计时器“探究两物体作用前后动量是否守恒”实验:在小车A 的前端粘有橡皮泥,推动小车A使之做匀速运动,然后与原来静止在前方的小车B相碰并粘合成一体,继续做匀速运动.他设计的实验具体装置如图4所示,在小车A后连着纸带,电磁打点计时器使用的电源频率为50 Hz,长木板下垫着小木片用以平衡摩擦力.图4(1)若实验已得到的打点纸带如图5所示,并测得各计数点间距(标在图上),则应该选________段来计算A的碰撞前速度;应选________段来计算A和B碰后的共同速度(选填“AB”、“BC”、“CD”或“DE”).图5(2)已测得小车A的质量m A=0.40 kg,小车B的质量m B=0.20 kg.由以上测量结果可得:碰前总动量m A v A=______kg·m/s;碰后总动量:(m A+m B)v共=______kg·m/s.由此可得结论:在实验允许的范围内,两物体的总动量________.(本题计算结果均保留三位有效数字)答案(1)BC DE(2)0.420 0.417 守恒解析(1)小车碰前做匀速直线运动,打出纸带上的点应该是间距均匀的,故计算小车碰前的速度应选BC段.CD段上所打的点由稀变密,可见在CD段A、B两小车相互碰撞.A、B碰撞后一起做匀速直线运动,所以打出的点又是间距均匀的,故应选DE段计算碰后的速度.(2)碰撞前:v A=BCΔt=0.10500.1m/s=1.05 m/s,碰撞后:v A′=v B′=v共=DEΔt=0.069 50.1m/s=0.695 m/s.碰撞前:m A v A=0.40×1.05 kg·m/s=0.420 kg·m/s碰撞后:(m A+m B)v共=0.60×0.695 kg·m/s=0.417 kg·m/s由于0.420≈0.417由此得出的结论是在误差允许的范围内,一维碰撞过程中,两物体的速度与质量的乘积的和保持不变,即作用前后动量守恒.(时间:60分钟)1.用图1所示装置研究碰撞中的不变量,气垫导轨水平放置,挡光板宽度9.0 mm,两滑块被弹簧弹开后,左侧滑块通过左侧光电计时器,记录时间为0.040 s,右侧滑块通过右侧光电计时器,记录时间为0.060 s,左侧滑块质量为100 g,左侧滑块m1v1大小为________g·m/s,右侧滑块质量为150 g,两滑块质量与速度乘积的矢量和m1v1+m2v2=________g·m/s.实验结论是________________.图1 答案 22.5 0 相互作用前后两滑块的总动量相等解析 左侧滑块的速度大小为:v 1=d 1t 1=9.0×10-3 m 0.040 s=0.225 m/s 则左侧滑块m 1v 1=100 g×0.225 m/s=22.5 g·m/s右侧滑块的速度大小为:|v 2|=d 2t 2=9.0×10-30.060m/s =0.15 m/s则右侧滑块m 2v 2=150 g×(-0.15 m/s)=-22.5 g·m/s可见在误差允许的范围内两滑块m 1v 1+m 2v 2=0.2.如图2所示为气垫导轨上两个滑块A 、B 相互作用后运动过程的频闪照片,频闪的频率为10 Hz ,开始时两个滑块静止,它们之间有一根被压缩的轻弹簧,滑块用绳子连接,绳子烧断后,两个滑块向相反方向运动.已知滑块A 、B 的质量分别为200 g 、300 g ,根据照片记录的信息,A 、B 离开弹簧后,A 滑块做____________运动,其速度大小为________m/s ,本实验中得出的结论是_____________________________________________________________.图2答案 匀速 0.09 两物体的总动量守恒解析 绳子烧断前:v A =0,v B =0,所以有m A v A +m B v B =0绳子烧断后:v A ′=0.09 m/s ,v B ′=0.06 m/s规定向右为正方向,则有m A v A ′+m B v B ′=0.2×(-0.09)kg·m/s+0.3×0.06 kg·m/s=0则由以上计算可知:m A v A +m B v B =m A v A ′+m B v B ′.3.如图3所示,在实验室用两端带竖直挡板C 、D 的气垫导轨和带固定挡板的质量都是M 的滑块A 、B ,做探究动量是否守恒的实验:图3(1)把两滑块A 和B 紧贴在一起,在A 上放质量为m 的砝码,置于导轨上,用电动卡销卡住A 和B ,在A 和B 的固定挡板间放一弹簧,使弹簧处于水平方向上的压缩状态.(2)按下电钮使电动卡销放开,同时启动两个记录两滑块运动时间的电子计时器,当A 和B 与挡板C 和D 碰撞同时,电子计时器自动停表,记下A 运动至C 的时间t 1,B 运动至D 的时间t 2.(3)重复几次取t 1、t 2的平均值.请回答以下几个问题:①在调整气垫导轨时应注意______________________________________________________; ②应测量的数据还有____________________________________________________________; ③作用前A 、B 两滑块的动量之和为________,作用后A 、B 两滑块的动量之和为________. 答案 (3)①用水平仪测量并调试使得导轨水平②A 至C 的距离L 1、B 至D 的距离L 2③0 (M +m )L 1t 1-M L 2t 2解析 ①为了保证滑块A 、B 作用后做匀速直线运动,必须使气垫导轨水平,需要用水平仪加以调试.②要求出A 、B 两滑块在卡销放开后的速度,需测出A 至C 的时间t 1和B 至D 的时间t 2,并且要测量出两滑块到挡板的运动距离L 1和L 2,再由公式v =s t 求出其速度.③设向左为正方向,根据所测数据求得两滑块的速度分别为v A =L 1t 1,v B =-L 2t 2.碰前两滑块静止,v =0,动量之和为0;碰后两滑块的动量之和为(M +m )L 1t 1-M L 2t 2.4.某同学设计如图4(甲)所示的装置,通过半径相同的A 、B 两球的碰撞来探究碰撞过程中的不变量,图中PQ 是斜槽,QR 为水平槽,实验时先使A 球从斜槽上某一固定位置G 由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹.重复上述操作10次,得到10个落点痕迹,再把B 球放在水平槽上靠近槽末端的地方,让A 球仍从位置G 由静止开始滚下,和B 球碰撞后,A 、B 球分别在记录纸上留下各自的落点痕迹,重复这种操作10次.图中O 点是水平槽末端R 在记录纸上的垂直投影点,B 球落点痕迹如图(乙)所示,其中米尺水平放置,且平行于G 、R 、O 所在的平面,米尺的零点与O 点对齐.图4(1)碰撞后B 球的水平射程是________cm.(2)在以下的选项中,本次实验必须进行的测量是________.A.水平槽上未放B球时,A球落点位置到O点的距离B.A球与B球碰撞后,A、B两球落点位置到O点的距离C.A、B两球的质量D.G点相对于水平槽面的高度(3)若本实验中测量出未放B球时A球落点位置到O点的距离为x A,碰撞后A、B两球落点位置到O点的距离分别为s A′、s B′,A、B两球的质量分别为m A、m B,已知A、B两球半径均为r,则通过式子________________即可验证A、B两球碰撞中的不变量.答案(1)65.0(64.5~65.5均可) (2)ABC(3)m A s A=m A s A′+m B s B′解析(1)由于偶然因素的存在,重复操作时小球的落点不可能完全重合,如图(乙)所示,处理的办法是用一个尽可能小的圆将“所有落点位置”包括在内(其中误差较大的位置可略去),此圆的圆心即可看做小球10次落点的平均位置,则碰撞后B球的水平射程等于圆心到O点的距离,由图(乙)可得此射程约为65.0 cm.(2)由于A、B离开水平槽末端后均做平抛运动,平抛高度相同,运动时间相等,因此可以用平抛运动的水平位移表示小球做平抛运动的初速度,没有必要测量G点相对于水平槽面的高度,故A、B均正确,D错误;要验证碰撞前后质量与速度的乘积是否守恒,必须测量A、B 两球的质量,C正确.(3)依题意知,碰撞前A球做平抛运动的水平位移为x A,碰撞后A、B做平抛运动的水平位移分别为x A′、x B′,由于碰撞前、后两球做平抛运动的时间相等,因此通过式子m A x A=m A x A′+m B x B′即可验证A、B两球碰撞中的不变量.5.如图5所示,A、B两摆摆长分别为L1和L2,摆球质量分别为m1和m2,且m1<m2.静止时,两球在悬点正下方刚好接触且球心同高,现将A摆在纸平面内向左拉离平衡位置,使摆线水平,然后释放,当A摆摆到最低点时两球碰撞,碰后A球被反弹,反弹后最大偏角为α,B球向右摆动,最大偏角为β,则碰撞过程中一定守恒的是______(选填“动能”或“动量”),守恒的关系式为________.图5答案动量m1L1(1+1-cos α)=m2L21-cos β解析两球在最低点碰撞时,水平方向上所受合力为零,动量守恒,设碰前瞬间A球速度为v 1.由机械能守恒,对A 球:12m 1v 12=m 1gL 1①设A 、B 球碰后瞬间的速度分别为v 1′和v 2′,由机械能守恒.对A 球:12m 1v 1′2=m 1gL 1(1-cos α)② 对B 球:12m 2v 2′2=m 2gL 2(1-cos β)③ 由动量守恒 m 1v 1=-m 1v 1′+m 2v 2′④由①②③④式得m 1L 1(1+1-cos α)=m 2L 21-cos β.6.某同学把两个大小不同的物体用细线连接,中间夹一被压缩的弹簧,如图6所示,将这一系统置于光滑的水平桌面上,烧断细线,观察物体的运动情况,进行必要的测量,探究物体间相互作用时的不变量.图6(1)该同学还必须有的器材是___________________________________________________;(2)需要直接测量的数据是_____________________________________________________;(3)根据课堂探究的不变量,本实验中表示碰撞前后不变量的表达式应为________________________________________________________________________. 答案 (1)刻度尺、天平(2)两物体的质量m 1、m 2和两物体落地点分别到桌子两侧边缘的水平距离s 1、s 2(3)m 1s 1=m 2s 2解析 两物体弹开后各自做平抛运动,根据平抛运动知识可知两物体平抛的时间相等.所需验证的表达式为m 1v 1=m 2v 2,等式两侧都乘以时间t ,有m 1v 1t =m 2v 2t ,即m 1s 1=m 2s 2.。

2020_2021学年高中物理第一章动量守恒研究第1节动量定理教案3鲁科版选修3_5

2020_2021学年高中物理第一章动量守恒研究第1节动量定理教案3鲁科版选修3_5

动量定理一、教材分析本节课通过动量概念的引入与动量定理的推导,目的是引导学生尝试用动量的概念表示牛顿第二定律,应用动量定理处理实际问题。

这样处理有助于对动量概念以与描述力与运动的关系问题有更深入的理解。

二、学情分析1、学生的知识根底:学生在学习这一章时,对矢量的概念和牛顿第二定律的应用已经比拟熟练,在之前的能量守恒的学习中对“守恒〞的观点也已经有了初步的认识。

2、学生的兴趣:高中的学生具有好奇、好动、好强的心理特点。

教学中要注意培养学生对物理的兴趣,充分发挥演示实验的作用,调动学生学习的积极性和主动性。

3、学生的认识特点:要真正理解冲量的效果是使物体获得动量,必须要经过感性认识到理性认识的过程,教学的起始要求不能太高,要循序渐进,从生活中众多实例出发,通过分析、真正感受动量和动量定理的内涵。

三、核心素养〔一〕物理观念认识:1、理解动量的概念,知道冲量的定义,知道动量、冲量都是矢量;2、知道动量的变化量也是矢量,会正确计算一维的动量变化;3、从牛顿运动定律和运动学公式推导出动量定理的表达式,理解动量定理确实切含义和表达式,知道动量定理也适用于变力;4、会用动量定理解释现象和处理有关问题。

〔二〕科学思维培养与实验探究:1、通过演示实验和理论分析,探究动量定理;2、通过师生互动与多媒体辅助教学,引导学生思考,会用动量定理解释处理有关问题。

〔三〕科学态度与责任:1、通过对动量和动量定理的学习,体验科学、技术、社会的严密联系;2、渗透物理学研究方法的教育,培养学生的推理能力和理论联系实际的能力。

四、教学重、难点〔一〕教学重点:1、动量和动量变化与其矢量性的理解;2、动量定理的推导;3、利用动量定理解释有关现象,并能掌握一维情况下的计算问题。

〔二〕教学难点:理解动量定理确实切含义和表达式,动量、冲量的方向问题,是使用动量定理的难点。

如何正确理解合外力的冲量等于物体动量的变化;如何正确应用动量定理分析打击和冲撞一类短时间作用的力学问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章动量守恒研究
一、动量定理及应用
1.内容:物体所受合外力的冲量等于它的动量变化.
2.公式:Ft=mv2-mv1,它为矢量式,在一维情况时选取正方向后可变为代数运算.
3.研究对象是质点.应用动量定理分析或解题时,只考虑物体的初、末状态的动量,而不必考虑中间的运动过程.
4.解题思路:
(1)确定研究对象,进行受力分析;
(2)确定初末状态的动量mv1和mv2(要先规定正方向,以便确定动量的正负,还要把v1和v2换成相对于同一惯性参考系的速度);
(3)利用Ft =mv 2-mv 1列方程求解.
例1 质量为0.2 kg 的小球竖直向下以6 m/s 的速度落至水平地面,再以4 m/s 的速度反向弹回,取竖直向上为正方向,则小球与地面碰撞前后的动量变化为____ kg·m/s.若小球与地面的作用时间为0.2 s ,则小球受到地面的平均作用力大小为________N(取g =10 m/s 2
). 答案 2 12
解析 由题知v t =4 m/s 方向为正,则动量变化Δp =mv t -mv 0=0.2×4 kg·m/s-0.2×(-6) kg·m/s=2 kg·m/s.由动量定理F 合·t =Δp 得(N -mg )t =Δp ,则N =Δp t +mg =20.2 N
+0.2×10 N=12 N.
借题发挥 (1)动量、动量的变化量和动量定理都是矢量或矢量式,应用时先规定正方向. (2)物体动量的变化率Δp
Δt 等于它所受的合外力,这是牛顿第二定律的另一种表达形式.
二、多过程问题中的动量守恒
1.正确选择系统(由哪几个物体组成)和过程,分析系统所受的外力,看是否满足动量守恒的条件.
2.准确选择初、末状态,选定正方向,根据动量守恒定律列方程.
例2 如图1所示,光滑水平轨道上放置长木板A (上表面粗糙)和滑块C ,滑块B 置于A 的左端,三者质量分别为m A =2 kg 、m B =1 kg 、m C =2 kg.开始时C 静止,A 、B 一起以v 0=5 m/s 的速度匀速向右运动,A 与C 发生碰撞(时间极短)后C 向右运动,经过一段时间,A 、B 再次达到共同速度一起向右运动,且恰好不再与C 碰撞.求A 与C 发生碰撞后瞬间A 的速度大小.
图1
答案 2 m/s
解析 长木板A 与滑块C 处于光滑水平轨道上,两者碰撞时间极短,碰撞过程中滑块B 与长木板A 间的摩擦力可以忽略不计,长木板A 与滑块C 组成的系统,在碰撞过程中动量守恒,则m A v 0=m A v A +m C v C
两者碰撞后,长木板A 与滑块B 组成的系统,在两者达到共同速度之前系统所受合外力为零,系统动量守恒,m A v A +m B v 0=(m A +m B )v
长木板A 和滑块B 达到共同速度后,恰好不再与滑块C 碰撞,则最后三者速度相等,v C =v 联立以上各式,代入数值解得:v A =2 m/s.
例3 两块厚度相同的木块A 和B ,紧靠着放在光滑的水平面上,其质量分别为m A =0.5 kg ,
m B =0.3 kg ,它们的下表面光滑,上表面粗糙;另有一质量m C =0.1 kg 的滑块C (可视为质点),
以v C =25 m/s 的速度恰好水平地滑到A 的上表面,如图2所示,由于摩擦,滑块最后停在木块B 上,B 和C 的共同速度为3.0 m/s ,求:
图2
(1)当C在A上表面滑动时,C和A组成的系统动量是否守恒?C、A、B三个物体组成的系统动量是否守恒?
(2)当C在B上表面滑动时,C和B组成的系统动量是否守恒?C刚滑上B时的速度v C′是多大?
答案(1)不守恒守恒(2)守恒 4.2 m/s
解析(1)当C在A上表面滑动时,由于B对A有作用力,C和A组成的系统动量不守恒.对于C、A、B三个物体组成的系统,所受外力的合力为零,动量守恒.
(2)当C在B上表面滑动时,C和B发生相互作用,系统不受外力作用,动量守恒.由动量守恒定律得:
m C v C′+m B v A=(m B+m C)v BC①
A、B、C三个物体组成的系统,动量始终守恒,从C滑上A的上表面到C滑离A,由动量守恒定律得:
m C v C=m C v C′+(m A+m B)v A②
由以上两式联立解得v C′=4.2 m/s,v A=2.6 m/s.
三、动量和能量综合问题分析
1.动量定理和动量守恒定律是矢量表达式,还可写出分量表达式;而动能定理和能量守恒定律是标量表达式,不能写分量表达式.
2.动量守恒及机械能守恒都有条件.
注意某些过程动量守恒,但机械能不守恒;某些过程机械能守恒,但动量不守恒;某些过程动量和机械能都守恒.但任何过程,能量都守恒.
3.两物体相互作用后具有相同速度的过程损失的机械能最多.
例4如图3所示,在一光滑的水平面上,有三个质量都是m的物体,其中B、C静止,中间夹着一个质量不计的弹簧,弹簧处于松弛状态,今物体A以水平速度v0撞向B,且立即与其粘在一起运动.求整个运动过程中.
图3
(1)弹簧具有的最大弹性势能;
(2)物体C的最大速度.
答案(1)1
12mv02(2)
2
3
v0
解析(1)A、B碰撞过程动量守恒,mv0=2mv1;
A 、
B 碰撞后至弹簧被压缩到最短,三物体组成的系统动量守恒,机械能守恒,故2mv 1=3mv 2,
12
×2mv 12
= 12×3mv 22+E p ,可得E p =112
mv 02. (2)弹簧恢复原长时,C 物体的速度达到最大,
由系统动量守恒和机械能守恒,得3mv 2=2mv 3+mv m ,12×2mv 12=12×2mv 32+12mv m 2,可得v m =23v 0.
例5 如图4所示,质量分别为m A 、m B 的两个弹性小球A 、B 静止在地面上方,B 球距地面的高度h =0.8 m ,A 球在B 球的正上方.先将B 球释放,经过一段时间后再将A 球释放.当A 球下落t =0.3 s 时,刚好与B 球在地面上方的P 点处相碰.碰撞时间极短,碰后瞬间A 球的速度恰为零.已知m B =3m A ,重力加速度大小g =10 m/s 2
,忽略空气阻力及碰撞中的动能损失.求:
图4
(1)B 球第一次到达地面时的速度; (2)P 点距离地面的高度. 答案 (1)4 m/s (2)0.75 m
解析 (1)设B 球第一次到达地面时的速度大小为v B ,由运动学公式有
v B =2gh ①
将h =0.8 m 代入上式,得
v B =4 m/s②
(2)设两球相碰前后,A 球的速度大小分别为v 1和v 1′(v 1′=0),B 球的速度分别为v 2和v 2′.由运动学规律可知
v 1=gt ③
由于碰撞时间极短,重力的作用可以忽略,两球相碰前后的动量守恒,总动能保持不变.规定向下的方向为正,有
m A v 1+m B v 2=m B v 2′④
12m A v 12+12m B v 22=1
2
m B v 2′2⑤
设B 球与地面相碰后的速度大小为v B ′,由运动学及碰撞的规律可得
v B ′=v B ⑥
设P 点距地面的高度为h ′,由运动学规律可知
h ′=v B ′2-v 2
2
2g

联立②③④⑤⑥⑦式,并代入已知条件可得
h ′=0.75 m.。

相关文档
最新文档