高中数学 第3章 三角恒等变换 3.2 二倍角的三角函数教学设计 苏教版必修4(2021年整理)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学第3章三角恒等变换3.2 二倍角的三角函数教学设计苏教版必修4
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第3章三角恒等变换3.2 二倍角的三角函数教学设计苏教版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第3章三角恒等变换3.2 二倍角的三角函数教学设计苏教版必修4的全部内容。
3.2 二倍角的三角函数
错误!
教学分析
“二倍角的三角函数”是在研究了两角和与差的三角函数的基础上,进一步研究具有“二倍角”关系的正弦、余弦、正切公式的,它既是两角和与差的正弦、余弦、正切公式的特殊化,又为以后求三角函数值、化简、证明提供了非常有用的理论工具;通过对二倍角的推导知道,二倍角的内涵是:揭示具有倍数关系的两个三角函数的运算规律,通过推导还让学生加深理解了高中数学由一般到特殊的化归思想;因此本节内容也是培养学生运算和逻辑推理能力的重要内容,对培养学生的探索精神和创新能力、发现问题和解决问题的能力都有着十分重要的意义.本节课通过教师提出问题、设置情境及对和角公式中α、β关系的特殊情形α=β时的简化,让学生在探究中既感到自然、易于接受,还可清晰的知道和角的三角函数与倍角公式的联系,同时也让学生学会怎样发现规律及体会由一般到特殊的化归思想.这一切教师都要放心地让学生去做.因为《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验".所谓体验,从教育的角度看,是一种亲历亲为的活动,是一种积极参与活动的学习方式.让学生亲历经验,不但有助于通过多种活动和探究获取数学知识,更重要的是学生在体验中能够逐步掌握数学学习的一般规律和方法.三维目标
1.通过让学生探索、发现并推导二倍角公式,了解它们之间、以及它们与和角公式之间的内在联系,并通过强化题目的训练,加深对二倍角公式的理解,培养运算能力及逻辑推理能力,从而提高解决问题的能力.
2.通过二倍角的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明.体会化归这一基本数学思想在发现中和求值、化简、恒等证明中所起的作用.使学生进一步掌握
联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题、解决问题的能力.
3.通过本节学习,引导学生领悟寻找数学规律的方法,培养学生的创新意识,以及善于发现和勇于探索的科学精神.
重点难点
教学重点:二倍角三角函数公式的推导及其应用.
教学难点:如何灵活应用和、差、倍角公式进行三角式化简、求值、证明恒等式.
课时安排
2课时
错误!
第1课时
导入新课
思路1。
(旧知导入)请学生回忆上两节共同探讨的和角公式、差角公式,并回忆这组公式的来龙去脉,然后找一个学生把这六个公式写在黑板上.教师引导学生:和角公式与差角公式是可以互相化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?今天,我们进一步探讨一下二倍角的问题,请同学们思考一下,应解决哪些问题呢?由此展开新课.
思路2。
(问题导入)出示问题,让学生计算,若sinα=错误!,α∈(错误!,π),求sin2α,cos2α的值.学生会很容易看出:sin2α=sin(α+α)=sinαcosα+cosαsinα=2sinαcosα,以此展开新课,并由此展开联想推出其他公式.
推进新课
错误!
从两角和的公式中推导出倍角公式,并用公式进行简单的三角函数式的化简、求值及恒等
式的证明.
活动:学生默写公式S(α+β)、C(α+β)、T(α+β),教师打出课件,然后引导学生观察正弦、余弦的和角公式,提醒学生注意公式中的α、β,既然可以是任意角,怎么任意的?你会有些什么样的奇妙想法呢?并鼓励学生大胆试一试.如果学生想到α、β会有相等这个特殊情况,教师就此进入下一个问题,如果学生没想到这种特殊情况,教师适当点拨进入下一个问题,然后找一名学生到黑板进行简化,其他学生在自己的坐位上简化;教师再与学生一起订正黑板的书写,最后学生都不难得出以下式子,鼓励学生尝试一下,对得出的结论给出解释.这个过程教师要舍得花时间,充分地让学生去思考、去探究,并初步地感受二倍角的意义.同时开拓学生的思维空间,为学生将来遇到的3α或3β等角的探究附设类比联想的源泉.sin(α+β)=sinαcosβ+cosαsinβsin2α=2sinαcosα(S2α);
cos(α+β)=cosαcosβ-sinαsinβcos2α=cos2α-sin2α(C2α);
tan(α+β)=错误!tan2α=错误!(T2α).
这时教师适时地向学生指出,我们把这三个公式分别叫做二倍角的正弦、余弦、正切公式,并指导学生阅读课本,确切明了二倍角的含义,以后的“倍角"专指“二倍角";点拨学生结合sin2α+cos2α=1思考,二倍角的余弦公式又可表示为以下右表中的公式.
这时教师指出,这些公式都叫做倍角公式(用多媒体演示),倍角公式是和角公式的特例.倍角公式给出了α的三角函数与2α的三角函数之间的关系.这组公式用途很广,与学生一起观察公式的特征并记忆,首先公式左边角是右边角的2倍;左边是2α的三角函数的一次式,右边是α的三角函数的二次式,即左到右→升幂缩角,右到左→降幂扩角;二倍角的正弦是单项式,余弦是多项式,正切是分式.并引导学生观察思考并初步感性认识到:(1)这里的“倍
角”专指“二倍角”,遇到“三倍角”等名词时,“三”字等不可省去;(2)通过二倍角公式,可以用单角的三角函数表示二倍角的三角函数;(3)二倍角公式是两角和的三角函数公式的特殊情况;(4)公式(S2α),(C2α)中的角α没有限制,都是α∈R.但公式(T2α)需在α≠错误!kπ+错误!和α≠kπ+错误!(k∈Z)时才成立,这一条件限制要引起学生的注意.但是当α=kπ
+π
2
,k∈Z时,虽然tanα不存在,此时不能用此公式,但tan2α是存在的,故可改用诱导公
式.
为了让学生明了二倍角的相对性,即二倍角公式不仅限于2α是α的二倍的形式,其他如4α是2α的二倍,错误!是错误!的二倍,3α是错误!的二倍,错误!是错误!的二倍,3α是错误!
的二倍,π
2
-2α是错误!-α的二倍等,所有这些都可以应用二倍角公式.
例如:sin错误!=2sin错误!cos错误!,cos错误!=cos2错误!-sin2错误!等等.
本组公式的灵活运用还在于它的逆用以及它的变形用,这点教师更要提醒学生引起足够的注意.
如:sin3αcos3α=错误!sin6α,4sin错误!cos错误!=2(2sin错误!cos错误!)=2sin错误!,错误!=tan80°,cos22α-sin22α=cos4α,tan2α=错误!等等.
一般情况下:sin2α≠2sinα,cos2α≠2cosα,tan2α≠2tanα。
若sin2α=2sinα,则2sinαcosα=2sinα,
即sinα=0或cosα=1,此时α=kπ(k∈Z).
若cos2α=2cosα,则2cos2α-2cosα-1=0,即cosα=错误!(cosα=错误!舍去).若tan2α=2tanα,则错误!=2tanα,∴tanα=0,即α=kπ(k∈Z).
错误!
思路1
例1课本本节例1。
例2证明错误!=tanθ。
活动:教师先让学生思考一会,鼓励学生充分发挥自己的聪明才智,战胜它,并力争一题多解.教师可点拨学生想一想,到现在为止,所学的证明三角恒等式的方法大致有几种:从复杂一端化向简单一端;两边化简,中间碰头;化切为弦;还可以利用分析综合法解决,有时几种
方法会同时使用等.对找不到思考方向的学生,教师点出:可否再添加一种,化倍角为单角?这可否成为证明三角恒等式的一种方法?再适时引导,前面学习同角三角函数的基本关系时曾用到“1"的代换,对“1"的妙用大家深有体会,这里可否在“1"上做做文章?
待学生探究解决方法后,可找几个学生到黑板书写解答过程,以便对照点评及给学生以启发.点评时对能够善于运用所学的新知识解决问题的学生给予赞扬;对暂时找不到思路的学生给予点拨、鼓励.强调“1”的妙用,妙在它在三角恒等式中一旦出现,在证明过程中就会起到至关重要的作用,在今后的证题中,万万不要忽视它.
证明:方法一:
左边=错误!=错误!
=错误!=错误!=错误!=tanθ=右边.
所以原式成立.
方法二:
左边=错误!=错误!
=2sinθsinθ+cosθ
2cosθsinθ+cosθ
=tanθ=右边.
方法三:
左边=错误!=错误!
=错误!
=错误!=错误!=tanθ=右边.
点评:课本上只给出了一种方法,教学中可引导学生从不同角度观察题目得到不同解法,以训练应用公式的灵活性.以上几种方法大致遵循以下规律:首先从复杂端化向简单端;第二,化倍角为单角,这是我们今天刚刚学习的;第三,证题中注意对数字的处理,尤其是“1”的代换的妙用,请同学们在探究中仔细体会这点.在这道题中通常用的几种方法都用到了,不论用
哪一种方法,都要思路清晰,书写规范才是.
思路2
例1求sin10°sin30°sin50°sin70°的值.
活动:本例是一道灵活应用二倍角公式的经典例题,有一定难度,但也是训练学生思维能力的一道好题.本题需要公式的逆用,逆用公式的先决条件是认识公式的本质,要善于把表象的东西拿开,正确捕捉公式的本质属性,以便合理运用公式.教学中教师可让学生充分进行讨论探究,不要轻易告诉学生解法,可适时点拨学生需要做怎样的变化,又需怎样应用二倍角公式.并点拨学生结合诱导公式思考.学生经过探索发现,如果用诱导公式把10°,30°,50°,70°正弦的积化为20°,40°,60°,80°余弦的积,其中60°是特殊角,很容易发现40°是20°的2倍,80°是40°的2倍,故可考虑逆用二倍角公式.
解:原式=cos80°cos60°cos40°cos20°=错误!=错误!=错误!=错误!.
点评:二倍角公式是中学数学中的重要知识点之一,又是解答许多数学问题的重要模型和工具,具有灵活多变,技巧性强的特点,要注意在训练中细心体会其变化规律.2在△ABC中,cosA=错误!,tanB=2,求tan(2A+2B)的值.
活动:此题结合三角形,具有一定的综合性,同时也是和与差公式的应用问题.教师可引导学生注意在三角形的背景下研究问题,会带来一些隐含的条件,如A+B+C=π(0〈A〈π,0<B<π,0<C<π),就是其中的一个隐含条件.可先让学生讨论探究,教师适时点拨.学生探究解法时教师进一步启发学生思考由条件到结果的函数及角的联系.由于对2A+2B与A,B之间关系的看法不同会产生不同的解题思路,所以学生会产生不同的解法,不过它们都是对倍角公式、和角公式的联合运用,本质上没有区别.不论学生的解答正确与否,教师都不要直接干预.在学生自己尝试解决问题后,教师可与学生一起比较各种不同的解法,并引导学生进行解题方法的归纳总结.基础较好的班级还可以把求tan(2A+2B)的值改为求tan2C的值.解:方法一:在△ABC中,由cosA=错误!,0〈A〈π,得
sinA=错误!=错误!=错误!,
所以tanA=错误!=错误!×错误!=错误!,tan2A=错误!=错误!=错误!。
又tanB=2,所以tan2B=错误!=错误!=-错误!.
于是tan(2A+2B)=错误!=错误!=错误!.
方法二:在△ABC中,由cosA=错误!,0<A<π,得sinA=错误!=错误!=错误!。
所以tanA=错误!=错误!×错误!=错误!。
又tanB=2,所以tan(A+B)=错误!=错误!=-错误!.于是tan(2A+2B)=tan[2(A+B)]=错误!=错误!=错误!.
点评:以上两种方法都是对倍角公式、和角公式的联合运用,本质上没有区别,其目的是为了鼓励学生用不同的思路去思考,以拓展学生的视野。
错误!
课本本节练习1、2、3、4。
错误!
求值:tan70°cos10°(错误!tan20°-1).
解:原式=2tan70°cos10°错误!=2tan70°cos10°错误!=错误!·错误!=-1。
错误!
1.先由学生回顾本节课都学到了什么?有哪些收获?对前面学过的两角和公式有什么新的认识?对三角函数式子的变化有什么新的认识?怎样用二倍角公式进行简单三角函数式的化简、求值与恒等式证明.
2.教师画龙点睛:本节课要理解并掌握二倍角公式及其推导,明白从一般到特殊的思想,
并要正确熟练的运用二倍角公式解题.在解题时要注意分析三角函数名称、角的关系,一个题目能给出多种解法,从中比较最佳解决问题的途径,以达到优化解题过程,规范解题步骤,领悟变换思路,强化数学思想方法之目的.
错误!
1.新课改的核心理念是:以学生发展为本.本节课的设计流程从回顾→探索→应用,充分体现了“学生主体、主动探索、培养能力”的新课改理念,体现“活动、开放、综合”的创新教学模式.本节在学生探究和角公式的特殊情形中得到了二倍角公式,在这个活动过程中,由一般化归为特殊的基本数学思想方法就深深的留在了学生的记忆中.本节课的教学设计流程还是比较流畅的.
2.纵观本教案的设计,学生发现二倍角后就是应用,至于如何训练二倍角公式正用,逆用,变形用倒成了次要的了.而学生从探究活动过程中学会了怎样去发现数学规律,又发现了怎样逆用公式及活用公式,那才是深层的,那才是我们中学数学教育的最终目的.3.教学矛盾的主要方面是学生的学,学是中心,会学是目的,根据高中三角函数的推理特点,本节主要是教给学生“回顾公式、探索特殊情形、发现规律、推导公式、学习应用”的探索创新式学习方法.这样做增加了学生温故知新的空间,增强了学生的参与意识,教给了学生发现规律、探索推导、获取新知的途径,让学生真正尝试到探索的喜悦,真正成为教学的主体.学生会体会到数学的美,产生一种成功感,从而提高了学习数学的兴趣.
错误!
一、关于三角变换中的“一致代换”法
在三角变换中,“一致代换”法是一种重要的方法,所谓“一致代换”法,即在三角变换中,化“异角”“异名"“异次”为“同角"“同名”“同次”的方法.它主要包括:在三角函数式中,①如果只含同角三角函数,一般应从变化函数名称入手,尽量化为同名函数,常用“化弦法”;②如果含有异角,一般应从变化角入手,尽量化不同角为同角,变复角为单角;③如
果含有异次幂,一般利用升幂或降幂公式化异次幂为同次幂.
二、备用习题
1.求值:错误!-错误!.
2.化简:cos36°cos72°.
3.化简:cosαcos错误!cos错误!cos错误!·…·cos错误!。
4.求值:sin6°sin42°sin66°sin78°。
5.若cos(错误!+x)=错误!,错误!<x〈错误!,求错误!的值.
6.已知cos(α-错误!)=-错误!,sin(错误!-β)=错误!,且错误!〈α〈π,0<β〈错误!,求cos(α+β)的值.
参考答案:
1.解:原式=错误!=错误!
=4sin30°cos10°-cos30°sin10°
2sin10°cos10°
=错误!=4。
2.解:原式=2sin36°cos36°cos72°
2sin36°
=错误!=错误!=错误!.
3.解:先将原式同乘除因式sin
α
2n-1
,然后逐次使用倍角公式,则原式=错误!。
4.解:原式=sin6°cos48°cos24°cos12°=sin6°cos12°cos24°cos48°
=错误!=错误!=错误!=错误!.
5.解:原式=错误!=错误!=sin2xtan(错误!+x).
∵错误!〈x〈错误!,∴错误!〈错误!+x〈2π.又cos(错误!+x)=错误!,∴sin(错误!+x)=-错误!,tan(错误!+x)=-错误!。
∴sin2x=sin[2(错误!+x)-错误!]=-cos[2(错误!+x)]=-[2cos2(错误!+x)-1]=错误!。
故原式=7
25
×(-错误!)=-错误!。
6.解:∵cos(α-错误!)=-错误!,错误!<α〈π,0<β〈错误!,∴错误!<α-错误!〈π。
∴sin(α-β
2
)=错误!.
∵sin(α
2
-β)=
2
3
,错误!<α<π,0<β<错误!,∴-错误!〈错误!-β<错误!.∴cos(错误!
-β)=错误!.
∵cos α+β
2
=cos[(α-
β
2
)-(错误!-β)]=cos(α-错误!)cos(错误!-β)+sin(α
-错误!)sin(错误!-β)
=(-错误!)×错误!+错误!×错误!=错误!,∴cos(α+β)=2cos2错误!-1=-错误!。
(设计者:翟昌丽)
第2课时
导入新课
思路1.(复习导入)让学生回顾上节课学习的三角函数倍角公式,快速写出并说出各公式的用途.
思路2。
三角化简、求值与证明中,往往会出现较多相异的角,我们可根据角与角之间的和、差、倍角等关系,沟通条件与结论中角的差异,使问题获得解决.如2α=(α+β)+(α-β)=α+α=(错误!+α)-(错误!-α)等.本节我们进一步加深对所学倍角公式的灵活运用.
推进新课
错误!
进一步运用倍角公式进行三角函数式的化简、求值与三角恒等式的证明.
采用“cos2α=错误!,sin2α=错误!"可将二次降为一次,故该公式又称为“降幂扩角公式”,这是一组非常有用的三角公式,对于我们进行三角函数式的化简、求值以及三角恒等式
变换有很大的帮助.
错误!
思路1
例1课本本节例3。
例2课本本节例4.
例3课本本节例5.
变式训练
如图1,已知OPQ是半径为1,圆心角为错误!的扇形,C是扇形弧上的动点,四边形ABCD 是扇形的内接矩形.记∠COP=α,求当角α取何值时,矩形ABCD的面积最大?并求出这个最大面积.
图1
活动:要求当角α取何值时,矩形ABCD的面积S最大,先找出S与α之间的函数关系,再求函数的最值.
找S与α之间的函数关系可以让学生自己解决,得到
S=AB·BC=(cosα-错误!sinα)sinα=sinαcosα-错误!sin2α。
求这种y=asin2x+bsinxcosx+ccos2x函数的最值,应先降幂,再利用公式化成Asin(x+φ)型的三角函数求最值.
教师引导学生思考:要求当角α取何值时,矩形ABCD的面积S最大,可分两步进行:
(1)找出S与α之间的函数关系;
(2)由得出的函数关系,求S的最大值.
解:在Rt△OBC中,OB=cosα,BC=sinα。
在Rt△OAD中,错误!=tan60°=错误!,
所以OA=错误!DA=错误!BC=错误!sinα。
所以AB=OB-OA=cosα-错误!sinα。
设矩形ABCD的面积为S,则
S=AB·BC=(cosα-错误!sinα)sinα=sinαcosα-错误!sin2α
=错误!sin2α+错误!cos2α-错误!=错误!(错误!sin2α+错误!cos2α)-错误!
=1
3
sin(2α+错误!)-错误!.
由于0〈α〈错误!,所以当2α+错误!=错误!,即α=错误!时,S最大=错误!-错误!=错误!.
因此,当α=错误!时,矩形ABCD的面积最大,最大面积为错误!。
点评:可以看到,通过三角变换,我们把形如y=asinx+bcosx的函数转化为形如y =Asin(ωx+φ)的函数,从而使问题得到简化.这个过程中蕴涵了化归思想.此题可引申,即可以去掉“记∠COP=α”,结论改成“求矩形ABCD的最大面积”,这时,对自变量可多一种选择,如设AD=x,S=x(1-x2-错误!x),尽管对所得函数还暂时无法求其最大值,但能促进学生对函数模型多样性的理解,并能使学生感受到以角为自变量的优点。
思路2
例1已知tan(α-β)=错误!,tanβ=-错误!,且α、β∈(0,π),求2α-β的值.活动:把所求的角用含已知其值的角的式子表示,由所求的函数值结合该函数的单调区间求得角,但不要忽视对所求角的范围的讨论.即解决“给值求角”问题是由两个关键步骤构成:①把所求角用含已知角的式子表示;②由所得的函数值结合该函数的单调区间求得角.
解:∵2α-β=2(α-β)+β,tan(α-β)=错误!,
∴tan2(α-β)=
2tanα-β
1-tan2α-β
=错误!.
从而tan(2α-β)=tan[2(α-β)+β]=错误!=错误!=错误!=1.
又∵tanα=tan[(α-β)+β]=错误!=错误!<1,
且0〈α<π,∴0〈α<错误!.∴0〈2α〈错误!。
又tanβ=-错误!〈0,且β∈(0,π),
∴错误!〈β<π,-π<-β〈-错误!。
∴-π〈2α-β〈0。
∴2α-β=-错误!。
点评:本题通过变形转化为已知三角函数值求角的问题,关键在于对角的范围的讨论,注意合理利用不等式的性质,必要时,根据三角函数值,缩小角的范围,从而求出准确角.另外,求角一般都通过三角函数值来实现,但求该角的哪一种函数值,往往有一定的规律,若α∈(0,π),则求cosα.若α∈(-错误!,错误!),则求sinα等.
例2若α、β为锐角,且3sin2α+2sin2β=1,3sin2α-2sin2β=0,求证:α+2β=错误!.
证明:已知两个等式可化为3sin2α=cos2β,①
3sinαcosα=sin2β,②
①÷②,得错误!=错误!,即cosαcos2β-sinαsin2β=0,
∴cos(α+2β)=0.∵0<α<错误!,0<β〈错误!,∴0<α+2β〈错误!.∴α+2β=错误!。
点评:由条件等式证明“角+角=角”的问题,一般转化为证明相应的三角函数值问题.知能训练
课本本节练习1、2、3。
课堂小结
1.在解决三角函数式的化简问题时,经常从以下三个方面来考虑:一看函数式中所涉及的
角之间的关系;二看函数式中所涉及的三角函数的名称之间的关系;三看所涉及的三角函数的幂.遵循的原则是:不同角化同角,不同名化同名,高次降低次.
2.若所要化简或证明的三角函数式中含有多个名称的三角函数,我们常用的方法是将正切化为正弦、余弦,若是有常数和分式相加,我们采取的措施是通分,而后再化简.即对于形如例2的化简证明问题我们采用的措施是“切(正切)化弦(正弦、余弦),通分化简,逆用公式,求得结果".
错误!
课本习题3.2 10、12.
错误!
本节内容的几道例题都是二倍角公式的进一步应用,例3是有关几何的应用题.训练学生建立适当的数学模型来解决实际问题.教学中重在让学生体会二倍角公式的“降幂”作用,深刻领悟二倍角的结构特点及本质属性.对于三角函数条件等式的证明题,课本是从角的变换的角度来探求证明方法的.教学时要注意引导学生仔细体会、灵活掌握.
错误!
备选习题
1.已知x为锐角,且错误!=错误!,则cosx等于()
A.错误!
B.错误! C。
错误! D。
错误!
2.2-sin22+cos4的值是( )
A.sin2 B.-cos2
C.错误!cos2 D.-错误!cos2
3.函数y=cos2x-sin2x+2sinxcosx的最小值是()
A。
错误! B.-错误!
C.2 D.-2
4.若tanx=2,则tan(错误!+2x)=________。
5.化简2sin(45°+α)sin(45°-α)=________。
6.化简:错误!.
7.设α是第二象限角,sinα=错误!,求sin(错误!-2α)的值.
8.求证:sin2α+cosαcos(错误!+α)-sin2(错误!-α)的值是与α无关的定值.
9.已知cos(α+π
4
)=
3
5
(错误!≤α<错误!),求cos(2α+错误!).
参考答案:
1. D
2.A〔提示:错误!=错误!=-错误!cos2〕
3.B〔提示:y=cos2x+sin2x=错误!sin(2x+错误!)≥-错误!〕
4.-错误!〔提示:由tanx=2得tan2x=-错误!,原式=错误!=-错误!〕
5.cos2α6。
错误!sin2α.
7.解:∵α是第二象限角,且sinα=错误!,∴cosα=-错误!.
∴sin2α=-错误!,cos2α=错误!。
∴sin(错误!-2α)=错误!cos2α-错误!sin2α=错误!.
8.证明:原式=错误!(1-cos2α)-错误![1-cos(错误!-2α)]+cosαcos(错误!+α)
=错误![cos(错误!-2α)-cos2α]+cosα(cos错误!cosα-sin错误!sinα)
=错误!(cos错误!cos2α+sin错误!sin2α-cos2α)+错误!cos2α-错误!cosαsinα
=错误!cos2α+错误!sin2α-错误!cos2α+错误!(1+cos2α)-错误!sin2α=错误!,∴sin2α+cosαcos(错误!+α)-sin2(错误!-α)的值与α无关.
9.分析:本题的解法很多,入口也较浅.为了求cos(2α+错误!)的值,可将cos(2α+错误!)适当变形,即进行三角式的恒等变形,以便与已知条件沟通起来.例如由于cos(2α+错误!)=cos2αcos错误!-sin2αsin错误!,因此只需由已知条件求出cos2α及sin2α即可.又如由
于cos(2α+错误!)=cosαcos(α+错误!)-sinαsin(α+错误!),因此只需由已知条件求出sin(α+错误!)及sinα、cosα同样也能获解.由此可见,灵活运用公式是关键.解:∵错误!≤α<错误!,cos(α+错误!)=错误!>0,∴错误!>α+错误!>错误!,得错误!<α<错误!.
∴错误!<2α<3π.从而sin2α=-cos(2α+错误!)=1-2cos2(α+错误!)=错误!, cos2α=-错误!=-错误!.∴cos(2α+错误!)=错误!(cos2α-sin2α)=-错误!.。