高考物理动量守恒定律及其解题技巧及练习题(含答案)含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理动量守恒定律及其解题技巧及练习题(含答案)含解析
一、高考物理精讲专题动量守恒定律
1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的
1
2
反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度2
10m/s g =。
求:
(1)碰撞后瞬间,小球受到的拉力是多大?
(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】
解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:
22
1111011=22
m gL m v m v μ--
解之可得:1=4m/s v 因为1v v <,说明假设合理
滑块与小球碰撞,由动量守恒定律:21111221
=+2
m v m v m v - 解之得:2=2m/s v
碰后,对小球,根据牛顿第二定律:2
22
2m v F m g l
-=
小球受到的拉力:42N F =
(2)设滑块与小球碰撞前的运动时间为1t ,则()0111
2
L v v t =+ 解之得:11s t =
在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=
设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅
⎪⎝⎭
解之得:22s t =
滑块向左运动最大位移:121122m x v t ⎛⎫
=
⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度
11
2
v <v , 说明滑块与小球碰后在传送带上的总时间为22t
在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程
22212X vt m ∆==
因此,整个过程中,因摩擦而产生的内能是
()112Q m g x x μ=∆+∆=13.5J
2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m
的光滑
1
4
圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
一可看做质点的小物块从A 点由静止释放,滑到C 点刚好相对小车停止。
已知小物块质量m =1kg ,取g =10m/s 2。
求:
(1)小物块与小车BC 部分间的动摩擦因数;
(2)小物块从A 滑到C 的过程中,小车获得的最大速度。
【答案】(1)0.5(2)1m/s 【解析】 【详解】
解:(1) 小物块滑到C 点的过程中,系统水平方向动量守恒则有:()0M m v += 所以滑到C 点时小物块与小车速度都为0 由能量守恒得: mgR mgL μ= 解得:0.5R
L
μ=
= (2)小物块滑到B 位置时速度最大,设为1v ,此时小车获得的速度也最大,设为2v 由动量守恒得 :12mv Mv = 由能量守恒得 :221211
22
mgR mv Mv =+ 联立解得: 21/ v m s =
3.如图,一质量为M 的物块静止在桌面边缘,桌面离水平地面的高度为h.一质量为m 的
子弹以水平速度v 0射入物块后,以水平速度v 0/2 射出.重力加速度为g.求: (1)此过程中系统损失的机械能;
(2)此后物块落地点离桌面边缘的水平距离.
【答案】(1)2
138m E mv M ⎛⎫∆=- ⎪⎝⎭ (2)02mv h
s M g
= 【解析】 【分析】 【详解】
试题分析:(1)设子弹穿过物块后物块的速度为V ,由动量守恒得 mv 0=m +MV ①
解得
②
系统的机械能损失为 ΔE =
③
由②③式得 ΔE =
④
(2)设物块下落到地面所需时间为t ,落地点距桌面边缘的水平距离为s ,则
⑤
s=Vt ⑥ 由②⑤⑥得 S =
⑦
考点:动量守恒定律;机械能守恒定律.
点评:本题采用程序法按时间顺序进行分析处理,是动量守恒定律与平抛运动简单的综合,比较容易.
4.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R =0.5m ,物块A 以v 0=6m/s 的速度滑入圆轨道,滑过最高点Q ,再沿圆轨道滑出后,与直轨道上P 处静止的物块B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.1m ,物块与各粗糙段间的动摩擦因数都为μ=0.1,A 、B 的质量均为m =1kg(重力加速度g 取10m/s 2;A 、B 视为质点,碰撞时间极短).
(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 【答案】(1)5m/s v =, F =22 N (2) k =45 (3)90.2m/s ()n v n n k =-<
【解析】
⑴物块A 从开始运动到运动至Q 点的过程中,受重力和轨道的弹力作用,但弹力始终不做功,只有重力做功,根据动能定理有:-2mgR =-
解得:v =
=4m/s
在Q 点,不妨假设轨道对物块A 的弹力F 方向竖直向下,根据向心力公式有:mg +F =
解得:F =
-mg =22N ,为正值,说明方向与假设方向相同。
⑵根据机械能守恒定律可知,物块A 与物块B 碰撞前瞬间的速度为v 0,设碰后A 、B 瞬间一起运动的速度为v 0′,根据动量守恒定律有:mv 0=2mv 0′ 解得:v 0′=
=3m/s
设物块A 与物块B 整体在粗糙段上滑行的总路程为s ,根据动能定理有:-2μmgs =0-
解得:s =
=4.5m
所以物块A 与物块B 整体在粗糙段上滑行的总路程为每段粗糙直轨道长度的=45倍,即
k =45
⑶物块A 与物块B 整体在每段粗糙直轨道上做匀减速直线运动,根据牛顿第二定律可知,其加速度为:a =
=-μg =-1m/s 2
由题意可知AB 滑至第n 个(n <k )光滑段时,先前已经滑过n 个粗糙段,根据匀变速直
线运动速度-位移关系式有:2naL=-
解得:v n==m/s(其中n=1、2、3、 (44)
【考点定位】动能定理(机械能守恒定律)、牛顿第二定律、匀变速直线运动速度-位移式关系、向心力公式、动量守恒定律的应用,以及运用数学知识分析物理问题的能力。
【规律总结】牛顿定律、动能定理、功能关系、动量守恒定律等往往是求解综合大题的必备知识,因此遇到此类问题,要能习惯性地从以上几个方面进行思考,并正确结合运用相关数学知识辅助分析、求解。
5.如图所示,质量为m的由绝缘材料制成的球与质量为M=19m的金属球并排悬挂.现将绝缘球拉至与竖直方向成θ=600的位置自由释放,下摆后在最低点与金属球发生弹性碰撞.在平衡位置附近存在垂直于纸面的磁场.已知由于磁场的阻尼作用,金属球将于再次碰撞前停在最低点处.求经过几次碰撞后绝缘球偏离竖直方向的最大角度将小于
450.
【答案】最多碰撞3次
【解析】
解:设小球m的摆线长度为l
小球m在下落过程中与M相碰之前满足机械能守恒:①
m和M碰撞过程是弹性碰撞,故满足:
mv0=MV M+mv1 ②
③
联立②③得:④
说明小球被反弹,且v1与v0成正比,而后小球又以反弹速度和小球M再次发生弹性碰撞,满足:
mv1=MV M1+mv2 ⑤
⑥
解得:
⑦
整理得:
⑧
故可以得到发生n 次碰撞后的速度:
⑨
而偏离方向为450的临界速度满足:
⑩
联立①⑨⑩代入数据解得,当n=2时,v 2>v 临界 当n=3时,v 3<v 临界
即发生3次碰撞后小球返回到最高点时与竖直方向的夹角将小于45°. 考点:动量守恒定律;机械能守恒定律. 专题:压轴题.
分析:先根据机械能守恒定律求出小球返回最低点的速度,然后根据动量守恒定律和机械能守恒定律求出碰撞后小球的速度,对速度表达式分析,求出碰撞n 次后的速度表达式,再根据机械能守恒定律求出碰撞n 次后反弹的最大角度,结合题意讨论即可.
点评:本题关键求出第一次反弹后的速度和反弹后细线与悬挂点的连线与竖直方向的最大角度,然后对结果表达式进行讨论,得到第n 次反弹后的速度和最大角度,再结合题意求解.
6.如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A .求男演员落地点C 与O 点的水平距离s .已知男演员质量m 1和女演员质量m 2之比m 1∶m 2=2,秋千的质量不计,秋千的摆长为R ,C 点比O 点低5R .
【答案】8R 【解析】 【分析】 【详解】
两演员一起从从A 点摆到B 点,只有重力做功,机械能守恒定律,设总质量为m ,则
21
2
mgR mv =
女演员刚好能回到高处,机械能依然守恒:22211
2
m gR m v =
女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒:
122112m m v m v m v +=-+()③
根据题意:12:2m m = 有以上四式解得:222v gR = 接下来男演员做平抛运动:由2
142
R gt =,得8 t g R =
因而:28s v t R ==; 【点睛】
两演员一起从从A 点摆到B 点,只有重力做功,根据机械能守恒定律求出最低点速度;女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回到高处,可先根据机械能守恒定律求出女演员的返回速度,再根据动量守恒定律求出男演员平抛的初速度,然后根据平抛运动的知识求解男演员的水平分位移;本题关键分析求出两个演员的运动情况,然后对各个过程分别运用动量守恒定律和机械能守恒定律列式求解.
7.如图,两块相同平板P 1、P 2置于光滑水平面上,质量均为m =0.1kg .P 2的右端固定一轻质弹簧,物体P 置于P 1的最右端,质量为M =0.2kg 且可看作质点.P 1与P 以共同速度v 0=4m/s 向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起,P 压缩弹簧后被弹回(弹簧始终在弹性限度内).平板P 1的长度L =1m ,P 与P 1之间的动摩擦因数为μ=0.2,P 2上表面光滑.求:
(1)P 1、P 2刚碰完时的共同速度v 1; (2)此过程中弹簧的最大弹性势能E p .
(3)通过计算判断最终P 能否从P 1上滑下,并求出P 的最终速度v 2. 【答案】(1)v 1=2m/s (2)E P =0.2J (3)v 2=3m/s 【解析】 【分析】 【详解】
(1)P 1、P 2碰撞过程,由动量守恒定律 01m 2v mv = 解得0
12/2
v v m s =
=,方向水平向右 ; (2)对P 1、P 2、P 系统,由动量守恒定律 102
2(2)mv Mv m M v '+=+ 解得2
03
3/4
v v m s ='=,方向水平向右, 此过程中弹簧的最大弹性势能22
2102
111•2+Mv 2m )0.2222
P E mv M v J =
-='+(;
(3)对P 1、P 2、P 系统,由动量守恒定律 103222mv Mv mv Mv +=- 由能量守恒定律得
2222103211112+Mv 2mv +Mg 2222
mv Mv L ⋅=⋅+μ 解得P 的最终速度23/0v m s =>,即P 能从P 1上滑下,P 的最终速度23/v m s =
8.如图所示,质量均为M =4 kg 的小车A 、B ,B 车上用轻绳挂有质量为m =2 kg 的小球C ,与B 车静止在水平地面上,A 车以v 0=2 m/s 的速度在光滑水平面上向B 车运动,相碰后粘在一起(碰撞时间很短).求:
(1)碰撞过程中系统损失的机械能;
(2)碰后小球C 第一次回到最低点时的速度大小. 【答案】(1) 4 J (2) 1.6 m/s 【解析】 【详解】
解:(1)设A 、B 车碰后共同速度为1v ,由动量守恒得:012Mv Mv = 系统损失的能量为:2
20112 4 2
12E Mv Mv J -⨯==
损 (2)设小球C 再次回到最低点时A 、B 车速为2v ,小球C 速度为3v ,对A 、B 、C 系统由水平方向动量守恒得:12322Mv Mv mv =+ 由能量守恒得:
22
212311122222
Mv Mv mv ⨯=⨯+ 解得:3 1.6 /v m s =
9.光滑水平面上放着一质量为M 的槽,槽与水平面相切且光滑,如图所示,一质量为m 的小球以v 0向槽运动.
(1)若槽固定不动,求小球上升的高度(槽足够高). (2)若槽不固定,则小球上升多高?
【答案】(1)202v g (2)20
2()Mv M m g
+
【解析】
(1)槽固定时,设球上升的高度为h 1,由机械能守恒得:2
1012
mgh mv =
解得:20
12v h g
=;
(2)槽不固定时,设球上升的最大高度为2h ,
此时两者速度为v ,由动量守恒定律得:()0mv m M v =+ 再由机械能守恒定律得:
()220211
22
mv m M v mgh =++ 联立解得,上球上升的高度:()2
22Mv h m M g
=+
10.(20分)如下图所示,光滑水平面MN 左端挡板处有一弹射装置P ,右端N 与处于同一高度的水平传送带之间的距离可忽略,传送带水平部分NQ 的长度L=8m ,皮带轮逆时针转动带动传送带以v = 2m/s 的速度匀速转动。
MN 上放置两个质量都为m = 1 kg 的小物块A 、B ,它们与传送带间的动摩擦因数μ = 0.4。
开始时A 、B 静止,A 、B 间压缩一轻质弹簧,其弹性势能E p = 16 J 。
现解除锁定,弹开A 、B ,并迅速移走弹簧。
取g=10m/s 2。
(1)求物块B 被弹开时速度的大小;
(2)求物块B 在传送带上向右滑行的最远距离及返回水平面MN 时的速度v B ′; (3)A 与P 相碰后静止。
当物块B 返回水平面MN 后,A 被P 弹出,A 、B 相碰后粘接在一起向右滑动,要使A 、B 连接体恰好能到达Q 端,求P 对A 做的功。
【答案】(1) 4.0/B v m s =(2)'2/B v m s =(3)162 W J = 【解析】
试题分析:(1)(6分)解除锁定弹开AB 过程中,系统机械能守恒:
2
B 2A p 2
121mv mv E +=
……2分 设向右为正方向,由动量守恒 0B A mv mv -= ……2分 解得 4.0/B A v v m s == ①……2分
(2)(6分)B 滑上传送带做匀减速运动,当速度减为零时,滑动的距离最远。
由动能定理得 2
B M 2
10mv mgs -
=-μ ……2分 解得2
22B M v S m g
μ=
= ……1分 ② 物块B 在传送带上速度减为零后,受传送带给它的摩擦力,向左加速,若一直加速,则受力和位移相同时,物块B 滑回水平面MN 时的速度'4/B v m s = ,高于传送带速度,说明B 滑回过程先加速到与传送带共速,后以2/m s 的速度做匀速直线运动。
……1分
物块B 滑回水平面MN 的速度'2/B v v m s == ……2分
③
(3)(8分)弹射装置将A 弹出后与B 碰撞,设碰撞前A 的速度为A
v ',碰撞后A 、B 共同的速度为V ,根据动量守恒定律,mV v m v m 2B A ='-'
……2分
④
A 、
B 恰好滑出平台Q 端,由能量关系有
mgL mV 222
1
2⋅=⨯μ ……2分⑤ 设弹射装置对A 做功为W ,2
A
2
1v m W '= ……2分 ⑥ 由④⑤⑥ 解得162 W J = ……2分 考点:相对运动 动能定理 动量守恒
11.如图所示,一质量为M 的平板车B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M,A 、B 间粗糙,现给A 和B 以大小相等、方向相反的初速度v0,使A 开始向左运动,B 开始向右运动,最后A 不会滑离B ,求:
(1)A 、B 最后的速度大小和方向;
(2)从地面上看,小木块向左运动到离出发点最远处时,平板车的速度大小和方向. 【答案】(1)0M m
v M m
-+(2)
2022M m v Mg μ- 【解析】
试题分析:(1)由A 、B 系统动量守恒定律得: Mv0—mv0=(M +m )v ① 所以v=v0
方向向右
(2)A 向左运动速度减为零时,到达最远处,设此时速度为v′,则由动量守恒定律得:
Mv0—mv0="Mv′"00
Mv mv v M
-'=
方向向右 考点:动量守恒定律;
点评:本题主要考查了动量守恒定律得直接应用,难度适中.
12.如图所示,一质量为m=1.5kg 的滑块从倾角为θ=37°的斜面上自静止开始滑下,斜面末端水平(水平部分光滑,且与斜面平滑连接,滑块滑过斜面末端时无能量损失),滑块离开斜面后水平滑上与平台等高的小车.已知斜面长s=10m ,小车质量为M=3.5kg ,滑块与斜面及小车表面的动摩擦因数μ=0.35,小车与地面光滑且足够长,取g=10m/s 2
.
求:(1)滑块滑到斜面末端时的速度
(2)当滑块与小车相对静止时,滑块在车上滑行的距离【答案】(1)8 m/s(2)6.4m
【解析】
试题分析:(1)设滑块在斜面上的滑行加速度a,
由牛顿第二定律,有 mg(sinθ-μcosθ)=ma
代入数据得:a=3.2m/s2
又:s=1
2
at2
解得 t=2.5s
到达斜面末端的速度大小 v0=at=8 m/s
(2)小车与滑块达到共同速度时小车开始匀速运动,该过程中小车与滑块组成的系统在水平方向的动量守恒,则:mv0=(m+M)v
代入数据得:v=2.4m/s
滑块在小车上运动的过程中,系统减小的机械能转化为内能,得:
μmgL=1
2
mv02−
1
2
(m+M)v2
代入数据得:L=6.4m
考点:牛顿第二定律;动量守恒定律;能量守恒定律
【名师点睛】此题考查动量守恒定律及功能关系的应用,属于多过程问题,需要分阶段求解;解题时需选择合适的物理规律,用牛顿定律结合运动公式,或者用动量守恒定律较简单,此题是中档题。