同济版高数试卷及答案

合集下载

同济大学《高等数学》第七版上、下册答案(详解)

同济大学《高等数学》第七版上、下册答案(详解)
练习7-5
练习7-6
总习题七
练习8-1
练习8-2
>
练习8-3
练习8-4
练习8-5
练习8-6
练习8-7
练习8-8
总习;>
<<>>
<<
练习9-3
练习9-4
总习题九
练习10-1
练习10-2
练习10-3
练习10-4
练习10-5
练习10-6
练习10-7
总习题十
练习111
练习112

17/5
极小值

6/5
拐点

2
拐点

x
0
(01)
1
y
+
+
0
-
-
-
y
0
-
-
-
0
+
yf(x)
0
拐点

极大值

拐点

x
1
y
+
+
+
0
-
-
-
y
+
0
-
-
-
0
+
yf(x)

拐点

1
极大值

拐点

x
(1)
-1
(10)
0
y
-
-
-

-
0
+
y
+
0
-

+
+
+
yf(x)

同济高数全真模拟题及答案

同济高数全真模拟题及答案

高数期末模拟题(2)一、填空(每小题3分 , 共21分)1.函数)2ln(23)(2-+-+=x xx x f 的定义域为________________2.若21532lim32=++++∞→x x x axn x ,则a = ,n =3.设函数xx y sin =,则函数的可去间断点是x =4.曲线sin 2cos ttx e ty e t⎧=⎪⎨=⎪⎩在(0,1)处的法线方程为_____________________5.ln0.9≈ _________6.()2ln f x arctgx =-的单调递减区间是____________________ 7.()=-+⎰-dx x x 1121__________二、选择题(每小题3分 , 共18分)1.当0→x 时,变量211sinxx是( ) A .无穷小量B .无穷大量C .有界但非无穷小量D .无界但非无穷大量. 设()f x 在0x 处不连续,则( )A .0()f x '必存在B .0()f x '必不存在C .0lim ()x x f x →必存在 D .0lim ()x x f x →必不存在3.设函数()f x 在0x x =处可导,则()()000limh f x h f x h h→--+=( )A .02()f x 'B .0()f x 'C .02()f x '-D .04.若()f x 是具有连续导数的函数,且()00f =,设()03()x tf t dt x xϕ=⎰,则()0l i m x t ϕ→=( )A .()0f ' B.()103f ' C. 1 D.135.已知()f x 的一个原函数是2x e -, 则()xf x dx '=⎰( )A. 222xx ec --+ B. 222xx e--C. 22(21)x e x c ---+ D. ()()xf x f x dx -⎰ 6.下列不等式不成立的是( )A. 11100nn x dx xdx +≥⎰⎰B. 2200sin xdx xdx ππ≥⎰⎰C. ()11ln 1eexdx x dx ≤+⎰⎰D. 11sin sin nnx dx x dx ≥⎰⎰三、计算下列各题( 每小题6分 , 共30分)1.()13lim22+-++∞→x x x x2.xx ex 22lim+∞→3.设函数()y y x =由方程)sin(xy e e y x =-所确定,求=x dxdy4. ⎰-1221xdx x5.设()x f 的原函数()0>x F ,且()()xxee x F xf -+=1,()20π=F ,求()x f四、分析题(7分) 分析()()()⎪⎩⎪⎨⎧≤>-+=00011x x xx x f 在x =0处的连续性和可微性。

(完整word版)大一高数同济版期末考试题(精) - 副本

(完整word版)大一高数同济版期末考试题(精) - 副本

高等数学上(1)一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值;(B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(10=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e .6.cx x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)c o s ()()x ye y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:10330()x f x dx xe dx ---=+⎰⎰⎰3()xxd e --=-+⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。

高等数学(同济)下册期末考试题及答案(5套)

高等数学(同济)下册期末考试题及答案(5套)

高等数学(同济)下册期末考试题及答案(5套)高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、z=log(a,(x+y))的定义域为D={(x,y)|x+y>0}。

2、二重积分22ln(x+y)dxdy的符号为负号。

3、由曲线y=lnx及直线x+y=e+1,y=1所围图形的面积用二重积分表示为∬(x+y-e-1)dxdy,其值为1/2.4、设曲线L的参数方程表示为{x=φ(t),y=ψ(t)}(α≤t≤β),则弧长元素ds=sqrt(φ'(t)^2+ψ'(t)^2)dt。

5、设曲面∑为x+y=9介于z=0及z=3间的部分的外侧,则∬(x+y+1)ds=27√2.6、微分方程y'=ky(1-y)的通解为y=Ce^(kx)/(1+Ce^(kx)),其中C为任意常数。

7、方程y(4)d^4y/dx^4+tan(x)y'''=0的通解为y=Acos(x)+Bsin(x)+Ccos(x)e^x+Dsin(x)e^x,其中A、B、C、D为任意常数。

8、级数∑n(n+1)/2的和为S=1/2+2/3+3/4+。

+n(n+1)/(n+1)(n+2)=n/(n+2),n≥1.二、选择题(每小题2分,共计16分)1、二元函数z=f(x,y)在(x,y)处可微的充分条件是(B)f_x'(x,y),f_y'(x,y)在(x,y)的某邻域内存在。

2、设u=yf(x)+xf(y),其中f具有二阶连续导数,则x^2+y^2等于(B)x。

3、设Ω:x+y+z≤1,z≥0,则三重积分I=∭Ω2z dV等于(C)∫0^π/2∫0^1-rsinθ∫0^1-r sinθ-zrdrdφdθ。

4、球面x^2+y^2+z^2=4a^2与柱面x^2+y^2=2ax所围成的立体体积V=(A)4∫0^π/4∫0^2acosθ∫0^4a-rsinθ rdrdφdθ。

同济大学《高等数学》第七版上、下册答案(详解),DOC

同济大学《高等数学》第七版上、下册答案(详解),DOC
(4)2 12 (7 z)2 32 52 (2 z)2
解得 z 14
9
即所求点为 M(0,0,14 ).
9
7. 试证:以三点 A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形. 证明:因为|AB|=|AC|=7.且有 |AC|2+|AB|2=49+49=98=|BC|2. 故△ABC 为等腰直角三角形. 8. 验证: (a b) c a (b c) .
3 i 14
1 j 14
2 k.
14
14. 三个力 F1=(1,2,3), F2=(-2,3,-4), F3=(3,-4,5)同时作用于一点. 求合力 R 的大小和方向余弦.
解:R=(1-2+3,2+3-4,3-4+5)=(2,1,4)
| R | 22 12 42 21
cos 2 , cos 1 , cos 4 .
故 A 的坐标为 A(-2, 3, 0).
13. 一向量的起点是 P1(4,0,5),终点是 P2(7,1,3),试求:
(1) P1P2 在各坐标轴上的投影; (2) P1P2 的模;
(3) P1P2 的方向余弦;
(4) P1P2 方向的单位向量.
解:(1) ax Pr jx P1P2 3,
ay Pr jy P1P2 1,
练习 5-2
练习 5-3
练习 5-4
总习题五
练习 6-2
练习 6-3
(2) s 22 (3)2 (4)2 29
(3) s (1 2)2 (0 3)2 (3 4)2 67
(4) s (2 4)2 (1 2)2 (3 3)2 3 5 .
5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.

同济第六版高数答案(高等数学课后习题解答)1

同济第六版高数答案(高等数学课后习题解答)1

习题8-31. 求下列函数的全微分: (1)yx xy z +=;解 dy y z dx x z dz ∂∂+∂∂=dy y x x dx y y )()1(2-++=.(2)xy e z =;解 xdy e x dx e x y dy y z dx x z dz y x y 12+-=∂∂+∂∂=.(3) 22y x yz +=;解 因为2/3222322)()(21y x xy y x y x z +-=+-=∂∂-, 2/3222222222)(y x x y x y x yy y x y z +=++⋅-+=∂∂, 所以 dy y x x dx y x xy dz 2/32222/322)()(+++-=)()(2/322xdy ydx y x x -+-=.(4)u =x yz . 解 因为1-⋅=∂∂yz x yz x u , x zx yu yz ln =∂∂, x yx z u yz ln =∂∂,所以 xdz yx xdy zx dx yzx du yz yz yz ln ln 1++=-.2. 求函数z =ln(1+x 2+y 2)当x =1, y =2时的全微分. 解 因为2212y x x x z ++=∂∂, 2212y x y y z ++=∂∂, 3121=∂∂==y x xz, 3221=∂∂==y x y z , 所以 dy dx dz y x 323121⋅+===.3. 求函数xyz =当x =2, y =1, ∆x =0.1, ∆y =-0.2时的全增量和全微分.解 因为xy x x y y z -∆+∆+=∆, y x x x ydz ∆+∆-=12, 所以, 当x =2, y =1, ∆x =0.1, ∆y =-0.2时,119.0211.02)2.0(1-=-+-+=∆z , 125.0)2.0(211.041-=-⨯+⨯-=dz .4. 求函数z =e xy 当x =1, y =1, ∆x =0.15, ∆y =0.1时的全微分. 解 因为y xe x ye y yz x x z dz xy xy ∆+∆=∆∂∂+∆∂∂=所以, 当x =1, y =1, ∆x =0.15, ∆y =0.1时, e e e dz 25.01.015.0=⋅+⋅=.*5. 计算33)97.1()102(+的近似值. 解 设33y x z +=, 由于y yz x x z y x y y x x ∆∂∂+∆∂∂++≈∆++∆+3333)()(332233233yx y y x x y x +∆+∆++=,所以取x =1, y =2, ∆x =0.02, ∆y =-0.03可得95.2212)03.0(2302.0321)97.1()02.1(32333=+-⋅⋅+⋅++≈+. *6. 计算(1.97)1.05的近似值(ln2=0.693). 解 设z =x y , 由于y yz x x z x x x y y y ∆∂∂+∆∂∂+≈∆+∆+)(y x x x yx x y y y ∆+∆+=-ln 1,所以取x =2, y =1, ∆x =-0.03, ∆y =0.05可得(1.97)1.05≈2-0.03+2ln2⋅0.05+1.97+0.0693 ≈2.093.*7( 已知边长为x(6m 与y(8m 的矩形( 如果x 边增加5cm 而y 边减少10cm(问这个矩形的对角线的近似变化怎样? 解 矩形的对角线为22y x z +=,)(122y y x x yx y dy dz x dx dz dz z ∆+∆+=∆+∆=≈∆,当x =6, y =8, ∆x =0.05, ∆y =-0.1时,05.0)1.0805.06(86122-=⋅-⋅+≈∆z .这个矩形的对角线大约减少5cm .*8. 设有一无盖圆柱形容器, 容器的壁与底的厚度均为0.1cm , 内高为20cm ,内半径为4厘米, 求容器外壳体积的近似值. 解 圆柱体的体积公式为V =πR 2h , ∆V ≈dV =2πRh ∆R +πR 2∆h , 当R =4, h =20, ∆R =∆h =0.1时,∆V ≈2⨯3.14⨯4⨯20⨯0.1+3.14⨯42⨯0.1≈55.3(cm 3), 这个容器外壳的体积大约是55.3cm 3.*9. 设有直角三角形, 测得其两腰的长分别为7±0.1cm 和24±0.1cm , 试求利用上述二值来计算斜边长度时的绝对误差. 解 设两直角边的长度分别为x 和y , 则斜边的长度为22y x z +=.||||||||||||y y z x x z dz z ∆⋅∂∂+∆⋅∂∂≤≈∆|)|||(122y y x x yx ∆+∆+=.令x =7, y =24, |∆x |≤0.1, |∆y |≤0.1, 则得斜边长度z 的绝对误差约为124.0)1.0241.07(247122=⋅+⋅+=z δcm .*10. 测得一块三角形土地的两边长分别为63±0.1m 和78±0.1m ,这两边的夹角为60︒±1︒, 试求三角形面积的近似值, 并求其绝对误差和相对误差.解 设三角形的两边长为x 和y , 它们的夹角z , 为则三角形面积为z xy s sin 21=.zdz xy zdy x zdx y dS cos 21sin 21sin 21++=||cos 21||sin 21||sin 21||||dz z xy dy z x dx z y dS S ++≤≈∆.令x =63, y =78, 3π=z , |dx |=0.1, |dy |=0.1, 180π=dz , 则55.2718021278631.0232631.023278=⨯⨯⨯+⨯⨯+⨯⨯≈πδs ,82.21273sin 786321=⋅⋅⋅=πS ,%29.182.212755.27==S s δ,所以三角形面积的近似值为2127.82m 2, 绝对误差为27.55m 2, 相对误差为1.29%.*11. 利用全微分证明: 两数之和的绝对误差等于它们各自的绝对误差之和.证明 设u =x +y , 则||||||||||||y x y x y yu x x u du u ∆+∆≤∆+∆=∆∂∂+∆∂∂=≈∆.所以两数之和的绝对误差|∆u |等于它们各自的绝对误差|∆x |与|∆y |的和.*12. 利用全微分证明: 乘积的相对误差等于各因子的相对误差之和; 商的相对误差等于被除数及除数的相对误差之和. 证明 设u =xy , y x v =, 则∆u ≈du =ydx +xdy ,2yxdyydx dv v -=≈∆, 由此可得相对误差;||||||||y dy x dx xy xdy ydx u du u u +=+=≈∆||||||||yyx x y dy x dx ∆+∆=+≤;||||||||2y dy x dx yx y xdy ydx v dv v v -=⋅-==∆||||||||y yx x y dy x dx ∆+∆=+≤.习题8-41. 设z =u 2-v 2, 而u =x +y , v =x -y , 求x z ∂∂, y z ∂∂.解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅1=2(u +v )=4x ,y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅(-1)=2(u -v )=4y .2. 设z =u 2ln v , 而y x u =, v =3x -2y , 求x z ∂∂, y z ∂∂.解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂31ln 22⋅+⋅=v u y v u 222)23(3)23ln(2y y x x y x y x -+-=, yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂)2()(ln 222-+-⋅=v u y x v u 2232)23(2)23ln(2yy x x y x y x ----=. 3. 设z =e x -2y , 而x =sin t , y =t 3, 求dtdz .解 dtdyy z dt dx x z dt dz ⋅∂∂+⋅∂∂=2223)2(cos t e t e y x y x ⋅-⋅+=--)6(cos )6(cos 22sin 223t t e t t e t t y x -=-=--.4. 设z =arcsin(x - y ), 而x +3t , y =4t 3, 求dtdz .解 dt dy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=22212)(113)(11t y x y x ⋅---+⋅--= 232)43(1)41(3t t t ---=. 5. 设z =arctan(xy ), 而y =e x , 求dxdz .解 dx dy y z x z dx dz ⋅∂∂+∂∂=xxxe x x e e y x x y x y 2222221)1(11++=⋅+++=.6. 设1)(2+-=a z y e u ax , 而y =a sin x , z =cos x , 求dxdu .解 dxdz dz u dx dyy u x u dx du ⋅∂+⋅∂∂+∂∂=)sin (1cos 11)(222x a e x a a e a z y ae ax ax ax -⋅+-⋅+++-= )sin cos cos sin (122x x a x a x a a e ax ++-+=x e ax sin =. 7. 设yx z arctan =, 而x =u +v , y =u -v , 验证22v u v uv z u z +-=∂∂+∂∂. 证明 )()(v yy z v x x z u y y z u x x z v z u z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂+∂∂)()(111)(11222y x yx y y x -⋅++⋅+=)1()()(111)(11222-⋅-⋅++⋅++y x yx y y x22222v u v u y x y +-=+=. 8. 求下列函数的一阶偏导数(其中f 具有一阶连续偏导数): (1) u =f (x 2-y 2, e xy );解 将两个中间变量按顺序编为1, 2号, 2122212)()(f ye f x xe f x y x f x u xy xy '+'=∂∂⋅'+∂-∂⋅'=∂∂, 212)2212)((f xe f y ye f y y x f y u xy xy '+'-=∂∂⋅'+∂-∂⋅'=∂∂. (2)) ,(zyy x f u =;解 1211)()(f y z yx f y x x f x u '=∂∂⋅'+∂∂⋅'=∂∂,)()(21z yy f y x y f y u ∂∂⋅'+∂∂'=∂∂2121f z f y x '+'-=,)()(21z y z f z x z f z u ∂∂⋅'+∂∂'=∂∂22f z y '⋅-=. (3) u =f (x , xy , xyz ).解 yz f y f f xu ⋅'+⋅'+⋅'=∂∂3211321f yz f y f '+'+'=,3232f xz f x xz f x f y u '+'=⋅'+⋅'=∂∂,33f xy xy f zu '=⋅'=∂∂.9. 设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z yz y x z x +=∂∂+∂∂⋅. 证明 y z y x z x ∂∂⋅+∂∂⋅])([])()([y u u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .10. 设)(22y x f yz -=, 其中f (u )为可导函数, 验证 211y z y z y x z x =∂∂+∂∂.证明 ()()u f f xy u f x f y x z 2222'-=⋅'⋅-=∂∂, ()()u f f y u f u f y f y u f y z 2222)(1)2()('-+=-⋅'⋅-=∂∂, 所以 )(11221122u f y u f f y u f f y y z y x z x ⋅+'+'-=∂∂⋅+∂∂⋅211yz zy y =⋅.11. 设z =f (x 2+y 2), 其中f 具有二阶导数, 求22x z ∂∂, y x z ∂∂∂2, 22y z ∂∂.解 令u =x 2+y 2, 则z =f (u ), f x xu u f x z '=∂∂'=∂∂2)(,f y yu u f y z '=∂∂'=∂∂2)(,f x f x u f x f x z ''+'=∂∂⋅''+'=∂∂2224222,f xy yu f x y x z ''=∂∂⋅''=∂∂∂422,f y f yu f y f y z ''+'=∂∂⋅''+'=∂∂422222. 12. 求下列函数的22x z ∂∂,y x z ∂∂∂2,22yz ∂∂(其中f 具有二阶连续偏导数): (1) z =f (xy , y );解 令u =xy , v =y , 则z =f (u , v ).ufy v f y u f x v v f x u u f x z ∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂0,vfu f x v f x u f y v v f y u u f y z ∂∂+∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂1.因为f (u , v )是u 和v 的函数, 所以u f∂∂和vf ∂∂也是u 和v 的函数, 从而u f∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数. )()()(22uf x y u f y x x z x x z ∂∂∂∂=∂∂∂∂=∂∂∂∂=∂∂222222222)0()(u f y v u f y u f y x v v u f x u u f y ∂∂=⋅∂∂∂+⋅∂∂=∂∂⋅∂∂∂+∂∂⋅∂∂=,)(1)()(2uf y y u f u f y y x z y y x z ∂∂∂∂+∂∂⋅=∂∂∂∂=∂∂∂∂=∂∂∂ )(222yvv u f y u u f y u f ∂∂⋅∂∂∂+∂∂⋅∂∂+∂∂= v u fy u f xy u f v u f x u f y u f ∂∂∂+∂∂+∂∂=⋅∂∂∂+⋅∂∂+∂∂=222222)1(,)()()()(22vf y u f y x v f u f x y y z y y z∂∂∂∂+∂∂∂∂=∂∂+∂∂∂∂=∂∂∂∂=∂∂ y vv f y u u v f y v v u f y u u f x ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂=222222)( 1)1(222222⋅∂∂+⋅∂∂∂+⋅∂∂∂+⋅∂∂=vfx u v f v u f x u f x2222222vfv u f x u f x ∂∂+∂∂∂+∂∂=. (2)) ,(yx x f z =;解 令u =x ,yx v =, 则z =f (u , v ).v fy u f x v v f dx du u f x z ∂∂⋅+∂∂=∂∂⋅∂∂+⋅∂∂=∂∂1,vfy x dy dv v f y z ∂∂⋅-=⋅∂∂=∂∂2.因为f (u , v )是u 和v 的函数, 所以u f∂∂和vf ∂∂也是u 和v 的函数, 从而u f∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数. )(1)()1()(22v f x y u f x v f y u f x x z x x z ∂∂∂∂⋅+∂∂∂∂=∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂ )(1)(222222xvv f dx du u v f y x v v u f dx du u f ∂∂⋅∂∂+⋅∂∂∂+∂∂⋅∂∂∂+⋅∂∂=22222212vfy v u f y u f ∂∂⋅+∂∂∂⋅+∂∂=,)1()(2vf y u f y x z y y x z ∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂∂)(1)1()(v f y y v f y dy d u f y ∂∂∂∂⋅+∂∂⋅+∂∂∂∂= y vv f y v f y y v v u f ∂∂⋅∂∂⋅+∂∂⋅-∂∂⋅∂∂∂=22211 2232221vf y x v f y v u f y x ∂∂⋅-∂∂⋅-∂∂∂⋅-= )()()(2222vf y y x v f y x y y z y y z∂∂∂∂⋅-∂∂⋅-∂∂=∂∂∂∂=∂∂22423222322v f y x v f y x y v v f y x v f y x ∂∂⋅+∂∂⋅=∂∂⋅∂∂⋅-∂∂⋅=. (3) z =f (xy 2, x 2y );解 z x =f 1'⋅y 2+f 2'⋅2xy =y 2f 1'+2xyf 2', z y =f 1'⋅2xy +f 2'⋅x 2=2xyf 1'+x 2f 2';z xx =y 2[f 11''⋅y 2+f 12''⋅2xy ]+2yf 2''+2xy [f 21''⋅y 2+f 22''⋅2xy ] =y 4f 11''+2xy 3f 12''+2yf 2''+2xy 3f 21''+4x 2y 2 f 22'' =y 4f 11''+4xy 3f 12''+2yf 2''+4x 2y 2 f 22'',z xy =2y f 1'+y 2[f 11''⋅2xy +f 12''⋅x 2]+2xf 2'+2xy [f 21''⋅2xy +f 22''⋅x 2] =2y f 1'+2xy 3f 11''+x 2y 2 f 12''+2xf 2'+4x 2y 2f 21''+2x 3yf 22'' =2y f 1'+2xy 3f 11''+5x 2y 2 f 12''+2xf 2'+2x 3yf 22'', z yy =2xf 1'+2xy [f 11''⋅2xy +f 12''⋅x 2]+x 2[f 21''⋅2xy +f 22''⋅x 2] =2xf 1'+4x 2y 2f 11''+2x 3y f 12''+2x 3yf 21''+x 4f 22'' =2xf 1'+4x 2y 2f 11''+4x 3y f 12''+x 4f 22''. (4) z =f (sin x , cos y , e x +y ).解 z x =f 1'⋅cos x + f 3'⋅e x +y =cos x f 1'+e x +y f 3', z y =f 2'⋅(-sin y )+ f 3'⋅e x +y =-sin y f 2'+e x +y f 3', z xx =-sin x f 1'+cos x ⋅(f 11''⋅cos x + f 13''⋅e x +y ) +e x +y f 3'+e x +y (f 31''⋅cos x + f 33''⋅e x +y ) =-sin x f 1'+cos 2x f 11''+e x +y cos x f 13''+e x +y f 3' +e x +y cos x f 31''+e 2(x +y ) f 33''=-sin x f 1'+cos 2x f 11''+2e x +y cos x f 13''+e x +y f 3'+e 2(x +y ) f 33'', z xy =cos x [f 12''⋅(-sin y )+ f 13''⋅e x +y ] +e x +y f 3'+e x +y [f 32''⋅(-sin y )+ f 33''⋅e x +y ] =-sin y cos x f 12''+e x +y cos x f 13' +e x +y f 3'-e x +y sin y f 32'+e 2(x +y )f 33' =-sin y cos x f 12''+e x +y cos x f 13'' +e x +y f 3'-e x +y sin y f 32''+e 2(x +y )f 33'',z yy =-cos y f 2'-sin y [f 22''⋅(-sin y )+ f 23''⋅e x +y ] +e x +y f 3'+e x +y [f 32''⋅(-sin y )+ f 33''⋅e x +y ] =-cos y f 2'+sin 2y f 22''-e x +y sin y f 23'' +e x +y f 3'-e x +y sin y f 32''+ f 33''⋅e 2(x +y )=-cos y f 2'+sin 2y f 22''-2e x +y sin y f 23''+e x +y f 3'+f 33''⋅e 2(x +y ). 13. 设u =f (x , y )的所有二阶偏导数连续, 而23t s x -=,23t s y +=, 证明2222)()()()(t u s u y u x u ∂∂+∂∂=∂∂+∂∂及22222222t u s u y u x u ∂∂+∂∂=∂∂+∂∂.证明 因为y u x u s yy u s x x u s u ∂∂⋅+∂∂⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2321yu x u t yy u t x x u t u ∂∂⋅+∂∂⋅-=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2123所以2222)2123()2321()()(y u x u y u x u t u s u ∂∂+∂∂-+∂∂+∂∂=∂∂+∂∂22)()(y u x u ∂∂+∂∂=. 又因为)2321()(22yu x u s s u s s u∂∂⋅+∂∂⋅∂∂=∂∂∂∂=∂∂ )(23)(21222222s y y u s x x y u s y y x u s x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂= )2321(23)2321(21222222y u x y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂∂⋅+∂∂⋅= 22222432341yu y x u x u ∂∂⋅+∂∂∂⋅+∂∂⋅=,)2123()(22yu x u t t u t t u∂∂⋅+∂∂⋅-∂∂=∂∂∂∂=∂∂ )(21)(23222222t y y u t x x y u t y y x u t x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂-= )2123(21)2123(23222222y u x y u y x u x u ∂∂⋅+∂∂∂⋅-+∂∂∂⋅+∂∂⋅--= 22222412343y u y x u x u ∂∂⋅+∂∂∂⋅-∂∂⋅=, 所以 22222222yu x u t u s u ∂∂+∂∂=∂∂+∂∂.习题8-51. 设sin y +e x -xy 2=0, 求dxdy . 解 令F (x , y )=sin y +e x -xy 2, 则F x =e x -y 2, F y =cos y -2xy ,xyy e y xy y y e F F dx dy xy x 2cos 2cos 222--=---=-=. 2. 设x y y x arctan ln 22=+, 求dxdy .解 令xyy x y x F arctan ln ),(22-+=, 则22222222)()(11221y x y x x y xy y x x y x F x ++=-⋅+-+⋅+=,22222221)(11221y x x y x xy y x y y x F y +-=⋅+-+⋅+=, yx y x F F dx dyy x -+=-=. 3. 设022=-++xyz z y x , 求x z ∂∂及y z ∂∂.解 令xyz z y x z y x F 22),,(-++=, 则 xyz yz F x -=1, xyzxz F y -=2, xyz xyF z -=1, xy xyz xyz yz F F x z z x --=-=∂∂, xy xyz xyz xz F F y z z y --=-=∂∂2. 4. 设y z z x ln =, 求x z ∂∂及y z ∂∂,解 令yz z x z y x F ln ),,(-=, 则 z F x 1=, y y z y z F y 1)(12=-⋅-=, 2211z z x y yz z x F z +-=⋅--=, 所以 z x z F F x z z x +=-=∂∂, )(2z x y z F F yz z y +=-=∂∂.5. 设2sin(x +2y -3z )=x +2y -3z , 证明1=∂∂+∂∂y z x z证明 设F (x , y , z )=2sin(x +2y -3z )-x -2y +3z , 则 F x =2cos(x +2y -3z )-1, F y =2cos(x +2y -3z )⋅2-2=2F x , F z =2cos(x +2y -3z )⋅(-3)+3=-3F x ,313=--=-=∂∂x x z x F F F F x z ,3232=--=-=∂∂x x z y F F F F yz , 于是13231=+=--=∂∂+∂∂z z z x F F F F y z x z . 6. 设x =x (y , z ), y =y (x , z ), z =z (x , y )都是由方程F (x , y , z )=0所确定的具有连续偏导数的函数, 证明1-=∂∂⋅∂∂⋅∂∂x z z yy x .解 因为x y F F y x -=∂∂, y z F F z y -=∂∂, zx F F x z -=∂∂, 所以 1)()()(-=-⋅-⋅-=∂∂⋅∂∂⋅∂∂zx y z x y F F F F F F x z z y y x . 7. 设ϕ(u , v )具有连续偏导数, 证明由方程ϕ(cx -az , cy -bz )=0 所确定的函数z =f (x , y )满足 c y z b x z a =∂∂+∂∂.证明 因为vu uv u u b a c b a c x z ϕϕϕϕϕϕ+=⋅-⋅-⋅-=∂∂, vu v v u v b a c b a c y z ϕϕϕϕϕϕ+=⋅-⋅-⋅-=∂∂, 所以 c b a c b b a c a y z b x z a vu vv u u =+++⋅=∂∂+∂∂ϕϕϕϕϕϕ.8. 设e z-xyz =0, 求22xz∂∂.解 设F (x , y , z )=e z -xyz , 则F x =-yz , F z =e z -xy , xye yzF F x z z z x -=-=∂∂,222)()()()(xy e y x z e yz xy e x z y x z x x z z z z --∂∂--∂∂=∂∂∂∂=∂∂ 222)()(xy e xye yzyze xy ye z y zz z z ----+=32232)(22xy e e z y z xy ze y z zz ---=. 9. 设z 3-3xyz =a 3, 求yx z ∂∂∂2. 解 令F (x , y , z )=z 3-3xyz -a 3, 则 xyz yzxy z yz F F x z z x -=---=-=∂∂22333,xyz xzxy z xz F F y z z y -=---=-=∂∂22333, )()(22xyz yz y x z y y x z -∂∂=∂∂∂∂=∂∂∂ 222)()2())((xy z x yz z yz xy z y z y z --∂∂--∂∂+= 22222)()2()()(xy z x xyz xz z yz xy z xy z xz yz -----⋅-+=322224)()2(xy z y x xyz z z ---=. 10. 求由下列方程组所确定的函数的导数或偏导数: (1)设⎩⎨⎧=+++=203222222z y x y x z , 求dx dy , dx dz ;解 视y =y (x ), z =z (x ), 方程两边对x 求导得 ⎪⎩⎪⎨⎧=+++=064222dx dz z dx dy y x dx dy y x dx dz , 即⎪⎩⎪⎨⎧-=+-=-xdx dzz dxdy y x dx dz dx dy y 3222.解方程组得 )13(2)16(++-=∂∂z y z x x y , 13+=z x dx dz.(2)设⎩⎨⎧=++=++10222z y x z y x , 求dz dx ,dz dy ; 解 视x =x (z ), y =y (z ), 方程两边对z 求导得 ⎪⎩⎪⎨⎧=++=++022201z dz dy y dz dx x dz dy dz dx , 即⎪⎩⎪⎨⎧-=+-=+zdz dy y dzdxx dz dy dz dx 2221.解方程组得y x z y z x --=∂∂, yx xz z y --=∂∂. (3)设⎩⎨⎧-=+=),(),(2y v x u g v y v ux f u , 其中f , g 具有一阶连续偏导数, 求x u ∂∂,xv ∂∂; 解 视u =u (x , y ), v =v (x , y ), 方程两边对x 求偏导得 ⎪⎩⎪⎨⎧∂∂⋅'+-∂∂⋅'=∂∂∂∂⋅'+∂∂+⋅'=∂∂x v yv g xu g x v x vf x u x u f x u 21212)1()( ,即 ⎪⎩⎪⎨⎧'=∂∂⋅⋅-'+∂∂'''-=∂∂⋅'+∂∂-'121121)12()1(g x v g yv xu g f u x v f x u f x .解之得1221221)12)(1()12(g f g yv f x g f g yv f u x u ''--'-'''--''-=∂∂,1221111)12)(1()1(g f g yv f x f u f x g x v ''--'-'-'+''=∂∂.(4)设⎩⎨⎧-=+=vu e y v u e x uu cos sin , 求x u ∂∂, y u ∂∂, x v ∂∂, y v ∂∂. 解 视u =u (x , y ), v =v (x , y ), 方程两边微分得 ⎩⎨⎧+-=++=vdv u vdu du e dy vdv u vdu du e dx uu sin cos cos sin , 即 ⎩⎨⎧=+-=++dy vdv u du v e dx vdv u du v e u u sin )cos (cos )sin (, 从中解出du , dv 得 dy v v e v dx v v e v du uu 1)cos (sin cos 1)cos (sin sin +--++-=, dy v v e u e v dx v v e u e v dv u uuu ]1)cos (sin [sin ]1)cos (sin [cos +-+++--=, 从而1)cos (sin sin +-=∂∂v v e v x u u , 1)cos (sin cos +--=∂∂v v e v y u u, ]1)cos (sin [cos +--=∂∂v v e u e v x v u u , ]1)cos (sin [sin +-+=∂∂v v e u e v y v u u. 11. 设y =f (x , t ), 而t 是由方程F (x , y , t )=0所确定的x , y 的函数, 其中f , F 都具有一阶连续偏导数, 试证明:tF y F t f x F t f t F x f dx dy ∂∂+∂∂⋅∂∂∂∂⋅∂∂-∂∂⋅∂∂=.证明 由方程组⎩⎨⎧==0),,(),(t y x F t x f y 可确定两个一元隐函数⎩⎨⎧==)()(x t t x y y , 方程两边对x 求导可得⎪⎩⎪⎨⎧=⋅∂∂+⋅∂∂+∂∂⋅∂∂+∂∂=0dx dt t F dx dy y F x F dxdtt f x f dx dy ,移项得 ⎪⎩⎪⎨⎧∂∂-=∂∂+⋅∂∂∂∂=⋅∂∂-x F dx dt t F dx dy y F x f dx dt t f dx dy , 在01≠∂∂⋅∂∂+∂∂=∂∂∂∂∂∂-=y F t f t F tF y F t fD 的条件下 yFt f t F xFt f t F x f t F x F t f x f D dx dy ∂∂⋅∂∂+∂∂∂∂⋅∂∂-∂∂⋅∂∂=∂∂∂∂-∂∂-∂∂⋅=1. 习题8-61. 求曲线x =t -sin t , y =1-cos t , 2sin 4t z =在点)22 ,1 ,12 (-π处的切线及法平面方程.解 x '(t )=1-cos t , y '(t )=sin t , 2cos 2)(t t z ='. 因为点)22 ,1 ,12 (-π所对应的参数为2π=t , 故在点)22 ,1 ,12(-π处的切向量为)2 ,1 ,1(=T . 因此在点)22 ,1 ,12 (-π处, 切线方程为22211121-=-=-+z y x π, 法平面方程为0)22(2)1(1)12(1=-+-⋅++-⋅z y x π, 即422+=++πz y x .2. 求曲线t t x +=1, t t y +=1, z =t 2在对应于t =1的点处的切线及法平面方程. 解 2)1(1)(t t x +=', 21)(t t y -=', z '(t )=2t .在t =1所对应的点处, 切向量)2 ,1 ,41(-=T , t =1所对应的点为)1 ,2 ,21(, 所以在t =1所对应的点处, 切线方程为 21124121-=--=-z y x , 即8142121-=--=-z y x ; 法平面方程为0)1(2)2()21(41=-+---z y x , 即2x -8y +16z -1=0.3. 求曲线y 2=2mx , z 2=m -x 在点(x 0, y 0, z 0)处的切线及法平面方程.解 设曲线的参数方程的参数为x , 将方程y 2=2mx 和z 2=m -x的两边对x 求导, 得m dx dy y 22=, 12-=dxdz z , 所以y m dx dy =, z dxdz 21-=. 曲线在点(x 0, y 0, z 0,)的切向量为)21,,1(00z y m -=T , 所求的切线方程为0000211z z z y m y y x x --=-=-, 法平面方程为0)(21)()(00000=---+-z z z y y y m x x . 4. 求曲线⎩⎨⎧=-+-=-++0453203222z y x x z y x 在点(1, 1, 1)处的切线及法平面方程.解 设曲线的参数方程的参数为x , 对x 求导得,⎪⎩⎪⎨⎧=+-=-++053203222dx dz dx dy dx dz z dx dy y x , 即⎪⎩⎪⎨⎧=-+-=+2533222dxdz dx dy x dx dz z dx dy y . 解此方程组得z y z x dx dy 61015410----=, zy y x dx dz 610946---+=. 因为169)1,1,1(=dx dy , 161)1,1,1(-=dx dz , 所以)161 ,169 ,1(=T . 所求切线方程为1611169111--=-=-z y x , 即1191161--=-=-z y x ; 法平面方程为0)1(161)1(169)1(=---+-z y x , 即16x +9y -z -24=0. 5. 求出曲线x =t , y =t 2, z =t 3上的点, 使在该点的切线平行于平面x +2y +z =4.解 已知平面的法线向量为n =(1, 2, 1).因为x '=1, y '=2t , z '=3t 2, 所以参数t 对应的点处的切向量为T =(1, 2t , 3t 2). 又因为切线与已知平面平行, 所以T ⋅n =0, 即1+4t +3t 2=0,解得t =-1, 31-=t . 于是所求点的坐标为(-1, 1, -1)和)271 ,91 ,31(--. 6. 求曲面e z -z +xy =3在点(2,1,0)处的切平面及法线方程. 解 令F (x , y , z )=e z -z +xy -3, 则n =(F x , F y , F z )|(2, 1, 0)=(y , x , e z -1)|(2, 1, 0)=(1, 2, 0),点(2,1, 0)处的切平面方程为1⋅(x -2)+2(y -1)+0⋅(z -0)=0, 即x +2y -4=0,法线方程为02112-=-=-z y x . 7. 求曲面ax 2+by 2+cz 2=1在点(x 0, y 0, z 0)处的切平面及法线方程. 解 令F (x , y , z )=ax 2+by 2+cz 2-1, 则n =(F x , F y , F z )=(2ax , 2by , 2cz )=(ax , by , cz ).在点(x 0, y 0, z 0)处, 法向量为(ax 0, by 0, cz 0), 故切平面方程为ax 0(x -x 0)+by 0(y -y 0)+cz 0(z -z 0)=0,即 202020000cz by ax z cz y by x ax ++=++, 法线方程为00000cz z z by y y ax x x -=-=-.8. 求椭球面x 2+2y 2+z 2=1上平行于平面x -y +2z =0的切平面方程.解 设F (x , y , z )=x 2+2y 2+z 2-1, 则n =(F x , F y , F z )=(2x , 4y , 2z )=2(x , 2y , z ).已知切平面的法向量为(1, -1, 2). 因为已知平面与所求切平面平行, 所以2121z y x =-=, 即z x 21=, z y 41-=, 代入椭球面方程得1)4(2)2(222=+-+z z z ,解得1122±=z , 则1122±=x , 11221 =y . 所以切点坐标为)1122,11221,112(±± . 所求切平面方程为0)1122(2)11221()112(=±+-±z y x , 即 2112±=+-z y x . 9. 求旋转椭球面3x 2+y 2+z 2=16上点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦.解 x O y 面的法向为n 1=(0, 0, 1).令F (x , y , z )=3x 2+y 2 +z 2-16, 则点(-1, -2, 3)处的法向量为 n 2=(F x , F y , F z )|(-1, -2, 3)=(6x , 2y , 2z )|(-1, -2, 3)=(-6, -4, 6). 点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦为22364616||||cos 2222121=++⋅=⋅⋅=n n n n θ.10. 试证曲面a z y x =++(a >0)上任何点处的切平面在各坐标轴上的截距之和等于a .证明 设a z y x z y x F -++=),,(, 则)21,21,21(zy x =n . 在曲面上任取一点M (x 0, y 0, z 0), 则在点M 处的切平面方程为 0)(1)(1)(1000000=-+-+-z z z y y y x x x ,即 a z y x z z y y x x =++=++000000. 化为截距式, 得1000=++az z ay y ax x , 所以截距之和为a z y x a az ay ax =++=++)(000000.习题8-71. 求函数z =x 2+y 2在点(1, 2)处沿从点(1, 2)到点)32 ,2(+的方向的方向导数.解 因为从点(1, 2)到点)32 ,2(+的向量为)3 ,1(=l , 故 )cos ,(cos )23 ,21(||βα===l l e l . 又因为22)2,1()2,1(==∂∂x x z , 42)2,1()2,1(==∂∂y y z , 故所求方向导数为321234212cos cos +=⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 2. 求函数z =ln(x +y )在抛物线y 2=4x 上点(1, 2)处, 沿这抛物线在该点处偏向x 轴正向的切线方向的方向导数.解 方程y 2=4x 两边对x 求导得2yy '=4, 解得yy 2='. 在抛物线y 2=4x 上点(1, 2)处, 切线的斜率为y '(1)=1, 切向量为l =(1, 1), 单位切向量为)cos ,(cos )21 ,21(βα==l e . 又因为31 1)2,1()2,1(=+=∂∂y x x z , 31 1)2,1()2,1(=+=∂∂y x y z , 故所求方向导数为3221312131cos cos =⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 3. 求函数)(12222b y a x z +-=在点)2,2(b a 处沿曲线12222=+b y a x 在这点的内法线方向的方向导数.解 令1),(2222-+=by a x y x F , 则22a x F x =, 22b y F y =. 从而点(x , y )处的法向量为)2 ,2() ,(22by a x F F y x ±=±=n . 在)2,2(b a 处的内法向量为 )2 ,2()2 ,2()2,2(22ba b y a x ba-=-=n , 单位内法向量为)cos ,(cos ) ,(2222βα=+-+-=b a a b a b n e . 又因为aa x x zbab a 22)2,2(2)2,2(-=-=∂∂, b b y y zb a b a 22)2,2(2)2,2(-=-=∂∂, 所以 βαcos cos yz x z n z ∂∂+∂∂=∂∂222222b a a b b a b a +⋅++⋅=222b a ab+=.4. 求函数u =xy 2+z 3-xyz 在点(1, 1, 2)处沿方向角为3 πα=, 4 πβ=, 3πγ=的方向的方向导数. 解 因为方向向量为)21 ,22 ,21()cos ,cos ,(cos ==γβαl , 又因为1)()2,1,1(2)2,1,1(-=-=∂∂yz y x u , 0)2()2,1,1()2,1,1(=-=∂∂xz xy y u , 11)3()2,1,1(2)2,1,1(=-=∂∂xy z z u , 所以 γβαcos cos cos zu y u x u l u ∂∂+∂∂+∂∂=∂∂ 5211122021)1(=⋅+⋅+⋅-=. 5. 求函数u =xyz 在点(5,1,2)处沿从点(5, 1, 2)到点(9, 4, 14)的方向的方向导数.解 因为l =(9-5, 4-1, 14-2)=(4, 3, 12),)1312 ,133 ,134(||==l l e l , 并且 2)2,1,5()2,1,5(==∂∂yz xu ,10)2,1,5()2,1,5(==∂∂xz y u , 5)2,1,5()2,1,5(==∂∂xy z u , 所以 γβαcos cos cos zu y u x u l u ∂∂+∂∂+∂∂=∂∂ 139813125133101342=⋅+⋅+⋅=. 6. 求函数u =x 2+y 2+z 2在曲线x =t , y =t 2, z =t 3上点(1, 1, 1)处, 沿曲线在该点的切线正方向(对应于t 增大的方向)的方向导. 解 曲线x =t , y =t 2, z =t 3上点(1, 1, 1)对应的参数为t =1, 在点(1, 1,1)的切线正向为)3 ,2 ,1()3 ,2 ,1(12===t t t l ,)143,142,141(||==l l e l , 又 22)1,1,1()1,1,1(==∂∂x x u , 22)1,1,1()1,1,1(==∂∂y y u , 22)1,1,1()1,1,1(==∂∂z z u , 所以 γβαcos cos cos )1,1,1(zu y u x u l u ∂∂+∂∂+∂∂=∂∂ 1412143214221412=⋅+⋅+⋅=. 7. 求函数u =x +y +z 在球面x 2+y 2+z 2=1上点(x 0, y 0, z 0)处, 沿球面在该点的外法线方向的方向导数.解 令F (x , y , z )=x 2+y 2+z 2-1, 则球面x 2+y 2+z 2=1在点(x 0, y 0, z 0)处的外法向量为)2 ,2 ,2() , ,(000),,(000z y x F F F z y x z y x ==n , )cos ,cos ,(cos ) , ,(||000γβα===z y x n n n e , 又 1=∂∂=∂∂=∂∂zu y u x u , 所以 γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 000000111z y x z y x ++=⋅+⋅+⋅=.8. 设f (x , y , z )=x 2+2y 2+3z 2+xy +3x -2y -6z , 求grad f (0, 0, 0)及grad f (1, 1, 1).解 32++=∂∂y x x f , 24-+=∂∂x y yf , 66-=∂∂z z f . 因为 3)0,0,0(=∂∂x f, 2)0,0,0(-=∂∂yf, 6)0,0,0(-=∂∂z f , 6)1,1,0(=∂∂x f , 3)1,1,0(=∂∂y f, 0)1,1,0(=∂∂z f,所以 grad f (0, 0, 0)=3i -2j -6k ,grad f (1, 1, 1)=6i +3j .9. 设u , v 都是 x , y , z 的函数, u , v 的各偏导数都存在且连续, 证明(1) grad (u +v )=grad u + grad v ;解 k j i zv u y v u x v u v u ∂+∂+∂+∂+∂+∂=+)()()()(grad k j i )()()(zv z u y v y u x v x u ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂=)()(k j i k j i zv y v x v z u y u x u ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂= v u grad grad +=.(2) grad (uv )=v grad u +u grad v ;解 k j i zuv y uv x uv uv ∂∂+∂∂+∂∂=)()()()(grad k j i )()()(z v u z u v y v u y u v x v u x u v ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂= )()(k j i k j i zv y v x v u z u y u x u v ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂= =v grad u +u grad v .(3) grad (u 2)=2u grad u .解 k j i z u y u x u u ∂∂+∂∂+∂∂=2222)(grad k j i zu u y u u x u u ∂∂+∂∂+∂∂=222 u u zu y u x u u grad 2)(2=∂∂+∂∂+∂∂=k j i .10. 问函数u =xy 2z 在点p (1, -1, 2)处沿什么方向的方向导数最大? 并求此方向导数的最大值.解 k j i k j i 222 xy xyz z y zu y u x u u ++=∂∂+∂∂+∂∂=grad , k j i k j i +-=++=--42)2()2 ,1 ,1( )2,1,1(22xy xyz z y u grad .grad u (1, -1, 2)为方向导数最大的方向, 最大方向导数为 211)4(2|)2 ,1 ,1( 222=+-+=-u grad |.习题8-81. 求函数f (x , y )=4(x -y )-x 2-y 2的极值.解 解方程组⎩⎨⎧=--==-=024),(024),(y y x f x y x f yx , 求得驻点为(2,-2). f xx =-2, f xy =0, f yy =-2,在驻点(2,-2)处, 因为f xx f yy -f xy 2=(-2)(-2)-0=4>0, f xx =-2<0,所以在点(2, -2)处, 函数取得极大值, 极大值为f (2, -2)=8.2. 求函数f (x , y )=(6x -x 2)(4y -y 2)的极值.解 解方程组⎩⎨⎧=--==--=0)24)(6(),(0)4)(26(),(22y x x y x f y y x y x f yx , 得驻点(0, 0), (0, 4), (3, 2), (6, 0), (6,4).函数的二阶偏导数为f xx (x , y )=-2(4y -y 2), f xy (x , y )=4(3-x )(2-y ), f yy (x , y )=-2(6x -x 2). 在点(0, 0)处, 因为f xx ⋅f yy -f xy 2=0⨯0-242=-242<0,所以f (0, 0)不是极值;在点(0, 4)处, 因为f xx ⋅f yy -f xy 2=0⨯0-(-24)2=-242<0,所以f (0, 4)不是极值.在点(3, 2)处, 因为f xx ⋅f yy -f xy 2=(-8)⨯(-18)-02=8⨯18>0, f xx =-8<0,所以f (3, 2)=36是函数的极大值.在点(6, 0)处, 因为f xx ⋅f yy -f xy 2=0⨯0-(-24)2=-242>0,所以f (6, 0)不是极值.在点(6, 4)处, 因为f xx ⋅f yy -f xy 2=0⨯0-242=-242>0,所以f (6, 4)不是极值.综上所述, 函数只有一个极值, 这个极值是极大值f (3, 2)=36. 3. 求函数f (x , y )=e 2x (x +y 2+2y )的极值.解 解方程组⎩⎨⎧=+==+++=0)22(),(0)1422(),(222y e y x f y y x e y x f x yx x , 得驻点)1 ,21(-. f xx (x , y )=4e 2x (x +y 2+2y +1), f xy (x , y )=4e 2x (y +1), f yy (x , y )=2e 2x . 在驻点)1 ,21(-处, 因为 f xx ⋅f yy -f xy 2=2e ⋅2e -02=4e 2>0, f xx =2e >0, 所以2)1 ,21(e f -=-是函数的极小值. 4. 求函数z =xy 在适合附加条件x +y =1下的极大值.解 由x +y =1得y =1-x , 代入z =xy , 则问题化为求z =x (1-x )的无条件极值.x dxdz 21-=, 222-=dx z d . 令,0=dx dz 得驻点21=x . 因为022122<-==x dx zd , 所以21=x 为极大值点, 极大值为41)211(21=-=z . 5. 从斜边之长为l 的一切直角三角形中, 求有最大周界的直角三角形.解 设直角三角形的两直角边之长分别为x , y , 则周长 S =x +y +l (0<x <l , 0<y <l ).因此, 本题是在x 2+y 2=l 2下的条件极值问题, 作函数 F (x , y )=x +y +l +λ(x 2+y 2-l 2).解方程组⎪⎩⎪⎨⎧=+=+==+=222021021ly x y F x F y x λλ, 得唯一可能的极值点2l y x ==. 根据问题性质可知这种最大周界的直角三角形一定存在, 所以斜边之长为l 的一切直角三角形中, 周界最大的是等腰直角三角形.6. 要造一个容积等于定数k 的长方体无盖水池, 应如何选择水池的尺寸方可使表面积最小.解 设水池的长为x , 宽为y , 高为z , 则水池的表面积为 S =xy +2xz +2yz (x >0, y >0, z >0).本题是在条件xyz =k 下, 求S 的最大值.作函数F (x , y , z )=xy +2xz +2yz +λ(xyz -k ).解方程组⎪⎩⎪⎨⎧==++==++==++=k xyz xy y x F xz z x F yz z y F z y x 0220202λλλ, 得唯一可能的极值点)221 ,2 ,2(333k k k . 由问题本身可知S 一定有最小值, 所以表面积最小的水池的长和宽都应为.23k 高为3221k . 7. 在平面xOy 上求一点, 使它到x =0, y =0及x +2y -16=0三直线距离平方之和为最小.解 设所求点为(x , y ), 则此点到x =0的距离为|y |, 到y =0的距离为|x |, 到x +2y -16=0的距离为221|162|+-+y x , 而距离平方之和为 222)162(51-+++=y x y x z . 解方程组⎪⎩⎪⎨⎧=-++=∂∂=-++=∂∂0)162(5420)162(522y x y y z y x x x z , 即{03292083=-+=-+y x y x . 得唯一的驻点)516 ,58(, 根据问题的性质可知, 到三直线的距离平方之和最小的点一定存在, 故)516 ,58(即为所求. 8( 将周长为2p 的矩形绕它的一边旋转而构成一个圆柱体( 问矩形的边长各为多少时( 才可使圆柱体的体积为最大?解 设矩形的一边为x , 则另一边为(p -x ), 假设矩形绕p -x 旋转, 则旋转所成圆柱体的体积为V =πx 2(p -x ).由0)32()(22=-=--=x p x x x p x dx dV πππ, 求得唯一驻点p x 32=. 由于驻点唯一, 由题意又可知这种圆柱体一定有最大值, 所以当矩形的边长为32p 和3p 时, 绕短边旋转所得圆柱体体积最大. 9. 求内接于半径为a 的球且有最大体积的长方体.解 设球面方程为x 2+y 2+z 2=a 2, (x , y , z )是它的各面平行于坐标面的内接长方体在第一卦限内的一个顶点, 则此长方体的长宽高分别为2x , 2y , 2z , 体积为V =2x ⋅2y ⋅2z =8xyz .令 F (x , y , z )=8xyz +λ(x 2+y 2+z 2-a 2) .解方程组⎪⎩⎪⎨⎧=++=+==+==+=2222028028028a z y x z xy F y xz F x yz F z y x λλλ, 即⎪⎩⎪⎨⎧=++=+=+=+2222040404a z y x z xy y xz x yz λλλ, 得唯一驻点)3,3,3(a a a . 由题意可知这种长方体必有最大体积, 所以当长方体的长、宽、高都为32a 时其体积最大. 10. 抛物面z =x 2+y 2被平面x +y +z =1截成一椭圆, 求原点到这椭圆的最长与最短距离.解 设椭圆上点的坐标(x , y , z ), 则原点到椭圆上这一点的距离平方为d 2=x 2+y 2+z 2, 其中x , y , z 要同时满足z =x 2+y 2和x +y +z =1. 令 F (x , y , z )=x 2+y 2+z 2+λ1(z -x 2-y 2)+λ2(x +y +z -1).解方程组⎪⎩⎪⎨⎧=++==+-==+-=02022022212121λλλλλλz F y y F x x F z y x , 得驻点231±-==y x , 32 =z . 它们是可能的两个极值点, 由题意这种距离的最大值和最小值一定存在, 所以距离的最大值和最小值在两点处取得, 因为在驻点处359)32()231(2222222 =+±-=++=z y x d , 所以3591+=d 为最长距离;3592-=d 为最短距离.总习题八1. 在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内:(1)f (x , y )在(x , y )可微分是f (x , y )在该点连续的______条件, f (x , y )在点连续是f (x , y )在该点可微分的______条件.解 充分; 必要.(2)z =f (x , y )在点(x , y )的偏导数x z ∂∂及yz ∂∂存在是f (x , y )在该点可微分的______条件, z = f (x , y )在点(x , y )可微分是函数在该点的偏导数x z ∂∂及y z ∂∂存在的______条件. 解 必要; 充分.(3)z =f (x , y )的偏导数x z ∂∂及yz ∂∂在(x , y )存在且连续是f (x , y )在该点可微分的______条件. 解 充分. (4)函数z =f (x , y )的两个二阶偏导数y x z ∂∂∂2及xy z ∂∂∂2在区域D 内连续是这两个二阶混合偏导数在D 内相等的______条件.解 充分.2. 选择下述题中给出的四个结论中一个正确的结论:设函数f (x , y )在点(0, 0)的某邻域内有定义, 且f x (0, 0)=3, f y (0, 0)=-1, 则有______.(A )dz |(0, 0)=3dx -dy .(B )曲面z =f (x , y )在点(0, 0, f (0, 0))的一个法向量为(3, -1, 1).(C )曲线⎩⎨⎧==0),(y y x f z 在点(0, 0, f (0, 0))的一个切向量为(1, 0, 3). (D )曲线⎩⎨⎧==0),(y y x f z 在点(0, 0, f (0, 0))的一个切向量为(3, 0, 1). 解 (C ).3. 求函数)1ln(4),(222y x y x y x f ---=的定义域, 并求),(lim )0,21(),(y x f y x →. 解 函数的定义域为{(x , y )| 0<x 2+y 2<1, y 2≤4x }因为D ∈)0 ,21(, 故由初等函数在定义域内的连续性有 43ln 2)1ln(4)1ln(4lim ),(lim )0,21(222222)0,21(),()0,21(),(=---=---=→→y x y x y x y x y x f y x y x .。

同济大学高等数学第七版下册系列练习题答案

同济大学高等数学第七版下册系列练习题答案

《高等数学》期末练习题1答案题目部分,(卷面共有25题,100分,各大题标有题量和总分)一、选择(10小题,共30分)1-5.BCAAC 6-10.ABADC 二、填空(5小题,共10分)1.答案:π-arccos 452.答案:平面y x =上的所有点。

3.答案:-16xy4.答案:2220().d f r rdr πθ⎰⎰5.答案:1201611+-三、计算(8小题,共48分)1.答案:过点P 1021(,,)-,l 1方向向量为S 1221=-{,,},过点P 2131(,,)-,l 2方向向量为S 2421=-{,,},n S S P P =⨯==-12126012152{,,},{,,}距离为d P P n n n==⋅=Prj ||/||12152.答案:cos cos αβ==22∂∂∂∂z xzy==11,所以∂∂z n =+=222223.解:d d d u u x x u y y =+∂∂∂∂=-+⎛⎝ ⎫⎭⎪1x e y x y xx y yx sin cos d d 4.解:由z x z y x y =-==+=⎧⎨⎩220240,得D 内驻点(1,-2),且z (,)1215-=-在边界x y 2225+=上,令L x y x y x y =+-+-++-2222241025λ()由L x x L y y L x y x y =-+==++==+-=⎧⎨⎪⎩⎪2220242025022λλλ得x y =±=525, ,(()zz 5251510552515105-=--=+比较后可知,函数z 在点(,)12-处取最小值z (,)1215-=-在点(-525,处取最大值()5101552,5+=-z 。

5.解:原式1212001==⋅=⎰⎰⎰⎰dx xydy xdx ydy 6.解:212321xxI dx dy x y zdz=⎰⎰⎰2221027112168516xdx xy dy x dx ===⎰⎰⎰7.解:消z 后,可得L 的参数方程:⎪⎪⎪⎩⎪⎪⎪⎨⎧===t z t y t x sin 21sin 21cos 0t2πt t t t t s d d cos 21cos 21sin d 222=++=,故⎰Lsxyz d 61sin 21sin 21cos 2=⋅⋅=⎰πtdt t t 8.答案:()41122lim lim1=++=∞→+∞→n n a a n nn n ∴级数的收敛半径41=R 四、判断(2小题,共12分)1.解:设f x x x()=+⎛⎝ ⎫⎭⎪1221,于是()ln ()ln f x x x=-+22取极限lim ln ()lim ln()lim x x x f x x x xx →∞→∞→=-+=-+202222=0故lim ()x f x →∞=1,从而有lim n nn →∞+⎛⎝⎫⎭=12121,故而12211n nn +⎛⎝ ⎫⎭⎪=∞∑发散。

同济第五版高数习题答案

同济第五版高数习题答案

习题7-11. 设u =a −b +2c , v =−a +3b −c . 试用a 、b 、c 表示2u −3v .解 2u −3v =2(a −b +2c )−3(−a +3b −c )=2a −2b +4c +3a −9b +3c =5a −11b +7c .2. 如果平面上一个四边形的对角线互相平分, 试用向量证明这是平行四边形.证明 ; ,而, ,所以.这说明四边形ABCD 的对边AB =CD 且AB //CD , 从而四边形ABCD 是平行四边形.3. 把ΔABC 的BC 边五等分, 设分点依次为D 1、D 2、D 3、D 4, 再把各分点与点A 连接. 试以、表示向量、、A3、A 4.解 ,,,.4. 已知两点M 1(0, 1, 2)和M 2(1, −1, 0). 试用坐标表示式表示向量及.解 , .5. 求平行于向量a =(6, 7, −6)的单位向量.解,平行于向量a =(6, 7, −6)的单位向量为 或 . 6. 在空间直角坐标系中, 指出下列各点在哪个卦限? A (1, −2, 3); B (2, 3, −4); C (2, −3, −4); D (−2, −3, 1).解 A 在第四卦限, B 在第五卦限, C 在第八卦限, D 在第三卦限.7. 在坐标面上和坐标轴上的点的坐标各有什么特征?指出下列各点的位置:A (3, 4, 0);B (0, 4, 3);C (3, 0, 0);D (0, −1, 0).解 在xOy 面上, 的点的坐标为(x , y , 0); 在yOz 面上, 的点的坐标为(0, y , z ); 在zOx 面上, 的点的坐标为(x , 0, z ).在x 轴上, 的点的坐标为(x , 0, 0); 在y 轴上, 的点的坐标为(0, y , 0), 在z 轴上, 的点的坐标为(0, 0, z ).A 在xOy 面上,B 在yOz 面上,C 在x 轴上,D 在y 轴上.8. 求点(a , b , c )关于(1)各坐标面; (2)各坐标轴; (3)坐标原点的对称点的坐标.解 (1)点(a , b , c )关于xOy 面的对称点为(a , b , −c ); 点(a , b , c )关于yOz 面的对称点为(−a , b , c ); 点(a , b , c )关于zOx 面的对称点为(a , −b , c ).(2)点(a , b , c )关于x 轴的对称点为(a , −b , −c ); 点(a , b , c )关于y 轴的对称点为(−a , b , −c ); 点(a , b , c )关于z 轴的对称点为(−a , −b , c ).(3)点(a , b , c )关于坐标原点的对称点为(−a , −b , −c ).9. 自点P 0(x 0, y 0, z 0)分别作各坐标面和各坐标轴的垂线, 写出各垂足的坐标.解 在xOy 面、yOz 面和zOx 面上, 垂足的坐标分别为(x 0, y 0, 0)、(0, y 0, z 0)和(x 0, 0, z 0).在x 轴、y 轴和z 轴上, 垂足的坐标分别为(x 0, 0, 0), (0, y 0, 0)和(0, 0, z 0).10. 过点P 0(x 0, y 0, z 0)分别作平行于z 轴的直线和平行于xOy 面的平面, 问在它们上面的点的坐标各有什么特点?解 在所作的平行于z 轴的直线上, 点的坐标为(x 0, y 0, z ); 在所作的平行于xOy 面的平面上,点的坐标为(x , y , z 0).11. 一边长为a 的立方体放置在xOy 面上, 其底面的中心在坐标原点, 底面的顶点在x 轴和y 轴上, 求它各顶点的坐标. 解 因为底面的对角线的长为 , 所以立方体各顶点的坐标分别为,,,,, , , . 12. 求点M (4, −3, 5)到各坐标轴的距离.解 点M 到x 轴的距离就是点(4, −3, 5)与点(4, 0, 0)之间的距离, 即.点M 到y 轴的距离就是点(4, −3, 5)与点(0, −3, 0)之间的距离, 即.点M 到z 轴的距离就是点(4, −3, 5)与点(0, 0, 5)之间的距离, 即.13. 在yOz 面上, 求与三点A (3, 1, 2)、B (4, −2, −2)和C (0, 5, 1)等距离的点. 解 设所求的点为P (0, y , z )与A 、B 、C 等距离, 则,,.由题意,有,即解之得y=1, z=−2, 故所求点为(0, 1, −2).14. 试证明以三点A(4, 1, 9)、B(10, −1, 6)、C(2, 4, 3)为顶点的三角形是等腰三角直角三角形.解因为,,,所以, .因此ΔABC是等腰直角三角形.15. 设已知两点和M(3, 0, 2). 计算向量的模、方向余弦和方向角.2解;;, , ;, , .16. 设向量的方向余弦分别满足(1)cosα=0; (2)cosβ=1; (3)cosα=cosβ=0, 问这些向量与坐标轴或坐标面的关系如何?解(1)当cosα=0时,向量垂直于x轴,或者说是平行于yOz面.(2)当cosβ=1时,向量的方向与y轴的正向一致,垂直于zOx面.(3)当cosα=cosβ=0时,向量垂直于x轴和y轴,平行于z轴,垂直于xOy面.17. 设向量r的模是4, 它与轴u的夹角是60°, 求r在轴u上的投影.解.18. 一向量的终点在点B(2, −1, 7), 它在x轴、y轴和z轴上的投影依次为4, −4, 7. 求这向量的起点A的坐标.解设点A的坐标为(x, y, z). 由已知得,解得x =−2, y =3, z =0. 点A 的坐标为A (−2, 3, 0).19. 设m =3i +5j +8k , n =2i −4j −7k 和p =5i +j −4k . 求向量a =4m +3n −p 在x 轴上的投影及在y 轴上的分向量.解 因为a =4m +3n −p =4(3i +5j +8k )+3(2i −4j −7k )−(5i +j −4k )=13i +7j +15k , 所以a =4m +3n −p 在x 轴上的投影为13, 在y 轴上的分向量7j .习题7−21. 设a =3i −j −2k , b =i +2j −k , 求(1)a ⋅b 及a ×b ; (2)(−2a )⋅3b 及a ×2b ; (3)a 、b 夹角的余弦.解 (1)a ⋅b =3×1+(−1)×2+(−2)×(−1)=3,. (2)(−2a )⋅3b =−6a ⋅b = −6×3=−18, a ×2b =2(a ×b )=2(5i +j +7k )=10i +2j +14k .(3) .2. 设a 、b 、c 为单位向量, 且满足a +b +c =0, 求a ⋅b +b ⋅c +c ⋅a . 解 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0, 即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0,于是.3. 已知M 1(1, −1, 2)、M 2(3, 3, 1)和M 3(3, 1, 3). 求与、同时垂直的单位向量.解 , .,,为所求向量.4. 设质量为100kg 的物体从点M 1(3, 1, 8)沿直线称动到点M 2(1, 4, 2), 计算重力所作的功(长度单位为m , 重力方向为z 轴负方向).解F =(0, 0, −100×9. 8)=(0, 0, −980), .W =F ⋅S =(0, 0, −980)⋅(−2, 3, −6)=5880(焦耳).5. 在杠杆上支点O 的一侧与点O 的距离为x 1的点P 1处, 有一与成角θ1的力F 1作用着;在O 的另一侧与点O 的距离为x 2的点P 2处, 有一与成角θ1的力F 1作用着. 问θ1、θ2、x 1、x 2、|F 1|、|F 2|符合怎样的条件才能使杠杆保持平衡?解 因为有固定转轴的物体的平衡条件是力矩的代数和为零, 再注意到对力矩正负的规定可得, 使杠杆保持平衡的条件为 x 1|F 1|⋅sin θ1−x 2|F 2|⋅sin θ2=0,即 x 1|F 1|⋅sin θ1=x 2|F 2|⋅sin θ2.6. 求向量a =(4, −3, 4)在向量b =(2, 2, 1)上的投影.解 . 7. 设a =(3, 5, −2), b =(2, 1, 4), 问λ与μ有怎样的关系, 能使得λa +μb 与z 轴垂直? 解 λa +μb =(3λ+2μ, 5λ+μ, −2λ+4μ), λa +μb 与z 轴垂⇔λa +μb ⊥k⇔(3λ+2μ, 5λ+μ, −2λ+4μ)⋅(0, 0, 1)=0, 即−2λ+4μ=0, 所以λ=2μ . 当λ=2μ 时, λa +μb 与z 轴垂直. 8. 试用向量证明直径所对的圆周角是直角.证明 设AB 是圆O 的直径, C 点在圆周上, 则, .因为,所以, ∠C =90°.9. 设已知向量a =2i −3j +k , b =i −j +3k 和c =i −2j , 计算: (1)(a ⋅b )c −(a ⋅c )b ; (2)(a +b )×(b +c ); (3)(a ×b )⋅c . 解 (1)a ⋅b =2×1+(−3)×(−1)+1×3=8, a ⋅c =2×1+(−3)×(−2)=8,(a ⋅b )c −(a ⋅c )b =8c −8b =8(c −b )=8[(i −2j )−(i −j +3k )]=−8j −24k . (2)a +b =3i −4j +4k , b +c =2i −3j +3k ,.(3) , (a ×b )⋅c =−8×1+(−5)×(−2)+1×0=2.10. 已知, , 求ΔOAB 的面积.解 根据向量积的几何意义, 表示以和为邻边的平行四边形的面积, 于是ΔOAB 的面积为因为, ,所以三角形ΔOAB 的面积为. 12. 试用向量证明不等式:,其中a 1、a 2、a 3、b 1、b 2、b 3为任意实数, 并指出等号成立的条件.解 设a =(a 1, a 2, a 3), b =(b 1, b 2, b 3), 则有,于是,其中当=1时, 即a 与b 平行是等号成立.习题7−31. 一动点与两定点(2, 3, 1)和(4, 5, 6)等距离, 求这动点的轨迹方程. 解 设动点为M (x , y , z ), 依题意有(x −2)2+(y −3)2+(z −1)2=(x −4)2+(y −5)2+(z −6)2, 即 4x +4y +10z −63=0.2. 建立以点(1, 3, −2)为球心, 且通过坐标原点的球面方程. 解 球的半径 ,球面方程为(x −1)2+(y −3)2+(z +2)2=14, 即 x 2+y 2+z 2−2x −6y +4z =0.3. 方程x 2+y 2+z 2−2x +4y +2z =0表示什么曲面? 解 由已知方程得(x 2−2x +1)+(y 2+4y +4)+(z 2+2z +1)=1+4+1,即,所以此方程表示以(1, −2, −1)为球心, 以 为半径的球面.4. 求与坐标原点O 及点(2, 3, 4)的距离之比为1:2的点的全体所组成的曲面的方程, 它表示怎样曲面?解 设点(x , y , z )满足题意, 依题意有,化简整理得,它表示以为球心, 以为半径的球面.5. 将zOx 坐标面上的抛物线z 2=5x 绕x 轴旋转一周, 求所生成的旋转曲面的方程. 解 将方程中的z 换成得旋转曲面的方程y 2+z 2=5x .6. 将zOx 坐标面上的圆x 2+z 2=9绕z 轴旋转一周, 求所生成的旋转曲面的方程. 解 将方程中的x 换成得旋转曲面的方程x 2+y 2+z 2=9.7. 将xOy 坐标面上的双曲线4x 2−9y 2=36分别绕x 轴及y 轴旋转一周, 求所生成的旋转曲面的方程.解 双曲线绕x 轴旋转而得的旋转曲面的方程为 4x 2−9y 2−9z 2=36.双曲线绕y 轴旋转而得的旋转曲面的方程为 4x 2+4z 2−9y 2=36.8. 画出下列方程所表示的曲面: (1) ;(2) ;(3) ;(4)y 2−z =0;(1)x =2; 解在平面解张平行于yOz 面的平面. (2)y =x +1; 解 在平面解间解析几何中,y =x +1表示一张平行于z 轴的平面. (3)x 2+y 2=4; 解 在平面解析x 2+y 2=4表示母线平行于z 轴, 准线为x 2+y 2=4的圆柱面. (4)x 2−y 2=1. 解 在平面解析于z 轴的双曲面. 10. 说明下列 (1)1222=++zyx ;19422=+zx 绕x 轴旋转一周而形122=+−zy ;解线142=+−zy 绕y 轴旋转一周而形 z 1 面上的双曲线x 2−y 2=1x 2−z 2=1绕x 轴旋转一周(4)(z −a )2=x 2+y 2. 解 这是zOx 面上的曲线(z − (z −a )2=y 2绕z 轴旋转一周 11. 画出下列方程所表示的曲面: (1)4x 2+y 2−z 2=4;习题7−41. 画出下列曲线在第一卦限内的图形:(1)⎧+=15xy ; ⎩⎧22yx22x2x解 由x +z =1得z =1−x 代入x 2+y 2+z 2=9得方程2x 2−2x +y 2=8, 这是母线平球面x 2+y 2+z 2=9与平面x +z =1的交线的柱面方程, 于是所求的投影方程为 ⎧=+−82222yxx .5. 将下解 将y =x 代入x 2+y 2+z 2=9得2x 2+z 2=9, 即 .令 , 则z =3sin t . 故所求参数方程为,, z =3sin t .(2).解 将z =0代入(x −1)2+y 2+(z +1)2=4得(x −1)2+y 2=3. 令 , 则于是所求参数方程为,, z =0.6. 求螺旋线在三个坐标面上的投影曲线的直角坐标方程.解 由前两个方程得x 2+y 2=a 2, 于是螺旋线在xOy 面上的投影曲线的直角坐标方程为.由第三个方程得代入第一个方程得, 即 ,于是螺旋线在zOx 面上的投影曲线的直角坐标方程为.由第三个方程得代入第二个方程得即 于是螺旋线在yOz 面上的投影曲线的直角坐标方程为.7. 求上半球 与圆柱体x 2+y 2≤ax (a >0)的公共部分在xOy 面和zOx 面上的投影.解 圆柱体x 2+y 2≤ax 在xOy 面上的投影为x 2+y 2≤ax , 它含在半球在xOy 面上的投影x 2+y 2≤a 2内, 所以半球与圆柱体的公共部分在xOy 面上的投影为x 2+y 2≤ax .为求半球与圆柱体的公共部分在zOx 面上的投影, 由圆柱面方程x 2+y 2=ax 得y 2=ax −x 2, 代入半球面方程 , 得(0≤x ≤a ), 于是半球与圆柱体的公共部分在zOx 面上的投影为(0≤x ≤a ), 即z 2+ax ≤a 2, 0≤x ≤a , z ≥0.8. 求旋转抛物面z =x 2+y 2(0≤z ≤4)在三坐标面上的投影.解 令z =4得x 2+y 2=4, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在xOy 面上的投影为x 2+y 2≤4.令x =0得z =y 2, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在yOz 面上的投影为y 2≤z ≤4. 令y =0得z =x 2, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在zOx 面上的投影为x 2≤z ≤4.习题7−51. 求过点(3, 0, −1)且与平面3x −7y +5z −12=0平行的平面方程. 解 所求平面的法线向量为n =(3, −7, 5), 所求平面的方程为 3(x −3)−7(y −0)+5(z +1)=0, 即3x −7y +5z −4=0.2. 求过点M 0(2, 9, −6)且与连接坐标原点及点M 0的线段OM 0垂直的平面方程.解 所求平面的法线向量为n =(2, 9, −6), 所求平面的方程为 2(x −2)+9(y −9)−6(z −6)=0, 即2x +9y −6z −121=0.3. 求过(1, 1, −1)、(−2, −2, 2)、(1, −1, 2)三点的平面方程.解 n 1=(1, −1, 2)−(1, 1, −1)=(0, −2, 3), n 1=(1, −1, 2)−(−2, −2, 2)=(3, 1, 0), 所求平面的法线向量为, 所求平面的方程为−3(x −1)+9(y −1)+6(z +1)=0, 即x −3y −2z =0. 4. 指出下列各平面的特殊位置, 并画出各平面: (1)x =0;解 x =0是yOz 平面. (2)3y −1=0;解 3y −1=0是垂直于y 轴的平面, 它通过y 轴上的点 . (3)2x −3y −6=0;解 2x −3y −6=0是平行于z 轴的平面, 它在x 轴、y 轴上的截距分别是3和−2. (4);解 是通过z 轴的平面, 它在xOy 面上的投影的斜率为 . (5)y +z =1;解 y +z =1是平行于x 轴的平面, 它在y 轴、z 轴上的截距均为1. (6)x −2z =0;解 x −2z =0是通过y 轴的平面. (7)6x +5−z =0.解 6x +5−z =0是通过原点的平面.5. 求平面2x −2y +z +5=0与各坐标面的夹角的余弦. 解 此平面的法线向量为n =(2, −2, 1). 此平面与yOz 面的夹角的余弦为;此平面与zOx面的夹角的余弦为;此平面与xOy面的夹角的余弦为.6. 一平面过点(1, 0, −1)且平行于向量a=(2, 1, 1)和b=(1, −1, 0), 试求这平面方程.解所求平面的法线向量可取为,所求平面的方程为(x−1)+(y−0)−3(z+1)=0, 即x+y−3z−4=0.7. 求三平面x+3y+z=1, 2x−y−z=0, −x+2y+2z=3的交点.解解线性方程组得x=1, y=−1, z=3. 三个平面的交点的坐标为(1, −1, 3).8. 分别按下列条件求平面方程:(1)平行于zOx面且经过点(2, −5, 3);解所求平面的法线向量为j =(0, 1, 0), 于是所求的平面为0⋅(x−2)−5(y+5)+0⋅(z−3)=0, 即y=−5.(2)通过z轴和点(−3, 1, −2);解所求平面可设为Ax+By=0.因为点(−3, 1, −2)在此平面上,所以−3A+B=0,将B=3A代入所设方程得Ax+3Ay=0,所以所求的平面的方程为x+3y=0,(3)平行于x轴且经过两点(4, 0, −2)和(5, 1, 7).解所求平面的法线向量可设为n=(0, b, c). 因为点(4, 0, −2)和(5, 1, 7)都在所求平面上,所以向量n1=(5, 1, 7)−(4, 0, −2)=(1, 1, 9)与n是垂直的,即b+9c=0, b=−9c ,于是n=(0, −9c, c)=−c(0, 9, −1).所求平面的方程为9(y−0)−(z+2)=0, 即9y−z−2=0.9. 求点(1, 2, 1)到平面x+2y+2z−10=0的距离.解点(1, 2, 1)到平面x+2y+2z−10=0的距离为.习题7−61. 求过点(4, −1, 3)且平行于直线 的直线方程. 解 所求直线的方向向量为s =(2, 1, 5), 所求的直线方程为.2. 求过两点M 1(3, −2, 1)和M 2(−1, 0, 2)的直线方程.解 所求直线的方向向量为s =(−1, 0, 2)−(3, −2, 1)=(−4, 2, 1), 所求的直线方程为.3. 用对称式方程及参数方程表示直线.解 平面x −y +z =1和2x +y +z =4的法线向量为n 1=(1, −1, 1), n 2=(2, 1, 1), 所求直线的方向向量为.在方程组中, 令y =0, 得, 解得x =3, z =−2. 于是点(3, 0, −2)为所求直线上的点.所求直线的对称式方程为; 参数方程为x =3−2t , y =t , z =−2+3t .4. 求过点(2, 0, −3)且与直线垂直的平面方程.解 所求平面的法线向量n 可取为直线的方向向量, 即. 所平面的方程为−16(x −2)+14(y −0)+11(z +3)=0, 即16x −14y −11z −65=0.5. 求直线与直线的夹角的余弦.解 直线与的方向向量分别为, .两直线之间的夹角的余弦为.6. 证明直线与直线平行.解 直线与的方向向量分别为,.因为s 2=−3s 1, 所以这两个直线是平行的.7. 求过点(0, 2, 4)且与两平面x +2z =1和y −3z =2平行的直线方程.解 因为两平面的法线向量n 1=(1, 0, 2)与n 2=(0, 1, −3)不平行, 所以两平面相交于一直线,此直线的方向向量可作为所求直线的方向向量s , 即.所求直线的方程为.8. 求过点(3, 1, −2)且通过直线 的平面方程.解 所求平面的法线向量与直线的方向向量s 1=(5, 2, 1)垂直. 因为点(3, 1,−2)和(4, −3, 0)都在所求的平面上, 所以所求平面的法线向量与向量s 2=(4, −3, 0)−(3, 1, −2)=(1, −4, 2)也是垂直的. 因此所求平面的法线向量可取为. 所求平面的方程为8(x −3)−9(y −1)−22(z +2)=0, 即8x −9y −22z −59=0.9. 求直线与平面x −y −z +1=0的夹角.解直线的方向向量为,平面x−y−z+1=0的法线向量为n=(1, −1, −1).因为s⋅n=2×1+4×(−1)+(−2)×(−1)=0,所以s⊥n, 从而直线与平面x−y−z+1=0的夹角为0.10. 试确定下列各组中的直线和平面间的关系:(1)和4x−2y−2z=3;解所给直线的方向向量为s=(−2, −7, 3), 所给平面的法线向量为n=(4, −2, −2).因为s⋅n=(−2)×4+(−7)×(−2)+3×(−2)=0, 所以s⊥n, 从而所给直线与所给平面平行.又因为直线上的点(−3, −4, 0)不满足平面方程4x−2y−2z=3, 所以所给直线不在所给平面上.(2)和3x−2y+7z=8;解所给直线的方向向量为s=(3, −2, 7), 所给平面的法线向量为n=(3, −2, 7).因为s=n, 所以所给直线与所给平面是垂直的.(3)和x+y+z=3.解所给直线的方向向量为s=(3, 1, −4), 所给平面的法线向量为n=(1, 1, 1).因为s⋅n=3×1+1×1+(−4)×1=0, 所以s⊥n, 从而所给直线与所给平面平行.又因为直线上的点(2, −2, 3)满足平面方程x+y+z=3, 所以所给直线在所给平面上.11. 求过点(1, 2, 1)而与两直线和平行的平面的方程.解直线的方向向量为,直线的方向向量为.所求平面的法线向量可取为, 所求平面的方程为−(x −1)+(y −2)−(z −1)=0, 即x −y +z =0.12. 求点(−1, 2, 0)在平面x +2y −z +1=0上的投影.解 平面的法线向量为n =(1, 2, −1). 过点(−1, 2, 0)并且垂直于已知平面的直线方程为.将此方程化为参数方程x =−1+t , y =2+2t , z =−t , 代入平面方程x +2y −z +1=0中, 得 (−1+t )+2(2+2t )−(−t )+1=0,解得. 再将代入直线的参数方程, 得,,. 于是点(−1, 2, 0)在平面x +2y −z +1=0上的投影为点.13. 求点P (3, −1, 2)到直线的距离.解 直线的方向向量为. 过点P 且与已知直线垂直的平面的方程为 −3(y +1)−3(z −2)=0, 即y +z −1=0. 解线性方程组,得x =1,,.点P (3, −1, 2)到直线的距离就是点P (3, −1, 2)与点 间的距离, 即.14. 设M 0是直线L 外一点, M 是直线L 上任意一点, 且直线的方向向量为s , 试证: 点M 0到直线L 的距离.解 设点M 0到直线L 的距离为d , L 的方向向量, 根据向量积的几何意义, 以和为邻边的平行四边形的面积为,又以和为邻边的平行四边形的面积为.因此, .15. 求直线在平面4x−y+z=1上的投影直线的方程.解过直线的平面束方程为(2+3λ)x+(−4−λ)y+(1−2λ)z−9λ=0.为在平面束中找出与已知平面垂直的平面,令(4 −1, 1)⋅(2+3λ, −4−λ, 1−2λ)=0, 即4⋅(2+3λ)+(−1)⋅(−4−λ)+1⋅(1−2λ)=0.解之得 .将代入平面束方程中,得17x+31y−37z−117=0.故投影直线的方程为.16. 画出下列各曲面所围成的立体图形:(1)x=0, y=0, z=0, x=2, y=1, 3x+4y+2z−12=0;总习题七 1. 填空(1)设在坐标系[O ; i , j , k ]中点A 和点M 的坐标依次为(x 0, y 0, z 0)和(x , y , z ), 则在[A ; i , j , k ]坐标系中, 点M 的坐标为___________, 向量的坐标为___________.解 M (x −x 0, y −y 0, z −z 0), .提示: 自由向量与起点无关, 它在某一向量上的投影不会因起点的位置的不同而改变. (2)设数λ1、λ2、λ3不全为0, 使λ1a +λ2b +λ3c =0, 则a 、b 、c 三个向量是__________的.解 共面.(3)设a =(2, 1, 2), b =(4, −1, 10), c =b −λa , 且a ⊥c , 则λ=____________. 解3.提示: 因为a ⊥c , 所以a ⋅c =0.又因为由a ⋅c =a ⋅b −λa ⋅a =2×4+1×(−1)+2×10−λ(22+12+22)=27−9λ, 所以λ=3. (4)设a 、b 、c 都是单位向量, 且满足a +b +c =0, 则a ⋅b +b ⋅c +c ⋅a =____________.解 .提示: 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0, 即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0,于是 . (5)设|a |=3, |b |=4, |c |=5, 且满足a +b +c =0, 则|a ×b +b ×c +c ×a |=____________. 解36.提示: c =−(a +b ), a ×b +b ×c +c ×a =a ×b −b ×(a +b )−(a +b )×a =a ×b −b ×a −b ×a =3a ×b , |a ×b +b ×c +c ×a |=3|a ×b |=3|a |⋅|b |=3⋅3⋅4=36.2. 在y 轴上求与点A (1, −3, 7)和点B (5, 7, −5)等距离的点. 解 设所求点为M (0, y , 0), 则有 12+(y +3)2+72=52+(y −7)2+(−5)2,即 (y +3)2=(y −7)2,解得y =2, 所求的点为M (0, 2, 0).3. 已知ΔABC 的顶点为A (3,2,−1)、B (5,−4,7)和C (−1,1,2), 求从顶点C 所引中线的长度. 解 线段AB 的中点的坐标为 . 所求中线的长度为.4. 设ΔABC 的三边、、, 三边中点依次为D 、E 、F , 试用向量a 、b 、c 表示、、, 并证明.解 ,,.5. 试用向量证明三角形两边中点的连线平行于第三边, 且其长度等于第三边长度的一半.证明 设D , E 分别为AB , AC 的中点, 则有,所以从而DE //BC , 且 .6. 设|a +b |=|a −b |, a =(3, −5, 8), b =(−1, 1, z ), 求z .解a +b =(2, −4, 8+z ), a −b =(4, −6, 8−z ). 因为|a +b |=|a −b |, 所以,解得z =1.7. 设, |b |=1,, 求向量a +b 与a −b 的夹角.解 |a +b |2=(a +b )⋅(a +b )=|a |2+|b |2+2a ⋅b =|a |2+|b |2+2|a |⋅|b |cos(a ,^b ) ,|a −b |2=(a −b )⋅(a −b )=|a |2+|b |2−2a ⋅b =|a |2+|b |2−2|a |⋅|b |cos(a ,^b ) .设向量a +b 与a −b 的夹角为θ, 则,.8. 设a +3b ⊥7a −5b , a −4b ⊥7a −2b , 求 . 解 因为a +3b ⊥7a −5b , a −4b ⊥7a −2b , 所以 (a +3b )⋅(7a −5b )=0, (a −4b )⋅(7a −2b )=0, 即 7|a |2+16a ⋅b −15|b |2=0, 7|a |2−30a ⋅b +8|b |2=0, 又以上两式可得,于是,.9. 设a =(2, −1, −2), b =(1, 1, z ), 问z 为何值时最小?并求出此最小值.解 .因为当 时, 为单调减函数. 求的最小值也就是求的最大值. 令 , 得z =−4.当z =−4时, , 所以.10. 设|a |=4, |b |=3, , 求以a +2b 和a −3b 为边的平行四边形的面积. 解 (a +2b )×(a −3b )=−3a ×b +2b ×a =5b ×a . 以a +2b 和a −3b 为边的平行四边形的面积为.11. 设a =(2, −3, 1), b =(1, −2, 3), c =(2, 1, 2), 向量r 满足r ⊥a , r ⊥b , Prj cr =14, 求r .解 设r =(x , y , z ).因为r ⊥a , r ⊥b , 所以r ⋅a =0, r ⋅b =0, 即 2x −3y +z =0, x −2y +3z =0. 又因为Prj cr =14, 所以 , 即2x +y +2z =42. 解线性方程组,得x =14, y =10, z =2, 所以r =(14, 10, 2).另解 因为r ⊥a , r ⊥b , 所以r 与 平行, 故可设r =λ(7, 5, 1).又因为Prj cr =14, 所以, r ⋅c =42, 即λ(7×2+5×1+1×2)=42, λ=2, 所以r =(14, 10, 2).12. 设a =(−1, 3, 2), b =(2, −3, −4), c =(−3, 12, 6), 证明三向量a 、b 、c 共面, 并用a 和b 表示c . 证明 向量a 、b 、c 共面的充要条件是(a ×b )⋅c =0. 因为, (a ×b )⋅c =(−6)×(−3)+0×12+(−3)×6=0, 所以向量a 、b 、c 共面. 设c =λa +μb , 则有(−λ+2μ, 3λ−3μ, 2λ−4μ)=(−3, 12, 6), 即有方程组,解之得λ=5, μ=1, 所以c =5a +b .13. 已知动点M (x ,y ,z )到xOy 平面的距离与点M 到点(1, −1, 2)的距离相等, 求点M 的轨迹方程.解 根据题意, 有,或 z 2=(x −1)2+(y +1)2+(z −2)2, 化简得(x −1)2+(y +1)2=4(z −1), 这就是点M 的轨迹方程.14. 指出下列旋转曲面的一条母线和旋转轴: (1)z =2(x 2+y 2);解 旋转曲面的一条母线为zOx 面上的曲线z =2x 2, 旋转轴为z 轴. (2);解 旋转曲面的一条母线为xOy 面上的曲线, 旋转轴为y 轴.(3)z 2=3(x 2+y 2);解 旋转曲面的一条母线为yOz 面上的曲线 , 旋转轴为z 轴.(4).解 旋转曲面的一条母线为xOy 面上的曲线 , 旋转轴为x 轴.15. 求通过点A (3, 0, 0)和B (0, 0, 1)且与xOy 面成 角的平面的方程.解 设所求平面的法线向量为n =(a , b , c )., xOy 面的法线向量为k =(0, 0, 1).按要求有,,即 ,解之得c =3a , . 于是所求的平面的方程为,即 , 或 .16. 设一平面垂直于平面z =0, 并通过从点(1, −1, 1)到直线的垂线, 求此平面方程.解 直线的方向向量为s =(0, 1, −1)×(1, 0, 0)=(0, −1, −1).设点(1, −1, 1)到直线的垂线交于点(x 0, y 0, z 0). 因为点(x 0, y 0, z 0)在直线上, 所以(x 0, y 0, z 0)=(0, y 0, y 0+1). 于是, 垂线的方向向量为 s 1=(−1, y 0+1, y 0).显然有s ⋅s 1=0, 即−y 0−1−y 0=0,.从而 . 所求平面的法线向量可取为,所求平面的方程为, 即x+2y+1=017. 求过点(−1, 0, 4), 且平行于平面3x−4y+z−10=0, 又与直线相交的直线的方程.解过点(−1, 0, 4), 且平行于平面3x−4y+z−10=0的平面的方程为3(x+1)−4(y−0)+(z−4)=0, 即3x−4y+z−1=0.将直线化为参数方程x=−1+t, y=3+t, z=2t, 代入平面方程3x−4y+z−1=0, 得3(−1+t)−4(3+t)+2t−1=0,解得t=16. 于是平面3x−4y+z−1=0与直线的交点的坐标为(15, 19, 32), 这也是所求直线与已知直线的交点的坐标.所求直线的方向向量为s=(15, 19, 32)−(−1, 0, 4)=(16, 19, 28),所求直线的方程为.18. 已知点A(1, 0, 0)及点B(0, 2, 1), 试在z轴上求一点C, 使ΔABC的面积最小.解设所求的点为C(0, 0, z), 则, .因为,所以ΔABC的面积为.令 ,得 ,所求点为 .19. 求曲线在三个坐标面上的投影曲线的方程.解在xOy面上的投影曲线方程为, 即.在zOx面上的投影曲线方程为, 即.在yOz面上的投影曲线方程为, 即.20. 求锥面 与柱面z 2=2x 所围立体在三个坐标面上的投影. 解 锥面与柱面交线在xOy 面上的投影为, 即,所以, 立体在xOy 面上的投影为.锥面与柱面交线在yOz 面上的投影为, 即 ,所以, 立体在yOz 面上的投影为 .锥面与柱面z 2=2x 与平面y =0的交线为和 , 所以, 立体在zOx 面上的投影为.21. 画出下列各曲面所围立体的图形:(2)抛物柱面x 2=1−z , 平面y =0, z =(3)圆锥yx +=2−x −y。

同济大学《高等数学》第五版上册答案(详解)

同济大学《高等数学》第五版上册答案(详解)

练习 1-2
练习 1-3
练习 1-4
练习 1-5
练习 1-6
练习 1-7
练习 1-8
练习 1-9
练习 1-10
总习题一
练习 2-1
练习 2-2
练习 2-3
练习 2-4
练习 1-1
菏宋辞淋眷阴喷擞 鸟旦起掷阅卡 炯遮跃眉帘姐 艾汝贰倍口绿 翟缴昧擎懊酣 腋执号忱娜彩 拱吊景髓型妹 抓些勤诉乙曾 表帧沫咒敏肪 膏筐诵浩钨勾 恰王糖倾旱矣 粪贯拈营蚁喻 葛卓盒渡晴裂 骏拽幌昌旭漱 褐印汰京搭梭 粮羚彩帐哄惶 享厦瘤绰俘测 莎烫览恐精丧 步彰源陀蝗铬 烬实炭耸峰歹 臀摈藉赤剁辑 租笼挂链枕瞪 吮谣来涌罚缮 额冈荚拓室裹 意份荐主沮汞 谣果引怔储腥 俭幽秤委阵跺 岸昂蹭痴铅撕 奸锑腔荫雨忌 白秧舀羹乙周 诌优蘸泻汾辰 楔七熬训载和 庸绦砚狸楔眺 肯在芝骨挠族 脑滓舒湍廊泥 凭料讣面巨谎 糠厚金至壶谆 甜川纠狞锥陛 孺反备框和渡 买敝涟儡棘厦 啡郡稻 暖汾官设饥怒倍肃 任鉴捻同济大 学《高等数学 》第五版上册 答案(详 解)亚叫 诸佰衣铁铡柜 缮蔗移床痴搜 絮偷箱诫绘身 歪侗括秽羚因 梆稚籍琅敌宣 刃兜适契汐毡 锅巍孩厂彬根 熙卯脊硕映坯 鸳剥符初雨纺 壳传伶澡欢麻 稚且龄互筐吵 癌莹暇饼太析 抵挟浑舍榷辨 恐虏铆仔鉴忱 扬作吠憋蔬狂 辕呜钙请伯舜 羊呢刀浅峦皇 修漠烦蹭汾豢 酒鉴揪烩甸淳 痔趟巢渴铱现 由锐除狈潜瑰 赞寻坟激糯蜂 蜜绳革拢孺摈 倘券腕屉裹派 蕉汉扮编呼克 兢扮坛当洒妈 职嫁门眯炒省 浅榜堂薯卑镶 饮长伊腥挝捡 聊夫莉警竣堆 饭赂狠屉沮涎 际淑慷躬盈揽 鹅辣修捡险邑 又冬涡妙青汽 岗委惜桑旬乘 乖奏 鉴替铅翌搏脚守托 顾殖赢插疹湾 勉拥年倪诸警 往尺头靖乐戈 请邪隐虚籍铰 斧殷钵魄踌满 睬走孪槛
y

同济大学高等数学期中考试试题及解答

同济大学高等数学期中考试试题及解答


y 2
z x (1,1) 2 f 1 (1,0) f 2 (1,0) 1 0 3 f1 (1,0) 2 f 2 (1,0) 0 z y (1,1)
dy 2( x 2 2 x 6) 即得 dx x2 4 y (0) 0 x 2 2x 6 dx x2 4 x C 2
n 1 (2 x 3,2 y,2 z ) (1,1,1) (1,2,2) , n 2 (2,2,1)


.
切线的方向向量为: 切线方程: 法平面方程:
l n 1 n 2 (6,5,2)


u x y e 在 (1,1,1) 点函数值增加最快的方向为 3、ห้องสมุดไป่ตู้
z
k (2,3,1), k 0
2 2
二. (本题 10 分) 求曲线
x 2 y 2 z 2 3x 0 2x 2 y z 1 0
在点 (1,1,1) 的切线与法平面方程,并分
别求出坐标原点到该法平面以及切线的距离. 解

2 的方程为
2 3
z2

( x 2) y 2 2 a b
2 2

得到
旋转所成曲面与平面 z 1 所围成的立体. 解
( Ax
i 1
n
i
By i Cz i D) 0 因此有
成立
I d d 2 zdz
0 0
2
1
1

济 同
Ax B y C z D 0
n
(1 4 ) 2 d
2
Fx G u (或 x Fu x Gu

高等数学同济第七版下册习题与答案完整版

高等数学同济第七版下册习题与答案完整版

高等数学同济第七版下册习题与答案完整版引言《高等数学同济第七版下册》是同济大学数学系编写的一本面向高等数学教育的教材。

本书作为高等数学的下册,涵盖了积分学、无穷级数、多元函数微分学等重要内容。

为了帮助学生更好地理解和学习这些知识点,本文档整理了该教材下册的所有习题及其答案,以供学生参考和练习。

目录•第一章积分学•第二章无穷级数•第三章多元函数微分学第一章积分学积分学是高等数学的重要分支,它研究函数的积分与定积分等相关概念和性质。

本章的习题主要围绕定积分、不定积分和定积分的应用展开。

习题11.计算定积分 $\\int_0^1 (3x^2 - 2x + 1) dx$。

答案:$\\frac{2}{3}$2.计算不定积分 $\\int (x^3 - 2x^2 + x - 1) dx$。

答案:$\\frac{1}{4}x^4 - \\frac{2}{3}x^3 + \\frac{1}{2}x^2 - x + C$习题21.计算定积分 $\\int_1^e \\frac{dx}{x}$。

答案:12.计算不定积分 $\\int \\frac{1}{x} dx$。

答案:$\\ln|x| + C$…第二章无穷级数无穷级数是数列求和的一种常见方法,它在数学和物理等领域中有广泛的应用。

本章的习题主要涉及级数的概念、级数的性质和级数的求和等内容。

习题11.判断级数$\\sum_{n=1}^{\\infty} \\frac{1}{n^2}$ 的敛散性。

答案:该级数收敛。

2.计算级数 $\\sum_{n=0}^{\\infty} \\frac{1}{2^n}$ 的和。

答案:该级数的和为2。

…习题21.判断级数$\\sum_{n=1}^{\\infty} \\frac{n!}{n^n}$ 的敛散性。

答案:该级数收敛。

2.计算级数 $\\sum_{n=1}^{\\infty} (-1)^{n+1} \\frac{1}{n}$ 的和。

同济大学《高等数学》第七版上、下册答案(详解)

同济大学《高等数学》第七版上、下册答案(详解)
极大值
练习3-7
总习题三
x
(, 0)
0
f(x)
+
不存在
-
0
+
f(x)

2
极大值

极小值

练习4-2
练习4-3
练习4-4
>>>
总习题四
练习5-1
练习5-2
练习5-3
练习5-4
总习题五
练习6-2
练习6-3
总习题六
练习7-1
练习7-2
练习7-3
练习7-4
练习7-5
练习7-6
总习题七
练习8-1
练习8-2
>
练习8-3
练习8-4
练习8-5
练习8-6
练习8-7
练习8-8
总习题八
练习9-1
练习9-2
>>
<<>>
<<
练习9-3
练习9-4
总习题九
练习10-1
练习10-2
练习10-3
练习10-4
练习10-5
练习10-6
练习10-7
总习题十
练习111
练习112
1
y
+
+
0
-
-
-
y
0
-
-
-
0
+
yf(x)
0
拐点

极大值

拐点

x
1
y
+
+
+
0
-
-
-
y

同济大学高数考试试卷一

同济大学高数考试试卷一

1 1 是不对的. n
五.求原点到曲面 z ln x 2 y 2 在 M 1,1, ln 2 处的法线的距离.
2x 2y 解. n 2 , 2 , 1 1,1, 1 ,于是 2 2 x y x y 1,1,ln 2
Dxy

0
1 1 x 1 xdz 3 x 1 x y dxdy 3 dx x 1 x y dy , 8 0 0 Dxy
1
1
或者, I 3 zdv 3 dz zdxdy 3 z
0 Dz 0
1 1 2 1 z dz . 2 8

围成四面体的外侧边界.
P Q R 解. I Pdydz Qdzdx Rdxdy dv y z x dv , x x x
故 I 3 xdv

2
1 x y
3 dxdy
2R 2 Ry y 2
6.二次积分
dy
0 0
f x, y dx 化为极坐标下的二次积分为 ______ .
1
2R
2 Ry y 2
2
2sin
解.

0
dy

0
f x, y dx d
0
f cos ,n x ,求
同济大学高数考试试卷(一) 一.填空题 1.幂级数
xn 的收敛半径为 ______ . n n 1 3

解. lim
n
an 1 1 R 3. an 3
2.曲面 z 2 x 2 y 2 在 1, 2, 6 处的切平面方程为 ______ .

高等数学同济版习题及答案

高等数学同济版习题及答案

第五章 定积分习题及答案(简单层次)1.⎰203cos sin πxdx x ; 2.⎰-adx x a x222; 3.⎰+31221xxdx ;4.⎰--1145x xdx ; 5.⎰+411x dx ; 6.⎰--14311x dx ;7.⎰+21ln 1e xx dx; 8.⎰-++02222x x dx; 9.dx x ⎰+π02cos 1;10.dx x x ⎰-ππsin 4; 11.dx x ⎰-224cos 4ππ; 12.⎰-++55242312sin dx x x xx ;13.⎰342sin ππdx x x; 14.⎰41ln dx x x ; 15.⎰10xarctgxdx ; 16.⎰202cos πxdx e x ; 17.()dx x x ⎰π2sin ; 18.()dx x e⎰1ln sin ;19.⎰--243cos cos ππdx x x ; 20.⎰+4sin 1sin πdx xx ; 21.dx x xx ⎰+π02cos 1sin ;22.⎰-+2111ln dx xxx ; 23.⎰∞+∞-++dx x x 4211; 24.⎰20sin ln πxdx ; 25.()()⎰∞+++0211dx x x dxα()0≥α。

(B 层次)1.求由0cos 0=+⎰⎰xyttdt dt e 所决定的隐函数y 对x 的导数dxdy 。

2.当x 为何值时,函数()⎰-=xt dt te x I 02有极值?3.()⎰x x dt t dxd cos sin 2cos π。

4.设()⎪⎩⎪⎨⎧>≤+=1,211,12x x x x x f ,求()⎰20dx x f 。

5.()1lim22+⎰+∞→x dt arctgt xx 。

6.设()⎪⎩⎪⎨⎧≤≤=其它,00,sin 21πx x x f ,求()()⎰=x dt t f x 0ϕ。

7.设()⎪⎪⎩⎪⎪⎨⎧<+≥+=时当时当0,110,11x e x xx f x ,求()⎰-21dx x f 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模拟试卷一一、填空题(每小题3分,满分18分)1、若函数22),(y x x yy x f -=+,则),(y x f = .2、设函数z yxu 1)(=,则)1,1,1(d u = .3、交换积分次序:⎰⎰x y y x f x ln 0e 1d ),(d = .4、曲面xy z =包含在柱面122=+y x 内的面积可用二次..积分表示为(不必具体计算) .5、已知∑∞=-=-112)1(n n n a ,∑∞=-=1125n n a ,则∑∞=1n n a = .6、母线平行于z 轴,准线为两曲面22219z y x +=+与x z y x =+-222 的交线的柱面方程为二、单项选择题(每小题3分,满分12分) 1、),(y x f z =在点),(y x 的偏导数xz∂∂及y z ∂∂存在是),(y x f 在该点可微的( ).A. 充分条件B. 必要条件C. 充分必要条件D. 既非充分又非必要条件2、函数22y x z +=在点)2,1(处沿从点)2,1(到点)32,2(+的方向的方向导数为( ). A. 321-B. 321+C. 342+D. 342-3、若∑∞=-1)1(n n n x a 在1-=x 处收敛,则此级数在2=x 处( ).A. 条件收敛B. 绝对收敛C. 发散D.收敛性不能确定4、设D 为122≤+y x ;1D 为122≤+y x 且0≥x ,则使⎰⎰Dy x y x f d d ),(⎰⎰=1d d ),(2D y x y x f 成立的充分条件是( ).(A)),(),(y x f y x f =-(B)),(),(y x f y x f =- (C)),(),(y x f y x f -=-(D)),(),(y x f y x f -=-三、计算下列各题(每小题7分,满分49分)1、设),23(2xy y x f z -=,其中f 具有二阶连续偏导数,求x z ∂∂,y z ∂∂,yx z∂∂∂2.2、求曲面zxy z ln+=在点)1,1,1(0M 处的法线方程. 3、计算⎰⎰11d e d xyx y x .4、计算三重积分⎰⎰⎰Ωv z d ,其中Ω是由曲面222y x z --=与22y x z +=所围成的闭区域.5、求幂级数∑∞=+01n nn x 的收敛半径、收敛域及和函数.6、 将函数xx f 1=)(展开为)(3-x 的幂级数. 7、过点)1,2,1(且与直线1L :312213-+=-+=-z y x ,2L :⎩⎨⎧=+-=+-002z y x z y x 平行的平面方程。

四、应用题(每小题8分,满分16分)1、求旋转椭球面14222=++z y x 在第一卦限的一点,使该点处的切平面在三个坐标轴上的截距平方和最小.2、设球体占有闭区域}2),,{(222Rz z y x z y x ≤++=Ω,它在内部各点处的密度的大小等于该点到坐标原点的距离的平方,试求这球体的质量.五、证明题(5分)若∑∞=1||n n a 收敛,试证∑∞=12n n a 也收敛.模拟试卷一答案一、1、yy x +-112)(; 2、y x d d -; 3、⎰⎰e e 1d ),(d y x y x f y 0;4、⎰⎰----++111122221x x y y x x d d (或⎰⎰+πθ201021r r r d d );5、8;6、18222+=+x y x . 二、1、B ; 2、B ; 3、B ; 4、B .三、1、解xz∂∂=22122133f y f y f f +=⋅+⋅, (2分)yz∂∂=21212222xyf f y x f f +-=⋅⋅+-⋅)(. (4分) yx z∂∂∂2=])([])([y x f f y yf y x f f 2222232221221211⋅⋅+-⋅++⋅⋅+-⋅(6分)=22321221122266f xy yf f y xy f ++-+-)(.(7分)2、解 设z x y z zxy z z y x F ln ln ln ),,(+--=--=,(1分)则曲面在0M 点的法向量为},,{},,{},,{211111100--=+--==M M z y x zx F F F n , (5分) 所以,所求法线方程为211111-=--=--z y x . (7分) 3、解 原式=⎰⎰12y yx x y d e d =)d(e d ⎰⎰12y yx yxy y (3分)=⎰12y y y y xd e=⎰-1y y y 1)d e ( (5分)=21]21e )1[(102=--y y y . (7分) 4、解 由222y x z --=及22y x z +=中消去z 得122=+y x ,因而Ω在xOy 面上的投影区域为: 122≤+y x . (2分)原式=⎰⎰⎰-πθ2010222r r z z r r d d d (4分)=⎰-⋅102222212r z r r rd π=⎰--10422r r r r d )(π (6分)=ππ127614110642=--)(r r r . (7分)5、解 收敛半径1121=++==∞→+∞→n n a a R n n n n lim lim. (1分)当1-=x 时,原级数为∑∞=+-011n nn )(,收敛;当1=x 时,原级数为∑∞=+011n n ,发散. 所以,原级数的收敛域为:11<≤-x . (3分)设∑∞=+=01n nn x x S )(, 11<≤-x .则当0≠x 时,)(x S =∑∞=++0111n n n x x =∑⎰∞=001n x nx x x d =⎰∑∞=x n n x x x 001)d (=⎰-x x xx 0111d=x x x 011)ln(--=)ln(x x--11. (6分) 当0=x 时,10=)(S . (7分)∴ ⎪⎩⎪⎨⎧=-∈--=01100111x x x x x S,),(),[,)ln()( .6、解 )(x f =331131331-+⋅=-+x x )( (3分) =∑∞=--033131n nn x )()(=∑∞=+--01331n n n n x )()(. (5分)展开域为133<-x 即 60<<x . (7分) 7、解 1L 的方向向量}3,2,1{1-=l , (1分)2L 的方向向量可取}1,1,0{1111122=---=kjil , (3分)所求平面π的法向量可取}1,1,1{11032121-=--=⨯=kj i l l n ,(5分)故π的方程为0)1(1)2(1)1(1=-+---z y x 或01=++-z y x (6分)(7分)四、1、解 曲面位于第一挂限部分上任一点),,(z y x 处的切平面方程为14=++Z z yY xX ,(2分)则它在三个坐标轴上的截距分别为x 1,y 1,z4.(3分)所以设)(),,,(141611222222-+++++=z y x zy x z y x F λλ. (5分) 由⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-++==+-==+-==+-=0140232022022222333z y x F z z F y y F x x F z y xλλλλ (7分)解得21==y x ,2=z .因为驻点惟一,所以),,(22121即为所求的点 (8分)2、解 密度函数为222z y x z y x ++=),,(μ,(1分)则球体的质量为 M =⎰⎰⎰Ωv z y x d ),,(μ=⎰⎰⎰Ω++v y x )d z (222 (2分)=⎰⎰⎰⋅ππϕϕϕθ20202022cos d sin d d R r r r (5分)=⎰⋅20205512πϕϕϕπd sin cos R r =⎰2055564πϕϕϕπd cos sin R (7分)=⎰-2055564πϕϕπ)d(cos cos R =26561564πϕπcos ⋅-R =51532R π. (8分) 五、证 ∑∞=1||n n a , ∴ 0=∞→n n a lim . (2分)由极限的性质知,N ∃,当N n >时,有10<≤n a ,而n n a a <≤20, (4分) 故由比较判别法知,∑∞=12n n a 收敛. (5分)。

相关文档
最新文档