引物设计的一般原则
引物设计原则(必看)
mi引物设计原则1. 引物的长度一般为15-30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。
2. 引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错配。
引物3’端出现3个以上的连续碱基,如GGG或CCC,也会使错误引发机率增加。
3. 引物3’端的末位碱基对Taq酶的DNA合成效率有较大的影响。
不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3’端使用碱基A。
另外,引物二聚体或发夹结构也可能导致PCR反应失败。
5’端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。
4. 引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应。
上下游引物的GC含量不能相差太大。
5. 引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳。
Tm值的计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用的是最邻近法(the nearest neighbor method)。
6. ΔG值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。
应当选用3’端ΔG值较低(绝对值不超过9),而5’端和中间ΔG 值相对较高的引物。
引物的3’端的ΔG值过高,容易在错配位点形成双链结构并引发DNA聚合反应。
7. 引物二聚体及发夹结构的能值过高(超过4.5kcal/mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。
8. 对引物的修饰一般是在5’端增加酶切位点,应根据下一步实验中要插入PCR 产物的载体的相应序列而确定。
引物序列应该都是写成5-3方向的,Tm之间的差异最好控制在1度之内,另外我觉得扩增长度大一些比较好,500bp左右。
要设计引物首先要找到DNA序列的保守区。
同时应预测将要扩增的片段单链是否形成二级结构。
引物设计的原则
引物设计的原则引物设计有3 条基本原则:首先引物与模板的序列要紧密互补,其次引物与引物之间避免形成稳定的二聚体或发夹结构,再次引物不能在模板的非目的位点引发DNA 聚合反应(即错配)。
具体实现这3 条基本原则需要考虑到诸多因素,如引物长度(primer length),产物长度(product length),序列Tm 值(melting temperature),引物与模板形成双链的内部稳定性(internal stability, 用?G 值反映),形成引物二聚体(primer dimer)及发夹结构(duplex formation and hairpin)的能值,在错配位点(false priming site)的引发效率,引物及产物的GC 含量(composition),等等。
必要时还需对引物进行修饰,如增加限制性内切酶位点,引进突变等。
根据有关参考资料和笔者在实践中的总结,引物设计应注意如下要点:1. 引物的长度一般为15-30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA 聚合酶进行反应[2]。
2. 引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错配。
引物3’端出现3 个以上的连续碱基,如GGG 或CCC,也会使错误引发机率增加[2]。
3. 引物3’端的末位碱基对Taq 酶的DNA 合成效率有较大的影响。
不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A 的错配效率明显高于其他3 个碱基,因此应当避免在引物的3’端使用碱基A[3][4]。
另外,引物二聚体或发夹结构也可能导致PCR 反应失败。
5’端序列对PCR 影响不太大,因此常用来引进修饰位点或标记物[2]。
4. 引物序列的GC 含量一般为40-60%,过高或过低都不利于引发反应。
上下游引物的GC含量不能相差太大[2][5]。
5. 引物所对应模板位置序列的Tm 值在72℃左右可使复性条件最佳。
引物设计原则[必看]
mi引物设计原则1. 引物的长度一般为15-30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74C,不适于Taq DNA聚合酶进行反应。
2. 引物序列在模板内应当没有相似性较高,尤其是3'端相似性较高的序列,否则容易导致错配。
引物3'端出现3个以上的连续碱基,如GG(或CCC也会使错误引发机率增加。
3. 引物3'端的末位碱基对Taq酶的DNA合成效率有较大的影响。
不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3'端使用碱基A。
另外,引物二聚体或发夹结构也可能导致PCR反应失败。
5'端序列对PCF影响不太大,因此常用来引进修饰位点或标记物。
4. 引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应。
上下游引物的GC含量不能相差太大。
5. 引物所对应模板位置序列的Tm值在72E左右可使复性条件最佳。
Tm值的计算有多种方法,如按公式Tm= 4(G+C)+ 2(A+T),在Oligo软件中使用的是最邻近法(the n earest n eighbor method) 。
6. AG值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。
应当选用3'端4G值较低(绝对值不超过9),而5'端和中间△ G值相对较高的引物。
引物的3'端的4G值过高,容易在错配位点形成双链结构并引发DNA聚合反应。
7. 引物二聚体及发夹结构的能值过高(超过4.5kcal/mol )易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。
8. 对引物的修饰一般是在5'端增加酶切位点,应根据下一步实验中要插入PCR 产物的载体的相应序列而确定。
引物序列应该都是写成5-3方向的,Tm之间的差异最好控制在1度之内,另外我觉得扩增长度大一些比较好,500bp左右。
引物设计原则
引物设计原则
1.合适的引物长度:引物长度通常在18-30个碱基对之间,过长或过
短的引物都不利于PCR扩增的稳定性。
2.适当的引物GC含量:引物的GC含量应在40%-60%之间,过高或过
低的GC含量都会影响引物和模板DNA的特异性结合。
3.引物特异性:引物应具有高度特异性,可以通过引物序列在数据库
中进行BLAST分析来评估引物的特异性。
4.避免引物自身的二聚体和结构性:引物序列中要避免出现自身二聚
体和结构性,这会干扰PCR扩增的效果。
5.选择高峰结构引物:在引物设计时,优先选择会形成高峰结构的引物,这有助于提高扩增效率。
6.引物末端碱基的特异性:在引物末端碱基选择时,尽量使用能够增
强特异性和避免非特异性扩增的碱基。
7.引物的熔解温度(Tm):引物的熔解温度直接影响PCR扩增反应的
特异性和效率,应根据目标DNA的长度和序列来确定引物的Tm。
8.避免引物之间的交叉杂交:在多引物PCR反应中,引物之间的交叉
杂交会干扰扩增效果,可以通过软件模拟或实验确认引物之间没有相互杂交。
9.引物序列中避免多个重复碱基:引物序列中的多个重复碱基可能导
致非特异性扩增,应避免在引物序列中出现连续的多个重复碱基。
10.引物设计的可操作性和经济性:引物设计时,要考虑到引物合成
的成本和操作的方便性,选择价格适中的合成方法,并确保引物容易操作。
以上是引物设计的原则和考虑因素,通过合理设计和优化引物序列,可以提高PCR扩增实验的特异性、敏感性和效率,从而获得准确和稳定的实验结果。
引物设计一般原则
引物设计一般原则引物是一篇文章的开头部分,起着引导读者进入文章内容的作用。
设计出一个吸引人的引物,可以让读者对全文产生兴趣,从而增加文章的阅读率和影响力。
以下是设计引物的一般原则:1.引人入胜:一个好的引物应该从一开始就吸引读者的注意力。
可以使用一个有趣的事实、引人瞩目的问题、或者一个令人震惊的观点,引起读者的好奇心和注意力。
例如,一篇关于环保的文章可以这样开头:"你知道每年全球有多少塑料袋被丢弃在海洋中吗?让我们想象一下,如果塑料袋能够排成一排,能围绕地球多少次呢?"例如,一篇关于教育问题的文章可以这样开头:"教育是改变社会的关键。
我们如何培养出具有创新精神和社会责任感的下一代?本文将探讨教育系统中存在的问题,并提出一些解决方案。
"3.引用名言:一个有启发性的引言可以吸引读者的注意力,并激发他们对文章内容的思考。
这种引物可以是一个名人的名言、一句格言或者一句普遍认同的观点。
例如,一篇关于成功的文章可以这样开头:"爱因斯坦曾经说过,成功不是偶然发生的,而是由采取正确行动的结果。
本文将探讨一些成功的秘诀,并帮助你实现自己的目标。
"例如,一篇关于健康饮食的文章可以这样开头:"在现代社会中,我们很容易陷入不健康的饮食习惯中。
但是,我们应该意识到食物对我们的健康有着巨大的影响。
本文将分享一些健康饮食的技巧,让你拥有一个健康的生活方式。
"6.语言生动:一个好的引物应该通过使用生动的语言和形象的描述,给读者留下深刻的印象。
这样可以增加读者的情感共鸣,让他们更容易被文章吸引和影响。
例如,一篇关于环保的文章可以这样开头:"在一个炎热的夏天,当你走近那片被绿意覆盖的公园时,你能感受到清新的空气和树木的阴凉。
但是,你是否想过背后那些无声的英雄们,他们为了保护这片绿洲付出了多少努力?"总结来说,一个好的引物应该具有引人入胜、提出观点、引用名言、切入主题、简洁明了和语言生动等特点。
引物设计原则
引物设计原则:引物的3’端决定着PCR反应产物的特异性,而5’端限定着PCR产物的长度。
(1)引物序列应位于基因组DNA的高度保守区,且与非扩增区无同源序列。
这样可以减少引物与基因组的非特异结合,提高反应的特异性。
在模板内最好具有单一性,也就是说在模板内部没有错配,特别是3’端,一定要避免连续4个以上的碱基互补错配。
(2)引物的长度一般为15-30 bp,最好在18~24 bp,因为太短易形成错配,降低特异性,而太长也会降低特异性,并且影响PCR反应效率。
引物之间也不能有互补性,一般一对引物间不应多于4个连续碱基的互补。
(3)引物的碱基应尽可能随机分布,避免出现数个嘌呤或嘧啶的连续排列,G+C含量在40%~75%之间,且上下游引物序列GC含量的差异不要太大,3’端最后5个碱基最好不要富含GC,特别是连续3个的G或C。
DNA双链形成所需的自由能AG,应该以5’端向3’端递减(4)引物的内部应避免形成稳定的引物二聚体和发夹结构,特别是引物的末端应无回文结构。
上下游引物不应有互补序列,特别是3’端应避免互补,以免形成引物二聚体。
(5)如果以DNA为模板设计引物,产物长度在100—600 bp比较理想。
而以mRNA为模板设计引物时,产物长度在150—300 bp比较理想。
(6)5’ 端对PCR影响不太大,可以引进修饰位点和标记物。
(7)引物3’端的头1~2个碱基会影响T aqDNA聚合酶的延伸效率,从而影响PCR反应的扩增效率及特异性。
一般的PCR反应中,引物3’末端的碱基最好选T、C、G而不选A,A错配时会影响合成效率。
(8)引物3’端应为保守氨基酸序列,即采用简并密码子少的氨基酸如Met、Trp,且避免三联体密码第三个碱基的摆动未知位于引物的3’端。
3’端不应终止于密码子的简并碱基。
十条PCR引物的设计原则:①引物应用核酸系列保守区内设计并具有特异性。
②产物不能形成二级结构。
③引物长度一般在15~30碱基之间。
引物设计的一般原则
04
引物设计的步骤
确定目标序列
目标序列
确定需要扩增的目标DNA或RNA序列,确保其准 确性。
序列长度
根据扩增需求,确定目标序列的长度,通常在 100bp至数千bp之间。
序列质量
确保目标序列的质量,避免存在突变、插入或缺 失等变异。
选择合适的引物位置
引物长度
通常选择15-30bp的引物长度,以保证引物的特异性 和扩增效率。
引物位置
选择目标序列中具有足够保守性的区域作为引物结合 位点,以提高引物的通用性。
避免二级结构
确保引物结合位点周围序列的构象简单,避免存在影 响引物结合的二级结构。
设计正向和反向引物
01
正向引物
与目标序列的5'端结合,用于启 动DNA聚合酶的合成。
反向引物
02
03
引物配对
与目标序列的3'端结合,用于引 导DNA聚合酶完成全长扩增。
引物设计
根据已知目的基因的序列,设计出两条互补的寡核苷酸序列 ,作为合成DNA的起始点。
引物的重要性
1
引物是PCR技术的关键因素之一,其质量直接影 响到PCR产物的产量和质量。
2
引物的特异性决定了PCR产物的特异性,因此需 要确保引物与目的基因的高度特异性结合。
3
引物的长度、GC含量、Tm值等参数也会影响 PCR反应的效率和产物质量。
引物设计的一般原则
目 录
• 引物设计的概述 • 引物设计的原则 • 引物设计的方法 • 引物设计的步骤 • 引物设计的注意事项
01
引物设计的概述
引物的定义
引物
在PCR(聚合酶链式反应)技术中,引物是人工合成的两段寡 核苷酸序列,一个引物与目的基因一端的一条DNA模板链互补, 另一个引物与目的基因另一端的另一条DNA模板链互补。
PCR引物设计的基本原则
PCR引物设计的基本原则1. 引物的长度一般取15-30bp,常用18-27bp,但不能大于38bp,因为引物过长会导致其延伸温度大于74℃。
2. 引物3’端的序列要比5’端重要。
引物3’端的碱基一般不用A(3’端碱基序列最好是G、C、CG、GC),因为A在错误引发位点的引发效率相对比较高。
另引物间3’端的互补、二聚体或发夹结构也很可能导致PCR反应失败。
5’端序列对PCR 影响不太大,因此常用来引进修饰位点或标记物。
3. 引物的GC含量一般为40-60%,以45-55%为宜,过高或过低都不利于引发反应。
有一些模板本身的GC 含量偏低或偏高,导致引物的GC含量不能在上述范围内,这时应尽量使上下游引物的GC 含量以及Tm 值保持接近(上下游引物的GC含量不能相差太大),以有利于退火温度的选择。
如果G-C比例超出,则在引物的5’端增加As或Ts;而如果A-T比例过高,则同样在5’端增加Gs或Cs。
4. 引物所对应模板序列的Tm 值最好处于72℃左右。
(Tm 值曲线以选取72 度附近为佳,5’到3’的下降形状也有利于引物引发聚合反应),至少要在55-80℃之间5. ΔG值(自由能)反映了引物与模板结合的强弱程度。
一般情况下,引物的ΔG值最好呈正弦曲线,即5’端和中间ΔG值较高,而3’端ΔG值相对较低,且不要超过9(ΔG值为负值,这里取绝对值),如此可防止错误引发。
3′末端双链的ΔG是0~-2 kcal/mol时,PCR产量几乎到百分之百,随着其绝对值的增加产量逐渐下降,在-6时只有40%、到-8时少于20%、而-10时接近于0。
6.错配率一般不要超过100,否则会出现非目的条带。
但是对于某些特定的模板序列,还应结合比较其在正确位点引发效率。
如果两者相差很大,比如在正确位点的引发效率为340以上,而在错误位点的引发效率为110,并且不好找到其他更合适的引物,那么这对引物是可以接受的;7. Frq 曲线为Oligo6新引进的一个指标,揭示了序列片断存在的重复机率大小。
引物设计原则
1.引物最好在模板cDNA的保守区内设计。
DNA序列的保守区是通过物种间相似序列的比较确定的。
在NCBI上搜索不同物种的同一基因,通过序列分析软件(比如DNAman)比对(Alignment),各基因相同的序列就是该基因的保守区。
2.引物长度一般在15~30碱基之间。
引物长度(primer length)常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA 聚合酶进行反应。
3.引物GC含量在40%~60%之间,Tm值最好接近72℃。
GC含量(composition)过高或过低都不利于引发反应。
上下游引物的GC含量不能相差太大。
另外,上下游引物的Tm值(melting temperature)是寡核苷酸的解链温度,即在一定盐浓度条件下,50%寡核苷酸双链解链的温度。
有效启动温度,一般高于Tm值5~10℃。
若按公式Tm= 4(G+C)+2(A+T)估计引物的Tm值,则有效引物的Tm为55~80℃,其Tm 值最好接近72℃以使复性条件最佳。
4.引物3′端要避开密码子的第3位。
如扩增编码区域,引物3′端不要终止于密码子的第3位,因密码子的第3位易发生简并,会影响扩增的特异性与效率。
5.引物3′端不能选择A,最好选择T。
引物3′端错配时,不同碱基引发效率存在着很大的差异,当末位的碱基为A时,即使在错配的情况下,也能有引发链的合成,而当末位链为T时,错配的引发效率大大降低,G、C 错配的引发效率介于A、T之间,所以3′端最好选择T。
6. 碱基要随机分布。
引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错误引发(False priming)。
降低引物与模板相似性的一种方法是,引物中四种碱基的分布最好是随机的,不要有聚嘌呤或聚嘧啶的存在。
尤其3′端不应超过3个连续的G或C,因这样会使引物在GC富集序列区错误引发。
7. 引物自身及引物之间不应存在互补序列。
引物设计原则(必看)
mi引物设计原则1、引物得长度一般为15-30 bp,常用得就是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。
2、引物序列在模板内应当没有相似性较高,尤其就是3’端相似性较高得序列,否则容易导致错配。
引物3’端出现3个以上得连续碱基,如GGG或CCC,也会使错误引发机率增加。
3、引物3’端得末位碱基对Taq酶得DNA合成效率有较大得影响。
不同得末位碱基在错配位置导致不同得扩增效率,末位碱基为A得错配效率明显高于其她3个碱基,因此应当避免在引物得3’端使用碱基A。
另外,引物二聚体或发夹结构也可能导致PCR反应失败。
5’端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。
4、引物序列得GC含量一般为40-60%,过高或过低都不利于引发反应。
上下游引物得GC含量不能相差太大。
5、引物所对应模板位置序列得Tm值在72℃左右可使复性条件最佳。
Tm值得计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用得就是最邻近法(the nearest neighbor method)。
6、ΔG值就是指DNA双链形成所需得自由能,该值反映了双链结构内部碱基对得相对稳定性。
应当选用3’端ΔG值较低(绝对值不超过9),而5’端与中间ΔG值相对较高得引物。
引物得3’端得ΔG值过高,容易在错配位点形成双链结构并引发DNA聚合反应。
7、引物二聚体及发夹结构得能值过高(超过4、5kcal/mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。
8、对引物得修饰一般就是在5’端增加酶切位点,应根据下一步实验中要插入PCR产物得载体得相应序列而确定。
引物序列应该都就是写成5-3方向得,Tm之间得差异最好控制在1度之内,另外我觉得扩增长度大一些比较好,500bp左右。
要设计引物首先要找到DNA序列得保守区。
同时应预测将要扩增得片段单链就是否形成二级结构。
PCR引物设计原理及原则
PCR引物设计原理及原则PCR引物设计是指在聚合酶链反应(PCR)中使用的引物的设计过程。
PCR引物起到了在PCR扩增过程中特异性识别和引导DNA复制反应的作用。
因此,PCR引物的设计直接影响PCR反应的成功与否。
以下是PCR引物设计的原理及原则。
一、PCR引物设计的原理1.引物长度:引物的长度通常为18-25个碱基对。
引物过短可能导致非特异性引物结合,引物过长可能导致反应条件不佳。
较长引物(20-25个碱基对)通常用于扩增目标DNA较长的片段,而较短引物(18-20个碱基对)通常用于扩增较短的目标DNA片段。
2.引物序列:引物的序列应与目标DNA序列互补,以确保引物与模板DNA的特异性结合。
引物序列应尽量避免重复序列或序列中的碱基。
此外,引物序列的催化部位(3'端)应该具有高度的特异性与模板DNA序列匹配,以确保PCR反应的特异性。
3.引物的Tm值:引物的Tm值是指反应温度下引物和目标DNA序列的熔解温度。
引物的Tm值应相似,通常在56-64℃之间,以保证引物与目标DNA序列结合的特异性和稳定性。
4.引物的GC含量:引物的GC含量对PCR反应的效率和特异性有重要影响。
引物的GC含量应控制在40-60%之间,过高或过低的GC含量可能导致引物结合能力不佳。
二、PCR引物设计的原则1.引物特异性:引物应与目标DNA序列的特异区域互补,以确保特异性扩增。
在设计引物时,应避免引物与非目标序列互补或有任何交叉杂交现象。
2.引物长度:引物长度通常为18-25个碱基对,过短或过长的引物可能导致PCR反应效果不佳。
3.引物序列中避免重复序列:引物序列中避免过多的重复序列,以免引发非特异性引物结合。
4.引物催化部位特异性:引物的催化部位(3'端)应具有高度的特异性与模板DNA序列匹配,以确保PCR反应的特异性。
5.引物的Tm值匹配:引物的Tm值应相似,通常在56-64℃之间,以确保引物在反应温度下与模板DNA序列结合的稳定性。
引物设计原则(必看)
mi引物设计原则1. 引物的长度一般为15-30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。
2. 引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错配。
引物3’端出现3个以上的连续碱基,如GGG或CCC,也会使错误引发机率增加。
3. 引物3’端的末位碱基对Taq酶的DNA合成效率有较大的影响。
不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3’端使用碱基A。
另外,引物二聚体或发夹结构也可能导致PCR反应失败。
5’端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。
4. 引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应。
上下游引物的GC含量不能相差太大。
5. 引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳。
Tm值的计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用的是最邻近法(the nearest neighbor method)。
6. ΔG值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。
应当选用3’端ΔG值较低(绝对值不超过9),而5’端和中间ΔG 值相对较高的引物。
引物的3’端的ΔG值过高,容易在错配位点形成双链结构并引发DNA聚合反应。
7. 引物二聚体及发夹结构的能值过高(超过4.5kcal/mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。
8. 对引物的修饰一般是在5’端增加酶切位点,应根据下一步实验中要插入PCR 产物的载体的相应序列而确定。
引物序列应该都是写成5-3方向的,Tm之间的差异最好控制在1度之内,另外我觉得扩增长度大一些比较好,500bp左右。
要设计引物首先要找到DNA序列的保守区。
同时应预测将要扩增的片段单链是否形成二级结构。
引物设计原则最全汇总
引物设计原则最全汇总1.特异性:引物应与所需扩增的目标序列特异性结合,避免与非目标序列发生非特异性结合,以确保产生准确结果。
2.高GC含量:引物的GC含量应高于50%,以增加引物与目标序列的稳定性和特异性。
3.避免酶切位点:在引物设计过程中,应避免引物与目标序列中的酶切位点重叠,以防止扩增产物的酶切降解。
4.引物长度:引物的长度通常在18至30个核苷酸之间,过长的引物会降低特异性,而过短的引物则可能导致非特异性扩增。
5.引物的Tm值匹配:引物的熔解温度(Tm)应在同一PCR反应中保持一致,以确保引物能同时结合于目标序列并发挥作用。
6.避免互补性:在引物设计过程中,应避免引物之间存在互相互补的情况,以防止互补引物之间的杂交,从而导致错误的扩增结果。
7.引物末端修饰:常用的引物末端修饰包括磷酸化、末端标记和引物的截断,通过这些修饰可以提高引物的选择性和特异性。
8.引物的GC平衡:引物的GC含量应在一定范围内均衡,以避免在PCR反应中产生二聚体或无效的扩增。
9.引物序列的重复性:引物设计中应避免引物序列的重复性,以防止引物产生二聚体或与非目标序列互补结合。
10.引物的独特性:在引物设计中,应确保引物序列在目标基因组中的唯一性,避免与非目标序列存在相似区域。
11.引物的结合位点:引物的结合位点应尽可能位于目标序列的保守区域,以增加引物与目标序列的稳定性和特异性。
12.引物的交叉反应:在引物设计中,应避免引物之间存在交叉反应,即两个不同引物同时与同一目标序列结合。
13.引物与模板序列的一致性:在引物设计过程中,应将引物与目标序列进行比对,确保引物与目标序列的一致性,避免在扩增过程中形成不可扩增的结构。
14.避免自相互补性:在引物设计过程中,应避免引物序列存在自相互补性,防止引物自结合或形成不稳定的结构。
15.引物的GC间隔:在引物设计中,应使引物中的GC核苷酸尽可能均匀分布,以避免形成不稳定的结构。
16.引物的无副产物性:在引物设计过程中,应避免引物产生具有毒性或干扰扩增的副产物。
引物设计原则和注意事项
引物设计原则和注意事项
以下是 6 条关于引物设计原则和注意事项:
1. 嘿,咱可得记住了,引物长度要合适呀!就像穿衣服要合身一样,太长或太短都不行呢。
比如说设计 DNA 扩增的引物,如果长度不合适,那扩增效果能好吗?所以呀,得精心挑选合适的长度呢。
2. 哇塞,特异性可太重要啦!这就好比你要找一个特别的人,可不能随随便便就认定了。
如果引物特异性不强,那岂不是会引发很多不必要的麻烦呀,扩增出一堆杂七杂八的东西。
就像去超市买东西,你得准确找到你想要的那个物品才行呀!
3. 哎呀呀,引物的稳定性也不能忽视呀!这就像盖房子,根基得稳稳的呀。
如果引物不稳定,很容易就出问题了呢。
好比你搭积木,要是不牢固,一下子就塌了,那多郁闷呀!想想看,如果在实验中因为引物不稳定导致结果不准确,多让人懊恼呀!
4. 嘿,你知道吗,GC 含量也是有讲究的哟!这相当于做菜放调料,得恰到好处。
要是 GC 含量不合适,就像菜的味道怪怪的。
比如说在设计引物时,不考虑这个,那最后可能得出的结果就像一道失败的菜肴,让人失望呀!
5. 哇哦,避免引物内部形成二级结构很关键哦!这就好像走路不能有绊脚石一样。
要是引物自己形成了二级结构,那不就像路上有个大坑,走起来困难重重嘛。
你想想,要是在实验中遇到这种情况,多耽误事儿呀!
6. 哎哟喂,引物之间可不能有互补呀!这跟两个人不能相互拆台是一个道理呀。
如果有互补,那可就乱套啦。
就好比一个团队里有人互相捣乱,那工作还能顺利进行吗?在引物设计中一定得杜绝这种情况才行呢!
我的观点结论就是,这些引物设计原则和注意事项真的都超级重要啊,每一个都不能掉以轻心,得好好对待才行呀!。
引物的设计及修饰
1.引物设计的基本原则是什么?引物设计的下列原则供您参考:1)引物最好在模板cDNA 的保守区内设计。
2)引物长度一般在15-30碱基之间。
3)引物GC含量在40%-60%之间,Tm值最好接近72℃。
4)引物3′端要避开密码子的第3位。
5)引物3′端不能选择A,最好选择T。
6)碱基要随机分布。
7)引物自身及引物之间不应存在互补序列。
8)引物5′端和中间△G值应该相对较高,而3′端△G值较低。
9)引物的5′端可以修饰,而3′端不可修饰。
10)扩增产物的单链不能形成二级结构。
11)引物应具有特异性。
2.常用引物设计软件有哪些?常用的软件有Oligo6和Primer Premier5.0。
引物设计软件是根据引物设计的指导意见设计而成。
其实,PCR扩增的成败最关键的是反应模板的制备和反应条件的控制。
引物设计软件的缺点是,有时判断为该基因没有一段区域满足标准引物的要求。
金斯瑞为您提供以下引物设计相关软件:引物计算工具引物设计工具测序引物设计软件Real-time PCR引物设计软件3.文献上找到的引物和探针序列能否直接使用?通常国外的文献可信度比较高,可直接使用;但为了保险起见,最好用blast对引物探针的序列进行必要的验证;或者再进一步用引物设计软件对引物探针的二级结构和退火温度进行分析,这样更有利于您对整个实验的把握。
4.如何计算引物的Tm值?Tm值的概念:DNA熔解温度,指把DNA的双螺旋结构降解一半时的温度,亦即DNA变性过程中,紫外吸收值达到最大值的50%时的温度称为DNA的解链温度(Tm)。
金斯瑞采用以下方法计算Tm 值:长度为20mer及以下的引物,Tm计算公式为:Tm=4℃(G+C)+2℃(A+T)。
但这个公式只适用于14~20个碱基的引物,引物的TM值还与引物长度、碱基组成、引物使用缓冲溶液的离子强度等有关。
对于更长的寡聚核苷酸,Tm计算公式为:Tm=0.41(%of GC)–675/L+81.5注:L:引物碱基数;%of GC:引物GC含量;%of GC=GC个数/引物总碱基数5.常见的引物修饰的有哪些?修饰说明3)强烈建议用RNase-free的TE(pH8.0)buffer溶解探针,这样得到的探针溶液更稳定,保存时间更长。
引物设计原则(最全汇总)
引物设计原则(汇总)普通引物设计(适用于从载体上扩增模板):1. 普通引物长度一般在20-30bp之间,常用24-28bp左右以保证基因特异性;2. 下载基因序列到Vector NTI;3. 找到所需安装载体序列;4. 将基因序列的CDS高亮标记;5. 寻找载体序列中常用酶切位点,一般为EcoRI、BamHI、HindIII、XhoI等等,比对检测基因序列中是否有这些位点,有的话舍弃,最后选择两个酶切位点,最好离得远一点,并且最好buffer用一样的。
酶切位点一般是6bp的回文序列;6. 从基因ATG开始往后选择10-20bp均可(我的习惯是27bp-6bp酶切位点-2bp保护碱基-xbp 补齐序列),但最好保证最后两个是G或者C,以减少错配率;7. 将上游酶切位点序列补在A TG前方,并根据载体对框情况补足两者之间的空缺,再根据序列的GC含量和TM值在酶切位点前补足保护碱基,以保证GC和AT的含量不能过高。
注意,所有的补齐不能用到终止密码子;8. 检测上游序列的结构情况,理论上不要太多二级结构以及3’端匹配即可;不过重复的序列也不能太多,以免移码;9. 从下游终止密码子开始向前选择10-20bp均可,但最好保证最后两个是G或者C,以减少错配率;10. 选择complementary sequence,在N端补齐下游酶切位点,如果tag在C端(即下游),则在第9点中应该从终止密码子前开始选择(即舍弃终止密码子),并且下游引物也要对框,如果tag在N端,则下游引物不需要对框,只要在N端加上下游酶切位点,再根据情况加上2个保护碱基,然后检测二级结构,原则上3’端部匹配即可。
不过重复的序列也不能太多,以免移码;11. 将设计好的上下游引物放在一起检测二级结构,原则上3’端部匹配即可。
不过重复的序列也不能太多,以免移码;12. 最后在NCBI的primer Blast网站上比对引物序列,看是否基因特异性的。
ds rna 引物设计原则
ds rna 引物设计原则
1、引物长度一般为15-30bp,常用的为18到27bp,但不能大于38bp;
2、引物GC含量一般为40%到60%,以45到55%为宜,上下游引物GC含量和Tm值要保持接近;
3、引物所对应的模板序列的Tm值最好在72℃左右,至少要在55到80℃之间,Tm值曲线以选取72度附近为佳,5'到3’的下降形状也有利于引物与模板的结合;
4、引物之间:两个引物之间不应有多于4个的互补或同源碱基,不然会形成引物二聚体,尤应避免3’端的互补重叠。
5、引物设计是一小段单链DNA或RNA,作为DNA复制的起始点,在核酸合成反应时,作为每个多核苷酸链进行延伸的出发点而起作用的多核苷酸链,在引物的3′OH上,核苷酸以二酯链形式进行合成,因此引物的3′OH,必须是游离的。
6、ΔG值反应了引物与模板结合的强弱程度,3'端的ΔG值相对要低,且绝对值不要超过9,否则不利于正确引发反应,3'末端双链的ΔG值在0到2kcalmol时,PCR产量几乎达到百分之百,但在负6时只达到40%,负8时少于20%,负10时接近于0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整理ppt
3‘端碱基要求
整理ppt
5’端碱基要求
• 5’端序列对PCR 影响不太大,因此常用 来引进修饰位点或标记物。
整理ppt
∆G 值
• ∆G 值是指DNA 双链形成所需的自由能,该值反映了双链结构 内部碱基对的相对稳定性。应当选用3’端∆G 值较低(绝对值不 超过9),而5’端和中间∆G 值相对较高的引物。引物的3’端的 ∆G 值过高,容易在错配位点形成双链结构并引发DNA 聚合反 应。(能值越高越容易结合)
• ∆G高于4.5时易引发产生引物二聚体和发夹结构
整理ppt
发卡结构
• Hairpin • 一条引物自身碱基之间发生配对
整理ppt
二聚体
• Dimer • 同一条引物的两条连之间发生碱基互补配对
整理ppt
错配
• Fals priming • 引物与模板的发生配对的位置不止一个。尽管
只有某一处可以与引物完全配对吻合,但是其 它位置也可与引物之间发生不完全配对,影响 延伸。
PCR退火温度一般是55°,变性温度94°, Tm一般在58-70 °之间比较合适。
• 两个引物之间的Tm值应尽可能接近,不应超过4°
整理ppt
3‘端碱基要求
• 引物3’端的末位碱基对Taq 酶的DNA 合成效率有较大的影响。 不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A 的错配效率明显高于其他3 个碱基,因此应当避免在引物的3’端 使用碱基A。
• 引物过短又同时会引起错配现象,一般来说引物长度大于 16bp是必要的(不容易引起错配)。
• 例如:一个长度为12bp的引物在人类基因组上存在200个潜 在的退火位点(3 x 109/412=200 ).而一个长度为20bp的引 物在人基因组上存在的退火位点只有1/400个.
• 较长的引物(28-35bp) • 一般是用来区分同源性较高的模板序列或者使用于产生一些
突变位点
整理ppt
GC%
• 引物序列的GC 含量一般为40-60%, 过高或过低都不利于引发反应。上下 游引物的GC含量不能相差太大。
整理ppt
Байду номын сангаас
Tm值
• Tm DNA溶解温度,即DNA的双链失去一半时的温度。 • Tm 值计算的经验公式 • Tm = 4 (G+C) + 2(A+T) • 退火温度一般低于Tm,退火温度越高,特异性越高,但杂交率越低。
引物设计的一般原则
郭大伟
整理ppt
引物设计的一般原则
1. 1.引物长度 2. 2.GC% 3. 3.Tm值 4. 4.3‘端碱基要求 5. 5.5’端碱基要求 6. 6.∆G 值
7.发卡结构 8.二聚体 9.错配
10.交叉二聚体 11.产物长度
12.评分
整理ppt
引物长度
• 引物的长度一般为15-30 bp,常用的是18-24 bp,但不应大 于38。
整理ppt
交叉二聚体
• Cross dimer • 两条引物之间发生碱基配对
整理ppt
产物长度
• Product • 根据自己需要决定,但应尽可能长,这
样有利于保持其特异性。
整理ppt
评分
• Rating • 单链评分 • 双链综合评分
整理ppt
谢谢各位!
整理ppt