太阳能电池——大学物理实验

合集下载

大学物理研究性实验报告_太阳能电池的特性测量

大学物理研究性实验报告_太阳能电池的特性测量

在正文的第一部分,我从一名大二本科生的角度对实验原理进行了系统地重新表述,查阅资料补充了部分电学的必要知识(例如禁带宽度的定义),同时我还根据自己的理解写出了太阳能电池的基本原理和太阳能电池器件的等效电路。

在正文的第二部分,本文详细介绍了操作需要用到的仪器并细致地描述了实验操作的各个流程。

在正文的第三部分,本文重新进行了数据处理,并初步分析了实验误差,标注了实验注意事项以及对实验课后思考题做出了自己的回答。

在正文的第四部分,也就是讨论部分,我做了大量的工作。

先分析了影响太阳能电池转换效率的因素,然后提出了两种实验改进方法,接着提出了禁带宽度的测量方法,最后探索了实际P-N结与理想模型之间的差别以及对实验数据的影响。

并且在第四部分的最后我还写了两年来自己学习物理实验的实验感想以及收获。

关键词:太阳能电池开路电压短路电流输出特性AbstractIn the first part of the text, from the perspective of a sophomore undergraduate experimental principle rephrase supplemented with some electrical knowledge necessary (for example, the band gap of the definition), access to information, at the same time I also according to their understanding to write the equivalent circuit of the basic principles of solar cells and solar cell devices.In the second part of the text, this article details the operation requires the use of instruments and detailed description of the experimental operation of the various processes.In the third part of the text, re-processing, and a preliminary analysis of the experimental error, marked experimental Notes and Questions experimental after-school made its own answer.In the fourth part of the text, that is, the discussion section, I have done a lot of work. First analyze the factors affecting the conversion efficiency of the solar cell, and then the two experimental improved method, followed by the forbidden bandwidth of the measuring method, and the last explore the difference between the actual PN junction with the ideal model and the experimental data. And I also wrote in the fourth part of the last two years studying physics experiment experimental feelings and harvest.Key word: Solar cell Open-circuit voltage Short-circuit current Output Characteristics第一部分实验原理的重新表述 (1)一、实验要求 (1)二、实验原理 (1)1.太阳能电池的分类 (1)2.P-N结 (1)3.禁带宽度 (2)4.太阳能电池的伏安特性曲线及相关特性参数 (2)5.太阳能电池的基本原理 (4)6.太阳能电池器件的等效电路 (4)第二部分实验内容及操作详细流程 (5)三、仪器介绍 (5)四、实验内容及操作详细流程 (7)1.硅太阳能电池的暗伏安特性测量 (7)2.开路电压,短路电流与光强关系测量 (7)3.太阳能电池输出特性实验 (8)4.注意事项 (8)第三部分数据的重新处理与深入思索 (9)五、太阳能电池基本特性测量 (9)1.硅太阳能电池的暗伏安特性测量 (9)2.开路电压、短路电流与光强关系测量 (10)3.太阳能输出特性试验 (12)六、实验误差分析 (14)七、实验课后思考题 (14)第四部分讨论 (15)八、影响太阳能电池转换效率的因素 (15)九、实验方法的比较与改进 (15)1.传统的太阳能电池伏安特性测量方法 (15)2.利用计算机和Labcoder数据采集分析系统改进实验 (16)3.利用C8051F020单片机改进实验 (18)十、禁带宽度的测量 (19)1.测量原理 (19)2.测量方法 (19)十一、实际P-N结与理想模型之间的差别 (20)P-N结的伏安特性分析及等效电路 (20)十二、实验感想与体会 (22)1.课前认真地预习 (22)2.做好课堂操作 (23)3.掌握好一些基本的数据处理方法。

太阳能电池特性

太阳能电池特性

内容
9
I ( mA )
U(V)
R(Ω)
P (m W )
2
3
4
5
6
7
8
10
11
12
13
14
15
16
在坐标纸上绘制太阳能电池的伏安特性曲线(即 I~V 曲线)
·2·
(3)短路电流 Is =25 mA;开路电压 U0=
内容
1
I ( mA ) U(V)
R(Ω) P (m W )
内容
9
I ( mA )
U(V)
10
11
12
13
14
15
16
在坐标纸上绘制太阳能电池的伏安特性曲线(即 I~V 曲线)
·3·
2.最大负载电阻 Rmax 和太阳能电池的内阻 Ri
结果/组数 Rmax (Ω) Ri (Ω) Rmax/ Ri
第一组 第二组 第三组 第四组
Rmax 是最大功率对应的电阻,Ri 是太阳能电池内阻(Ri = U0/ Is)
3.最大输出功率 Pmax 和开路电压与短路电流的乘积
结果/组数 Pmax (m W ) U0·Is(m W ) F=Pmax/ (U0·Is)
第一组
第二组
第三组
U0 是开路电压,Is 是短路电流,F 是填充因数
第四组
·4·
内容
1
I ( mA ) U(V)
R(Ω) P (m W )
内容
9
I ( mA )
U(V)
R(Ω)
P (m W )
2
3
4
5
6
7
8
10
11
12
13

太阳能电池特性的测量实验报告

太阳能电池特性的测量实验报告

竭诚为您提供优质文档/双击可除太阳能电池特性的测量实验报告篇一:太阳能电池特性测量实验本科学生实验报告学号姓名学院物电学院专业、班级12级光电子班实验课程名称太阳能电池特性测量实验教师及职称开课学期学期填报时间日云南师范大学教务处编印一、实验设计方案篇二:实验报告--太阳能电池伏安特性的测量实验报告姓名:张伟楠班级:F0703028学号:5070309108实验成绩:同组姓名:张家鹏实验日期:08.03.17指导教师:批阅日期:太阳能电池伏安特性的测量【实验目的】1.了解太阳能电池的工作原理及其应用2.测量太阳能电池的伏安特性曲线【实验原理】1.太阳电池的结构以晶体硅太阳电池为例,其结构示意图如图1所示.晶体硅太阳电池以硅半导体材料制成大面积pn结进行工作.一般采用n+/p同质结的结构,即在约10cm×10cm面积的p型硅片(厚度约500μm)上用扩散法制作出一层很薄(厚度~0.3μm)的经过重掺杂的n型层.然后在n型层上面制作金属栅线,作为正面接触电极.在整个背面也制作金属膜,作为背面欧姆接触电极.这样就形成了晶体硅太阳电池.为了减少光的反射损失,一般在整个表面上再覆盖一层减反射膜.图一太阳电池结构示意图2.光伏效应图二太阳电池发电原理示意图当光照射在距太阳电池表面很近的pn结时,只要入射光子的能量大于半导体材料的禁带宽度eg,则在p区、n区和结区光子被吸收会产生电子–空穴对.那些在结附近n区中产生的少数载流子由于存在浓度梯度而要扩散.只要少数载流子离pn结的距离小于它的扩散长度,总有一定几率扩散到结界面处.在p区与n区交界面的两侧即结区,存在一空间电荷区,也称为耗尽区.在耗尽区中,正负电荷间形成一电场,电场方向由n区指向p区,这个电场称为内建电场.这些扩散到结界面处的少数载流子(空穴)在内建电场的作用下被拉向p区.同样,如果在结附近p区中产生的少数载流子(电子)扩散到结界面处,也会被内建电场迅速被拉向n区.结区内产生的电子–空穴对在内建电场的作用下分别移向n区和p区.如果外电路处于开路状态,那么这些光生电子和空穴积累在pn结附近,使p区获得附加正电荷,n区获得附加负电荷,这样在pn结上产生一个光生电动势.这一现象称为光伏效应(photovoltaiceffect,缩写为pV).3.太阳电池的表征参数太阳电池的工作原理是基于光伏效应.当光照射太阳电池时,将产生一个由n区到p区的光生电流Iph.同时,由于pn结二极管的特性,存在正向二极管电流ID,此电流方向从p区到n区,与光生电流相反.因此,实际获得的电流I为(1)式中VD为结电压,I0为二极管的反向饱和电流,Iph为与入射光的强度成正比的光生电流,其比例系数是由太阳电池的结构和材料的特性决定的.n称为理想系数(n值),是表示pn结特性的参数,通常在1~2之间.q为电子电荷,kb为波尔茨曼常数,T为温度.如果忽略太阳电池的串联电阻Rs,VD即为太阳电池的端电压V,则(1)式可写为(2)当太阳电池的输出端短路时,V=0(VD≈0),由(2)式可得到短路电流即太阳电池的短路电流等于光生电流,与入射光的强度成正比.当太阳电池的输出端开路时,I=0,由(2)和(3)式可得到开路电压(3)当太阳电池接上负载R时,所得的负载伏–安特性曲线如图2所示.负载R可以从零到无穷大.当负载Rm使太阳电池的功率输出为最大时,它对应的最大功率pm为(4)式中Im和Vm分别为最佳工作电流和最佳工作电压.将Voc与Isc的乘积与最大功率pm之比定义为填充因子FF,则(5)FF为太阳电池的重要表征参数,FF愈大则输出的功率愈高.FF取决于入射光强、材料的禁带宽度、理想系数、串联电阻和并联电阻等.。

实验32 太阳能电池实验_大学物理实验_[共12页]

实验32 太阳能电池实验_大学物理实验_[共12页]

218大学物理实验⑤如何获得高电压、大电流输出的光电池?实验32 太阳能电池实验太阳能是指太阳辐射的能量。

我们知道在太阳内部无时无刻不在进行着氢转变为氦的热核反应。

反应过程中伴随着巨大的能量向宇宙空间的释放。

所有太阳释放到宇宙空间的能量都属于太阳能的范畴。

科学研究已经表明太阳的热核反应可以持续百亿年左右,能量辐射功率约3.8 × 1023kW。

根据地球体积、地球与太阳的距离等数据可以计算出地球被辐照到的太阳能大致为全部太阳能量辐射量的20亿分之一。

考虑到地球大气层对太阳辐射的反射和吸收等因素,实际到达地球表面的太阳辐照功率为80亿kW,折合500万吨标准煤的能量。

太阳能给人无限的遐想,但需要我们对太阳能有一个全面、客观的认识。

任何的事物总是具有两面性的。

就太阳能而言,其优势在于“普遍”,地球的任何角落都存在;“巨大”,太阳能是地球可供开采的最大能源;“无害”,不污染环境;“持续”,可稳定供应时间超过100亿年。

太阳能的缺点在于它具备的分散性、不稳定性、高成本。

分散性和不稳定性是地球地理特征决定的。

高成本是工艺技术水平的不足导致的。

太阳能是非常活跃的研究和应用领域,前景广阔,回报丰厚。

这个领域也充满问题和挑战,对相关人才的需求量巨大。

人类对硅材料的认识及固体理论、半导体理论的发展和成熟,是太阳能利用的关键推动力,具有里程碑意义的事件是1945年美国Bell实验室研制出实用性硅太阳能电池。

近年来,太阳能成为研究、技术、应用、贸易的热点。

太阳能潜在的市场为全世界所关注。

除了人类能源需求量的增大、化石能源储量的下降和价格的提升、理论和工艺技术水平的提高等因素外,环保意识、可持续发展意识的提升也是一个重要的因素。

太阳能电池是目前太阳能利用中的关键环节,核心概念是PN结和光生伏特效应。

理解太阳能电池的工作原理、基本特性表征参数和测试方法是必要和重要的。

一、实验目的①了解PN结的基本结构与工作原理。

太阳能电池__大学物理实验

太阳能电池__大学物理实验

太阳能电池特性的测量能源短缺和地球生态环境污染已经成为人类面临的最大问题,新能源利用迫在眉睫。

太阳能是一种取之不尽、用之不竭的新能源。

太阳电池可以将太阳能转换为电能,随着研究工作的深入与生产规模的扩大,太阳能发电的成本下降很快,而资源枯竭与环境保护导致传统电源成本上升。

太阳能发电有望在不久的将来在价格上可以与传统电源竞争,太阳能应用具有光明的前景。

根据所用材料的不同,太阳能电池可分为硅太阳能电池,化合物太阳能电池,聚合物太阳能电池,有机太阳能电池等。

其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。

本实验研究单晶硅,多晶硅,非晶硅3种太阳能电池的特性。

实验目的1. 学习太阳能电池的发电的原理 2. 了解太阳电池测量原理 3. 对太阳电池特性进行测量实验原理太阳能电池利用半导体P-N 结受光照射时的光伏效应发电,太阳能电池的基本结构就是一个大面积平面P-N 结,图1为P-N 结示意图。

P 型半导体中有相当数量的空穴,几乎没有自由电子。

N 型半导体中有相当数量的自由电子,几乎没有空穴。

当两种半导体结合在一起形成P-N 结时,N 区的电子(带负电)向P 区扩散, P 区的空穴(带正电)向N 区扩散,在P-N 结附近形成空间电荷区与势垒电场。

势垒电场会使载流子向扩散的反方向作漂移运动,最终扩散与漂移达到平衡,使流过P-N 结的净电流为零。

在空间电荷区内,P 区的空穴被来自N 区的电子复合,N 区的电子被来自P 区的空穴复合,使该区内几乎没有能导电的载流子,又称为结区或耗尽区。

当光电池受光照射时,部分电子被激发而产生电子-空穴对,在结区激发的电子和空穴分别被势垒电场推向N 区和P 区,使N 区有过量的电子而带负电,P 区有过量的空穴而带正电,P-N 结两端形成电压,这就是光伏效应,若将P-N 结两端接入外电路,就可向负载输出电能。

在一定的光照条件下,改变太阳能电池负载电阻的大小,测量其输出电压与输出电流,得到输出伏安特性,如图2实线所示。

太阳能光伏电池实验

太阳能光伏电池实验

0
图1.单晶硅太阳能电池板(25℃)实际测量得到的暗特性I-V曲线
图2.不同温度时单晶硅太阳能电池片的输出伏安特性
亮特性
光电流IL在负载上产生电压降,这个电压降可以使pn 结正偏。如图3所示,正偏电压产生正偏电流IF。在 反偏情况下,pn结电流为:
从亮特性伏安曲线可直接读出
图5.实测单晶硅太阳能电池板输出伏安特性曲线
太阳能电池的效率图6.最大源自率矩形太阳能电池的光谱响应
【1】近代物理实验,西北大学物理学系 【2】安毓英,刘继芳光电子技术(第三版),电子 工 业出版设,北京:117-119,136-141 【3】茅倾青,潘立栋,陈骏逸等,太阳能电池基本特性测 定实验,物理实验[J],2004,24(11):6-9 【4】周孑民,太阳能光伏电池特性实验研究,能源与 环境[J],2011,4:72-73
1.光生伏特效应 2.无光情况下的电流电压关系 (暗特性) 3.光照情况下的电流电压关系 (亮特性) 4.太阳能电池的效率 5.太阳能电池的光谱响应 6.参考文献
光生福特效应
暗特性
无光照情况下的太阳能电池等价于一个理想pn结, 其电流电压关系为肖克莱方程:
pn结的单向导通性 (整流特性): 暗条件下太阳能 电池IV曲线不对称

太阳能电池样板-实验报告

太阳能电池样板-实验报告

一、测量光照状态下太阳能电池的短路电流Isc,开路电压Uoc、最大输出功率Pmax,最佳
根据图示曲线,找出Pmax=6.664mW,由公式Ff=Pmax/(IscUoc)可得:Ff=0.58
二、测量太阳能电池无光照的伏安特性
图二正向偏压与电流关系图
根据实验数据处理要求,作出I-U关系曲线,经过拟合,得出相应的指数函数如图所示。

取拟合曲线上两点,根据公式(1)计算I0,取点(0.41,194.04)和(0.57,735)
最终解得I0=1.13uA
三、测量太阳能电池短路电流、开路电压与光强关系
图三不同光强下U-I关系曲线
由图三可知,随光强增大,开路电压和短路电流也不断增大,但趋于平缓,光强很大时,开路电压与光强几乎无关。

四、不同光照角度下的开路电压与短路电流
由图可知随角度增大,太阳能电池功率逐渐减小,角度增大越多,功率较小速度越快。

由表格可知,串联电压为两电池板电压之和,适合较高电压场合。

并联时短路电流为两板之和,适用于较高电流的场合。

太阳能电池特性实验报告

太阳能电池特性实验报告

太阳能电池特性实验报告太阳能电池特性实验报告引言:太阳能电池是一种利用太阳能将光能转化为电能的装置,具有环保、可再生等特点,被广泛应用于各个领域。

为了深入了解太阳能电池的特性和性能,我们进行了一系列的实验,本报告将对实验过程和结果进行详细介绍和分析。

实验一:太阳能电池的光电流特性在本实验中,我们使用了一台太阳能电池测试仪,通过调节光照强度和测量电流、电压的变化,来研究太阳能电池的光电流特性。

实验结果显示,当光照强度逐渐增大时,太阳能电池的电流也随之增大。

这是因为光照强度的增加会激发更多的光子进入太阳能电池,从而产生更多的电子-空穴对,进而增加电流。

然而,当光照强度达到一定值后,电流的增加趋势开始趋于平缓,这是因为太阳能电池的内部电场已经饱和,无法再继续增加电流。

此外,我们还发现太阳能电池的电流与电压呈反比关系。

随着光照强度的增加,电流增大,但电压却逐渐降低。

这是因为太阳能电池的内部电阻会导致电压损失,而随着电流的增大,这种损失也会变得更加明显。

实验二:太阳能电池的温度特性在本实验中,我们通过改变太阳能电池的温度,来研究太阳能电池的温度特性。

实验结果显示,随着太阳能电池温度的升高,电流呈现出先增大后减小的趋势。

这是因为在较低温度下,电子和空穴的复合速率较低,电流较小;而在较高温度下,电子和空穴的复合速率加快,电流逐渐增大。

然而,当温度超过一定值后,电流开始下降,这是因为高温会导致太阳能电池内部的电子迁移率下降,从而减小了电流。

此外,我们还发现太阳能电池的温度对电压的影响较小。

随着温度的升高,电压基本保持稳定,这是因为太阳能电池的内部电场对温度变化不敏感。

实验三:太阳能电池的寿命特性在本实验中,我们通过长时间连续使用太阳能电池,来研究太阳能电池的寿命特性。

实验结果显示,太阳能电池在连续工作一段时间后,其性能会逐渐下降。

这是因为长时间的工作会导致太阳能电池内部材料的劣化,从而降低了太阳能电池的转换效率。

大学物理2-2太阳能电池实验报告

大学物理2-2太阳能电池实验报告

数据处理一,计算出功率和电阻的数值表1,负载电压和电流记录表电压/V 光电流I/mA 电阻/千欧功率/W0.00 5.02 0.00000 0.00000-0.10 5.00 0.02000 0.00050 -0.20 4.97 0.04024 0.00099 -0.30 4.96 0.06048 0.00149 -0.40 4.92 0.08130 0.00197 -0.50 4.91 0.10183 0.00246 -0.60 4.88 0.12295 0.00293 -0.70 4.85 0.14433 0.00340 -0.80 4.80 0.16667 0.00384 -0.90 4.74 0.18987 0.00427 -1.00 4.67 0.21413 0.00467 -1.10 4.59 0.23965 0.00505 -1.20 4.46 0.26906 0.00535 -1.30 4.31 0.30162 0.00560 -1.40 4.14 0.33816 0.00580 -1.50 3.94 0.38071 0.00591 -1.60 3.69 0.43360 0.00590 -1.70 3.40 0.50000 0.00578 -1.80 3.08 0.58442 0.00554 -1.90 2.71 0.70111 0.00515 -2.00 2.26 0.88496 0.00452 -2.10 1.78 1.17978 0.00374 -2.20 1.27 1.73228 0.00279 -2.30 0.71 3.23944 0.00163 -2.37 0.24 9.87500 0.00057功率与电阻关系图0.0001.0002.0003.0004.0005.0006.0007.0000.000500.0001000.0001500.0002000.0002500.0003000.0003500.000电阻/欧功率/m W功率/mW由图知 最大功率为5.91mW对应的最大电阻为380.71欧 Isc=5.02mA Uoc=2370mV Ff=Pmax/(Isc*Uoc)=0.5表2,太阳能电池正向偏压与电流数据表 U1/V U2/V I/A U/V0.00 0.00 0.00000 0.00 0.20 0.07 0.00034 0.13 0.40 0.15 0.00066 0.25 0.60 0.25 0.00092 0.35 0.80 0.37 0.00113 0.43 1.00 0.50 0.00131 0.50 1.20 0.64 0.00147 0.56 1.40 0.79 0.00160 0.61 1.60 0.96 0.00168 0.64 1.80 1.13 0.00176 0.67 2.00 1.30 0.00184 0.70 2.20 1.49 0.00186 0.71 2.40 1.67 0.00192 0.73 2.60 1.86 0.00194 0.74 2.80 2.06 0.00194 0.74 3.00 2.26 0.00194 0.74 3.20 2.46 0.00194 0.74 3.40 2.66 0.00194 0.743.60 2.87 0.00192 0.73 3.773.05 0.00189 0.72一定光照条件下光电池的伏安特性曲线y = 0.0026x - 6E-18-0.000500.000000.000500.001000.001500.002000.002500.000.100.200.300.400.500.600.700.80U/VI /AU/V线性 (U/V)电压和电流关系的经验公式为y=0.0026x-6E-18 表3,不同光强下太阳能电池开路电压和短路电流 光强比值 Isc/mA Uoc/V6 4.90 -2.36 5 4.42 -2.33 4 3.30 -2.24 3 2.14 -2.09 2 1.20 -1.86 1 0.71 -1.62Isc-Uoc关系曲线y = -0.3802Ln(x) - 4.401-2.5-2-1.5-1-0.50.00000.00100.00200.00300.00400.00500.0060Isc/AU o c /VUoc/V对数 (Uoc/V)表4,不同角度光照下电池开路电压和短路电流 角度/。

【大学物理实验(含 数据+思考题)】新能源的综合利用及探索 (太阳能电池)实验报告

【大学物理实验(含 数据+思考题)】新能源的综合利用及探索 (太阳能电池)实验报告

新能源的综合利用及探索(太阳能电池)一、实验目的(1)了解太阳能电池的工作原理。

(2)观察实验中的能量转换过程。

(3)测量太阳能输出电池的特性。

二、实验仪器碘钨灯、燃料电池综合试验仪、太阳能电板、电阻箱。

三、实验原理1. 太阳能电池的结构太阳能电池利用半导体PN结受光照射时的光伏效应发电。

太阳能电池的基本结构就是一个大面积平面PN结,如图4.22-4所示。

P型半导体中有相当数量的空穴,图4.22-4太阳能电板PN结几乎没有自由电子;N型半导体中有相当数量的自由电子,几乎没有空穴。

当这两种半导体结合在一起形成PN结时,N区的电子(带负电)向P区扩散,P区的空穴(带正电)向N区扩散,在PN结附近形成空间电荷区与势垒电场。

势垒电场会使载流子向扩散的反方向做漂移运动,最终扩散与漂移达到平衡使流过PN结的净电流为零。

在空间电荷区内,P区的空穴被来自N区的电子复合,N区的电子被来自P区的空穴复合,使该区内几乎没有能导电的载流子,又称为结区或耗尽区。

当电池受光照射时,部分电子被激发而产生电子-空穴对,在PN结区激发的电子和空穴分别被势垒电场推向N区和P区,使N区有过量的电子而带负电,P区有过量的空穴而带正电,PN结两端形成电压,这就是光伏效应,若将PN结两端接入外电路,就可向负载输出电能。

2.太阳能电池的特性在一定的光照条件下,改变太阳能电池负载电阻的大小,测量出输出电压与输出电流之间的关系,如图 4.22-5所示。

U OC 代表开路电压,I SC 代表短路电流,虚线围出的面积为太阳能电池的输出功率,与最大功率对应的电压称为最大工作电压U m ,对应的电流称为最大工作电流I m 。

表征太阳能电池特性的基本参数一般有光谱响应特性、光电转换效率、填充因子等。

填充因子FF 定义为:FF =U m I m U OC I SC它是评价太阳能电池输出特性好坏的一个重要参数,它的值越高,表明太阳能电池输出特性越趋近于矩形,电池的光电转换效率越高。

大学物理实验--太阳能电池伏安特性的测量

大学物理实验--太阳能电池伏安特性的测量

实验报告太阳能电池‎伏安特性的‎测量【实验目的】1.了解太阳能‎电池的工作‎原理及其应‎用2.测量太阳能‎电池的伏安‎特性曲线【实验原理】1.太阳电池的‎结构以晶体硅太‎阳电池为例‎,其结构示意‎图如图1 所示.晶体硅太阳‎电池以硅半‎导体材料制‎成大面积p‎n结进行工作.一般采用n‎+/p 同质结的结‎构,即在约10‎cm×10 cm 面积的p 型硅片(厚度约50‎0μm)上用扩散法‎制作出一层‎很薄(厚度~0.3 μm)的经过重掺‎杂的n 型层.然后在n 型层上面制‎作金属栅线‎,作为正面接‎触电极.在整个背面‎也制作金属‎膜,作为背面欧‎姆接触电极‎.这样就形成‎了晶体硅太‎阳电池.为了减少光‎的反射损失‎,一般在整个‎表面上再覆‎盖一层减反‎射膜.图一太阳电池结‎构示意图2.光伏效应图二太阳电池发‎电原理示意‎图当光照射在‎距太阳电池‎表面很近的‎p n结时,只要入射光‎子的能量大‎于半导体材‎料的禁带宽‎度E g,则在p 区、n 区和结区光‎子被吸收会‎产生电子–空穴对.那些在结附‎近n 区中产生的‎少数载流子‎由于存在浓‎度梯度而要‎扩散.只要少数载‎流子离pn‎结的距离小‎于它的扩散‎长度,总有一定几‎率扩散到结‎界面处.在p 区与n 区交界面的‎两侧即结区‎,存在一空间‎电荷区,也称为耗尽‎区.在耗尽区中‎,正负电荷间‎形成一电场‎,电场方向由‎n区指向p‎区,这个电场称‎为内建电场‎.这些扩散到‎结界面处的‎少数载流子‎(空穴)在内建电场‎的作用下被‎拉向p 区.同样,如果在结附‎近p 区中产生的‎少数载流子‎(电子)扩散到结界‎面处,也会被内建‎电场迅速被‎拉向n 区.结区内产生‎的电子–空穴对在内‎建电场的作‎用下分别移‎向n 区和p 区.如果外电路‎处于开路状‎态,那么这些光‎生电子和空‎穴积累在p‎n结附近,使p 区获得附加‎正电荷,n 区获得附加‎负电荷,这样在pn‎结上产生一‎个光生电动‎势.这一现象称‎为光伏效应‎(Photo‎v olta‎i c Effec‎t, 缩写为PV‎).3.太阳电池的‎表征参数太阳电池的‎工作原理是‎基于光伏效‎应.当光照射太‎阳电池时,将产生一个‎由n 区到p 区的光生电‎流I p h.同时,由于pn结二极管的‎特性,存在正向二‎极管电流I‎D,此电流方向‎从p 区到n 区,与光生电流‎相反.因此,实际获得的‎电流I 为(1)式中VD 为结电压,I0 为二极管的‎反向饱和电‎流,Iph为与入射光‎的强度成正‎比的光生电‎流,其比例系数‎是由太阳电‎池的结构和‎材料的特性‎决定的.n 称为理想系‎数(n 值),是表示pn‎结特性的参‎数,通常在1~2 之间.q 为电子电荷‎,kB为波尔茨曼‎常数,T 为温度.如果忽略太‎阳电池的串‎联电阻Rs‎,V D 即为太阳电‎池的端电压‎V,则(1)式可写为(2)当太阳电池‎的输出端短‎路时,V = 0(VD ≈0),由(2)式可得到短‎路电流即太阳电池‎的短路电流‎等于光生电‎流,与入射光的‎强度成正比‎.当太阳电池‎的输出端开‎路时,I = 0,由(2)和(3)式可得到开‎路电压(3)当太阳电池‎接上负载R‎时,所得的负载‎伏–安特性曲线‎如图2 所示.负载R 可以从零到‎无穷大.当负载Rm使太阳电池‎的功率输出‎为最大时,它对应的最‎大功率Pm‎为(4)式中Im和Vm分别为最佳‎工作电流和‎最佳工作电‎压.将Voc与Isc的乘积与最‎大功率Pm‎之比定义为‎填充因子FF‎,则(5)FF 为太阳电池‎的重要表征‎参数,FF 愈大则输出‎的功率愈高‎.F F 取决于入射‎光强、材料的禁带‎宽度、理想系数、串联电阻和‎并联电阻等‎.太阳电池的‎转换效率η定义为太‎阳电池的最‎大输出功率‎与照射到太‎阳电池的总‎辐射能Pi‎n之比,即(6)图三太阳电池的‎伏–安特性曲线‎4.太阳电池的‎等效电路图四太阳电池的‎等效电路图‎太阳电池可‎用pn结二极管D‎、恒流源Ip‎h、太阳电池的‎电极等引起‎的串联电阻‎R s和相当于p‎n结泄漏电流的并联电‎阻Rsh组成的电路‎来表示,如图3 所示,该电路为太‎阳电池的等‎效电路.由等效电路‎图可以得出‎太阳电池两‎端的电流和‎电压的关系‎为(7)为了使太阳‎电池输出更‎大的功率,必须尽量减‎小串联电阻‎R s,增大并联电‎阻Rsh.【实验数据记‎录、实验结果计‎算】◆实验中测得‎的各个条件‎下的电流、电压以及对‎应的功率的‎表格如下:表11.根据以上数‎据作出各个‎条件下太阳‎能电池的伏‎安特性曲线‎2.各个条件下‎,光伏组件的‎输出功率P‎随负载电压‎V的变化【对实验结果‎中的现象或‎问题进行分‎析、讨论】◆各个条件下‎太阳能电池‎的伏安特性‎曲线图的分‎析与讨论从图中的曲‎线可以明显‎看出:1.光照距离越‎近,也即是光强‎越大,电池产生的‎电动势越大‎(但不能断定‎是否有上界‎);2.研究电动势‎的大小,两个电池并‎联,电动势几乎‎不变,电池串联,电动势大致‎增大一倍;3.研究电池电‎阻的大小,在I-V图里,函数线越陡‎,电阻越小,函数线越平‎坦,电阻越大。

华理大物实验报告太阳电池

华理大物实验报告太阳电池

竭诚为您提供优质文档/双击可除华理大物实验报告太阳电池篇一:华理大物实验报告1实验名称电桥法测中、低值电阻一.目的和要求1.掌握用平衡电桥法测量电阻的原理和方法;2.学会自搭电桥,且用交换法测量电阻来减小和修正系统误差;3.学会使用QJ-23型惠斯登电桥测量中值电阻的方法;4.学会使用QJ-42型凯尔文双臂电桥测量低值电阻的方法;二.实验原理直流平衡电桥的基本电路如下图所示。

图中RA,Rb称为比率臂,Rs为可调的标准电阻,称为比较臂,Rx为待测电阻。

在电路的对角线(称为桥路)接点bc之间接入直流检流计,作为平衡指示器,用以比较这两点的电位。

调节Rs的大小,当检流计指零时,b,c两点电位相等uAc?uAb;ucD?ubD,即IARA?IbRb;IxRx?IsRs。

因为检流计中无电流,所以IA?Ix,Ib?Is,得到电桥平衡条件Rx?三.实验仪器直流电源,检流计,可变电阻箱,待测电阻,元器件插座板,QJ24a型惠斯登直流电桥,QJ42型凯尔文双臂电桥,四端接线箱,螺旋测微计四.实验方法1.按实验原理图接好电路;2.根据先粗调后细调的原则,用反向逐次逼近法调节,使电桥逐步趋向平衡。

在调节过程中,先接上高值电阻Rm,防止过大电流损坏检流计。

当电桥接近平衡时,合上Kg以提高桥路的灵敏度,进一步细调;3.用箱式惠斯登电桥测量电阻时,所选取的比例臂应使有效数字最多。

RARs。

Rb五.数据记录与分析?Rs仪=?(0.001Rs?0.002m),其中Rs是电阻箱示值,m 是所用转盘个数,?Rs???Rx?Rx?所以Rx2?297.8?0.1?,Rx3?1995.4?0.8?2.不同比例臂对测量结果的影响3.用箱式惠斯登电桥测量电阻4.用开尔文电桥测量低值电阻铜棒平均直径d=3.975mm(多次测量取平均)(末读数-初读数)电阻R??sL?24?4?Lk??0.00609,,由下图中的拟合直线得出斜率?d2?d2 则电阻率???dk4?3.142?0.00609?3.975?104??32??7.56?10?8??m六.分析讨论题当惠斯登电桥平衡后,若互换电源与检流计位置,电桥是否仍保持平衡?试说明之。

太阳能电池综合实验

太阳能电池综合实验

太阳能电池(硅光电池)基本特性的研究太阳能电池又称光生伏特电池,简称光电池。

它是一种将太阳或其他光源的光能直接转换成电能的器件。

由于它具有重量轻、使用安全、无污染等特点,在目前世界性能源短缺和环境保护形势日益严峻的情况下,人们对太阳能电池寄予厚望。

太阳能电池很可能成为未来电力的重要来源,美国预期到2005年太阳能电站将提供美国30%的电力。

同时,太阳能电池在现代检测和控制技术中也有十分重要的地位,在卫星和宇宙飞船上都用太阳能电池作为电源。

本实验对太阳能电池的基本特性做初步研究。

一. 实验目的1. 了解太阳能电池的基本结构及基本原理。

2. 研究太阳能电池的基本特性:太阳能电池的开路电压和短路电流以及它们与入射光强度的关系;太阳能电池的输出伏安特性等。

二. 实验仪器HN-TYN-II 太阳能电池(硅光电池)基本特性测量仪、实验装置、负载电阻模板。

1. 实验装置实验装置由光源和太阳能电池两部分组成, 如图1所示。

图12. 负载电阻模板如图2所示。

图2三. 实验原理1.太阳能电池的基本结构。

太阳能电池用半导体材料制成,多为面结合PN 结型,靠PN 结的光生伏特效应产生电动势。

常见的有硅光电池和硒光电池。

在纯度很高、厚度很薄(0.4mm )的N 型半导体材料薄片的表面,采用高温扩散法把硼扩散到硅片表面极薄一层内形成P 层,位于较深处的N 层保持不变,在硼所扩散到的最深处形成PN 结。

从P 层和N 层分别引出正电极和负电极,上表面涂有一层防反射膜,其形状有圆形、方形、长方形,也有半圆形。

太阳能电池的基本结构如图3所示。

图32.太阳能电池的基本原理当两种不同类型的半导体结合形成PN 结时。

由于分界层(PN 结)两+ + 负电极N 层PN 结 P 层 正电极层 防反射层边存在着载流子浓度的突变,必将导致电子从N区向P区和空穴从P区向N区扩散运动,扩散结果将在PN结附近产生空间电荷聚集区,从而形成一个由N区指向P区的内电场。

太阳能电池实验报告

太阳能电池实验报告

太阳能电池实验报告
本次实验旨在测试太阳能电池的回收率。

实验过程:
1. 准备材料:实验装置、太阳能电池、能量计等;
2. 根据算法,将太阳能电池和能量计正确地安装在实验装置上;并将能量计仪器的
拨号调节到最大;
3. 向太阳能电池中供流电,并观察能量计的数值变化;
5. 根据能量计的数值变化,绘制出电流-电压曲线,通过计算,确定太阳能电池的回
收率。

实验结果:
实验结果显示,由经测试的太阳能电池产生的电能回收率是84.62%,说明其性能良好,同时比较安全可靠。

通过本次实验,我们发现太阳能电池的回收率在良好的情况下可以达到84.62%,说明太阳能电池的性能和可靠性都很好。

此外,在本次实验中我们学会了如何正确安装太阳能
电池、能量计等仪器,并学习了如何理解和操作电流-电压曲线。

本次实验不仅让我们更加了解太阳能电池,也丰富了我们实验领域的实践经验。

大学物理研究性实验报告_太阳能电池的特性测量

大学物理研究性实验报告_太阳能电池的特性测量

在正文的第一部分,我从一名大二本科生的角度对实验原理进行了系统地重新表述,查阅资料补充了部分电学的必要知识(例如禁带宽度的定义),同时我还根据自己的理解写出了太阳能电池的基本原理和太阳能电池器件的等效电路。

在正文的第二部分,本文详细介绍了操作需要用到的仪器并细致地描述了实验操作的各个流程。

在正文的第三部分,本文重新进行了数据处理,并初步分析了实验误差,标注了实验注意事项以及对实验课后思考题做出了自己的回答。

在正文的第四部分,也就是讨论部分,我做了大量的工作。

先分析了影响太阳能电池转换效率的因素,然后提出了两种实验改进方法,接着提出了禁带宽度的测量方法,最后探索了实际P-N结与理想模型之间的差别以及对实验数据的影响。

并且在第四部分的最后我还写了两年来自己学习物理实验的实验感想以及收获。

关键词:太阳能电池开路电压短路电流输出特性AbstractIn the first part of the text, from the perspective of a sophomore undergraduate experimental principle rephrase supplemented with some electrical knowledge necessary (for example, the band gap of the definition), access to information, at the same time I also according to their understanding to write the equivalent circuit of the basic principles of solar cells and solar cell devices.In the second part of the text, this article details the operation requires the use of instruments and detailed description of the experimental operation of the various processes.In the third part of the text, re-processing, and a preliminary analysis of the experimental error, marked experimental Notes and Questions experimental after-school made its own answer.In the fourth part of the text, that is, the discussion section, I have done a lot of work. First analyze the factors affecting the conversion efficiency of the solar cell, and then the two experimental improved method, followed by the forbidden bandwidth of the measuring method, and the last explore the difference between the actual PN junction with the ideal model and the experimental data. And I also wrote in the fourth part of the last two years studying physics experiment experimental feelings and harvest.Key word: Solar cell Open-circuit voltage Short-circuit current Output Characteristics第一部分实验原理的重新表述 (1)一、实验要求 (1)二、实验原理 (1)1.太阳能电池的分类 (1)2.P-N结 (1)3.禁带宽度 (2)4.太阳能电池的伏安特性曲线及相关特性参数 (2)5.太阳能电池的基本原理 (4)6.太阳能电池器件的等效电路 (4)第二部分实验内容及操作详细流程 (5)三、仪器介绍 (5)四、实验内容及操作详细流程 (7)1.硅太阳能电池的暗伏安特性测量 (7)2.开路电压,短路电流与光强关系测量 (7)3.太阳能电池输出特性实验 (8)4.注意事项 (8)第三部分数据的重新处理与深入思索 (9)五、太阳能电池基本特性测量 (9)1.硅太阳能电池的暗伏安特性测量 (9)2.开路电压、短路电流与光强关系测量 (10)3.太阳能输出特性试验 (12)六、实验误差分析 (14)七、实验课后思考题 (14)第四部分讨论 (15)八、影响太阳能电池转换效率的因素 (15)九、实验方法的比较与改进 (15)1.传统的太阳能电池伏安特性测量方法 (15)2.利用计算机和Labcoder数据采集分析系统改进实验 (16)3.利用C8051F020单片机改进实验 (18)十、禁带宽度的测量 (19)1.测量原理 (19)2.测量方法 (19)十一、实际P-N结与理想模型之间的差别 (20)P-N结的伏安特性分析及等效电路 (20)十二、实验感想与体会 (22)1.课前认真地预习 (22)2.做好课堂操作 (23)3.掌握好一些基本的数据处理方法。

大学物理研究性实验报告_太阳能电池的特性测量

大学物理研究性实验报告_太阳能电池的特性测量
Key word: Solar cellOpen-circuit voltageShort-circuit put Characteristics
感谢您的阅读,祝您生活愉快。
关键词:太阳能电池开路电压短路电流输出特性
Abstract
In the first part of the text, from the perspective of a sophomore undergraduate experimental principle rephrase supplemented with some electrical knowledge necessary (for example, the band gap of the definition), access to information, at the same time I also according to theirunderstanding to write the equivalent circuit of the basic principles of solar cells and solar cell devices.
在正文的第三部分,本文重新进行了数据处理,并初步分析了实验误差,标注了实验注意事项以及对实验课后思考题做出了自己的回答。
在正文的第四部分,也就是讨论部分,我做了大量的工作。先分析了影响太阳能电池转换效率的因素,然后提出了两种实验改进方法,接着提出了禁带宽度的测量方法,最后探索了实际P-N结与理想模型之间的差别以及对实验数据的影响。并且在第四部分的最后我还写了两年来自己学习物理实验的实验感想以及收获。
In the second part of the text, this article details the operation requires the use of instruments and detailed description of the experimental operation of the various processes.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太阳能电池特性的测量能源短缺和地球生态环境污染已经成为人类面临的最大问题,新能源利用迫在眉睫。

太阳能是一种取之不尽、用之不竭的新能源。

太阳电池可以将太阳能转换为电能,随着研究工作的深入与生产规模的扩大,太阳能发电的成本下降很快,而资源枯竭与环境保护导致传统电源成本上升。

太阳能发电有望在不久的将来在价格上可以与传统电源竞争,太阳能应用具有光明的前景。

根据所用材料的不同,太阳能电池可分为硅太阳能电池,化合物太阳能电池,聚合物太阳能电池,有机太阳能电池等。

其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。

本实验研究单晶硅,多晶硅,非晶硅3种太阳能电池的特性。

实验目的1. 学习太阳能电池的发电的原理 2. 了解太阳电池测量原理 3. 对太阳电池特性进行测量实验原理太阳能电池利用半导体P-N 结受光照射时的光伏效应发电,太阳能电池的基本结构就是一个大面积平面P-N 结,图1为P-N 结示意图。

P 型半导体中有相当数量的空穴,几乎没有自由电子。

N 型半导体中有相当数量的自由电子,几乎没有空穴。

当两种半导体结合在一起形成P-N 结时,N 区的电子(带负电)向P 区扩散, P 区的空穴(带正电)向N 区扩散,在P-N 结附近形成空间电荷区与势垒电场。

势垒电场会使载流子向扩散的反方向作漂移运动,最终扩散与漂移达到平衡,使流过P-N 结的净电流为零。

在空间电荷区内,P 区的空穴被来自N 区的电子复合,N 区的电子被来自P 区的空穴复合,使该区内几乎没有能导电的载流子,又称为结区或耗尽区。

当光电池受光照射时,部分电子被激发而产生电子-空穴对,在结区激发的电子和空穴分别被势垒电场推向N 区和P 区,使N 区有过量的电子而带负电,P 区有过量的空穴而带正电,P-N 结两端形成电压,这就是光伏效应,若将P-N 结两端接入外电路,就可向负载输出电能。

在一定的光照条件下,改变太阳能电池负载电阻的大小,测量其输出电压与输出电流,得到输出伏安特性,如图2实线所示。

负载电阻为零时测得的最大电流I SC 称为短路电流。

负载断开时测得的最大电压V OC 称为开路电压。

太阳能电池的输出功率为输出电压与输出电流的乘积。

同样的电池及光照条件,负载电阻大小不一样时,输出的功率是不一样的。

若以输出电压为横坐标,输出功率为纵坐标,绘出的P-V 曲线如图2点划线所示。

输出电压与输出电流的最大乘积值称为最大输出功率P max 。

空间电荷区 图1 半导体P-N 结示意图IV填充因子F.F 定义为: scoc I V P F F ⨯=⋅max(1)填充因子是表征太阳电池性能优劣的重要参数,其值越大,电池的光电转换效率越高,一般的硅光电池FF 值在0.75~0.8之间。

转换效率ηs 定义为: %100(%)max⨯=ins P P η (2) Pin 为入射到太阳能电池表面的光功率。

理论分析及实验表明,在不同的光照条件下,短路电流随入射光功率线性增长,而开路电压在入射光功率增加时只略微增加,如图3所示。

硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。

单晶硅太阳能电池转换效率最高,技术也最为成熟。

在实验室里最高的转换效率为24.7%,规模生产时的效率可达到15%。

在大规模应用和工业生产中仍占据主导地位。

但由于单晶硅价格高,大幅度降低其成本很困难,为了节省硅材料,发展了多晶硅薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代产品。

多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其实验室最高转换效率为18%,工业规模生产的转换效率可达到10%。

因此,多晶硅薄膜电池可能在未来的太阳能电池市场上占据主导地位。

非晶硅薄膜太阳能电池成本低,重量轻,便于大规模生产,有极大的潜力。

如果能进一步解决稳定性及提高转换率,无疑是太阳能电池的主要发展方向之一。

实验仪器太阳能电池实验装置如图4所示。

图4 太阳能电池实验装置光源采用碘钨灯,它的输出光谱接近太阳光谱。

调节光源与太阳能电池之间的距离可以改变照射到太阳能电池上的光强,具体数值由光强探头测量。

测试仪为实验提供电源,同时可以测量并显示电I 1000W/m 2 800W/m 2 600W/m 2400W/m 2 200W/m 2V 图3 不同光照条件下的I-V 曲线流、电压、以及光强的数值。

电压源:可以输出0~8V连续可调的直流电压。

为太阳能电池伏安特性测量提供电压。

电压/光强表:通过“测量转换”按键,可以测量输入“电压输入”接口的电压,或接入“光强输入”接口的光强探头测量到的光强数值。

表头下方的指示灯确定当前的显示状态。

通过“电压量程”或“光强量程”,可以选择适当的显示范围。

电流表:可以测量并显示0~200mA的电流,通过“电流量程”选择适当的显示范围。

实验内容与步骤1.硅太阳能电池的暗伏安特性测量暗伏安特性是指无光照射时,流经太阳能电池的电流与外加电压之间的关系。

太阳能电池的基本结构是一个大面积平面P-N结,单个太阳能电池单元的P-N结面积已远大于普通的二极管。

在实际应用中,为得到所需的输出电流,通常将若干电池单元并联。

为得到所需输出电压,通常将若干已并联的电池组串连。

因此,它的伏安特性虽类似于普通二极管,但取决于太阳能电池的材料,结构及组成组件时的串并连关系。

本实验提供的组件是将若干单元并联。

要求测试并画出单晶硅, 多晶硅,非晶硅太阳能电池组件在无光照时的暗伏安特性曲线。

用遮光罩罩住太阳能电池。

测试原理图如图5所示。

将待测的太阳能电池接到测试仪上的“电压输出”接口,电阻箱调至50Ω后串连进电路起保护作用,用电压表测量太阳能电池两端电压,电流表测量回路中的电流。

图5 伏安特性测量接线原理图将电压源调到0V,然后逐渐增大输出电压,每间隔0.3V记一次电流值。

记录到表1中。

将电压输入调到0V。

然后将“电压输出”接口的两根连线互换,即给太阳能电池加上反向的电压。

逐渐增大反向电压,记录电流随电压变换的数据于表1中。

电压(V)电流(mA)单晶硅多晶硅非晶硅-7 -6 -5 -4 -3 -2 -10.30.60.91.21.51.82.12.42.733.33.63.9以电压作横坐标,电流作纵坐标,根据表1画出三种太阳能电池的伏安特性曲线。

讨论太阳能电池的暗伏安特性与一般二级管的伏安特性有何异同。

2.开路电压,短路电流与光强关系测量打开光源开关,预热5分钟。

打开遮光罩。

将光强探头装在太阳能电池板位置,探头输出线连接到太阳能电池特性测试仪的“光强输入”接口上。

测试仪设置为“光强测量”。

由近及远移动滑动支架,测量距光源一定距离的光强I,将测量到的光强记入表2。

图6 开路电压、短路电流与光强关系测量示意图将光强探头换成单晶硅太阳能电池,测试仪设置为“电压表”状态。

按图6A接线,按测量光强时的距离值(光强已知),记录开路电压值于表2中。

按图6B接线,记录短路电流值于表2中。

将单晶硅太阳能电池更换为多晶硅太阳能电池,重复测量步骤,并记录数据。

将多晶硅太阳能电池更换为非晶硅太阳能电池,重复测量步骤,并记录数据。

距离(㎝)10 15 20 25 30 35 40 45 50光强I(W/m2)开路电压V OC(V)单晶硅短路电流I SC(mA)多晶硅开路电压V OC(V)短路电流I SC(mA)非晶硅开路电压V OC(V)短路电流I SC(mA)根据表2数据,画出三种太阳能电池的开路电压随光强变化的关系曲线。

根据表2数据,画出三种太阳能电池的短路电流随光强变化的关系曲线。

3.太阳能电池输出特性实验图7 测量太阳能电池输出特性按图7接线,以电阻箱作为太阳能电池负载。

在一定光照强度下(将滑动支架固定在导轨上某一个位置),分别将三种太阳能电池板安装到支架上,通过改变电阻箱的电阻值,记录太阳能电池的输出电压V和电流I,并计算输出功率P O=V×I,填于表3中。

表3 3种太阳能电池输出特性实验光强I= W/m2单晶硅输出电压V(V) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 ……输出电流I(A)输出功率P O(W)多晶硅输出电压V(V) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 ……输出电流I(A)输出功率P O(W)非晶硅输出电压V(V) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 ……输出电流I(A)输出功率P O(W)根据表3数据作3种太阳能电池的输出伏安特性曲线及功率曲线,并与图2比较。

找出最大功率点,对应的电阻值即为最佳匹配负载。

由(1)式计算填充因子。

由(2)式计算转换效率。

入射到太阳能电池板上的光功率P in=I×S1,I为入射到太阳能电池板表面的光强,S1为太阳能电池板面积(约为50mm×50mm)。

若时间允许,可改变光照强度(改变滑动支架的位置),重复前面的实验。

【注意事项】1.在预热光源的时候,需用遮光罩罩住太阳能电池,以降低太阳能电池的温度,减小实验误差;2.光源工作及关闭后的约1小时期间,灯罩表面的温度都很高,请不要触摸;3.可变负载只能适用于本实验,否则可能烧坏可变负载;4.220V电源需可靠接地。

相关文档
最新文档