实验指导三相交流电路电压、电流的测量
电工学 实验2 三相正弦交流电路的研究
A
负
B
*
* P2
W
载
C
图 4.2
用两表法测量三相功率
②负载的功率因数大于 0.5 时,两只功率表的读数均为正。 ③负载的功率因数等于 0.5 时,某一只功率的读数为零。 ④负载的功率因数小于 0.5 时,某一只功率表的指针会反转。为了 读数,可将转换开关由“+”转换到“—” ,此时该表读数应取负值。
基本实验任务 1.三相电源:星形联接的三相四线制电源的线电压和相电压都是对 称的,其大小关系为 U L 3U P ,通常三相电源的电压值是指线电压的 有效值。 2.三相负载的联接:三相负载有星形和三角形两种联接方式。星形 联接时,根据需要可以联接成三相三线制或三相四线制;三角形联接时 只能用三相三线制供电。在电力供电系统中,电源一般均为对称,负载 有对称负载和不对称负载两种情况。 (1) 三相负载的星形联接:带中线时,不论负载是否对称,总满足 以下关系:
A IA FU
*
IB
a
x y
B
*
IC
b
C N
*
IN
c
z
*
图 4.4 三相对称负载星形联接
合上电源开关。 (2) 图 4.4 所示的星形对称负载,保留中线,测量电路中的线电压、 负载相电压、线电流和中线电流,将测量数据填入表 4.2 中。 (3) 图 4.4 所示的星形对称负载,保留中线,用三表法测量负载总功 率,功率表的接法如图 4.1(a)所示,将测试数据填入表 4.3 中,并计算 电路的总功率。 (4)图 4.4 所示的星形对称负载,断开中线,测量电路中的线电压、负 载相电压和线电流,将测量数据填入表 4.2 中。
UP
UL 3
电路原理交流实验箱实验指导书
一、概述交流电路实验箱是根据“电工基础”“电路原理”“电路分析”等课程所开发设计的强电类典型实验项目而设计的。
版面设有Y型和△型变化法的三相灯组负载,日光灯实验组件,单相铁心变压器,电流互感器,R L C元件组,三相四线输入接线端子,三相电流插座,三相双掷开关及各种带绝缘护套的连接插头线,数字交流电压表、数字交流电流表、智能型多功能数字功率、功率因数表等。
设计合理紧凑,操作方便。
二、技术性能指标1、工作电源:三相四线AC380V±10%50Hz <180V A2、使用环境条件:温度-10℃-40℃湿度<80%3、实验箱外型尺寸:520mm×390mm×180mm4、数字交流电压表:三位半LED数码管显示,测量范围AC0~450V,精度0.5级。
5、数字交流电流表:三位半LED数码管显示,测量范围AC0~2A,精度0.5级。
6、智能数字功率、功率因数表:可测试:视在功率、有功功率、无功功率、电流、电压、频率、功率因数,精度0.5级。
6.1产品的主要性能特点:本仪表可应用于交流功率或直流功率的测量与控制。
6.2、五位LED数码管显示,前四位显示测量参数,从0.01~99.99W到1~9999KW,六档量程自动转换,最小分辨力为0.01W(10mW),末位数码管显示测量参数的单号符号。
6.3、视在功率、有功功率、无功功率、电流、电压、频率、功率因数等参数通过按钮可轮换显示。
6.4、仪表具有上、下限报警控制功能,内置继电器及蜂鸣器;用户可根据需要自行选择设置视在功率、电流、电压报警。
三、操作方法及说明1、将该仪器三相电源插头插入三相电源插座。
插入前,要先检查电源应是三相四线380V。
接入后面板上三相电源接线端子带电,方可引出使用。
使用时要从保险管右边“U、V、W、N”引出。
2、打开仪表部分船形开关,仪表带电工作,方可使用,电压、电流表使用时正确接入即可;功率、功率因数使用说明如下。
实验五 三相负载电压、电流功率的测量
实验五 三相负载电压、电流、功率的测量 一.实验目的1.熟悉三相交流电路中三相负载的星形联结、三角形联结方法,加深理解三相交流电路中线电压与相电压,线电流与相电流之间的关系。
2.用实验的方法研究、体会三相四线制电路中中线的作用。
3.掌握三相星形电路有功功率的测量方法。
掌握用二瓦特表法测量三相三线制供电系统的有功功率。
4.熟练掌握功率表的接线和使用方法。
二.实验原理概述及说明 1.三相电源电力系统采用三相三线制和三相四线制的供电方式。
其三相电源的电动势相互对称,即三相电动势幅值相等,频率相等,相位互差120°。
2.三相电源的连接三相电源的联结方式分为星形联结和三角形联结两种。
(1)三相电源的星形联结:从三相绕组的首端A 、B 、C 引出三根导线,称为相线,把三相绕组的末端连接在一起称为中性点,从中性点引出的导线称为中线。
三相电源的星形联结时,线电压LU 是相电压phU 的3倍,三相电源的线电压在相位上超前于相电压30º。
(2)三相电源的三角形联结:把三相绕组的首端和末端依次相连,形成一个回路,从首端A 、B 、C 引出三根端线,这种方式称为三相电源的三角形联结。
三相电源的三角形联结时,线电压与对应的相电压有效值相等,即U L Ph U =,相位相同。
低压供电系统多采用三相四线制的供电方式。
3.三相负载及其联结三相负载可分为对称三相负载和不对称三相负载。
三相电源向负载供电时,三相负载可以接成星形(又称‘Y’形)或三角形(又称‘Δ’形)两种形式。
连接方式如图13-1所示。
在星形联结中又包括有中线(三相四线制)和无中线(三相三线制)两种情况。
(a)星形联结 (b)三角形联结 图13-1 三相负载的两种联结方式 4.三相负载星形联结 (1)三相负载对称当三相对称负载作星形联结时,线电压的有效值LU 是相电压有效值phU 的3倍,线电流L I 等于相电流phI,即: ,UI ILP L Ph== ,流过中线的电流IN =O ,负载中点N ´的电位与电源中点N的电位相等,即UNN ˊ=0,所以就对称负载而言,中线不起作用,可以去掉中线,采用三相三线制。
三相交流电路电压和电流的测量实验
三相交流电路电压、电流的测量实验一、实验目的1. 熟悉三相负载作星形联接时(或作三角形联接时),在对称和不对称情况下线电压与相电压(或线电流和相电流)的关系。
2. 比较三相供电方式中三线制和四线制的特点。
二、实验内容1. 对称负载作Y形联接电压、电流的测量。
2、不对称负载作Y形联接电压、电流的测量。
三、实验原理、方法和手段1. 三相电源电力系统的供电方式多为三相三线制或三相四线制形式,三相电源电压的幅值相同、频率相同、彼此之间的相位差为120°,该三相电压称为对称的三相电压。
低压供电电源常采用三相四线制,即三根相线和一根中线,分别用L1、L2、L3 和N 表示。
相线和中线之间的电压称为相电压,二根相线之间的电压称为线电压。
对称的三相电源电压线电压是相电压的倍。
2. 三相负载三相负载的连接方式有星形和三角形两种。
①当三相负载作星形连接时,若有中线,由于电源的中点与负载的中点等电位,此时无论负载对称与否,每相负载上的电压等于相应电源的相电压,是对称的,负载端的电压为相电压的倍,也是对称的。
若负载对称,则此时中线电流为零,负载不对称,中线电流为三个线电流之和。
当没有中线时,若负载对称,则情况与上相同。
但如果负载不对称,则由于电源中点和负载中点之间的电位差的存在,出现所谓“中性点位移”现象,使负载的相电压不再对称,将造成某相电压过高,而使该相负载受损,或电压过低使该相不能正常工作。
②当三相负载连接成三角形时,由于负载的相电压等于电源的线电压,所以不论负载对称与否,负载的相电压总是对称的。
若三相负载对称,则各相负载的线电流也对称,且线电流为相电流的倍。
负载不对称时,上述对称关系不复存在。
四、实验组织运行要求实验前:学生完成预习报告,指导教师检查学生预习报告,不预习者不准上实验课。
实验过程中:指导教师讲授实验要求及注意事项,用启发诱导的方式指导实验课;学生实验操作、搭接电路、测量数据,完成所有的实验内容后,先拉断电源,再根据实验要求自行核对实验数据,有无遗漏或不合理的情况,再经教师审核后在拆线并整理仪器设备。
三相电路的电压和电流
U AB U AN' U BN' U BC U BN' UCN' UCA UCN' U AN'
当电源和负载都对称时,线电压和相电压在数 值上的关系为: U线 3U相
当负载为三相三线制星形连接时,如果负载不 对称,就会出现中点位移现象。当中点发生位移时 ,各相负载电压(相电压)将不相等。
IB
IC
IN
负载对称
A相为4μF电容 A相开路
3. 三相三线制,负载为星形连接 断开中线,在负载分别为下列情况下,测量相
电压、中心点位移电压、相电流。
表 5.10.2 三相三线制星形连接 电压单位:V 电流单位:A
三相负载情况
UA
UB
UC
UNN'
IA
IB
IC
负载对称
A相为4μF电容 A相为开路 A相为短路
x
B
y
C
z
N N
图5.10.1负载星形连接电路
在三相电路中,如图5.10.1所示,当负载为星形 连接时,相电流等于线电流。在三相四线制时,中 线电流等于三个相电流的相量和。即:
IN IA IB IC
当电源和负载对称时,中线电流为零,当负载
不对称时,中线电流不等于零。线电压与相电压的
关系为:
0 0.12 0.12 0.18
2.三相三线制星形联接
表5.10.2 三相三线制星形连接 电压单位:V 电流单位:A
三相负载情况 负载对称
A相为4μF电容 A相为开路 A相为短路
UAN
224 240 330
0
UBN
223 420 172 386
UCN
223 174 168 386
三相电路电压电流的测量
UU (V)
UV (V)
UW (V)
2.
三相星形负载电路
FU1
电路图: U
A
IA IB
X Y Z N′
FU2
~380VV
FU3
B
C
QS
W N
IC
I0
注:测中线电流时,将电流表串入中线。 对称负载(每相两盏灯)、
不对称负载(C相并联两盏灯)
星形负载电路数据记录,填入表2:
项 目
对称 负载
有中线 无中线 有中线
线电压 (V)
UAB UBC UCA UAN UBN UCN
负载相电压 (V) ′ ′ ′
线电流 (A)
IA IB
IC
IN
(A)
UN N (V)
′
不对 称负 无中线 载
注:测中线电流时,将电流表串入中线。
3.
三相三角形负载电路
FU1
电路图:测相电流
U
FU2
A B C
IAB
X
~380V
V
FU3
IBC
2. 通过实验说明三角形对称负载电路,线电流是否 是相电流的 3 倍?
3. 用表2第三项实验数据,绘制电路相量图,并验算 I I I I A B C N
4.用表3第二项实验数据,绘制电路相量图,并
验算各电流。 5. 用表2第三、四项实验数据,说明不对称星形联 接是否要加中线?
UN’N=0:电源中点与负载中点自然等电位, IN 0
.
U l 3U p
Il I p
2、 对称三角形电路:
Ul U p
I l 3I p
3、不对称星形三相电路: 无中线时:中性点位移,三相负载电压不对称。 加中线时:中性点强制等电位,三相负载电压 对称。但中线电流不为零。 4、不对称三角形三相电路: 三相负载相电压对称,仍等于电源线电压。
电路理论实验指导书
实验一基尔霍夫定律的验证一、实验目的1、验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。
2、进一步掌握仪器、仪表的使用方法。
二、原理说明基尔霍夫定律是电路的基本定律。
测量某电路的各支路电流及多个元件两端的电压,应能分别满足基尔霍夫电流定律和电压定律。
即对电路中的任一个节点而言,应有ΣI=0;对任何一个闭合回路而言,应有ΣU=0。
运用上述定律时必须注意电流的正方向,此方向可预先任意设定。
三、实验设备1、RXDI-1电路原理实验箱 1台2、万用表 1台四、实验内容及步骤实验线路如图A所示图A1、实验前先任意设定三条支路的电流参考方向,如图中的I1、I2、I3所示。
2、分别将两路直流稳压电源(如:一路U2为+12V电源,另一路U1为0~24V可调直流稳压源)接入电路,令U1=6V、 U2=12V。
3、将电源分别接入三条支路中,记录电流值。
4、用电压表分别测量两路电源及电阻元件上的电压值,并记录。
五、实验报告1、根据实验数据,选定实验电路中的任一个节点,验证KCL的正确性。
2、根据实验数据,选定实验电路中的任一个闭合回路,验证KVL的正确性。
3、分析误差原因。
4、实验总结。
实验二戴维南定理—有源二端网络等效参数的测定—一、实验目的1、验证戴维南定理的正确性2、掌握测量有源二端网络等效参数的一般方法二、原理说明1、任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源二端口网络)。
戴维南定理指出:任何一个线性有源网络,总可以用一个等效电压源来代替,此电压源的电动势E S等于这个有源二端网络的开路电压U0C,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短路,理想电流视为开路)时的等效电阻。
U0C和R0称为有源二端网络的等效参数。
2、有源二端网络等效参数的测量方法(1)开路电压、短路电流法在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U0C,然后将其输出端短路,用电流表测其短路电流I SC,则内阻为R0=U OC/I SC(2)伏安法用电压表、电流表测出有源二端网络的外特性如图A所示。
三相可控整流电路实验报告
三相可控整流电路实验报告三相可控整流电路实验报告引言:本次实验旨在研究和探索三相可控整流电路的原理和性能。
通过搭建实验电路,观察和测量电路中的电压、电流和功率等参数,以及了解可控整流电路在实际应用中的优势和限制。
实验过程中,我们将使用适当的实验仪器和设备,确保实验的准确性和安全性。
一、实验原理1.1 可控整流电路的基本原理可控整流电路是通过控制晶闸管的导通和关断来实现对电流的控制。
在三相可控整流电路中,通过控制三相晶闸管的导通角来实现对电流的整流和调节。
1.2 三相可控整流电路的工作原理三相可控整流电路由三相桥式整流电路和控制电路组成。
三相桥式整流电路将三相交流电转换为直流电,而控制电路则通过控制晶闸管的导通和关断来实现对电流的控制。
二、实验装置和方法2.1 实验装置本次实验使用的实验装置包括三相变压器、三相桥式整流电路、晶闸管触发电路、电流表、电压表和功率表等。
2.2 实验方法首先,将三相变压器连接到三相交流电源上,通过变压器将电压降低到适当的电压范围。
然后,将三相桥式整流电路连接到变压器的输出端,将三相交流电转换为直流电。
接下来,将晶闸管触发电路连接到三相桥式整流电路上,通过控制触发电路,实现对晶闸管的控制。
最后,通过连接电流表、电压表和功率表等测量仪器,观察和测量电路中的电压、电流和功率等参数。
三、实验结果与讨论3.1 实验结果在实验过程中,我们通过测量电路中的电压、电流和功率等参数,得到了一系列实验结果。
例如,我们观察到随着晶闸管导通角的增加,电路中的电流呈线性增加趋势;同时,随着电压的增加,功率也呈线性增加趋势。
3.2 结果讨论通过对实验结果的分析和讨论,我们可以得出一些结论。
首先,可控整流电路可以实现对电流的精确控制,具有较高的调节性能。
其次,随着晶闸管导通角的增加,电路中的电流和功率都会增加,但是过高的导通角可能会导致电路的损坏。
因此,在实际应用中,需要根据具体需求和电路参数来选择合适的导通角。
THA-JD1实验指导书
实验一 用三表法测量交流电路等效参数一、实验目的1、学会用交流电压表、交流电流表和功率表测量元件的交流等效参数的方法。
2、学会功率表的接法和使用。
二、原理说明1、正弦交流激励下的元件值或阻抗值,可以用交流电压表、交流电流表及功率表,分别测量出元件两端的电压U ,流过该元件的电流I 和它所消耗的功率P ,然后通过计算得到所求的各值,这种方法称为三表法,是用以测量50Hz 交流电路参数的基本方法。
计算的基本公式为 阻抗的模 IUZ =电路的功率因数 UIP cos φ= 等效电阻 cos φZ IPR 2==等效电抗 sin φZ X =或 X =X L =2πfL 2ππf1X X C == 2、阻抗性质的判别方法:在被测元件两端并联电容或串联电容的方法来加以判别,方法与原理如下:(1)在被测元件两端并联一只适当容量的试验电容,若串接在电路中电流表的读数增大,则被测阻抗为容性,电流减小则为感性。
(a)(b)图1-1 并联电容测量法图1-1(a)中,Z为待测定的元件,C’为试验电容器。
(b)图是(a)的等效电路,图中G、B为待测阻抗Z的电导和电纳,B’为并联电容C’的电纳。
在端电压有效值不变的条件下,按下面两种情况进行分析:①设B+B’=B”,若B’增大,B”也增大,则电路中电流I将单调地上升,故可判断B为容性元件。
②设B+B’=B”,若B’增大,而B”先减小而后再增大,电流I也是先减小后上升,如图1-2所示,则可判断B为感性元件。
图1-2 I-B’关系曲线由上述分析可见,当B 为容性元件时,对并联电容C ’值无特殊要求;而当B 为感性元件时,B ’<|2B|才有判定为感性的意义。
B ’>|2B|时,电流单调上升,与B 为容性时相同,并不能说明电路是感性的。
因此B ’<|2B|是判断电路性质的可靠条件,由此得判定条件为ω2B C <' (2)与被测元件串联一个适当容量的试验电容,若被测阻抗的端电压下降,则判为容性,端压上升则为感性,判定条件为2X C ω1<'式中X 为被测阻抗的电抗值,C ’为串联试验电容值,此关系式可自行证明。
电工电子学实验指导书
电工电子学实验指导书淮北煤炭师范学院物理与电子信息学院电子技术实验室目录实验一、基尔霍夫定律------------------------------ 1 实验二、叠加原理的验证---------------------------- 3 实验三、戴维南定理的验证-------------------------- 5 实验四、受控源VCCS,CCVS的实验研究---------------- 8 实验五、三相交流电路电压、电流的测量--------------17 实验六三相鼠笼式异步电动机----------------------22实验一基尔霍夫定律的验证一、实验目的1.掌握基尔霍夫定律。
2.验证基尔霍夫定律的正确性。
二、原理说明基尔霍夫定律是电路的基本定律。
测量某电路的各支路电流及多个元件两端的电压,应能分别满足基尔霍夫电流定律和电压定律。
三、实验设备四、实验内容实验线路如图1所示。
1.以图1中的电压和电流标注的方向为参考方向。
2. 将两路稳压源的输出分别调节为12V和6V,接入E1和E2处,用直流数字电压表和毫安表测量各支路电流及各电阻元件两端的电压,数据记入表。
3. 将两路稳压源的输出分别调节为12V和12V,接入E1和E2处,用直流数字电压表和毫安表测量各支路电流及各电阻元件两端的电压,数据记入表。
五、实验注意事项1. 所有需要测量的电压值,均以电压表测量读数为准,不以电源表盘指示值为准。
2.防止电源两端碰线短路。
3.用电流插头测量各支路电流时,或者用电压表测量电压降时,应注意仪表的极性,正确判断测得值的+、-号后,记入数据表格。
4. 注意仪表量程的及时更换。
六、预习思考题根据图1的电路参数,计算出待测电流和各电阻上电压值,记入表中,以便实验测量时,可正确选定毫安表和电压表的量程。
七、实验报告1. 根据表1 E1和E2共同作用的实验数据,选定实验电路中的任一个节点,验证KCL 的正确性。
三相电路电压电流的测量实验总结
《三相电路电压电流的测量实验总结》1. 引言三相电路是工业领域中常见的电力系统形式,其特点是能够提供高效稳定的电力输出。
在实际应用中,对三相电路中电压和电流的准确测量是非常重要的,这不仅涉及到设备的正常运行,还关系到电能的有效利用和安全生产。
本文将对三相电路中电压和电流的测量实验进行总结和回顾,并共享个人对这一主题的见解和理解。
2. 三相电路电压电流测量的基本原理在三相电路中,电压和电流的测量是基于瞬时值的,需要考虑相位关系和相间电压的平衡性。
电压可使用电压表或示波器进行测量,而电流则需要借助电流表或电流互感器完成测量。
3. 电压测量实验在电压测量实验中,我们首先需要了解三相电路中的线电压和相电压概念,以及它们之间的关系。
我们可以按照实验步骤,通过连接电压表或示波器,对各相电压进行测量,同时考虑相间电压的平衡性。
这一过程需要严格按照安全操作规程进行,确保测量的准确性和安全性。
4. 电流测量实验与电压测量类似,电流测量实验也需要遵循相应的实验步骤和安全规程。
借助电流表或电流互感器,我们可以对三相电路中的电流进行准确测量,了解各相电流之间的关系,以及整体电路中电流的平衡情况。
5. 实验总结与回顾通过对三相电路电压电流测量实验的总结和回顾,我们不仅对实验操作流程有了更清晰的认识,还加深了对三相电路中电压电流测量原理的理解。
在实际应用中,我们需要时刻注意实验结果的准确性和可靠性,确保实验过程中的安全性,同时不断提升自身对三相电路测量的技能和经验。
6. 个人观点和理解作为一名工程师,我认为对三相电路中电压电流的准确测量是至关重要的。
只有通过深入的实验和理论学习,我们才能更好地掌握这一领域的专业知识,为实际工程应用提供有力支持。
我也意识到实验操作中的安全性和实验结果的可靠性同样重要,这需要我们不断提升自身的专业素养和技能水平。
在知识上,这篇文章将会以清晰的标题和序号标注出各个部分的内容,同时在文章中多次提及“三相电路电压电流的测量实验总结”这一主题,以保证文章的深度和广度兼具。
交流电路实验箱实验指导书
一、概述交流电路实验箱是根据“电工基础”“电路原理”“电路分析”等课程所开发设计的强电类典型实验项目而设计的。
版面设有Y型和△型变换的三相灯组负载,日光灯实验组件,多绕组变压器,单相铁芯变压器,电流互感器,R L C元件组,三相电源,交流电压表,交流电流表,秒表等仪器仪表于一体。
设计合理紧凑、美观,操作使用方便。
二、主要技术性能1、输入电源:三相四线制,AC380V±10%,50H,180VA。
2、交流电压表:输入:AC 0--450V交流电流表:输入:AC 0--2A秒表:0--99s3、使用环境条件:温度-10℃-40℃湿度≤80%(40℃)4、实验箱外型尺寸:520mm×340mm×170mm三、实验注意事项1、根据不同的连接方法选择合适的电源(AC220V或AC380V)。
2、实验时,若发现异常现象,应立即关断电源查找原因,排除故障,切记不允许在通电的情况下查找原因。
3、实验过程中如果需要更改接线时,必须切断电源后才能拆接线,以免触电。
4、实验完毕,必须先关掉电源,拔出电源插头,并将仪器设备工具导线等按规定整理好。
四、实验项目实验一、用三表法测量交流电路等效应参数 (3)实验二、日光灯电路实验、改善功率因素实验 (7)实验三、单相铁心变压器特性测试 (10)实验四、电流互感器实验 (12)实验五、变压器同名端判断 (14)实验六、R、L、C元器件特性及参数测试 (16)实验七、三相交流电路电压、电流的测量 (20)实验八、三相交流电路功率的测量 (23)实验九、功率因数及相序的测量 (27)实验十、单相电度表实验 (30)实验一、用三表法测量交流电路等效应参数一、实验目的1、学会用交流电压表、交流电流表和功率表测量元件交流等效参数的方法。
2、学会功率表的接法和使用。
二、原理说明1、正弦交流激励下的元件值和阻抗值,可以用交流电压表、交流电流表及功率表,分别测量出元件两端的电压U ,流过该元件的电流I 和它所消耗的功率P ,然后通过计算得到所求的各值,用交流电压表、交流电流表、功率表测量电路元件参数的方法称为三表法,是用以测量交流电路参数的基本方法。
三相交流电路电压、电流的分析与测量(含数据处理)(精)
三相交流电路电压、电流的分析与测量一、实验目的1.掌握三相负载作星形联接、三角形联接的方法,验证这两种接法时线、相电压及线、相电流之间的关系。
2.充分理解三相四线供电系统中中线的作用。
二、原理说明1.三相负载可接成星形(又称“Y”接)或三角形(又称"△"接,当三相对称负载作Y 形联接时,线电压Ul 是相电压Up 的倍。
线电流Il 等于相电流Ip,即U l=U p I l=I p当采用三相四线制接法时,,流过中线的电流I0=0,所以可以省去中线。
当对称三相负载作△形联接时,有I1=Ip, U1=Up2.不对称三相负载作Y 联接时,必须采用三相四线制接法,即Y0 接法。
而且中线必须牢固联接,以保证三相不对称负载的每相电压维持对称不变。
倘若中线断开,会导致三相负载电压的不对称,致使负载轻的那一相的相电压过高,使负载遭受损坏;负载重的一相相电压又过低,使负载不能正常工作。
尤其是对于三相照明负载,无条件地一律采用Y0 接法。
3.当不对称负载作△接时,Il≠Ip,但只要电源的线电压Ul 对称,加在三相负载上的电压仍是对称的,对各相负载工作没有影响。
三、实验设备及器件序号名称型号与规格数量备注1三相交流电源3Φ0~220V12三相自耦调压器13交流电压1表4 交流电流表15 三相灯组负载40W/220V白炽灯9 DGJ-046 电门插座 3DGJ-04四、实验内容1.三相负载星形联接(三相四线制供电)按图6-3-3-1 线路组接实验电路。
即三相灯组负载经三相自耦调压器接通三相对称电源,将三相调压器的旋柄置于三相电压输出为0V的位置,经指导教师检查后。
方可合上三相电源开关,然后调节调压器的输出,使输出的三相线电压为220V,按表6-3-3-1数据表格所列各项要求分别测量三相负载的线电压、相电压、线电流(相电流)、中线电流、电源与负载中点的电压,记录之。
并观察各相灯组亮暗的变化程度,特别要注意观察中线的作用。
三相电路电压,电流的测量,实验报告
三相电路电压,电流的测量,实验报告三相交流电路电压、电流的分析与测量(含数据处理)三相交流电路电压、电流的分析与测量一、实验目的1(掌握三相负载作星形联接、三角形联接的方法,验证这两种接法时线、相电压及线、相电流之间的关系。
二、原理说明1接),当三相对称负载作Y线电流Il 等于相电流Ip,即Ulp Il,IpI0,0,所以可以 ,必须采用三相四线制接法,即Y0倘若中线断开,会导致三相负载电压的不对称,致使负载轻的那一相的相电压过高,使负载遭受损坏;负载重的一相相电压又过低,使负载不能正常工作。
尤其是对于三相照明负载,无条件地一律采用Y0 接法。
3(当不对称负载作?接时,Il,但只要电源的线电压Ul 对称,加在三相负载上的电压仍是对称的,对各相负载工作没有影响。
三、实验设备及器件调压器的输出,使输出的三相线电压为220V,按表6-3-3-1数据表格所列各项要求分别测量三相负载的线电压、相电压、线电流(相电流)、中线电流、电源与负载中点的电压,记录之。
并观察各相灯组亮暗的变化程度,特别要注意观察中线的作用。
图6-3-3-1 路2按图6-3-3-2调节调压器,使其输出线电压为6-3-3-2数据表格要求进行测试图6-3-3-2 三相负载三角形联接的实验线路五、实验报告1(三相负载根据什么条件作星形或三角形连接,答:一般电机功率大于11kw就采(来自: 写论文网:三相电路电压,电流的测量,实验报告)用星,三角启动,否则采用三角形直接启动,一般不采用星形接法。
2(试分析三相星形联接不对称负载在无中线情况下,当某相负载开路或短路时会出现什么情况,如果接上中线,情况又如何,6( 实验是否能证明这一点,Vl响7 并求出线电表6-3-3-1三相负载星形联接实验数据表篇二:三相电路实验报告实验一一、实验名称三相电路不同连接方法的测量二、实验目的:1. 理解三相电路中线电压与相电压、线电流与相电流之间的关系。
2. 掌握三相电路的正确连接方法与测量方法。
三相电路的相序、电压、电流及功率测量
二瓦表法测三相有功功率和无功功率 ——△形联结
一瓦表法测三相无功功率——△形联结 内容: 1、用相序指示器测定三相电源相序。其中两相所接白炽灯的标称参数为 25W/220V,另一项接两 0.1uF 的电容并联。 2、三相四线制 Y0 形对称负载,测量各相、线电压、线电流及中线电流、各相有功功率。数据记入表 (7-13-1) 3、三相四线制 Y0 形不对称(去掉 W 相负载中的电容)负载,测量各相、线电压、线电流及中线电 流、各相有功功率。数据记入表(7-13-2)。 4、三相三线制 Y 形不对称负载(去掉 W 相负载中的电容,去掉任务 3 中的中线),测量各相电压、 线电压、线电流。数据记入表(7-13-3)。增加二瓦表法测量总有功功率。填入表格。 5、△形对称负载:测量各线电压、线电流、相电流及各相有功功率。数据记入表(7-13-4)。 6、△形联结对称负载:二瓦表法测量总有功功率和总无功功率,一瓦表法测量总无功功率。数据记 入表(7-13-5)。
三、主要仪器设备
1、三相对称电源。
2、三相对称负载:每一相负载采用两个(25W/220V)白炽灯泡和两个(1μF/630V)电容并联组成。 3、不对称负载:去掉 W 相中的电容。 4、交流电压表、交流电流表。 5、功率表。 6、若干导线。
四、操作方法和实验步骤
1、检查各相负载是否正常,检查灯泡的额定功率和额定电压,检查电容的额定耐压值。 2、调节三相电源输出,线电压保持在 220V 左右,所以对称三相电源的输出相电压<=120V,且在整 个实验过程中不再改变。 3、相序测量后,按实际相序进行各个任务所示电路图接线,测量记录数据。 4、切断电源。
七、讨论、心得
本次实验所测的是三相电路的相序、电压、电流和功率测量,实验任务多,而且接线复杂,尤其是 将功率表接入电路中,需要注意功率表的同名端。开始我差点被绕糊涂了,后来对着电路图,一步一步地 连接电路,成功了测出了所有所需数据。
《电工电子技术》实验指导书
《电工电子技术》实验指导书目录电工电子技术实验概述------------------------------------------------------3 实验一、基尔霍夫定律的验证------------------------------------------5 实验二、戴维南定理和诺顿定理验证---------------------------------8 实验三、叠加原理验证---------------------------------------------------10 实验四、正弦交流电路中R、L、C元件性能-----------------15 实验五、功率因数的改善--------------------------------------------18 实验六、三相电路--------------------------------------------------21电工电子技术实验概述《电工电子技术》是机电类专业重要专业基础课程之一。
《电工电子技术实验》是与其紧密配合的实验课程,是电路教学中必不可少的重要实践环节。
本实验指导书所编列的所有课题,均是在学生已学习和掌握电路理论后必须完成的实验。
通过实验和实际操作,获得必要的感性认识、进一步验证、巩固和掌握所学的理论知识。
通过实验学习,可熟悉并掌握电气仪表的工作原理和使用方法、正确联接电路和实验操作规范、观察实验现象、记读实验数据、绘制实验曲线、分析实验结果和误差、回答实验问题、提出对实验的改进意见等。
通过这些环节培养学生的实验技能,提高学生独立分析问题和解决问题的能力及严肃认真、实事求是的科学作风,为今后的工作实践和科学研究奠定初步基础。
为了完成实验教学任务,达到预期的实验教学目的,规范实验程序,培养学生实验操作技能,特提出如下实验工作要求:(一)、实验前的准备。
学生在进入实验室进行实验操作之前,必须认真地预习实验指导书及教材中的相关部分,做到明确实验原理、实验目的和任务;熟悉实验线路,实验步骤、操作程序;了解并掌握本次实验的仪器设备及其技术性能。
三相交流电路-电工电子学实验报告
实验报告课程名称:电工电子学指导老师:张伯尧成绩:___ _实验名称:三相交流电路一、实验目的和要求二、实验设备三、实验内容四、实验结果五、心得一、实验目的一、实验目的1.学习三相交流电路中三相负载的连接。
2.了解三相四线制中线的作用。
3. 掌握三相电路功率的测量方法。
二、主要仪器设备1. 实验电路板2. 三相交流电源(220V)3. 交流电压表或万用表4. 交流电流表5. 功率表6. 单掷刀开关7. 电流插头、插座三、实验内容1. 三相负载星形联结按图1接线,图中每相负载采用三只白炽灯,电源线电压为220V。
图11)测量三相四线制电源各电压(注意线电压和相电压的关系)。
U UV/V U VN/V U WU/V U UN/V U VN/V U WN/V 217.0 218.0 217.0 127.0 127.0 127.3表12)按表2内容完成各项测量,并观察实验中各电灯的亮度。
表中对称负载时为每相开亮三只灯;不对称负载时为U相开亮1只灯,V相开亮2只灯,W相开亮3只灯。
测量值负载情况相电压相电流中线电流中点电压U UN’/V U VN’/V U WN’/V I U/A I V/A I W/A I N/A U N’N/V对称负载有中线124 124 124 0.263 0.263 0.265 0 0 无中线126.1 126.8 126.5 0.263 0.263 0.266 0 1.1不对称负载有中线124 125 124 0.092 0.176 0.266 0.156 0无中线168 144 77 0.105 0.188 0.216 0 51.9表22. 三相负载三角形联结按图2接线。
测量功率时可用一只功率表借助电流插头和插座实现一表两用,具体接法见图3所示。
接好实验电路后,按表3内容完成各项测量,并观察实验中电灯的亮度。
表3中对称负载和不对称负载的开灯要求与表2中相同。
三相负载三角形联结记录数据表3四、实验总结1.根据实验数据,总结对称负载星形联结时相电压和线电压之间的数值关系,以及三角形联结时相电流和线电流之间的数值关系。
三相电路实验报告
三相电路实验报告实验目的,通过实验,了解三相电路的基本原理和特点,掌握三相电路的连接方法和参数测量。
实验仪器和设备,三相电源、三相负载、三相电能表、示波器、电压表、电流表等。
实验原理,三相电路是由三个交流电压相位差120°的电源组成,其特点是传输功率大、传输距离远、线损小、负载均衡。
在三相电路中,可以采用星形连接或三角形连接,分别对应星形接线和三角形接线两种连接方法。
实验步骤:1. 首先,将三相电源和三相负载按照星形连接方式接入,然后通过电压表和电流表分别测量各相电压和电流的数值,并记录下来。
2. 接着,将三相电源和三相负载按照三角形连接方式接入,同样通过电压表和电流表分别测量各相电压和电流的数值,并记录下来。
3. 然后,利用示波器观察三相电路中各相电压和电流的波形,并进行分析和比较。
4. 最后,使用三相电能表对三相电路的功率进行测量和计算,得出三相电路的功率因数、有功功率和无功功率等参数。
实验结果与分析:通过实验测量和观察,我们得出了以下结论:1. 在星形连接方式下,各相电压之间的相位差为120°,电流大小和相位关系均衡,负载均衡性好。
2. 在三角形连接方式下,各相电压之间的相位差同样为120°,电流大小和相位关系均衡,负载均衡性同样好。
3. 通过示波器观察,我们发现三相电路中各相电压和电流的波形都是正弦波,并且相位差为120°,符合理论预期。
4. 通过三相电能表的测量和计算,我们得出了三相电路的功率因数、有功功率和无功功率等参数,验证了三相电路的传输功率大、传输距禿远、线损小的特点。
实验总结:本次实验通过对三相电路的连接方式和参数测量,深入理解了三相电路的基本原理和特点,掌握了三相电路的连接方法和参数测量技术。
同时,实验结果与理论预期相符,验证了三相电路的特点和优势,为今后的工程实践提供了重要的参考依据。
通过本次实验,我们不仅学到了理论知识,还掌握了实际操作技能,提高了实验能力和动手能力,为今后的学习和工作打下了坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四 三相交流电路
一、实验目的
1.掌握三相负载的正确联接方法。
2.进一步了解三相电路中相电压与线电压、相电流与线电流的关系。
3.了解三相四线制电路中中线的作用
二、实验原理
1.三相电源:星形联接的三相四线制电源的线电压和相电压都是对称的,其大小关系为P L 3U U =,三相电源的电压值是指线电压的有效值。
2.负载的联接:三相负载有星形和三角形两种联接方式。
星形联接时,根据需要可以联接成三相三线制或三相四线制;三角形联接时只能用三相三线制供电。
在电力供电系统中,电源一般均为对称,负载有对称负载和不对称负载两种情况。
3.负载的星形联接:带中线时,不论负载是否对称,总有下列关系:
3
L P U U =
,P L I I =
无中线时,只有对称负载上述关系才成立。
若不对称负载又无中线时,上述电压关系不成立,故中线不能任意断开。
4.负载的三角形联接:负载作三角形联接时,不论负载是否对称,总有U L =U P 。
对称负载时 P L 3I I =;不对称负载时,上述电流关系不成立。
三、实验仪器和设备
1.交流电压表 1块 2.交流电流表 1块 3.电流插孔 4只 4.白炽灯 6只 5.导线 若干
四、预习要求
l. 复习三相交流电路有关内容。
2. 负载作星形或三角形联接,取用同—电源时,负载的相、线电量(U 、I )有何不同?
3. 对称负载作星形联接,无中线的情况下断开一相,其它两相发生什么变化?能否长
时间工作于此种状态?
五、实验内容及步骤
1.测量实验台上三相电源的线电压和相电压,将测量数据记于表4.1中。
表4.1
2.按图4.1,将负载作星形联接接好线路。
分别在下列四种情况下,观察灯泡亮度的变化,测量三相线电压、负载相电压、线电流(即相电流)、中线电流和两中点电压,并将测量数据记于表4.2中。
(1)负载对称,有中线; (2)负载对称,无中线;
(3)负载不对称(将U 相两个灯泡全部关掉),有中线; (4)负载不对称,无中线。
表4.2
3.将三相电源线电压调成220V ,按图4.2,负载作三角形联接接好线路。
分别在负载对称和不对称(将U 、V 相两个灯泡全部关掉)两种情况下,观察灯泡亮度的变化,测量三
U V W N
N ’
图4.1 三相负载星形联接电路图
相线电压(即负载相电压)、负载线电流,并将测量数据记于表4.3中。
4.按图4.3改线,在上述两种情况下分别测量相电流,并将测量数据记于表4.3中。
表4.3
六、注意事项
1.本次实验中电压较高,电路改接次数较多,要防止发生短路事故。
切记“先接线,再通电;先断电,再拆线”。
2.实验时,白炽灯发热,要防止烫伤。
七、实验报告要求
1.根据测量数据,验证电源线电压和相电压的关系。
2.根据测量数据,分别验证星形和三角形联接时,对称和不对称情况下,各相值与线值的关系。
3.根据实验结果,说明中线的作用。
在什么情况下必须有中线,在什么情况下可不要中线。
图4.2 负载三角形联接电路图
图4.3 负载三角形联接电路图。