先进气动布局设计技术
飞行器设计新技术
飞行器设计新技术军用飞机发展很快,从20世纪50年代的第一代超音速战斗机起,到目前已经发展到第四代超音速战斗机,第三第四代战机采用了一系列新技术,下面就不同的方面浅谈一下飞行器设计中的新技术一、气动布局技术(一)近距耦合鸭式布局没有水平尾翼,但在机翼(亦称主翼)前面装有水平小翼的飞机称为鸭式布局飞机。
机翼前面水平小翼称为前翼或鸭翼。
鸭式布局有以下优点:1.前翼不受流过机翼的气流的影响,前翼操纵效率高。
2.飞机以大迎角飞行时,正常式飞机平尾的升力为负升力(向下),这样就减少了飞机的总升力(有人称它为挑式飞机,即机翼升力不仅要平衡飞机的重量,而且还要克服平尾的负升力),从而不利于飞机的起飞着陆和大迎角时的机动性能。
而鸭式飞机与此相反,前翼在大迎角飞行时提供的是正升力,从而使飞机总升力增大(有人称它为抬式飞机,即前翼与机翼共同平衡飞机重量),这样就有利于减小飞机起飞着陆速度,改善起飞着陆性能,同时也可以提高大迎角时的机动性能。
3.鸭式飞机配平阻力小,因而续航能力好。
鸭式飞机虽有上述优点,但是由于还存在不少问题有待解决,使鸭式飞机的主要优点(即鸭翼与机翼都产生正升力)的发挥受到很大的影响,因此在很长一段时间内,鸭式布局使用不广泛。
针对这一问题,航空界进行了一系列的研究工作。
所谓近距耦合鸭式布局飞机,就是这方面研究的成果。
近距耦合鸭式布局飞机(简称近距耦合鸭式飞机)是指前翼与机翼距离很近的一种鸭式飞机,这种飞机往往采用小展弦比大后掠的前翼,此时前翼形成的脱体涡流经主翼表面,使主翼升力提高,而前翼也将受到主翼上洗气流的影响而增加升力。
同时,主翼表面的低压抽气作用,又提高了前翼涡流的稳定性。
因此,前翼与主翼近距耦合的结果,既增加了飞机的升力,也推迟了飞机的失速。
近距耦合鸭式布局的研究成功,使鸭式布局在战斗机上重新流行。
(二)边条机翼边条机翼是一种组合机翼,它是由中等后掠角和中等展弦比的基本机翼和位于翼根前部的大后掠角、小展弦比尖前缘的边条组成。
飞机气动布局简介.
飞机气动布局简介想必很多人对飞机很感兴趣,因为飞机大多是很漂亮的,流线型的机身,舒展的机翼,实现了人类在蓝天翱翔的梦想。
其实飞机外型的美观虽然是人类主动的设计创作,而实质却是受制于空气阻力的被动结果,从某种意义上讲,这种符合人类审美标准的流畅线条其实是空气动力原理的杰作。
大千世界千变万化,飞机也是形态各异,大的、小的、胖的、瘦的,四个翅膀的、两个翅膀的甚至还有一个翅膀的,打个比方,飞机的式样就像宠物狗一样,当真是品种丰富,血统复杂。
俗话说外行看热闹,内行看门道,既然飞机的外观是空气动力原理决定的,那么这么多种飞机的形状在飞机设计中就有个称谓,叫做空气动力布局。
下面我们就逐一介绍一下各种气动布局,当了解到气动布局这个概念后再回过头来看这些飞机,就会发现自己不会再看花眼了,其实全世界的飞机品种再多,也无非就以下这几种气动布局而已。
各种空气动力布局的主要差别就在于机翼位置上的差别,首先介绍一个最常见的布局——常规布局。
这种布局的特点是有主机翼和水平尾翼,大的主机翼在前,小机翼也就是水平尾翼在后,有一个或者两个垂直尾翼。
世界上绝大多数飞机属于这种气动布局,特别是客运、货运大型飞机,几乎全是这种布局,例如波音系列、欧洲的空中客车系列,我国的运七、运八、ARJ21,美国的C130等。
我国的军用飞机中除了歼10猛龙战斗机以外,都是常规气动布局。
常规布局最大的优点是技术成熟,这是航空发展史上最早广泛使用的布局,理论研究已经非常完善,生产技术也成熟而又稳定,同其他气动布局相比各项性能比较均衡,所以目前无论是民用飞机还是军用飞机绝大多数使用这种气动布局。
常规气动布局机型——我国的ARJ21祥凤支线客机常规气动布局机型——我国的FC-1枭龙歼击机常规气动布局机型——我国的歼11B歼击机常规布局中还有一个另类——变后掠翼布局,就是主翼的后掠角度可以改变,高速飞行可以加大后掠角,相当于飞鸟收起翅膀,低速飞行时减小后掠角,展开翅膀。
气动布局技术在飞翼式飞机设计中的应用
气动布局技术在飞翼式飞机设计中的应用随着科技的不断进步和发展,航空工业也在快速发展中不断创新,不断推陈出新。
其中,飞翼式飞机的应用越来越受到人们的关注和青睐。
飞翼式飞机不仅可以提高飞机的飞行效率,降低能耗,还可以提高安全性能。
在现代飞翼式飞机中,气动布局技术是至关重要的一项技术,它能够帮助飞机实现更好的飞行性能和安全性能,大大推动了飞机的发展。
一、飞翼式飞机的优越性能飞翼式飞机是无尾翼、机身与机翼形成一个整体的飞机,而传统的飞机则是由机身和机翼两部分组成。
飞翼式飞机采用了翼身一体的设计,可以减少空气阻力,降低气动噪声,提高飞行效率。
与传统的飞机相比,飞翼式飞机的设计更加紧凑,在同等长度的情况下,它的机翼比传统的机翼更加宽广,起降距离更短,可以适应更多的起降场。
此外,飞翼式飞机的机身比传统的飞机宽,可以容纳更多的乘客和货物,扩大了使用范围。
同时,由于整个机身和机翼都是一个整体,因此在面对一些机件故障时,飞翼式飞机的表现更可靠,飞行更加安全。
二、气动布局技术的应用在飞翼式飞机的设计中,气动布局技术是非常重要的。
气动布局技术可以通过对飞机的外形进行优化设计,实现更优秀的飞行性能和安全性能。
其中,气动布局技术包括飞机机体的形状、机翼的布局和飞机的气动特性等方面。
下面,我们来分别探讨一下。
1. 机体的形状设计飞机的机身形状是影响飞机飞行性能和安全性能的关键因素之一。
气动布局技术可以通过机体的形状设计,对气动外形进行优化,减少空气阻力,提高飞机的飞行效率。
同时,在设计中还要考虑到飞机的姿态控制,内部空间利用等因素,以提高机身的合理性。
2. 机翼的布局优化机翼是飞机的关键部件之一,不仅要有高的升力系数,还要有较低的阻力系数。
气动布局技术在飞翼式飞机的机翼设计中更是起到了决定性的作用。
可以通过改变翼的弯曲形状、尺寸,以及翼面的气动布局等因素,来实现机翼的优化设计,提高升力系数、减小阻力系数、减少失速现象,更好的抵御各种外部环境因素。
微型共轴双旋翼气动布局优化设计与试验研究
微型共轴双旋翼气动布局优化设计与试验研究摘要:本文针对微型共轴双旋翼飞行器,在保持飞行稳定性的前提下,优化其气动布局设计,以提高其续航能力和飞行效率。
通过建立数学模型,利用CFD仿真分析工具,对不同布局参数进行优化设计和分析研究。
在优化后,设计制作了双旋翼原型机,并进行试飞验证。
结果表明,优化后的气动布局设计显著提高了微型共轴双旋翼飞行器的性能,续航时间和飞行效率均得到明显提升,验证了优化设计的有效性。
关键词:微型共轴双旋翼;气动布局;优化设计;试验研究;飞行性能1.引言微型共轴双旋翼飞行器由于其紧凑灵活、垂直起降等优势被广泛应用于军事、消防、救援、科研等领域。
然而其双旋翼结构和较小的体积也导致了其续航时间和飞行效率上的局限。
因此,优化设计其气动布局成为提高飞行性能和应用效果的重要途径。
2.问题分析2.1 双旋翼结构特点微型共轴双旋翼飞行器是指采用两个同轴旋转的双旋翼,旋翼之间无传动装置,互相协同工作,保持飞行平稳。
其结构较为简单,但双旋翼之间空间的限制也导致了其装载、续航等方面的技术难题。
2.2 优化设计研究进展当前,微型共轴双旋翼飞行器的优化设计研究主要针对双旋翼的气动布局。
以提高其抗风稳定性和生产能力为目标,研究者从气动布局参数和旋翼构型入手,进行了大量的优化设计研究。
例如:长方形双旋翼结构、反向旋翼设计、桥式机身结构等。
这些优化设计方案表明,通过改进双旋翼结构和调整布局参数,可以有效提高微型共轴双旋翼飞行器的性能表现。
3.气动布局优化设计3.1 数学模型建立根据微型共轴双旋翼飞行器结构特点,建立数学模型,利用CFD仿真分析工具,对优化方案进行分析。
3.2 优化设计方案从空气动力学原理和规范要求出发,对双旋翼气动布局参数进行分析和优化设计,包括旋翼形状、旋翼间距、旋翼转速等方面。
该方案以提高微型共轴双旋翼飞行器的续航时间和飞行效率为目标。
4.试验研究4.1 制作双旋翼原型机根据优化设计方案,制作微型共轴双旋翼飞行器原型机,并进行试飞验证。
气动布局解析实验报告(3篇)
第1篇一、实验目的1. 了解和掌握不同气动布局的基本原理和特点。
2. 分析不同气动布局对飞行器性能的影响。
3. 通过实验验证理论知识的正确性。
二、实验器材1. 气动模型(如飞机模型、导弹模型等)2. 风洞实验装置3. 数据采集与分析软件4. 测量工具(如风速计、压力计等)三、实验原理气动布局是指飞行器各个部件的相对位置布置,它直接影响飞行器的空气动力学性能。
不同的气动布局具有不同的升力、阻力、稳定性、机动性等特性。
四、实验内容1. 常规气动布局实验(1)实验步骤:将气动模型置于风洞中,调整角度和速度,记录升力、阻力等数据。
(2)数据分析:分析常规气动布局在不同攻角和速度下的升力、阻力特性。
2. 鸭式气动布局实验(1)实验步骤:将鸭式气动布局模型置于风洞中,调整角度和速度,记录升力、阻力等数据。
(2)数据分析:比较鸭式气动布局与常规气动布局在不同攻角和速度下的升力、阻力特性。
3. 飞翼布局实验(1)实验步骤:将飞翼布局模型置于风洞中,调整角度和速度,记录升力、阻力等数据。
(2)数据分析:分析飞翼布局在不同攻角和速度下的升力、阻力特性。
4. 三翼面布局实验(1)实验步骤:将三翼面布局模型置于风洞中,调整角度和速度,记录升力、阻力等数据。
(2)数据分析:比较三翼面布局与常规气动布局在不同攻角和速度下的升力、阻力特性。
五、实验结果与分析1. 常规气动布局常规气动布局具有较好的稳定性和机动性,但升力系数相对较低。
在低速和低攻角下,升力系数较高;在高速和高攻角下,升力系数较低。
2. 鸭式气动布局鸭式气动布局具有较好的机动性和升力系数,但稳定性较差。
在低速和低攻角下,升力系数较高;在高速和高攻角下,升力系数较低。
3. 飞翼布局飞翼布局具有较好的升力系数和隐身性能,但机动性和稳定性较差。
在低速和低攻角下,升力系数较高;在高速和高攻角下,升力系数较低。
4. 三翼面布局三翼面布局具有较好的升力系数、稳定性和机动性。
战斗机气动布局设计
提纲
一、气动布局定义
二、气动布局形式分类
三、常规布局 四、鸭式布局 五、无尾布局 六、三翼面布局 七、飞翼布局 八、气动布局的发展趋势
1
一、气动布局定义
飞机在空气中飞行,依靠与空气相对运动产生的空气动 力。因此,与空气发生相互作用的机体外形——我们称 之为飞机气动布局,成为飞机飞行研究的关键。 气动布局:指飞机外形构造和大部件的布置形式,包括 机翼、机身、进气道等与空气动力直接相关的部件的 形状和位置。一般用飞机外形几何参数来具体定义气 动布局。
22
七、飞翼布局
早在二战期间,美国和德国就开始研究这种布局的飞
机。现代采用飞翼布局最成功的是美国 B -2隐型轰炸 机。
23
七、飞翼布局
优点是气动力效率高、升阻比大;雷达反射截面积小,
隐身性能好。
缺点与无尾布局相同,另外还须解决没有垂直尾翼带
来的航向稳定性和控制问题。
24
七、飞翼布局
按有无垂尾划分:有尾布局,飞翼布局;
5
二、气动布局形式分类
按水平翼面数划分:有单翼面无尾布局,双翼面布局,
三翼面布局;
6
二、气动布局形式分类
按形状划分:梯形翼、三角翼、边条翼布局;
7
二、气动布局形式分类
按进气道形式划分:头部进气,腹部进气,背部进气,
两侧进气,肋下进气等。
8
二、气动布局形式分类
19
六、三翼面布局
在常规布局飞机的机翼前增加一付鸭翼的布局称为
“三翼面布局”。
20
六、三翼面布局
三翼面布局集合了常规布局和鸭式布局的优点,提高
了飞机的机动性。缺点是增加了一付翼面,带来阻力、 重量和驱动装置增加。
飞机气动布局设计简介
机翼的增升装置
增升装置:如果把机翼的前、后缘做成可活动的舵面,则其可 改变机翼剖面弯度和机翼面积,增加飞机升力,改善飞机飞行 性能。这种可增加飞机升力的活动舵面称为增升装置或襟翼。
襟翼一般分为 •前缘襟翼 •后缘襟翼
机翼的增升装置 增升装置
最主要的缺点: •飞机的纵向操纵和配平仅仅靠机翼后缘的升降舵来实现, 则由于力臂较短,操纵效率不高。 •在起飞着陆时,增加升力需升降舵下偏较大角度,由此带 来下俯力矩,为配平又需升降舵上偏,因而限制了飞机的
起飞着陆性能
三翼面布局
机翼前面有水平前翼 (鸭翼),机翼后面 有水平尾翼
Su-33
S-37
三翼面布局的优缺点
三翼面布局飞机 ny=7 5.2 常规布局飞机 ny=7 6.9
0.9 0.9 0.1
最主要的优点: •气动载荷分配上也更加合 理 •综合常规布局和鸭式布局 的优点
最主要的缺点: •漩涡破裂,产生非线性的 气动力 •小迎角时的阻力比两翼面 的要大
飞翼布局
飞机只有机翼的气动布局形式。
B-2
飞翼布局的优缺点
翼型
翼型:平行于飞机对称面的翼剖面
Y 平凸形
双凸形
对称形
圆弧形 X 菱形
弦长
后缘
前缘
翼弦
弦长
图1-3 翼型的中弧线和翼弦
相对弯度、相对厚度、前缘半径、后缘角
cmax
f max
Xc
Xf
翼型参数的定义
• 弦长:弦线被前、后缘所截线段的长度 • 相对弯度 :翼型中弧线与翼弦之间的距离叫弯度。最大弯 度与弦长的比值,叫相对弯度。相对弯度的大小表示翼型的不 对称程度。
航空器气动布局的设计和分析
航空器气动布局的设计和分析一、概述航空器气动布局的设计和分析是航空工程学科中的一个重要分支,主要针对飞机在高速飞行中遇到的气动力学问题进行研究。
其目的是通过优化气动布局设计,提高飞机的性能和安全。
本文将分为以下几个部分,对航空器气动布局的设计和分析进行探讨。
二、气动布局设计飞机的气动布局设计包括机翼、机身、尾翼、发动机及各个部位之间的协调与匹配。
将各个部位的气动流场加以调整,使之达到最佳状态,以达到最佳性能。
1.机翼设计机翼的设计是飞机气动布局设计中最为重要的一部分。
机翼的气动设计不仅决定了飞机的外形,而且也影响了飞机的稳定性和飞行性能。
设计时需考虑以下几个方面:(1)机翼的平衡性一般来说,机翼设计必须满足平衡性的要求。
这意味着机翼必须在作用力的作用下,保持稳定运行,以防止其在飞行过程中出现不必要的姿态变化。
平衡性是机翼设计的重要考虑因素之一。
(2)机翼的升力与阻力特性机翼的升力与阻力特性也是设计的重要考虑因素。
升力特性决定了所需要的起飞和降落速度,而阻力特性则影响了飞机的航程。
设计时需要考虑这些因素来优化机翼的效率。
(3)机翼的强度与刚度机翼必须具有足够的强度和刚度,以支撑整个飞行器的质量,同时要满足对不同飞行载荷的要求。
(4)机翼的结构机翼结构的设计也是机翼设计的重要考虑因素之一。
需要考虑机翼的几何形状和材料属性,以满足不同的要求。
2.机身设计机身是整个飞机的骨架,负责承载机翼和发动机。
机身设计需要满足以下要求:(1)机身的气流稳定性机身必须具有良好的气流稳定性,以确保飞机在飞行过程中稳定。
(2)机身重量和刚度机身必须具有足够的强度和刚度,同时尽可能减少机身重量,确保飞机在飞行过程中能够承受飞行载荷的各种挑战。
(3)机身内部布局的合理性机身内部的设备必须合理布置,以便维修和保养。
3.尾翼设计尾翼的设计必须考虑与机翼的匹配,以及满足稳定性和机动性等要求。
尾翼可以帮助控制飞机的稳定性,同时也能通过变动尾翼的位置和角度来帮助控制飞机。
气动布局
飞机的气动布局飞机外形构造和大部件的布局与飞机的动态特性及所受到的空气动力密切相关。
关系到飞机的飞行特征及性能。
故将飞机外部总体形态布局与位置安排称作气动布局。
其中,最常采用的机翼在前,尾翼在后的气动布局又叫作常规气动布局。
气动布局形式是气动布局设计中首先需要考虑的问题。
目前飞机设计中主要采用的包括以下几种:正常布局;鸭式布局;变后掠布局;三翼面布局;无平尾布局;无垂尾布局;飞翼布局。
正常布局是迄今为止被使用最多的一种布局形式,目前仍然被应用于各类飞机之上。
鸭式布局在早期未能得到足够的重视,但随着超音速时代的来临,鸭式布局的优点逐渐为人们所认识。
目前广泛应用于战斗机之上的近距鸭式布局利用鸭翼与机翼的前缘分离涡之间相互有利干扰使涡系更加稳定,推迟了涡的破裂,为大迎角飞行提供了足够的涡升力,显著的提高了战斗机的机动性。
此外,采用ACT和静不稳定的鸭式布局的优点则更为突出。
变后掠布局较好的兼顾了飞机分别在高速和低速状态下对气动外形的要求,在六七十年代曾得到广泛应用,但由于变后掠结构所带来的结构复杂性、结构重量的激增,再加上其它一些更为简单有效的协调飞机高低速之间矛盾的措施的使用,在新发展的飞机中实际上已经很少有采用这种布局形式的例子了。
三翼面布局形式可以说最早出现在六十年代初,米高扬设计局由米格-21改型而得的Е- 6Т3和Е-8试验机。
三翼面的采用使得飞机机动性得到提高,而且宜于实现直接力控制达到对飞行轨迹的精确控制,同时使飞机在载荷分配上也更趋合理。
无平尾、无垂尾和飞翼布局也可以统称为无尾布局。
对于无平尾布局,其基本优点为:超音速阻力小和飞机中两较轻,但其起降性能及其它一些性能不佳,总之以常规观点而言,无尾布局不能算是一种理想的选择。
然而,随着隐身成为现代军用飞机的主要要求之一以及新一代战斗机对超音速巡航能力的要求,使得无尾——特别是无垂尾形式的战斗机方案越来越受到更多的重视。
对于一架战斗机而言,实现无尾布局将带来诸多优点。
战斗机气动布局
• 狂风
• • •
英德意70年代联合研制的
在当时同时代研制的战机中,如米格29,苏27,F-15,F-16,幻影2000这些飞机中,都显得很差。
• 幻影2000 法国独立研制
从80年代服役至今,总体性能优异 无尾三角翼布局,没有鸭翼,只有两个小边条,使用先进的脉冲多普勒雷达,由于小型机体限制,无法换装更 强大但更重的相控阵雷达,最大的诟病就是发动机推力不足,油耗大。从八十年代服役至今,外销销量尚可, 目前仍有包括法国、印度、希腊、阿拉伯联合酋长国、中国台湾等一些国家和地区使用幻影2000,总体性能优 异
1常规布局
• 水平尾翼和垂直尾翼都放在机翼后面的飞机尾 部 • 新式战斗机很多都采用这种布局,如 • 俄罗斯的米格-29、苏-27、 • 美国的F-22、F-16、F-18等。
边条
• 如果在机翼前沿根部靠近机身两侧处增加一片 大后掠角圆弧形的机翼面积,就可以大为改善 飞机大迎角状态的升力。 • 这增加的部分在我国一般叫做“边条”。
• 这些飞机的鸭翼除了用以产生涡流外,还用于改 善跨音速过程中安定性骤降的问题,同时也可减 少配平阻力、有利于超音速空战。 • 在降落时,鸭翼还可偏转一个很大的负角,起减 速板的作用。 • 据称,俄罗斯下一代的飞机也考虑使用鸭式布局。 米格1.44 鸭翼布局
• 不同位置的鸭翼对涡升力和配平有所侧重。大体 分为两种: 1、远距耦合。阻力和重量较小。适合高速飞行; 坏处是远离机翼,难以形成涡升力。 2、近距耦合。近距耦合的鸭翼产生涡升力的作用 明显得多,有利于提高机动性,但力臂短,配平 和俯仰控制作用降低。
近 距 远 距 远距耦合 “台风”式战斗机 近距耦合 “阵风”式战斗机
基于伴随算子的大飞机气动布局精细优化设计
基于伴随算子的大飞机气动布局精细优化设计吴文华;范召林;陈德华;覃宁;孟德虹【摘要】After decades of studies, the potentialities of traditional wing-body configuration are almost exhausted. So, it is difficult to improve the performance of the traditional aerodynamic shape of transonic civil aircraft by conventional design method. In this paper we develop ADJOINT method based on aerodynamics optimization software-ADJOPT, and the software is used to optimize the wing of a transonic civil aircraft with fuselage and nacelle, which is already optimized by traditional way. The optimization is multi-parameter, high precise and taking the influence of the fuselage and nacelle into account. The software performs well and gets obvious performance improvement. The research shows that multi-parameter optimization has the ability to exploit potentialities of a high-performance shape and increases the aerodynamic performance of it.%发展了基于伴随算子的气动布局优化设计软件-ADJOPT,并将该软件用于经过传统设计方法优化的大飞机布局上,开展全机状态下的机翼多参数、高精度优化设计,计入了短舱和机身对机翼气动特性的影响,取得了明显的优化效果.研究结果表明,多参数优化设计能够充分挖掘一个优良布局的设计潜力,进一步提高布局性能.【期刊名称】《空气动力学学报》【年(卷),期】2012(030)006【总页数】7页(P719-724,760)【关键词】超临界翼型;参数优化;伴随算子;减阻【作者】吴文华;范召林;陈德华;覃宁;孟德虹【作者单位】中国空气动力研究与发展中心空气动力学国家重点实验室,四川绵阳621000;中国空气动力研究与发展中心高速空气动力研究所,四川绵阳621000;中国空气动力研究与发展中心高速空气动力研究所,四川绵阳621000;中国空气动力研究与发展中心高速空气动力研究所,四川绵阳621000;谢菲尔德大学,英国谢菲尔德S3 7JJ;中国空气动力研究与发展中心空气动力学国家重点实验室,四川绵阳621000【正文语种】中文【中图分类】V211.30 引言在飞行器气动布局设计的后期,布局的主要特征参数和外形都已经确定,比如机身的长度、圆柱段直径、机翼的展弦比、前缘后掠角、根梢比、截面最大厚度,机翼面积,尾翼位置及面积等。
飞行器气动布局与外形隐身设计
飞行器气动布局与外形隐身设计杜红军(空军第一航空学院河南·信阳464000)摘要外形隐身在降低飞行器雷达可探测性方面意义重大,对缩减主要方向上RCS值的贡献量可达70%以上。
外形隐身需要开展一体化设计,协调与气动布局要求之间的诸多矛盾。
本文在对雷达散射截面积的概念和影响因素进行分析的基础上,结合若干典型隐身气动布局的特点,综述了飞行器外形隐身设计的几种主要方法。
关键词气动布局外形隐身中图分类号:V211.3文献标识码:A飞行器的隐身,主要是指利用各种技术手段缩减飞机的特征信息,降低飞机的可探测性,使敌方探测系统不能发现本机或推迟发现本机的时机,无法实施有效拦截和攻击,从而提高飞机的突防能力和生存能力,并增强攻击的突然性。
隐身技术已成为一门多学科综合的高新技术,并从雷达隐身扩展到红外、可见光和声波隐身等领域。
隐身设计的方法很多,涉及的技术也非常复杂,通常是多种措施综合运用,但一般都要从外形、结构、材料和工艺等方面入手。
本文主要研究了通过外形设计缩减目标雷达特征信号的方法。
1雷达隐身的基本概念1991年的海湾战争中,美军部署在海湾地区的F-117A“夜鹰”隐身飞机,以累计仅占整个空袭2%架次的出动量,成功攻击了40%以上的重要战略目标,该机出入巴格达如入无人之境,让世人第一次感受到了雷达隐身技术的巨大魅力。
在雷达隐身领域,有一个重要的概念,即雷达散射面积(Radar Cross Section)的概念,它是衡量雷达隐身性能的主要指标,简称为RCS。
RCS是表征飞机雷达回波信号强弱的物理量,其定义为“目标在单位立体角内向接收机天线散射的功率与入射到目标处单位面积内功率之比的4倍”。
当雷达波照射到目标上时,目标将以球体的形式向其周围的空间散射雷达波,只是在不同的方向上散射回波的功率不同。
那么,在正对雷达接收机天线的方向上,1度球体角的范围内散射回波的功率与入射到目标处单位面积内功率之比的4倍,即为雷达散射截面积RCS。
飞机的气动布局
从人类第一架飞机“飞行者一号”开始,飞机气动布局发展就与鸭式布局结下了百年的渊源。
一直以来,鸭式气动布局被视为优点和缺点同样突出的气动布局,让飞机设计者们既爱又恨。
似乎已经形成了这样一个观点,那就是鸭式布局作为一种“旁门左道”的航空技术,无法撼动常规布局在战斗机设计中的主流地位。
而中国歼二十的亮相和首飞无疑推翻了这个论调,采用鸭式布局同样可以攀登上最先进战斗机的巅峰。
“丑小鸭”:早期鸭式布局实践人类第一架飞机“飞行者一号”采用的就是鸭式布局。
在人类刚刚接触飞机设计的时候,非常自然的想到,在机头设置控制翼面,翼面上偏,飞机抬头,翼面下偏,飞机低头,从而实现飞机的俯仰控制。
但是在飞机技术发展过程中,航空先驱者们发现,鸭式布局这个看似简单直接的气动控制手段,在工程应用的时候带来相当多而且凭借当时技术手段基本无法解决的问题。
第一,鸭翼上偏在提供升力或者抬头力矩的同时,干扰了后面主翼的流场。
鸭翼上偏或者设计成平飞时也产生升力的时候,由于升力产生的本质就是鸭翼上下表面的压力差,鸭翼上表面形成的低压区碰巧在主翼的位置,而且部分低压区产生在主翼之下。
这样就相当于降低了主翼下表面压力,从而降低了主翼升力。
第二,鸭翼的攻角是飞机攻角与鸭翼偏转角度的叠加,鸭翼偏转角度稍大就会因为迎角过大而失速,飞机迅速失去抬头力矩。
这就相当于限制了飞机俯仰操纵能力,由此带来飞机最关键的盘旋性能的下降。
第三,鸭翼带来严重的非线性操纵问题。
鸭翼在进行俯仰操纵的时候,鸭翼的偏角与飞机的俯仰角速度有着非常复杂而且非线性的控制关系,只在小迎角范围内存在近似线性的控制关系。
这样复杂的控制律除非采用计算机进行控制否则飞行员只能在非常小的迎角范围内稳定控制飞机。
第四,鸭式布局给飞机的俯仰力矩很大,需要主翼襟翼提供相应的配平力矩。
俯仰力矩大本来对于强调高俯仰速率的战斗机是有益的,但是高俯仰力矩需要主翼襟翼有足够的力矩去配平。
一旦飞机迅速拉起迎角,如果襟翼不能遏制飞机的上扬趋势,飞机就会进入上扬发散,紧接着就是失速尾旋。
气动系统设计与优化
气动系统设计与优化气动系统是利用气体流动和压力变化来实现工业生产、交通运输等领域的关键设备之一。
在工程设计中,如何合理地设计和优化气动系统,对于提高效率、降低能耗、确保安全都具有重要意义。
本文将探讨气动系统设计与优化的几个关键方面。
一、气动元件选择在气动系统的设计中,合理选择气动元件是非常关键的。
气动元件主要包括压缩器、调压器、过滤器、冷却器、气缸等。
在选取气动元件时,需要考虑到所需要的流量、压力范围、气体干燥度以及安全性等因素。
此外,还需综合考虑气动元件的性能指标,如流量系数、压力损失、温度特性等,以确保系统的高效运行。
二、气动管道布局气动管道的布局与连接方式直接影响到气体流动的畅通与能效。
在设计过程中,需要根据实际需求合理安排气动管道的长度、直径和弯头的数量和角度,以降低气体流动时的阻力和能量损失。
同时,应尽量避免管道的突变和歧管,减少气流的分流和回流现象,从而提高气动系统的稳定性和能效。
三、气动系统控制气动系统的控制方式直接决定了系统的响应速度和稳定性。
传统的气动系统主要采用机械开关和比例调节阀等方式进行控制,但这种方式响应速度较慢,且存在能量浪费的问题。
目前,随着电子技术的发展,气动系统的控制方式逐渐向电子化、智能化方向发展。
比如采用压力传感器和电子比例阀等设备,可以实现对气动系统的精确控制,提高系统的响应速度和能效。
四、气动系统优化方法气动系统的优化方法主要包括传统方法和优化算法两种。
传统方法主要是通过经验和试错的方式进行优化,但这种方式需要耗费大量时间和资源,并且无法保证找到最佳解决方案。
相比之下,优化算法可以结合数学建模和计算机仿真等技术,通过优化搜索算法寻找最优解。
常见的优化算法有遗传算法、蚁群算法、粒子群算法等。
这些算法可以通过迭代优化寻找到更合理的气动系统设计方案,从而提高系统的效率和性能。
五、气动系统可靠性设计在气动系统设计中,可靠性是一个非常重要的指标。
气动系统可靠性设计主要包括故障诊断、容错设计和备份系统等方面。
科技成果——串列翼飞行器气动布局
科技成果——串列翼飞行器气动布局成果简介高空长航时飞行器在战场长时侦察和高空大气探测方面有其特殊的用途,其发展受到了广泛关注。
国内外通常采用超大展弦比、大翼展的常规布局。
然而,采用超大展弦比、大展长之后,由于机翼的展长比机翼的厚度和弦长要大得多,因而可能会存在结构刚度不足的问题。
在飞行过程中,易形成结构变形与气动力交互作用的气动弹性现象,对飞行器的安全和性能有着相当重要的影响,会降低操纵效率、机翼升力系数斜率,甚至可能在飞行包络之内产生爆发性的颤振、发散,甚至致使结构突然毁坏造成飞行事故。
本项目从气动设计角度出发,对串列翼布局前后机翼之间的气动干扰进行深入研究,提出了一种采用高后翼支撑尾翼的高空长航时串列翼飞行器气动布局,提供了一种结构性能和气动性能俱佳的高空长航时飞行器设计技术方案。
该项目飞行器气动布局采用较大弦长下单前机翼与上置较小弦长后机翼布置;并利用“V”型尾翼支撑的布置方式,增强上置较小弦长后机翼的结构刚度。
机身尾部安装有涡扇发动机和垂直尾翼。
采用高后翼支撑尾翼的高空长航时串列翼飞行器气动布局,飞行器采用圆柱形截面机身、大展弦比的前机翼和后机翼、“V”型尾翼、垂尾;其中,前机翼为下单翼,对称安装在机身前半段;“V”型尾翼为两个,对称安装在机身后半段,上反角45°;后机翼利用“V”尾支撑的方式安装在“V”型尾翼的梢部;垂尾安装在机身尾部下方;发动机安装在机身尾部上方。
本发明飞行器气动布局的优点在于:1、在保证相同机翼面积的情况下,使用串列翼布局,可避免使用大展长,进而降低机翼结构强度刚度要求,有利于减轻飞行器重量,增加有效载荷。
2、利用“V”型尾翼支撑,将较小弦长后机翼上置以降低前翼对后翼的不利干扰效应,有利于改善双翼面布局的整体气动特性,提高整机升阻比。
3、前翼采用较大弦长,后翼采用较小弦长,充分利用后翼对前翼的有利干扰,减少前翼对后翼的不利干扰。
4、后机翼、V”尾以及机身构成了封闭的三角形结构,增强了后机翼和“V”尾的结构强度和刚度,有利于减轻飞行器重量,提高了结构效率。
垂直起降飞机新型气动布局设计分析
垂直起降飞机新型气动布局设计分析王红波;祝小平;周洲;张阳【摘要】针对常规垂直起降飞机起飞阶段存在的不足,基于螺旋桨滑流诱导增升的设计思路,提出了翼上螺旋桨布局和耦合动力的双层翼布局以提高全机在巡航、悬停、垂直起飞状态下的气动性能.采用CFD数值模拟方法研究分析了在二维流动情况下不同布局参数对2种新型布局气动力的影响规律.计算结果表明:通过合理利用螺旋桨滑流,2种布局的升力系数相比于常规拉力螺旋桨布局均有明显的提升,最大升力系数增量可达14.8%,而阻力系数则急剧减小并出现了负阻力值.在零来流速度条件下,耦合动力的双层翼布局依靠螺旋桨滑流的加速效应能够对翼面诱导出升力,从而可最终减小全机在悬停、垂直起飞阶段的功率需求,这一结果证明了利用滑流诱导增升的思路是可行的.%According to the assumption making use of the propeller slipstream to increase the lift of the aircraft, two new configurations, i.e., the over-the-airfoil propeller aerodynamic configuration and the new double airfoil configuration coupled with a propeller, are investigated for the purpose of improving the performances of the vertical take-off aircraft during the phases of cruise, hovering and vertical take-off.The Computational Fluid Dynamics (CFD) technology is utilized to investigate the change regulations of these two new configurations affected by the configuration parameters in a two dimensional flow The simulated results indicate that the lift coefficients of these two configurations can be apparently augmented by using the propeller slipstream correctly and the maximum of the lift coefficient increment can be achieved by 14.8%.However, the drag coefficients arereduced significantly, even to be a minus value.With a zero free stream velocity, the axial acceleration of the propeller slipstream still has the ability of inducing some lift on the airfoil for the propeller-coupled double airfoil configuration, as a result, the necessary engine power at the phases of cruise and vertical take-off can be decreased ,respectively.Meanwhile, the generation of the induced lift can proof that the assumption described above is practicable.【期刊名称】《西北工业大学学报》【年(卷),期】2017(035)002【总页数】8页(P189-196)【关键词】垂直起降;滑流增升;翼上螺旋桨布局;耦合动力双层翼布局;负阻力;诱导升力【作者】王红波;祝小平;周洲;张阳【作者单位】西北工业大学航空学院, 陕西西安 710072;西北工业大学无人机特种技术重点实验室, 陕西西安 710065;西北工业大学无人机特种技术重点实验室, 陕西西安 710065;西北工业大学航空学院, 陕西西安 710072;西北工业大学无人机特种技术重点实验室, 陕西西安 710065;西北工业大学航空学院, 陕西西安710072;西北工业大学无人机特种技术重点实验室, 陕西西安 710065【正文语种】中文【中图分类】V211垂直起降技术兴起于上世纪五六十年代,美国、前苏联、英国等军事强国都对垂直起降战斗机进行了大量的研究与设计,但由于技术难度较大,真正设计定型的型号十分稀少。
飞行器设计中气动优化的使用技巧总结
飞行器设计中气动优化的使用技巧总结在飞行器设计中,气动优化是一项至关重要的工作。
通过合理利用气动优化技巧,可以提高飞行器的性能和效率,减少能源消耗,提升飞行安全性。
本文将总结一些飞行器设计中气动优化的使用技巧,帮助读者更好地理解和应用。
首先,对于飞行器设计中的气动优化,流场模拟是一个重要的工具。
通过计算流体力学(CFD)软件,可以模拟飞行器在空气中的流动情况,进而分析和优化气动性能。
在进行流场模拟时,需要考虑到流场的物理模型、边界条件以及网格划分等多个因素。
合理选择和设置这些参数,能够准确地模拟和预测飞行器的气动行为,为优化设计提供科学依据。
其次,飞行器表面的气动布局对于气动性能至关重要。
在设计中,需要合理选择飞行器外形的几何特征,如翼展、翼型以及机身剖面等。
这些参数的选择直接影响着飞行器的升力、阻力以及稳定性等气动性能。
一般而言,较高的翼展和适当的翼型可以增加升力和减小阻力,提高飞行器的飞行效率。
同时,合理的机身形状能够减小湍流产生和阻力,提高飞行器的空气动力学性能。
此外,飞行器的操纵系统也是气动优化的关键。
操纵系统的设计应该能够准确地控制飞行中的姿态和航向,保证飞行器的飞行稳定性和操纵性。
在操纵系统设计中,需要考虑到气动力矩、失速速度、操纵面尺寸等因素。
通过合理的设计和参数选择,可以最大限度地提高飞行器的操纵能力,确保飞行器在各种飞行条件下的稳定性和安全性。
此外,飞行器表面的流体附着对气动性能的优化也非常重要。
飞行器表面的湍流和阻力可以通过流体附着效应进行优化。
通过在飞行器表面施加细小纹理或凹凸不平的装置,可以改变流体在物体表面的流动方式,减小湍流产生的阻力。
这样的设计能够降低飞行器的能耗,提高飞行器的速度和稳定性。
最后,飞行器的涡量控制也是气动优化的重要手段。
通过合理设置飞行器尾迹以及翼尖的装置,可以有效地控制气动力和气动矩。
涡量控制的设计和优化需要考虑到翼尖附近的气动流场的细节,包括压力分布、涡旋结构等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中文名称:先进气动布局技术英文名称:Advanced aerodynamic configuration technology相关技术:总体设计;机翼设计;综合设计分类:飞机总体设计;气动布局;空气动力学;定义与概念:为实现先进的气动性能和战术技术指标要求,对飞机气动设计中主要参数进行的综合性选择和规范。
气动布局的研究对象是主要气动参数(如升力、阻力、力矩系数和其它气动导数)以及主要气动参数与飞机外形参数的关系。
研究的内容包括:飞机各主要部件的外形和相对配置,各种外形和配置下飞机的气动特性;此外,由于很多气动技术对飞机部件外形和配置的选择有很大影响,所以较重大的气动技术是气动布局研究的重要内容和基础。
气动布局的研究范围很广,大到飞机总体布局的类型和参数,小到机翼剖面外形、前后缘襟翼这类气动技术,都对飞机气动布局的选择和确定以及最终的飞机性能有根大影响。
国外概况:冷战时期,前苏联的先进气动布局技术与美国并驾齐驱,如Su-27依靠优良的气动布局设计,使其气动性能超过了美国的第三代战斗机。
但冷战后,俄罗斯由于经济上的原因,新技术的发展十分缓慢,第四代战斗机迟迟出不来,明显已落后于美国。
而美国气动力技术的发展却未见减缓,仍然保持着冷战时的高速发展态势,不但第四代战斗机F-22和JSF 都已研制出来,而且已开始着手发展下一代战斗机的气动力和先进气动布局技术。
因此,目前美国在气动布局技术方面处于领先地位。
西欧则稍稍落后于美俄,保持着较高水平,又以其体现多用途的战斗机气动布局而独具特色,如EF-2000和法国的"阵风"。
美国空军认为,虽然近年来在提高战斗机机动能力的先进气动布局方面作了一些工作,隐身气动设计和隐身能力也得到很大提高,但他们确实忽视了先进气动布局的研究和发展。
在轰炸机方面,B-2的飞翼布局是40年代和50年代提出的概念的现代翻版。
随着现代计算流体力学的进展和流动控制技术的提高,先进气动布局研究有可能获得新生。
今后先进气动布局研究主要沿着如下两个方向:第一,对过去提出的方案进行系统化研究。
对亚音速飞机,这些方案包括带支撑机翼、翼身融合体、环翼、多机身飞机等。
对超音速飞机,通过有利干扰降低阻力的布局已经提出但尚未进行系统的研究。
这些方案过去都曾提出但没能研究下去,原因包括:设计工具和数据库不合适,稳定性和控制问题(现在可以成功地与现代结构和控制技术一起考虑),缺乏总体发展和实际验证。
第二,全新的布局概念研究,尤其是同时利用流动控制技术和现代结构和控制概念的布局研究。
这些概念可能包括:带嵌入式层流控制吸气系统的复合材料机翼蒙皮;用于控制旋涡和边界层的机敏蒙皮;将层流控制、推进和结构设计综合在一起的翼型;其它等等。
由于计算流体力学提供了探索和预测有利非线性干扰效应的能力,并且有了旋涡、粘流效应和分离的控制技术,全新气动布局概念的潜力是可以发挥的。
未来先进气动布局研究必须沿着多学科的路线进行。
新布局的早期方案研究必须考虑推进一体化以及结构和控制方案。
设计一体化技术的发展将使新方案的快速分析成为可能。
涉及先进气动布局的研究计划将为飞机性能的提高开创新的可能性,也许能开发出新的应用。
不仅如此,这样的研究计划对诸如流动控制、设计方法和多学科综合这样的基础领域的研究来说,还将起到指南的作用,从而使先进气动布局的所有支撑技术能够同时成熟。
从这一点来看,先进气动布局将重新发挥其作为气动技术推动力的作用。
美国90年代中期进行了"新世界展望"(New World Vistas)和"2025年的空军"(AF 2025)等对未来军事技术的预测研究,其研究结果最近已经过综合,并开始在美国空军的"航空器科学技术"(Air Vehicles S&T)的范围内进行技术开发。
1997年,美国空军启动"未来飞机技术提高计划"(FATE),目的是发展革命性的技术,为下一代战斗机打下技术基础,为美国提供21世纪的空中和空间优势。
FATE计划分为三个阶段,每个阶段的结束时间为别为2003、2008和2013年。
FATE计划中最主要的计划项目是"固定翼飞行器技术发展途径一体化产品队伍"(Fixed Wing Vehicle(FWV)Technology Development Approach(TDA)Integrated Product Team (IPT).),简称为FWV。
参与这一计划的有空军、海军、国防部高级研究计划局(DARPA)、NASA、学术界和工业界。
FWV计划第二阶段(2008年)的气动发展目标(相对于F-22和F-18E/F)为:A、巡航阻力降低12%;B、机动升阻比提高15%;C、带武器载荷航程提高35%;D、着陆进场升力系数提高25%;E、喷管重量降低35%;F、喷管采办费用降低35%;G、进气道重量/体积降低50%;H、气动设计周期缩短60%。
I、起飞距离缩短12%由此可见,气动技术不仅发展潜力巨大,而且是未来先进航空武器系统研制所不可缺少的重要前提技术。
97年6-10月FATE计划已完成了对第一阶段任务的评审,内容包括技术选择、技术收益、经济可承受性等方面的定性和定量研究,确定了技术计划安排等。
洛克希德-马丁公司、波音公司信息及空间和防务系统集团、波音公司幻影工作组各提供了一份第一阶段最终评估报告。
这三份报告不仅提出了许多新的技术,而且初步选出了适用于未来固定翼飞机和无人战斗机的高效费比技术。
其中气动技术仍然占据着主导地位,如洛克希德-马丁公司选择研究的五项重点技术(紧凑型进气道、保形流体性喷管、无尾布局、连续的气动控制面、Lambda 机翼)几乎都是以气动技术为主导的;波音公司幻影工作组进行性能和可承受性分析的气动技术包括:1、无尾布局;2、先进机翼平面形状;3、流动控制(MEMS,微机电);4、主动流动控制(非MEMS);5、排气系统(流体性矢量喷管);6、一体化外部武器挂架;7、紧凑进气道系统/进气道-气动结构一体化;8、一体化内部挂架;9、小展弦比机翼的层流控制;10、可展式燃油箱;11、气动综合工具;12、风洞试验生产率。
在经过针对未来固定翼飞机和无人战斗机的定量研究后,性能和可承受性综合得分排名前10位的所有技术中有5项是气动或以气动为主的技术,这5项技术的总投资约需5000万美元,已投资约2700万美元。
预定于2003年达到技术6级,即完成第一阶段任务。
美国空军研究的这些气动技术代表了未来军用飞机(主要是战斗机)的气动技术发展方向,并且将给军用飞机带来显著的性能收益和其它收益(包括研究费用、周期等)。
在民机方面,目前的大型民机的升阻比为20左右。
据美国估计,21世纪亚音速民航机的升阻比可以比目前提高一倍,达到40。
支撑技术主要是先进的气动布局,如前面所述的带支撑机翼、翼身融合体、环翼、多机身飞机等。
各种层流控制和湍流减阻技术也将发挥极大的作用。
关键技术:飞机设计的历史有一个由简单到复杂、由粗略到精确、由单一到综合的发展过程。
飞机气动布局的设计也是如此。
目前,由于第四代战斗机性能的板荷要求,航空说型、气动技术和气动手段的迅速发展,使得气动布局正处在一个性能、设计方法和设计手段的飞跃阶段,这就决定了当代气动布局设计具有如下特点和趋势:1、对飞机性能的追求和航空流型的发展使气动布局设计走向高度复杂化在附着流型范围内,飞机的迎角狠小,流场基本上满足位流条件,只要加上边界层修正就足够了,飞机的运动用传统的线化理论就足以描述。
在定常脱体涡范围内,飞机的迎角增大,出现了非线性的涡升力,流场变得较复杂,涉及到涡的形成、发展和破裂等现象,线化的气动导数已不足以描述飞机的大迎角特性。
而当代对非定常脱体涡流型的开发将使飞机气动布局没计进入异常复杂的非定常、非线性领域。
对飞机性能的要求使飞机气动布局设计高度复杂化。
如第二代战斗机追求高空高速,第三代战斗机追求右机动性,而第四代战斗机则要求具备隐身、超音速巡航、过失速机动性和敏捷性。
这此要求是相互牵制、甚至是相互矛盾的,要将这些要求融于一体,在气动布局的选择和设计上将是一个非常复杂的过程。
2、综合化设计是气动布局发展的必然趋势和势在必行的要求传统的气动布局设计基本上是以机翼为主,加上平尾、垂尾和机身等几个主要部件,简单地组合在一起,通过相对配置和大小的选择达到设计要求。
这种设计方式直到第二代战斗机都是如此。
从第三代战斗机开始,采用了一些气动布局的局部综合设计技术,如翼身融合、前机身与进气道相互干扰,后机身与喷管相互干扰等。
这些技术的采用大大提高了飞机的性能和机动性。
但对第四代战斗机来说,综合化设计不仅仅是提高一些性能,而是没有综合设计能力就实现不了预定的目标。
现代气动布局的综合化表现在两个方面:第一,各种先进的气动力技术可供采用,需要根据特定的性能目标(如隐身、超音速巡航、过失速机动性和敏捷性),进行综合性的选择和优化,并且这种优化不是过去那种某些局部的优化,而是对飞机整体外形的优化,才可能满足性能目标对气动布局的基本要求;第二,气动布局与结构强度、动力装置及进排气系统、目标特征(隐身外形)、控制系统等的综合设计不可避免。
例如,隐身特性的要求就需要对气动布局和雷达反射特性进行综合和优化;超音速巡航则要求对气动布局与进排气系统进行一体化设计;矢量推力技术要求气动布局与动力系统和控制系统进行一体化设计;气动弹性剪裁技术则要求气动-结构材料的一体化设计等等。
这些综合设计能力是实现设计目标的基本保证。
3、高精度定量化是气动布局设计目标的要求和设计手段的革命由于对飞机性能要求越来越高,每个新的研制项目所需的经费和时间已大大增长,研制的风险也越来越大。
倘若达不到设什目标,损失也将比过去大得多。
这就要求气动布局设计必须在飞机研制的早期阶段提供比过去数量大得多、精度高得多的数据,以避免在后阶段更改设计所造成的巨大损失。
另一方面,飞机性能的极高要求使得整个飞机外形的几乎每一个局部都需要进行细致的设计,以挖掘潜力来满足设计目标的要求。
只有高精度定量化的设计手段才能够实现这种全面细致的设计。
计算空气动力学及其与地面试验、飞行试验的结合,是气动布局手段革命的主要来源和动力,也是实现气动综合优化设计的前提。
尽管地面试验设备的模拟能力仍在不断提高,但真正给设计手段带来革命的是数值模拟。
对未来气动设计来说,数值模拟所占的最佳比例约为70%,地面试验设备摸拟的比例约为30%,这样的比例是气动设计最佳效费比决定的,也因不同类型的飞机和任务要求而有所不同。
目前,航空先进国家的数值摸拟比例达到40%左右。
应用与影响:先进气动布局是气动技术的核心,是空气动力学研究成果的集中体现和转化为生产力的关键环节。