(完整版)幂的运算复习讲义
幂的运算 复习课
![幂的运算 复习课](https://img.taocdn.com/s3/m/de52a142b14e852459fb5713.png)
2.填上适当的指数:
⑴ a2 a( ) a5
⑶ a3 a9
⑵ a5 a a2
3.填上适当的代数式
(1) x3 x4
x8
(2)
1
2008
2009 2
2
典型例题:
例1:计算:
1 2x3 3 2x3 2x3 2 2x3 5 x2 3 2 x3 4 x2 3 x x5
x5 x5
2.注意符号
0
例2:
1若xm 1 , xn 3,求x3mn的值
5
2已知n为正整数,且x2n 5,求3 x3n 2 9 x2 2n的值
例2:
1若xm 1 , xn 3,求x3 的值 mn
5
解:x3mn x3m xn
xm 3 xn
xm 1 , xn 3 5
原 式 1 3 3 3
5
125
(2)已知n为正整数,且 x2n 5 ,
求 3 x3n 2 9 x2 2n的值
提示:3 x3n 2 9 x2 2n 3x6n 9x4n 3 x2n 3 9 x2n 2
353 952
150
小结: 1.变换指数 2.变换底数
年级:七年级 学科名称:数学 《幂的运算》复习课件
授课学校: 授课教师:
1.同底数幂的乘法法则: 文字叙述:同底数幂相乘,底不变,指数相加
公式表示:am an amn (m、n是正整数)
2.幂的乘方法则: 文字叙述: 底数不变,指数相乘
公式表示: am n amn(m、n是正整数)
3.积的乘方法则: 文字叙述: 积的乘方等于乘方的积
公式表示: abn anbn (n是正整数 ) 4.同底数幂的除法法则: 文字叙述:同底数幂相除,底不变,指数相减
(完整版)幂的运算知识点总结
![(完整版)幂的运算知识点总结](https://img.taocdn.com/s3/m/64edc3dacaaedd3382c4d321.png)
欢迎共阅第八章幂的运算知识点总结
知识点一:同底数幂相乘
同底数幂的乘法数
数,负数的偶次幂是正数;负数的奇次幂是负正数的任何次幂都是正逆运算:
是正整数相加。
即法则:底数不变,指数a a a a a a m n m n m m n n
n )
,m (知识点二:幂的乘方与积的乘方
1、幂的乘方)
()()
,(a a a a m n m m n
mn mn n 逆运算:是正整数即底数不变,指数相乘。
2、积的乘方(ab)
(ab)n n n n n n )
(,b a b a n 逆运算;是正整数再把所得的幂相乘。
即
把每一个因式分别乘方知识点三:同底数幂的除法
同底数幂的除法m
nm a n m n m a a a a a a n 10101095-5n -0n -m n m 1)
0010(02.50000502.0)
1-10(96.6696000)
,
0a (110)0a (1),,,0a (的个数数字前第一个非的负几次方原数字个数的几次方科学记数法是正整数定负整指数幂的意义:规的数的零次幂都等于。
即任何不等于零指数幂的意义:规定是正整数变,指数相减。
即同底数幂相除,底数不。
幂的运算(3大知识点7类题型)(知识梳理与题型分类讲解)(人教版)(学生版) 25学年八年级数学上册
![幂的运算(3大知识点7类题型)(知识梳理与题型分类讲解)(人教版)(学生版) 25学年八年级数学上册](https://img.taocdn.com/s3/m/7e0c87ebcd22bcd126fff705cc17552706225e1b.png)
专题14.1幂的运算(3大知识点7类题型)(知识梳理与题型分类讲解)第一部分【知识点归纳与题型目录】【知识点1】同底数幂的乘法法则+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.【要点提示】(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即m n p m n p a a a a ++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即m n m n a a a +=⋅(,m n 都是正整数).【知识点2】幂的乘方法则()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.【要点提示】(1)公式的推广:(())=m n p mnp a a(0≠a ,,,m n p 均为正整数)(2)逆用公式:()()n m mn m n aa a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.【知识点3】积的乘方法则()=⋅n n nab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.【要点提示】(1)公式的推广:()=⋅⋅n n n n abc a b c(n 为正整数).(2)逆用公式:()n n n a b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭【知识点4】注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方.(5)灵活地双向应用运算性质,使运算更加方便、简洁.(6)带有负号的幂的运算,要养成先化简符号的习惯.【题型目录】【题型1】同底数幂的乘法运算及逆运算...........................................2;【题型2】幂的乘方运算及逆运算.................................................3;【题型3】积的乘方运算及逆运算.................................................3;【题型4】幂的混合运算.........................................................4;【题型5】幂的运算的应用.......................................................4;【题型6】直通中考.............................................................5;【题型7】拓展与延伸...........................................................5.第二部分【题型展示与方法点拨】【题型1】同底数幂的乘法运算及逆运算【例1】(23-24七年级上·河南周口·期中)在学习第一章有理数时,类比小学两个正数的运算法则学习了有理数的加减法、有理数的乘除法,在第二章整式的加减时,类比第一章有理数的学习过程学习了整式的加减,那么整式的乘法是否可以类比有理数的乘法进行学习呢?我们从特殊情况入手对两个同底数幂相乘进行探究.(1)探究根据乘方的意义填空,观察计算结果,你能发现什么规律①53( )222⨯=,②42( )a a a ⋅=,③( )555m n ⨯=,(2)规律( )m n a a a ⋅=(,m n 都是正整数).即______.(文字表达)(3)应用①计算31m m a a +⋅;②把(2)x y +看成一个整体,计算23(2)(2)x y x y +⋅+.【变式1】(23-24七年级下·全国·单元测试)计算3()()x y y x -⋅-=()A .4()x y -B .4()x y --C .4)y x -(D .4()x y +【变式2】(23-24七年级下·全国·单元测试)已知1222162x x ⋅⋅=,则x =.【例2】(2024七年级下·全国·专题练习)(1)已知23x =,求32x +的值;(2)若21464a +=,求a 的值.【变式1】(23-24七年级下·江苏淮安·期中)已知23x =,26y =,则2x y +的值是()A .12B .18C .36D .54【变式2】(2024七年级上·上海·专题练习)已知4222112x x +-⋅=,则x 的值为.【题型2】幂的乘方运算及逆运算【例3】(21-22七年级上·上海·期末)计算:()()()3254652x x x x x x ⎡⎤⋅-⋅+-⋅+-⎣⎦.【变式1】(2022·江苏镇江·中考真题)下列运算中,结果正确的是()A .224325a a a +=B .3332a a a -=C .235a a a ⋅=D .()325a a =【变式2】.若25 3 0x y +-=,则432⋅=x y .【例4】(2023八年级上·全国·专题练习)(1)若23m n a a ==,,求32m n a +的值;(2)若2639273x x ⨯⨯=,求x 的值.【变式1】已知553a =,444b =,335c =,则a 、b 、c 的大小关系为()A .c a b <<B .c b a <<C .a b c <<D .a c b<<【变式2】(23-24八年级上·重庆九龙坡·阶段练习)已知433,33a b ==,则239a b ⨯=.【题型3】积的乘方运算及逆运算25.【例5】(22-23八年级上·黑龙江哈尔滨·阶段练习)(1)()34222x x x ⋅-;(2)()()23332232x y x y +-【变式1】(2022·广东深圳·中考真题)下列运算正确的是()A .268a a a ⋅=B .()3326a a -=C .()22a b a b +=+D .235a b ab+=【变式2】(20-21七年级下·江苏扬州·期末)已知am =10,bm =2,则(ab )m =.【例6】(2023九年级·全国·专题练习)用简便方法计算:(1)88552510.25(4)57⎛⎫⎛⎫-⨯⨯⨯- ⎪ ⎪⎝⎭⎝⎭;(2)()201720180.1258⨯-.【变式1】(22-23七年级下·河北沧州·期中)若n 为正整数.且24n a =,则()()223224n n a a -的值为()A .4B .16C .64D .192【变式2】已知2232336x x x ++-⋅=,则x =.【题型4】幂的混合运算【例7】(21-22八年级上·全国·课后作业)计算:(1)()()()2243224249()(2)--+-a a b a b ;(2)()()()22112()3------n n n n x x x x x .【变式1】(20-21七年级下·甘肃兰州·阶段练习)下列各式计算正确的是()A .-3xy ·(-2xy )2=12x 3y 3B .4x 2·(-2x 3)2=16x 12C .(-a 2)·a 3=a 6D .2a 2b ·(-ab )2=2a 4b 3【变式2】已知2,3x x a t ==,则24x =.(用含,a t 的代数式表示)【题型5】幂的运算的应用【例8】(23-24八年级上·山西长治·阶段练习)我们知道,一般的数学公式、法则、定义可以正向运用,也可以逆向运用.对于“同底数幂的乘法”“幂的乘方”“积的乘方”这几个法则的逆向运用表现为m n m n a a a += ,()()n m mn m n a a a ==,()mm m a b ab =;(m ,n 为正整数).请运用这个思路和幂的运算法则解决下列问题:(1)已知552a =,443b =,334c =,请把a ,b ,c 用“<”连接起来:;(2)若2a x =,3b x =,求32a b x +的值;(3)计算:2001001011284⎛⎫⨯⨯ ⎪⎝⎭.【变式1】(21-22八年级上·河南三门峡·期末)下列运算中,错误的个数是()(1)224a a a +=;(2)236a a a ⋅=;(3)2n n n a a a ⋅=;(4)()448a a a --⋅=A .1个B .2个C .3个D .4个【变式2】(20-21九年级下·湖南永州·期中)将边长为1的正方形纸片按如图所示方法进行对折,记第1次对折后得到的图形面积为S 1,第2次对折后得到的图形面积为S 2,…,第n 次对折后得到的图形面积为S n ,请根据图2化简,12320202021S S S S S +++++= .第三部分【中考链接与拓展延伸】【题型6】直通中考【例9】(2024·河北·中考真题)若a ,b 是正整数,且满足8282222222a b a a a b b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯ 个相加个相乘,则a 与b 的关系正确的是()A .38a b +=B .38a b =C .83a b +=D .38a b=+【例10】(2024·山东烟台·中考真题)下列运算结果为6a 的是()A .23a a ⋅B .122a a ÷C .33a a +D .()32a 【题型7】拓展延伸【例11】(2024·河北·中考真题)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示13223⨯,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A .“20”左边的数是16B .“20”右边的“□”表示5C .运算结果小于6000D .运算结果可以表示为41001025a +【例12】(19-20七年级下·江苏南京·期中)观察等式(2a ﹣1)a +2=1,其中a 的取值可能是()A .﹣2B .1或﹣2C .0或1D .1或﹣2或0。
(完整版)幂的知识点
![(完整版)幂的知识点](https://img.taocdn.com/s3/m/7af53bec0b1c59eef9c7b46d.png)
幂的运算(基础)【要点梳理】要点一、同底数幂的乘法性质+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即m n p m n pa a a a ++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即m nm n aa a +=⋅(,m n 都是正整数).要点二、幂的乘方法则 ()=m nmna a(其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n pmnpa a(0≠a ,,,m n p 均为正整数)(2)逆用公式: ()()nmmnm n aa a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题. 要点三、积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅nnnnabc a b c (n 为正整数).(2)逆用公式:()n n na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭要点四、注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏. (3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方. (5)灵活地双向应用运算性质,使运算更加方便、简洁. (6)带有负号的幂的运算,要养成先化简符号的习惯. 【典型例题】类型一、同底数幂的乘法性质1、计算:(1)234444⨯⨯;(2)3452622a a a a a a ⋅+⋅-⋅; (3)11211()()()()()nn m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.【答案与解析】 解:(1)原式234944++==.(2)原式34526177772222a a a a a a a +++=+-=+-=.(3)原式11211222()()()()2()n n m n m n m n m n m x y x y x y x y x y +++-++-+++=+++=+++=+. 【总结升华】(2)(3)小题都是混合运算,计算时要注意运算顺序,还要正确地运用相应的运算法则,并要注意区别同底数幂的乘法与整式的加减法的运算法则.在第(2)小题中a 的指数是1.在第(3)小题中把x y +看成一个整体. 举一反三: 【变式】计算:(1)5323(3)(3)⋅-⋅-; (2)221()()pp p x x x +⋅-⋅-(p 为正整数);(3)232(2)(2)n⨯-⋅-(n 为正整数).【答案】解:(1)原式532532532103(3)333333++=⋅-⋅=-⋅⋅=-=-.(2)原式22122151()pp p p p p p x x x x x +++++=⋅⋅-=-=-. (3)原式525216222(2)22nn n +++=⋅⋅-=-=-.2、已知2220x +=,求2x 的值.【思路点拨】同底数幂乘法的逆用:22222x x +=⋅【答案与解析】 解:由2220x +=得22220x ⋅=.∴ 25x=. 【总结升华】(1)本题逆用了同底数幂的乘法法则,培养了逆向思维能力.(2)同底数幂的乘法法则的逆运用:m n m n a a a +=⋅.类型二、幂的乘方法则3、计算:(1)2()m a ;(2)34[()]m -;(3)32()m a-.【思路点拨】此题是幂的乘方运算,(1)题中的底数是a ,(2)题中的底数是m -,(3)题中的底数a 的指数是3m -,乘方以后的指数应是2(3)62m m -=-. 【答案与解析】解:(1)2()m a 2ma =.(2)34[()]m -1212()m m =-=.(3)32()m a -2(3)62m ma a --==.【总结升华】运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.幂的乘方法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.4、已知25mx=,求6155m x -的值.【答案与解析】解:∵ 25mx=,∴62331115()55520555m m x x -=-=⨯-=. 【总结升华】(1)逆用幂的乘方法则:()()mn m n n ma a a ==.(2)本题培养了学生的整体思想和逆向思维能力.举一反三:【变式1】已知2a x =,3b x =.求32a bx +的值.【答案】 解:32323232()()238972a ba b a b xx x x x +===⨯=⨯=g g .【变式2】已知84=m,85=n,求328+m n的值.【答案】 解:因为3338(8)464===mm , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m nmn.类型三、积的乘方法则5、指出下列各题计算是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-. 【答案与解析】解:(1)错,这是积的乘方,应为:222()ab a b =. (2)对.(3)错,系数应为9,应为:326(3)9x x -=. 【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方. (2)注意系数及系数符号,对系数-1不可忽略. 【典型例题】类型一、同底数幂的乘法性质1、计算:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- .【答案与解析】解:(1)353519(2)(2)(2)(2)(2)b b b b b +++⋅+⋅+=+=+.(2)23235(2)(2)(2)[(2)](2)x y y x x y x y x y -⋅-=-⋅--=--. 【总结升华】(1)同底数幂相乘时,底数可以是多项式,也可以是单项式.(2)在幂的运算中,经常用到以下变形:()()(),n n na n a a n ⎧⎪-=⎨-⎪⎩为偶数,为奇数 ()()()()()n nnb a n a b b a n ⎧-⎪-=⎨--⎪⎩为偶数为奇数. 类型二、幂的乘方法则2、计算:(1)23[()]a b --; (2)32235()()2y y y y +-g ;(3)22412()()m m xx -+⋅; (4)3234()()x x ⋅.【答案与解析】解:(1)23[()]a b --236()()a b a b ⨯=--=--.(2)32235()()2y y y y +-⋅666662220y y y y y =+-=-=. (3)22412()()m m xx -+⋅4(22)2(1)8822106m m m m m x x x x x -+-+-=⋅=⋅=.(4)3234()()x x ⋅61218x x x =⋅=. 【总结升华】(1)运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.(2)幂的乘方的法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.3、已知84=m ,85=n ,求328+m n的值.【思路点拨】由于已知8,8mn的值,所以逆用同底数幂的乘法和幂的乘方把328+m n 变成323288(8)(8)mn m n ⨯=⨯,再代入计算.【答案与解析】解:因为3338(8)464===mm , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m nm n .【总结升华】运用整体的观念看待数学问题,是一种重要的数学思维方法.把8,8mn当成一个整体问题就会迎刃而解.同时看到灵活地双向应用运算性质,使运算更加方便、简洁. 举一反三: 【变式】已知322,3mmab==,则()()()36322mm m m ab a b b +-⋅= .【答案】-5;提示:原式()()()()23223232m m m m ab a b =+-⋅∵∴ 原式=23222323+-⨯=-5.类型三、积的乘方法则4、计算:(1)24(2)xy - (2)24333[()]a a b -⋅- 【思路点拨】利用积的乘方的运算性质进行计算. 【答案与解析】解:(1)24442448(2)(1)2()16xy x y x y -=-⋅⋅⋅=-.(2)24333[()]a a b -⋅-231293636274227()()()a a b a a b a b =-⋅-=-⋅-⋅=. 【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方.(2)注意系数及系数符号,对系数-1不可忽略. 举一反三:【变式】下列等式正确的个数是( ).①()3236926x yx y -=- ②()326m ma a -= ③()36933a a = ④()()57355107103510⨯⨯⨯=⨯ ⑤()()1001001010.520.522-⨯=-⨯⨯A. 1个B. 2个C. 3个D. 4个 【答案】A ;提示:只有⑤正确;()3236928x y x y -=-;()326m m a a -=-;()3618327a a =;()()57121351071035103.510⨯⨯⨯=⨯=⨯同底数幂的除法【要点梳理】要点一、同底数幂的除法法则同底数幂相除,底数不变,指数相减,即m n m na a a -÷=(a ≠0,m n 、都是正整数,并且m n >) 要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一性质. (4)底数可以是一个数,也可以是单项式或多项式. 要点二、零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式. 要点三、负整数指数幂任何不等于零的数的n -(n 为正整数)次幂,等于这个数的n 次幂的倒数,即1nn aa-=(a ≠0,n 是正整数). 引进了零指数幂和负整数指数幂后,指数的范围已经扩大到了全体整数,以前所学的幂的运算性质仍然成立.m n m n a a a +=(m 、n 为整数,0a ≠);()mm m ab a b =(m 为整数,0a ≠,0b ≠)()nm mn a a =(m 、n 为整数,0a ≠).要点诠释:()0n a a -≠是na 的倒数,a 可以是不等于0的数,也可以是不等于0的代数式.例如()1122xy xy-=(0xy ≠),()()551a b a b -+=+(0a b +≠).要点四、科学记数法的一般形式(1)把一个绝对值大于10的数表示成10na ⨯的形式,其中n 是正整数,1||10a ≤<(2)利用10的负整数次幂表示一些绝对值较小的数,即10na -⨯的形式,其中n 是正整数,1||10a ≤<.用以上两种形式表示数的方法,叫做科学记数法. 【典型例题】类型一、同底数幂的除法1、计算:(1)83x x ÷;(2)3()a a -÷;(3)52(2)(2)xy xy ÷;(4)531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.【思路点拨】利用同底数幂相除的法则计算.(2)、(4)两小题要注意符号. 【答案与解析】 解:(1)83835x x xx -÷==.(2)3312()a a a a --÷=-=-.(3)5252333(2)(2)(2)(2)8xy xy xy xy x y -÷===.(4)535321111133339-⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-=-= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【总结升华】(1)运用法则进行计算的关键是看底数是否相同.(2)运算中单项式的系数包括它前面的符号.2、计算下列各题:(1)5()()x y x y -÷- (2)125(52)(25)a b b a -÷-(3)6462(310)(310)⨯÷⨯ (4)3324[(2)][(2)]x y y x -÷- 【思路点拨】(1)若被除式、除式的底数互为相反数时,先将底数变为相同底数再计算,尽可能地去变偶次幂的底数,如1212(52)(25)a b b a -=-.(2)注意指数为1的多项式.如x y -的指数为1,而不是0. 【答案与解析】解:(1)5514()()()()x y x y x y x y --÷-=-=-.(2)1251257(52)(25)(25)(25)(25)a b b a b a b a b a -÷-=-÷-=- (3)64626426212(310)(310)(310)(310)910-⨯÷⨯=⨯=⨯=⨯.(4)3324[(2)][(2)]x y y x -÷-9898(2)(2)(2)2x y x y x y x y -=-÷-=-=-.【总结升华】底数都是单项式或多项式,把底数作一个整体利用同底数幂的除法法则进行计算. 3、已知32m =,34n =,求129m n+-的值.【答案与解析】 解: 121222222221222244449(3)33333(3)399(3)33(3)(3)m m m m m m m nn n n n n n ++++-======g g g . 当32m=,34n=时,原式224239464⨯==. 【总结升华】逆用同底数除法公式,设法把所求式转化成只含3m ,3n的式子,再代入求值.本题是把除式写成了分数的形式,为了便于观察和计算,我们可以把它再写成除式的形式. 举一反三:【变式】已知2552mm⨯=⨯,求m 的值. 【答案】解:由2552m m ⨯=⨯得1152m m --=,即11521m m --÷=,1512m -⎛⎫= ⎪⎝⎭,∵ 底数52不等于0和1,∴ 15522m -⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,即10m -=,1m =. 类型二、负整数次幂的运算4、计算:(1)223-⎛⎫- ⎪⎝⎭;(2)23131()()a b a b ab ---÷.【答案与解析】解:(1)222119434293-⎛⎫-=== ⎪⎝⎭⎛⎫- ⎪⎝⎭; (2)2313123330()()a b a b ab a b a b ab a b b -----÷===g g .【总结升华】要正确理解负整数指数幂的意义. 举一反三:【变式】计算:4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭.【答案】解: 4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭45311111122116212223228=++⨯⨯+=++⨯⨯+ 1151611732832=+++= 5、 已知1327m=,1162n⎛⎫= ⎪⎝⎭,则n m 的值=________.【答案与解析】解: ∵ 331133273m-===,∴ 3m =-. ∵ 122nn -⎛⎫= ⎪⎝⎭,4162=,∴ 422n -=,4n =-.∴ 4411(3)(3)81n m -=-==-. 【总结升华】先将127变形为底数为3的幂,122nn -⎛⎫= ⎪⎝⎭,4162=,然后确定m 、n 的值,最后代值求nm .举一反三:【变式】计算:(1)1232()a b c --;(2)3232312b c b c ---⎛⎫⨯ ⎪⎝⎭;【答案】解:(1)原式424626b a b c a c--==.(2)原式8236981212888b b c b c b cc---=⨯==. 类型三、科学记数法6、用科学记数法表示下列各数: (1)0.00001;(2)0.000000203;(3)-0.000135;(4)0.00067 【答案与解析】 解:(1)0.00001=510-;(2)0.000000203=72.0310-⨯; (3)-0.000135=41.3510--⨯; (4)0.00067=46.710-⨯. 【总结升华】注意在10n a -⨯中n 的取值是这个数从左边起第一个不是零的数前面零的个数(包括小数点前边的零).【巩固练习】 一.选择题1. ()()35c c -⋅-的值是( ). A. 8c - B. ()15c -C. 15c D.8c2.2nn a a+⋅的值是( ).A. 3n a + B. ()2n n a+C. 22n a+D. 8a3.下列计算正确的是( ).A.224x x x += B.347x x x x ⋅⋅= C. 4416a a a ⋅= D.23a a a ⋅=4.下列各题中,计算结果写成10的幂的形式,其中正确的是( ).A. 100×210=310 B. 1000×1010=3010 C. 100×310=510 D. 100×1000=410 5.下列计算正确的是( ). A.()33xy xy =B.()222455xyx y -=- C.()22439xx -=-D.()323628xy x y -=-6.若()391528m n a b a b =成立,则( ).A. m =6,n =12B. m =3,n =12C. m =3,n =5D. m =6,n =5二.填空题7. 若26,25mn==,则2m n+=____________.8. 若()319x aa a ⋅=,则x =_______.9. 已知35na=,那么6n a =______. 10.若38m a a a ⋅=,则m =______;若31381x +=,则x =______.11. ()322⎡⎤-=⎣⎦______; ()33n ⎡⎤-=⎣⎦______; ()523-=______.12.若n 是正整数,且210na =,则3222()8()n n a a --=__________.三.解答题13. 判断下列计算的正误.(1)336x x x += ( ) (2) 325()y y -=- ( )(3)2224(2)2ab a b -=- ( ) (4) 224()xy xy = ( )14.(1) 3843()()x x x ⋅-⋅-; (2)2333221()()3a b a b -+-;(3)3510(0.310)(0.410)-⨯-⨯⨯⨯; (4)()()3522b a a b --;(5)()()2363353a a a -+-⋅;15.(1)若3335nn x xx +⋅=,求n 的值.(2)若()3915n ma b b a b ⋅⋅=,求m 、n 的值.【答案与解析】 一.选择题1. 【答案】D ;【解析】()()()()353588c c c c c +-⋅-=-=-=.2. 【答案】C ; 【解析】2222n n n n n a a a a ++++⋅==.3. 【答案】D ;【解析】2222x x x +=;348x x x x ⋅⋅=;448a a a ⋅=. 4. 【答案】C ;【解析】100×210=410;1000×1010=1310;100×1000=510. 5. 【答案】D ;【解析】()333xy x y =;()2224525xyx y -=;()22439x x -=.6. 【答案】C ; 【解析】()333915288,39,315m n m n a b a b a b m n ====,解得m =3,n =5.二.填空题7. 【答案】30;【解析】2226530m n m n+==⨯=g . 8. 【答案】6;【解析】3119,3119,6x aa x x +=+==. 9. 【答案】25;【解析】()2632525n n aa===.10.【答案】5;1; 【解析】338,38,5mma a aa m m +⋅==+==;3143813,314,1x x x +==+==.11.【答案】64;9n -;103-; 12.【答案】200; 【解析】()()32322222()8()81000800200n nn n a a aa--=-=-=.三.解答题 13.【解析】 解:(1)×;(2)×;(3)×;(4)× 14.【解析】解:(1)3843241237()()x x x x x x x ⋅-⋅-=-⋅⋅=-;(2)233322696411()()327a b a b a b a b -+-=-+;(3)3535810(0.310)(0.410)0.30.4101010 1.210-⨯-⨯⨯⨯=⨯⨯⨯⨯=⨯;(4)()()()()()3535822222b a a b a b a b a b --=---=--;(5)()()236331293125325272a a a a a a a -+-⋅=-⋅=-.15.【解析】 解:(1)∵3335nn x x x +⋅= ∴ 4335n xx +=∴4n +3=35 ∴n =8(2)m =4,n =3解:∵()3915n ma b ba b ⋅⋅=∴ 333333915nmnm a b b a b a b +⋅⋅=⋅=∴3n =9且3m +3=15 ∴n =3且m =4。
讲义-幂的运算
![讲义-幂的运算](https://img.taocdn.com/s3/m/d749795476c66137ef061910.png)
第四讲幂的运算(补充讲义)Part1 同底数幂的乘除法【知识回顾】1.同底数幂相乘,底数不变,指数相加,即a m·a n=a m+n(m,n都是正整数)2.同底数幂相除,底数不变,指数相减,即a m÷a n=a m-n(m,n都是正整数)注意:(1)同底数幂的乘除法法则可以逆用;(2)底数a可以是单独一个数或字母,也可以是一个单项式或多项式,但a≠0;(3)当幂指数是1时,不要误认为没有指数,如a·a2=a3;(4)注意同底数幂的乘除法与整式加减法不可混淆3.规定:a0=1(a≠0),即任何不等于0的数的0次幂都等于1.4.任何不等于零的数的-n(n为正整数)次幂,等于这个数的n次幂的倒数,即a-n=(a≠0,n为正整数)5.2n+2n=2n+1 (22017+22017=22018)【涉及题型】1.科学记数法。
2.符号问题。
3.概念的延伸【精讲例题】例1.【科学计数法】苏州市军用机场的面积为0.0087平方千米,这个数用科学记数法表示为平方米。
例2.【符号问题】m为偶数,则(a﹣b)m•(b﹣a)n与(b﹣a)m+n的结果是()A.相等B.互为相反数C.不相等D.以上说法都不对例3.【概念延伸】(1)如果等式(2a﹣1)a+2=1成立,则a的值可能有()A.4个 B.1个 C.2个 D.3个(2)下面的计算不正确的是()A.5a3﹣a3=4a3B.2m•3n=6m+nC.2m•2n=2m+nD.﹣a2•(﹣a3)=a5Part2 幂的乘方与积的乘方【知识回顾】1.幂的乘方,底数不变,指数相乘,即(a m)n=a m+n2.积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,即(ab)n=a n b n(n为正整数)【涉及题型】1.比较大小问题。
2.计算。
3.技巧计算。
【精讲例题】例4.【比较大小】(1)已知a=8131,b=2741,c=961,则a,b,c的关系是()A.a>b>c B.a>c>b C.a<b<c D.b>c>a(2)已知a=244,b=333,c=522,那么a、b、c的大小关系是()A.a>b>c B.a<b<c C.c>a>b D.b>c>a例5.【计算】(1)计算:(x4)2+(x2)4﹣x(x2)2•x3﹣(﹣x)3•(﹣x2)2•(﹣x)(2)计算0.1259×(﹣8)10+()11×(2)12.例6.【技巧计算】(1)已知25x=2000,80y=2000,则等于()A.2 B.1 C.D.(2)已知a x =5,a x+y =25,求a x +a y 的值;已知10α=5,10β=6,求102α+2β的值.(3)若2a =3,2b =5,2c =75,试说明:a+2b=c .(4)已知22n+1+4n =48,求n 的值.(5)x 2m =3,求(2x 3m )2-(3x m )2.(6)2m =161,)(31n =9,求(1+x 2)m+n ÷(1+x 2)3n(7)12+22+32+...+n 2=61+n 21+n n ))((,求22+42+62+...+502(8)计算:①1+2+22+23+...+22017-22018②1+2+22+23+...+22017+22018③1-2-22-23-...-22017+22018。
(完整版)幂的运算总结及方法归纳.docx
![(完整版)幂的运算总结及方法归纳.docx](https://img.taocdn.com/s3/m/bb61c2fec0c708a1284ac850ad02de80d4d80661.png)
(完整版)幂的运算总结及方法归纳.docx幂的运算一、知识网络归纳二、学习重难点学习本章需关注的几个问题:●在运用 a m ? a n a m n( m 、 n 为正整数), a m a n a m n (a 0, m 、 n 为正整数且 m > n ), (a m ) n a mn( m 、 n 为正整数), (ab) n a n b n( n 为正整数), a 01(a 0) ,a n1( a 0 ,n为正整数)时,要特别注意各式子成a n立的条件。
◆上述各式子中的底数字母不仅仅表示一个数、一个字母,它还可以表示一个单项式,甚至还可以表示一个多项式。
换句话说,将底数看作是一个“整体”即可。
◆注意上述各式的逆向应用。
如计算0.252004 4 2005,可先逆用同底数幂的乘法法则将42005 写成42004 4 ,再逆用积的乘方法则计算0.25 200442004(0.25 4) 2004120041,由此不难得到结果为1。
◆通过对式子的变形,进一步领会转化的数学思想方法。
如同底数幂的乘法就是将乘法运算转化为指数的加法运算,同底数幂的除法就是将除法运算转化为指数的减法运算,幂的乘方就是将乘方运算转化为指数的乘法运算等。
◆在经历上述各个式子的推导过程中,进一步领悟“通过观察、猜想、验证与发现法则、规律” 这一重要的数学研究的方法,学习并体会从特殊到一般的归纳推理的数学思想方法。
一、同底数幂的乘法1、同底数幂的乘法同底数幂相乘,底数不变,指数相加.公式表示为:a m a n a m n m、n为正整数2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即a m a n a p a m m p (m、 n、 p为正整数 )注意点:(1)同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数 .(2)在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算 .例题:例 1:计算列下列各题(1)a3 a4;( 2) b b2b324;( 3)cc c简单练习:一、选择题1.下列计算正确的是 ( )A.a2+a3=a5B.a2·a3=a5C.3m+2m=5mD.a2+a2=2a42.下列计算错误的是 ( )A.5 x2- x2=4x2B.am+am=2amC.3m+2m=5mD. x·x2m-1=x 2m3.下列四个算式中①a333②x336325·a=2a+x =x③b·b·b=b④p2+p2+p2=3p2正确的有 ( )A.1个B.2个C.3个D.4个4.下列各题中,计算结果写成底数为10 的幂的形式,其中正确的是 ()A.100 × 102=103B.1000× 1010=103C.100 × 103=105D.100×1000=104二、填空题1.a4·a4=_______;a4+a4=_______。
幂的运算-教师讲义
![幂的运算-教师讲义](https://img.taocdn.com/s3/m/c3e51460e53a580217fcfedf.png)
胜蓝教育教师辅导讲义年级:七年级课时数:3 学员姓名:辅导科目:数学学科教师:课程主题幂的运算授课类型T掌握正整数幂的乘法运算性质C能用代数式和文字语言正确地表述这些性质T熟练地进行运算授课日期时段年月日 A段(8:00--10:00)教学内容【学习目标】1. 掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方);2.能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.要点一、同底数幂的乘法性质+⋅=m n m na a a(其中,m n都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即m n p m n pa a a a++⋅⋅=(,,m n p都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即m n m na a a+=⋅(,m n都是正整数).要点二、幂的乘方法则()=m n mna a(其中,m n都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n p mnpa a (0≠a,,,m n p均为正整数)(2)逆用公式:()()n mmn m na a a==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.要点三、积的乘方法则()=⋅n n nab a b (其中n是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅n n n nabc a b c(n为正整数).(2)逆用公式:()nn na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭要点四、注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方. (5)灵活地双向应用运算性质,使运算更加方便、简洁. (6)带有负号的幂的运算,要养成先化简符号的习惯. 类型一、同底数幂的乘法性质1、计算:(1)234444⨯⨯;(2)3452622a a a a a a ⋅+⋅-⋅;(3)11211()()()()()n n m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+. 解:(1)原式234944++==.(2)原式34526177772222aa a a a a a +++=+-=+-=.(3)原式11211222()()()()2()n n m n m n m n m n m x y x y x y x y x y +++-++-+++=+++=+++=+.【变式】计算:(1)5323(3)(3)⋅-⋅-;(2)221()()ppp x x x +⋅-⋅-(p 为正整数); (3)232(2)(2)n⨯-⋅-(n 为正整数). 解:(1)原式532532532103(3)333333++=⋅-⋅=-⋅⋅=-=-.(2)原式22122151()p pp p p p p x x x x x +++++=⋅⋅-=-=-. (3)原式525216222(2)22nn n +++=⋅⋅-=-=-.2、已知2220x +=,求2x 的值.解:由2220x +=得22220x ⋅=.∴ 25x=. 类型二、幂的乘方法则3、计算:(1)2()m a ;(2)34[()]m -;(3)32()m a -. 解:(1)2()m a 2ma=.(2)34[()]m -1212()m m =-=.(3)32()m a -2(3)62m m aa --==.4、已知25mx =,求6155m x -的值.解:∵ 25mx=,∴62331115()55520555m m x x -=-=⨯-=. 【变式1】已知2ax =,3bx =.求32a bx +的值.解:32323232()()238972a b ab a b x x x x x +===⨯=⨯=.【变式2】已知84=m,85=n,求328+m n的值.解:因为3338(8)464===m m , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m nm n .类型三、积的乘方法则5、指出下列各题计算是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-.解:(1)错,这是积的乘方,应为:222()ab a b =.(2)对.(3)错,系数应为9,应为:326(3)9x x -=.一.选择题1. ()()35c c -⋅-的值是( ). A. 8c - B. ()15c -C. 15cD.8c2.2nn a a+⋅的值是( ). A. 3n a+B. ()2n n a+C. 22n a+D. 8a3.下列计算正确的是( ).)22525 ==一.选择题1.下列计算正确的是( ).A. ()325x x = B.()5315x x = C. 4520x x x ⋅= D.()236x x --=2.()()2552aa -+-的结果是( ).A.0B.72a -C.102aD. 102a - 3.下列算式计算正确的是( ). A.()33336aaa +== B.()22nnxx -= C.()()3626yy y -=-= D.()33333327c c c ⨯⨯⎡⎤==⎢⎥⎣⎦4.31n x +可以写成( ). A.()13n x + B.()31n x + C.3n x x ⋅ D.()21n n x +5.下列计算中,错误的个数是( ).①()23636xx = ②()2551010525a ba b -=- ③3328()327x x -=-④()42367381x yx y = ⑤235x x x ⋅=A. 2个B. 3个C. 4个D. 5个 6.93191993+的个位数字是( )A .2B .4C .6D .8二.填空题7.化简:(1)33331)31(b a ab +-=_______;(2)()()322223a a a +⋅=_______.8.直接写出结果:(1)()_____n=233n n n a b ; (2)1011x y =()5_____y ⋅;(3)若2,3n n a b ==,则6n =______.9. 501420031[()]3_____3-⨯=.10.若23,25,290a b c ===,用a ,b 表示c 可以表示为 .11.已知554433222,3,5,6a b c d ====,那么a 、b 、c 、d 从小到大的顺序是 .12.若整数a 、b 、c 满足50189827258abc⎛⎫⎛⎫⎛⎫⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,则a = ,b = ,c = .a=【解析】()1152【答案】a=6,b=。
七年级下册幂的运算讲义
![七年级下册幂的运算讲义](https://img.taocdn.com/s3/m/adbdc6fbf8c75fbfc77db2b2.png)
七年级下册数学讲义课 题:幂的运算教学目标:1、同底数幂的乘法及其运用;2、幂的乘方及其运用;3、积得乘方及其运用。
教学过程:一、知识梳理(一) 同底数幂的乘法1、文字语言叙述:同底数幂相乘,底数不变,指数相加。
2、表达式: n m n m a a a +=⋅(m ,n 都是正整数)3、注意:(1)对于三个(或三个以上)同底数幂相乘,也具有底数不变,指数相加的性质。
(2)同底数幂的乘法运算中的“同底数”,不仅可以是数,也可 以是代数式。
(3)要注意分清底数和指数。
(二)幂的乘方1.、文字语言叙述:幂的乘方,底数不变,指数相乘2、表达式: ()mn nm a a =(m ,n 都是正整数)3.、注意:(1)()p n m mnp a a ⎡⎤=⎢⎥⎣⎦(m ,n ,p 都是正整数)仍成立。
(2)幂的乘法中的底数“a ” 可以是数,也可以是代数式(3)要注意区分幂的乘法运算法则和同底数幂的乘法法则。
(三)积得乘方1、文字语言叙述:积的乘方,等于每个因式分别乘方2、 表达式: ()n n nb a ab =(n 都是正整数) 3、 注意:(1)三个(或三个以上)的积的乘方,也具有这一特性,即()n n n n abc a b c =(n 都是正整数)。
(2)这里的“a ”,“b ” 可以是数,也可以是代数式(3)应抓住“每一个因数乘方”这一要点。
二、例题分析题型一:比较幂的大小1、化幂的底数为相同后,通过比较指数的大小来确定幂的大小【例题1—1】314161a=b=27c=9a b c 若81,,,则比较、、的大小关系是2、化幂的知识为相同后,通过比较底数大大小来确定幂的大小【例题1—2】444333222a=b=3c=5a b c 已知1,,,则比较、、的大小关系是3、将幂乘方后,通过比较乘方所得数的大小来确定幂的大小【例题1—3】35a =3b =4a b 已知,,则比较、的大小关系是4、利用中间量传递来确定幂的大小【例题1—4】16131533比较和的大小5.计算()()()()()541053423223a a a a a a a ---⋅+--⋅-⋅- 题型二、法则的逆用1、 逆用同底数幂的乘法法则【例题2—1】m m+n 5=4,535n =已知,求的值。
幂的运算(知识点串讲)(解析版)
![幂的运算(知识点串讲)(解析版)](https://img.taocdn.com/s3/m/83e9a359cfc789eb162dc859.png)
专题15 幂的运算知识网络重难突破知识点一整式乘法幂的运算性质(基础):a m·a n=a m+n(m、n为正整数)同底数幂相乘,底数不变,指数相加.【同底数幂相乘注意事项】1)底数为负数时,先用同底数幂乘法法则计算,根据指数是奇偶数来确定结果的正负,并且化简到底。
2)不能疏忽指数为1的情况。
3)乘数a可以看做有理数、单项式或多项式(整体思想)。
4)如果底数互为相反数时可先变成同底后再运算。
典例1(2019·新蔡县期末)若2x=5,2y=3,则22x+y=_____.【答案】75【详解】∵2x=5,2y=3,∴22x+y=(2x)2×2y=52×3=75,故答案为:75.典例2(2017·洪泽县期中)已知,则x的值为____________.【答案】6【解析】把因数的底数都转化为2,再运用同底数幂的乘法法则,所以:,则有3x+5=23,解得x=6.故答案是:6.典例3(2018·台州市期末)已知,则n的值是________________.【答案】5【解析】详解:∵,∴,∴,∴n+3=8,∴n=5.故答案为:5.●(a m)n=a mn (m、n为正整数)幂的乘方,底数不变,指数相乘.【同底数幂相乘注意事项】负号在括号内时,偶次方结果为正,奇次方为负,负号在括号外结果都为负。
典例1(2018·长春市期末)若,,则的值为_____.【答案】18【详解】∵x m=2,x n=3,∴x m+2n=x m x2n=x m(x n)2=2×32=2×9=18;故答案为:18.典例2(2019·中山市期末)已知m+2n+2=0,则2m•4n的值为_____.【答案】【详解】∵m+2n+2=0,∴m+2n=-2,∴2m•4n=2m•22n=2m+2n=2-2=.故答案为:典例3(2019·襄樊市期末)若,则的值是_______.【答案】32【详解】8x×16y=(23)x×(24)y=23x×24y=23x+4y=25=32.故答案为:32●(ab)n=a n b n(n为正整数)积的乘方等于各因式分别乘方,再把所得的幂相乘.典例1(2019·富阳市期末)(-2)2018×(-)2019=____________。
《幂的运算复习》课件
![《幂的运算复习》课件](https://img.taocdn.com/s3/m/5d0fc0291fb91a37f111f18583d049649b660ec2.png)
幂的除法运算:a^m/a^n=a^(m-n)
幂的除法运算:a^m/a^n=a^(m-n)
乘方运算
概念:乘方运算是一种特殊的乘法运算,表示一个数自乘若干次
符号:乘方运算的符号为“^”,如2^3表示2的3次方
运算规则:a^m * a^n = a^(m+n),如2^3 * 2^2 = 2^5
幂的运算方法:包括加法、减法、乘法、除法、乘方、开方等
《幂的运算复习》PPT课件
单击添加副标题
Ppt
汇报人:PPT
目录
01
单击添加目录项标题
03
幂的运算方法
05
幂的运算注意事项
02
幂的定义与性质
04
幂的运算应用
06
幂的运算易错点分析
07
幂的运算练习题与答案解析
添加章节标题
01
幂的定义与性质
02
幂的定义
幂是指一个数自乘若干次
幂的表示方法:a^n,其中a是底数,n是指数
幂的运算分配律:a^m*(b+c)=a^mb+a^mc
幂的运算结合律:a^m*a^n=a^(m+n)
幂的运算优先级:乘方>乘除>加减
底数与指数的符号问题
底数与指数的符号对幂的运算结果有重要影响
底数为负数时,幂的运算结果也为负数
指数为负数时,幂的运算结果也为负数
底数为正数时,指数为正数或负数,幂的运算结果都为正数
指数方程的解法:利用指数函数的性质和指数方程的性质进行求解
指数方程的性质:指数函数的单调性、奇偶性、周期性等
指数方程的求解步骤:确定指数方程的类型、利用指数函数的性质进行求解、验证解的正确性
幂函数的性质与图像
《幂的运算》复习课课件讲课
![《幂的运算》复习课课件讲课](https://img.taocdn.com/s3/m/3690bb7942323968011ca300a6c30c225901f0ff.png)
幂的乘方
总结词
幂的乘方,底数不变,指数相乘。
详细描述
当一个幂再次被取幂时,可以将它们的指数相乘,底数保持不变。例如,$(a^m)^n = a^{m times n}$。
积的乘方
总结词
积的乘方等于各因式乘方的积。
详细描述
当几个项的乘积被取幂时,可以将每个项分别取幂后再相乘。例如,$(ab)^n = a^n times b^n$。
《幂的运算》复习课课件讲课
汇报人: 202X-12-28
目录
• 幂的定义与性质 • 幂的运算规则 • 幂运算的应用 • 幂运算的注意事项 • 幂运算的练习题与解析
01
幂的定义与性质
Chapter
幂的定义
总结词
幂是乘方运算的结果,表示一个 数连续与一个相同的数相乘的次 数。
详细描述
幂运算是一种数学运算,表示一 个数连续与一个相同的数相乘的 次数。例如,2的3次幂表示2乘 以自己2次,即2×2×2=8。
幂的性质
总结词
幂的性质包括同底数幂相乘、同底数 幂相除、幂的乘方和积的乘方等。
详细描述
同底数幂相乘时,指数相加;同底数 幂相除时,指数相减;幂的乘方时, 底数不变,指数相乘;积的乘方时, 将每个因式分别乘方,然后相乘。
幂的性质的推导过程
总结词
通过实例和证明,理解幂的性质的推导过程。
详细描述
通过具体的实例和证明,深入理解幂的性质的推导过程。例如,对于同底数幂 相乘的性质,可以设两个同底数幂为a^m和a^n,则它们的乘积为a^(m+n), 从而证明了同底数幂相乘时,指数相加的性质。
03
幂运算的应用
Chapter
02
幂的运算规则
(word完整版)幂的运算总复习
![(word完整版)幂的运算总复习](https://img.taocdn.com/s3/m/164da1d6bcd126fff6050bb3.png)
幂的运算第一部分 知识梳理一、 同底数幂的乘法1. 同底数幂的乘法同底数幂相乘,底数不变,指数相加。
公式表示为:+m n m n a a a ⋅=()m n 、都是正整数2. 同底数幂的乘法可以推广到三个或三个以上的同底数幂相乘,即m n p m n p a a a a ++⋅⋅=()m n p 、、都是正整数。
注意点:(1) 同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数。
(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.二、 幂的乘方和积的乘方1. 幂的乘方幂的乘方,底数不变,指数相乘.公式表示为:()()m n mn a a m n =,都是正整数.幂的乘方推广:[()]()m n p mnp a am n p =,,都是正整数2.积的乘方积的乘方,把积的每个因式分别乘方,再把所得的幂相乘。
公式表示为:()()n n n ab a b n =是正整数积的乘方推广:()()n n n n abc a b c n =是正整数注意点:(1) 幂的乘方的底数是指幂的底数,而不是指乘方的底数。
(2) 指数相乘是指幂的指数与乘方的指数相乘,一定要注意与同底数幂相乘中“指数相加”区分开。
(3) 运用积的乘方法则时,数字系数的乘方,应根据乘方的意义计算出结果.(4) 运用积的乘方法则时,应把每一个因式都分别乘方,不要遗漏其中任何一个因式. 三、 同底数幂的除法1. 同底数幂的除法 : 同底数幂相除,底数不变,指数相减。
公式表示为:(0)m n m n a a a a m n m n -÷=≠>,、是正整数,且同底数幂的除法推广:(0)m n p m n p a a a a a m n p m n p --÷÷=≠>+,,、、是正整数 2.零指数幂的意义:任何不等于0的数的0次幂都等于1: 用公式表示为:01(0)a a =≠3.负整数指数幂的意义:任何不等于0的数的()n n -是正整数次幂,等于这个数的n 次幂的倒数.(先进行幂的运算然后直接倒数): 用公式表示为:1(0)n na a n a -=≠,是正整数 4.绝对值小于1的数的科学记数法对于绝对值大于0小于1的数,可以用科学记数法表示的形式为10na -⨯,其中110a ≤<,n 由原数左边起第一个不为零的数字前面的0的个数(含整数位上的零)所决定.注意点:(1) 底数a 不能为0,若a 为0,则除数为0,除法就没有意义了.(2) (0)a m n m n ≠>,、是正整数,且是法则的一部分,不要漏掉。
幂的有关运算(讲义)
![幂的有关运算(讲义)](https://img.taocdn.com/s3/m/33e67109eff9aef8941e06e5.png)
知识梳理一、同底数幂的乘法法则:a m·a n=a m+n(m、n都是正整数)。
二、幂的乘方的法则:(a m)n=a mn(m、n是正整数)三、积的乘方运算法则:(ab)n=a n b n(n是正整数)四、同底数幂的除法法则:a m÷a n=a m-n(m、n是正整数,m >n)五、零指数幂:a0=1(a≠0)负指数幂:1ppaa-⎛⎫= ⎪⎝⎭(a≠0,p为正整数)教学重、难点知识点1 同底数幂的乘法【典型例题】1.计算(-2)2007+(-2)2008的结果是()A.22015B.22007C.-2 D.-22008 2.当a<0,n为正整数时,(-a)5·(-a)2n的值为()A.正数B.负数C.非正数D.非负数3.计算:(a-b)2m-1·(b-a)2m·(a-b)2m+1,其中m为正整数.知识点2 逆用同底数幂的法则逆用法则为:a m+n = a m·a n(m、n都是正整数)【典型例题】(1)已知x m=3,x n=5,求x m+n.(2)变式:已知x m=3,x n=5,求x2m+n;知识点3 幂的乘方【典型例题】1.计算(-a 2)5+(-a 5)2的结果是( )A .0B .2a 10C .-2a 10D .2a 72.下列各式成立的是( )A .(a 3)x =(a x )3B .(a n )3=a n+3C .(a+b )3=a 3+b 3D .(-a )m =-a m3.如果(9n )2=312,则n 的值是( )A .4B .3C .2D .14.已知x 2+3x+5的值为7,那么3x 2+9x-2的值是( )A .0B .2C .4D .65.若2x+5y —3=0,求4x -1·32y 的值6. 已知a x =2,a y =3(x ,y 为正整数),求a3x +2y 的值.知识点4 积的乘方【典型例题】 1.化简(a 2m ·a n+1)2·(-2a 2)3所得的结果为____________________________。
第11讲 幂函数(讲义)
![第11讲 幂函数(讲义)](https://img.taocdn.com/s3/m/9ca8004933687e21af45a9f3.png)
第11讲 幂函数(讲义)1.10.0 幂指对函数的算术背景让我们从乘方运算谈起,设变量r q p ,,满足等式r p q =(例如8,2,3===r q p ),则称“r 是p 的q 次方”. 若其中一个变量的值确定,则另外两个变量之间可能具有函数关系. 所谓“可能具有”,是指某些情况下一个变量的值不足以唯一确定另外一个值,例如当确定变量2=q 时,变量p 的值可以唯一确定变量r 的值,因此r 是p 的函数,即2p r =;但是反过来,变量r 的值不足以唯一确定p 的值. 在后一种情况下,我们可以通过引入某种“单值化”条件来保证函数关系成立,例如,引入算术平方根的概念(也就是要求变量p 只能取非负值),就可以使p 是r 的函数,即r p =.现在,我们设三个变量中已确定具体值的为a ,另外两个分别称为y x ,,则这样的表达式总共有6种形式:①y a x =,②x a y =,③y x a =,④x y a =,⑤a x y =,⑥a y x =. 我们认为其中三种是重要的(①②③),因此为它们赋予专门的名称并加以研究:(A )幂函数:R a x y a ∈=,①;(B )指数函数:R a a y x ∈=,;(C )对数函数:*∈=R a x a y ,②;你可能会好奇另外三种为什么会被认为是不重要的?简单的代数变形可以帮我们看清楚上述选择的理由:④a a xy x y 1=⇒=与③本质上是一样的,⑤y y a x a x 1=⇒=与②本质上是一样的,⑥x x a y a y 1=⇒=本质上是一样的.补充:有理指数的乘方运算初中阶段我们已经学习过正整数指数的乘方运算,并给出了最重要的运算规则:()*+∈∈=⋅N n m R a a a a n m n m ,,下面我们将看到,如果保留这条基本性质并假设它对于指数不是正整数的情况也成立,就可以顺利地导出指数为任意有理数情况的意义.(1)整数指数考虑到n n n a a a a ==⋅+00,因此应该定义10=a ,同时保证除法运算n n n n a a aa ==-0的有效性,约定()010≠=a a . 接着,由于10==⋅-a a a n n ,定义()01≠=-a a a nn . 例如,① 不过在中学阶段,我们实际上只研究有理指数即Q a ∈的情况. 在各种场合下,如果没有特别加以说明,我们总是对Q a ∈的情况进行具体研究(并不加论证地假设研究结果可以推广到R a ∈的情况). ② 关于每一种函数对a 的取值范围以及定义域的要求,我们会在后继内容中详细讨论.()441121121,4917172222===⎪⎭⎫ ⎝⎛==--. (2)分数指数 最容易理解的分数指数当属开方运算:()a a a a a =⇒==⋅1212221,实际上平方后得a 的数通常是两个符号相反的实数,我们约定只考虑其中非负的那个(即算术平方根),就使得1a 具有唯一的意义. 类似地,a N n 1,*∈∀具了唯一的意义. 而()m nn m a a 1=也随之具有了唯一确定的含义. 例如,()()23834834333122216,12525252883======⋅,,()91313332722-23-32-332-=====⋅.*(3)实数指数:以23为例. 我们对实数2的认识是:存在一族闭区间[][][][] 415.1414.142.1,41.15.1,4.12,1,,,,使得2始终位于这个闭区间内,且这族闭区间的“长度”(即闭区间两端点所对应实数的距离)可以小于任意给定的正数,因为它们每次比原先缩小10倍,因此一定能够变到足够小③. 在此基础上我们可以理解23是一个什么样的实数,即考虑闭区间族[]213,3,[]5.14.13,3,[] ,5.141.13,3,由于每个端点所代表的实数是唯一确定的,因此它们自身也是确定的,并且确实将23包含于其中;此外,由于指数之间的差距可以充分小,因此闭区间的长度也随之而变得充分小,由此可知它们最终必将唯一确定某一实数,即23④.利用上述思想我们可以知道,任意实数指数的乘方运算是有明确意义的,它可以唯一确定一个实数. 当然,大多数情况下,我们可以借助计算器来完成这一工作.1.11.1 幂函数的定义与基本性质我们称形如()R a x y a∈=的函数为幂函数. 但是在这个约定中,我们还没有说明函数的定义域,因此这个“定义”还不够完整. 在下面的讨论,我们将针对a 的不同取值情况来加以考察.例1、画图象找规律(1)在同一坐标系内画出函数32x y x y x y ===、、的图象;(2)将函数5.25.1x y x y ==、的图象添加到该坐标系中;③这里我们实际上使用了实数的“阿基米德公理”:b an N n R b a >∈∃∈∀*+,,,. ④ 我们所使用的想法可以概括为:一族长度趋近于0的闭区间套唯一确定了一个实数,它是实数理论中一个具有基础性地位的定理.(3)将函数11x y x y ==、的图象添加到该坐标系中;接着观察图象,看看能发现哪些规律?将你的发现归纳出来. 解答:右图中包含12132x y x y x y x y x y =====、、、、的图象;(1)定义域:图中所有函数的定义域都包含()∞+,0,或者说,包含()∞+,0是一个必要条件;(2)在区间()∞+,0上各函数的值域是()∞+,0;(3)在5.1x y =的图象时,需保证它始终位于函数x y =与2x y =的图象之间,类似地,5.2x y =始终介于2x y =与3x y =之间;(4)()0>=a x y a 在()∞+,0上是增函数;(5)()02>=x x y 与21x y =关于x y =轴对称,()03>=x x y 与31x y =关于x y =轴对称;猜测更一般地,在()+∞,0上,()0>=a x y a 与()01>=a x y a 关于x y =轴对称; 例2、画图象研究性质:32xy =. 分析:由()122x x y ==可知它是偶函数,考虑到()23132x x y ==,列表描点时不妨代入一些可以开立方的x 值。
幂的运算—讲义
![幂的运算—讲义](https://img.taocdn.com/s3/m/39ecdef4ba1aa8114531d937.png)
幂的运算一. 同底数幂的意义及同底数幂的乘法法那么〔逆用〕同底数幂的乘法法那么:同底数幂相乘,底数不变,指数相加。
1.计算〔-2〕2007+〔-2〕2022的结果是2.当a<0,n 为正整数时,〔-a 〕5·〔-a 〕2n 的值为〔 〕A .正数B .负数C .非正数D .非负数3、n 是大于1的自然数,那么()c -1-n ()1+-•n c 等于. 4.计算:〔a -b 〕2m -1·〔b -a 〕2m ·〔a -b 〕2m+1,其中m 为正整数.5.x m =3,x n =5,求x 2m+n ;二. 幂的乘方的意义及运算法那么〔逆用〕幂的乘方的法那么:幂的乘方,底数不变,指数相乘1.计算〔-a 2〕5+〔-a 5〕2的结果是2.以下各式成立的是〔 〕A .〔a 3〕x =〔a x 〕3B .〔a n 〕3=a n+3C .〔a+b 〕3=a 2+b 2D .〔-a 〕m =-a m3.如果〔9n 〕2=312,那么n 的值是〔 〕A .4B .3C .2D .14.x 2+3x+5的值为7,那么3x 2+9x-2的值是5.计算:〔1〕233342)(a a a a a +⋅+⋅ 〔2〕22442)()(2a a a ⋅+⋅三. 积的乘方意义及运算法那么〔逆用〕积的乘方运算法那么:积的乘方,等于各因式乘方的积。
1.化简(a 2m ·a n+1)2·(-2a 2)3所得的结果为____________________________。
2.( )5=(8×8×8×8×8)(a ·a ·a ·a ·a)3.如果a≠b ,且(a p )3·b p+q =a 9b 5 成立,那么p=______________,q=_____________。
4.假设()()b a b a b a m n n m 5321221=-++,那么m+n 的值为_____6.如果单项式y x b a 243--与yx b a +331是同类项,那么这两个单项式的积是〔 〕 A .y x 46 B .y x 23- C .y x 2338- D .y x 46-7.〔x -y 〕·〔x -y 〕3·〔x -y 〕m =〔x -y 〕12,求〔4m 2+2m+1〕-2〔2m 2-m -5〕的值.四. 同底数幂的除法法那么:同底数幂相除,底数不变,指数相减1.在以下运算中,正确的选项是〔 〕A .a 2÷a=a 2B .〔-a 〕6÷a 2=〔-a 〕3=-a 3C .a 2÷a 2=a 2-2=0D .〔-a 〕3÷a 2=-a2.在以下运算中,错误的选项是〔 〕A .a 2m ÷a m ÷a 3=a m -3B .a m+n ÷b n =a mC .〔-a 2〕3÷〔-a 3〕2=-1D .a m+2÷a 3=a m -13.〔-x 2〕3÷〔-x 〕3=_____. [〔y 2〕n ] 3÷[〔y 3〕n ] 2=______. ()()()345-=-•-y x y xn n 2)(-a 的结果是 ()[]52x --= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课 题(课型) 幂的运算 学生目前情况(知识遗漏点):
复习巩固
教 学 目 标或
考 点 分 析:
1. 学会应用同底数幂的乘法和除法。
2. 掌握幂的乘方和积的乘方。
3. 幂的混合运算和科学计数法 教学重难点: 同底数幂的乘法和除法、幂的乘方和积的乘方 教学方法:
知识梳理,例题讲解,知识巩固,巩固训练,拓展延伸
幂的运算
知识点一、同底数幂的乘法 1、同底数幂的乘法 同底数幂的乘法法则:
文字叙述:同底数幂相乘,底数不变,指数相加。
字母表示:________________________
2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即
m n p m n p
a a a a ++⋅⋅= 注意点:
(1)同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.
(2)在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.
3、逆用同底数幂的乘法法则: =m n a a
例1、计算列下列各题
(1) x 3·x 5+(x 4)2; (2) 23b b b ⋅⋅ ; (3) ()()()2
4
c c c -⋅-⋅-
例2、若15(3)59n n x x x -⋅+=-,求x 的值.
32y = 则x y a a += (
)2
(3)
(
)
2=
2)
42()a a +-2014
20152015
7337⎫⨯⎪
⎭
例11、(1)已知5544222,36a b c ---===,比较a,b,c 的大小。
(2)当a,b 满足什么条件时,等式1)1(=+b a 成立?
4、绝对值小于1的数的科学计数法
把一个正数写成10n a ⨯的形式(其中110a ≤<,n 为整数),这种计数法称为科学计数法,其方法如下:
(1)确定a ,a 是只有个位整数的数;
(2)确定n ,当原数的绝对值10≥时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值<1时,n 为负整数,n 的绝对值等于原数中做起第一个非0数前0的个数(包括整数位上的0)。
. 例12、(1)用科学计数法表示:0.000096=________________________. (2) 用小数表示4102-⨯-=______________________________.
(3)为减少全球金融危机对我国经济产生的影响,国务院决定拿出40000亿元以扩大内需,保持经济平稳较大增长.这个数用科学记数法表示为 亿元. (4)2015nm =_______________________m. (5)最薄的金箔的厚度为m 000000091.0,用科学记数法表示为 m .
例13、(1)计算并用科学计数法表示:78106.41067.3⨯-⨯
(2)有一句谚语:“捡了芝麻,丢了西瓜,”意思是说有些人办事只抓一些无关紧要的小 事,却忽略了具有重大意义的大事.据测算,5万粒芝麻才200g,请你计算1粒芝麻有多少千克?
练习:
1.下列计算正确的是( )
A .1)1(0-=-
B .1)1(1=--
C .33212a a =
- D .4
7
31)()(a
a a =-÷- 2.下列各式:①5151=-,②0)00001.0(0=,③001.0102=-,④ 3
1
3310=÷-正确的有
( )
A .0个
B .1个
C . 2 个
D .3个
3.下列计算错误的是 ( )
A .1)0001.0(0=
B .01.0)1.0(2=-
C .1)5210(0=⨯-
D .0001.0104=-
4.若,)3
1
(,3,3.0022-=-=-=-c b a 则 ( )
A .d c b a <<<
B .c d a b <<<
C .b c d a <<<
D .b d a c <<<
5.通过世界各国卫生组织的努力,甲型H1N1流感疫情得到了有效地控制,到目前为止,全球感染人数为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学计数法表示为( )
A .5101.3-⨯
B .6101.3-⨯
C .7101.3-⨯
D .8101.3-⨯
6.=÷6622_____________.=-2)2
1
(______________.
7.肥皂泡表面厚度大约是0.0007mm,用科学记数法表为____________________mm
8. 当___________时, .1)12(0=-a
9. 已知==-=x x x 则且,1)3(,30_____________. 10.已知==-x x 则,1312___________________.
11.计算:(1)031452222)21(2+⨯⨯++---- (2)02213)2()2
1
(])1(8)2[(-⨯-⨯-⨯------π。