2015高考物理第一轮复习万有引力定律
高考物理一轮复习讲义 第4章 第4讲 万有引力定律及应用
第4讲 万有引力定律及应用一、开普勒三定律定律内容图示或公式开普勒第一定律(轨道定律)所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上开普勒第二定律(面积定律)对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等开普勒第三定律(周期定律)所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等a 3T 2=k ,k 是一个与行星无关的常量自测1 (2016·全国卷Ⅲ·14)关于行星运动的规律,下列说法符合史实的是( ) A .开普勒在牛顿定律的基础上,导出了行星运动的规律 B .开普勒在天文观测数据的基础上,总结出了行星运动的规律C .开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D .开普勒总结出了行星运动的规律,发现了万有引力定律 答案 B解析 开普勒在天文观测数据的基础上总结出了行星运动的规律,但没有找出行星按照这些规律运动的原因,牛顿发现了万有引力定律. 二、万有引力定律 1.内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比. 2.表达式F =G m 1m 2r 2,G 为引力常量,G =6.67×10-11 N·m 2/kg 2.3.适用条件(1)公式适用于质点间的相互作用,当两个物体间的距离远大于物体本身的大小时,物体可视为质点.(2)质量分布均匀的球体可视为质点,r是两球心间的距离.4.天体运动问题分析(1)将天体或卫星的运动看成匀速圆周运动,其所需向心力由万有引力提供.(2)基本公式:GMmr2=ma=⎩⎪⎨⎪⎧m v2r→v=GM rmrω2→ω=GMr3mr⎝⎛⎭⎫2πT2→T=2πr3GMm vω自测2(2019·全国卷Ⅱ·14)2019年1月,我国嫦娥四号探测器成功在月球背面软着陆.在探测器“奔向”月球的过程中,用h表示探测器与地球表面的距离,F表示它所受的地球引力,能够描述F随h变化关系的图像是()答案D解析在嫦娥四号探测器“奔向”月球的过程中,根据万有引力定律,可知随着h的增大,探测器所受的地球引力逐渐减小,但不是均匀减小的,故能够描述F随h变化关系的图像是D.三、宇宙速度1.第一宇宙速度(1)第一宇宙速度又叫环绕速度,其数值为7.9 km/s.(2)第一宇宙速度是人造卫星在地面附近环绕地球做匀速圆周运动时具有的速度.(3)第一宇宙速度是人造卫星的最小发射速度,也是人造卫星的最大环绕速度.(4)第一宇宙速度的计算方法.由GMmR2=mv2R得v=GMR;由mg=mv2R得v=gR.2.第二宇宙速度使物体挣脱地球引力束缚的最小发射速度,其数值为11.2 km/s.3.第三宇宙速度使物体挣脱太阳引力束缚的最小发射速度,其数值为16.7 km/s.自测3(2019·北京卷·18)2019年5月17日,我国成功发射第45颗北斗导航卫星,该卫星属于地球静止轨道卫星(同步卫星).该卫星()A .入轨后可以位于北京正上方B .入轨后的速度大于第一宇宙速度C .发射速度大于第二宇宙速度D .若发射到近地圆轨道所需能量较少 答案 D解析 同步卫星只能位于赤道正上方,A 项错误;由GMm r 2=m v 2r 知,卫星的轨道半径越大,卫星做匀速圆周运动的线速度越小,因此入轨后的速度小于第一宇宙速度(近地卫星的速度),B 项错误;同步卫星的发射速度大于第一宇宙速度,小于第二宇宙速度,C 项错误;若发射到近地圆轨道,所需发射速度较小,所需能量较少,D 正确.1.行星绕太阳的运动通常按圆轨道处理.2.开普勒行星运动定律也适用于其他天体,例如月球、卫星绕地球的运动.3.开普勒第三定律a 3T 2=k 中,k 值只与中心天体的质量有关,不同的中心天体k 值不同.但该定律只能用在同一中心天体的两星体之间.例1 (多选)(2019·四川绵阳市第三次诊断)2019年1月3日10时26分,我国嫦娥四号探测器完成了“人类探测器首次实现月球背面软着陆”的壮举.嫦娥四号近月制动后环月飞行时先在月球上空半径为R 的轨道上做匀速圆周运动,后贴近月球表面做匀速圆周运动,线速度大小分别是v R 和v 0,周期分别是T R 和T 0,已知月球半径为r ,则( ) A.v R v 0=r R B.v R v 0=r RC .T R >T 0D .T R <T 0答案 BC解析 根据万有引力提供向心力有:G Mmr 2=m v 2r,所以v =GMr ,所以v R v 0=rR,A 错误,B 正确;根据开普勒第三定律可知:绕同一中心天体运动,半径越大,周期越长,所以T R >T 0,C 正确,D 错误.变式1 火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( ) A .太阳位于木星运行轨道的中心B.火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 答案 C解析 由开普勒第一定律(轨道定律)可知,太阳位于木星运行轨道的一个焦点上,故A 错误.火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,故B 错误.根据开普勒第三定律(周期定律)知太阳系中所有行星轨道的半长轴的三次方与它的公转周期的平方的比值是一个常数,故C 正确.对于太阳系某一个行星来说,其与太阳连线在相同的时间内扫过的面积相等,不同行星在相同时间内扫过的面积不相等,故D 错误.1.万有引力与重力的关系地球对物体的万有引力F 表现为两个效果:一是重力mg ,二是提供物体随地球自转的向心力F向.(1)在赤道上:G MmR 2=mg 1+mω2R .(2)在两极上:G MmR2=mg 0.(3)在一般位置:万有引力G MmR2等于重力mg 与向心力F 向的矢量和.越靠近南、北两极,g 值越大,由于物体随地球自转所需的向心力较小,常认为万有引力近似等于重力,即GMmR2=mg .2.星球上空的重力加速度g ′星球上空距离星体中心r =R +h 处的重力加速度为g ′,mg ′=GMm (R +h )2,得g ′=GM(R +h )2.所以g g ′=(R +h )2R 2.3.万有引力的“两点理解”和“两个推论” (1)两点理解①两物体相互作用的万有引力是一对作用力和反作用力. ②地球上的物体(两极除外)受到的重力只是万有引力的一个分力. (2)两个推论①推论1:在匀质球壳的空腔内任意位置处,质点受到球壳的万有引力的合力为零,即∑F 引=0. ②推论2:在匀质球体内部距离球心r 处的质点(m )受到的万有引力等于球体内半径为r 的同心球体(M ′)对其的万有引力,即F =G M ′mr2.例2 若地球半径为R ,把地球看做质量分布均匀的球体.“蛟龙”号下潜深度为d ,“天宫一号”轨道距离地面高度为h ,“蛟龙”号所在处与“天宫一号”所在处的重力加速度之比为( ) A.R -d R +hB.(R -d )2(R +h )2 C.(R -d )(R +h )2R 3D.(R -d )(R +h )R 2答案 C解析 设地球的密度为ρ,则在地球表面,重力和地球的万有引力大小相等,有:g =G MR 2.由于地球的质量为:M =ρ·43πR 3,所以重力加速度的表达式可写成:g =GM R 2=G ·ρ43πR 3R 2=43πGρR .根据题意有,质量分布均匀的球壳对壳内物体的引力为零,故在深度为d 的地球内部,受到地球的万有引力即为半径等于(R -d )的球体在其表面产生的万有引力,故“蛟龙”号的重力加速度g ′=43πGρ(R -d ),所以有g ′g =R -d R .根据万有引力提供向心力G Mm(R +h )2=ma ,“天宫一号”所在处的重力加速度为a =GM (R +h )2,所以a g =R 2(R +h )2,g ′a =(R -d )(R +h )2R 3,故C 正确,A 、B 、D 错误.变式2 (2020·广东东莞市调研)“神舟十一号”飞船于2016年10月17日发射,对接“天宫二号”.若飞船质量为m ,距地面高度为h ,地球质量为M ,半径为R ,引力常量为G ,则飞船所在处的重力加速度大小为( ) A .0 B.GM (R +h )2 C.GMm (R +h )2 D.GMh 2 答案 B天体质量、密度的计算使用方法已知量 利用公式 表达式 备注质量的计算利用运行天体r 、T G Mm r 2=mr 4π2T 2 M =4π2r 3GT 2只能得到中心天体的质量 r 、vG Mmr 2=m v 2r M =r v 2Gv 、TG Mmr 2=m v 2r G Mm r 2=mr 4π2T 2 M =v 3T 2πG利用天体表面重力加速度 g 、Rmg =GMm R2M =gR 2G密度的计算利用运行天体r 、T 、RG Mm r 2=mr 4π2T 2 M =ρ·43πR 3ρ=3πr 3GT 2R3 当r =R 时ρ=3πGT2利用近地卫星只需测出其运行周期利用天体表面重力加速度g 、R mg =GMm R 2M =ρ·43πR 3ρ=3g 4πGR例3 (2018·全国卷Ⅱ·16)2018年2月,我国500 m 口径射电望远镜(天眼)发现毫秒脉冲星“J0318+0253”,其自转周期T =5.19 ms.假设星体为质量均匀分布的球体,已知万有引力常量为6.67×10-11N·m 2/kg 2.以周期T 稳定自转的星体的密度最小值约为( )A .5×109 kg/m 3B .5×1012 kg/m 3C .5×1015 kg/m 3D .5×1018 kg/m 3答案 C解析 脉冲星自转,边缘物体m 恰对球体无压力时万有引力提供向心力,则有G Mm r 2=mr 4π2T 2,又知M =ρ·43πr 3整理得密度ρ=3πGT 2=3×3.146.67×10-11×(5.19×10-3)2kg/m 3≈5.2×1015 kg/m 3. 变式3 (2019·河南安阳市下学期二模)半径为R 的某均匀球形天体上,两“极点”处的重力加速度大小为g ,“赤道”处的重力加速度大小为“极点”处的1k .已知引力常量为G ,则下列说法正确的是( ) A .该天体的质量为gR 2kGB .该天体的平均密度为4g3πGRC .该天体的第一宇宙速度为gR kD .该天体的自转周期为2πkR(k -1)g答案 D解析 在两“极点”处:G Mm R 2=mg ;在赤道处:G Mm R 2-m g k =m 4π2T 2R ,解得天体的质量为M =gR 2G ,T=2πkR (k -1)g,选项A 错误,D 正确;该天体的平均密度为ρ=M V =gR 2G ·43πR 3=3g4πGR ,选项B 错误;由G MmR 2=m v 2R=mg 可知该天体的第一宇宙速度为v =gR ,选项C 错误.变式4 (2020·山东临沂市质检)2018年7月25日消息称,科学家们在火星上发现了第一个液态水湖,这表明火星上很可能存在生命.美国的“洞察”号火星探测器曾在2018年11月降落到火星表面.假设该探测器在着陆火星前贴近火星表面运行一周用时为T ,已知火星的半径为R 1,地球的半径为R 2,地球的质量为M ,地球表面的重力加速度为g ,引力常量为G ,则火星的质量为( )A.4π2R 13M gR 22T 2B.gR 22T 2M 4π2R 13C.gR 12GD.gR 22G 答案 A解析 绕地球表面运动的天体由牛顿第二定律可知: G MmR 22=mg 同理,对绕火星表面运动的天体有: GM 火m R 12=m (2πT)2R 1 结合两个公式可解得:M 火=4π2R 13M gR 22T 2,故A 对.1.线速度:G Mmr 2=m v 2r ⇒v =GMr 2.角速度:G Mmr2=mω2r ⇒ω=GMr 33.周期:G Mmr 2=m ⎝⎛⎭⎫2πT 2r ⇒T =2πr 3GM4.向心加速度:G Mm r 2=ma ⇒a =GM r 2结论:r 越大,v 、ω、a 越小,T 越大.例4 (2019·全国卷Ⅲ·15)金星、地球和火星绕太阳的公转均可视为匀速圆周运动,它们的向心加速度大小分别为a 金、a 地、a 火,它们沿轨道运行的速率分别为v 金、v 地、v 火.已知它们的轨道半径R 金<R 地<R 火,由此可以判定( ) A .a 金>a 地>a 火 B .a 火>a 地>a 金 C .v 地>v 火>v 金 D .v 火>v 地>v 金答案 A解析 金星、地球和火星绕太阳公转时万有引力提供向心力,则有G Mm R 2=ma ,解得a =G MR2,结合题中R 金<R 地<R 火,可得a 金>a 地>a 火,选项A 正确,B 错误;同理,有G MmR 2=m v 2R ,解得v =GMR,再结合题中R 金<R 地<R 火,可得v 金>v 地>v 火,选项C 、D 错误.变式5 (2019·天津卷·1)2018年12月8日,肩负着亿万中华儿女探月飞天梦想的嫦娥四号探测器成功发射,“实现人类航天器首次在月球背面巡视探测,率先在月背刻上了中国足迹”,如图1.已知月球的质量为M 、半径为R .探测器的质量为m ,引力常量为G ,嫦娥四号探测器围绕月球做半径为r 的匀速圆周运动时,探测器的( )图1A .周期为4π2r 3GM B .动能为GMm2RC .角速度为Gm r 3D .向心加速度为GMR2答案 A解析 嫦娥四号探测器环绕月球做匀速圆周运动时,万有引力提供其做匀速圆周运动的向心力,由GMm r 2=mω2r =m v 2r =m 4π2T2r =ma ,解得ω=GMr 3、v =GMr、T =4π2r 3GM 、a =GMr2,则嫦娥四号探测器的动能为E k =12m v 2=GMm2r,由以上可知A 正确,B 、C 、D 错误.变式6 (2019·江苏卷·4)1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动.如图2所示,设卫星在近地点、远地点的速度分别为v 1、v 2,近地点到地心的距离为r ,地球质量为M ,引力常量为G .则图2A .v 1>v 2,v 1=GMr B .v 1>v 2,v 1>GMr C .v 1<v 2,v 1=GMrD .v 1<v 2,v 1>GMr答案 B解析 “东方红一号”环绕地球在椭圆轨道上运动的过程中,只有万有引力做功,因而机械能守恒,其由近地点向远地点运动时,万有引力做负功,卫星的势能增加,动能减小,因此v 1>v 2;“东方红一号”离开近地点开始做离心运动,则由离心运动的条件可知G Mmr 2<m v 12r,解得v 1>GMr,B 正确,A 、C 、D 错误.1.(2018·全国卷Ⅲ·15)为了探测引力波,“天琴计划”预计发射地球卫星P ,其轨道半径约为地球半径的16倍;另一地球卫星Q 的轨道半径约为地球半径的4倍.P 与Q 的周期之比约为( ) A .2∶1 B .4∶1 C .8∶1 D .16∶1答案 C解析 由G Mm r 2=mr 4π2T 2知,T 2r 3=4π2GM ,则两卫星T P 2T Q 2=r P 3r Q 3.因为r P ∶r Q =4∶1,故T P ∶T Q =8∶1.2.(2019·陕西榆林市第三次测试)2019年3月10日我国在西昌卫星发射中心用长征三号乙运载火箭成功将“中星6C ”卫星发射升空,卫星进入预定轨道,它是一颗用于广播和通信的地球静止轨道通信卫星,假设该卫星在距地面高度为h 的同步轨道做圆周运动.已知地球的半径为R ,地球表面的重力加速度为g ,万有引力常量为G .下列说法正确的是( ) A .同步卫星运动的周期为2πRgB .同步卫星运行的线速度大小为g (R +h )C .同步轨道处的重力加速度大小为(R R +h )2gD .地球的平均密度为3g 4πGR 2答案 C解析 地球同步卫星在距地面高度为h 的同步轨道做圆周运动,万有引力提供向心力,有:GMm (R +h )2=m 4π2(R +h )T 2,在地球表面附近,重力等于万有引力,有:mg =GMmR 2,故同步卫星运动的周期为:T =2π(R +h )3gR 2,故A 错误;根据万有引力提供向心力,有:GMm(R +h )2=m v 2R +h,解得同步卫星运行的线速度大小为:v =gR 2R +h ,故B 错误;根据万有引力提供向心力,有:G Mm(R +h )2=mg ′,解得g ′=(R R +h)2g ,故C 正确;由mg =GMm R 2得:M =gR 2G ,故地球的平均密度为:ρ=M4πR 33=3g4πGR,故D 错误. 3.(2019·山东泰安市第二轮复习质量检测)2019年1月3日,嫦娥四号月球探测器成功软着陆在月球背面,成为人类历史上第一个在月球背面成功实施软着陆的人类探测器.如图1所示,已关闭动力的探月卫星在月球引力作用下沿椭圆轨道(图中只画了一部分)向月球靠近,并在B 处变轨进入半径为r 、周期为T 的环月圆轨道运行.已知引力常量为G ,下列说法正确的是( )图1A .图中探月卫星飞向B 处的过程中速度越来越小 B .图中探月卫星飞向B 处的过程中加速度越来越小C .由题中条件可以计算出探月卫星受到月球的引力大小D .由题中条件可以计算出月球的质量 答案 D解析 探月卫星飞向B 处时,万有引力增大,做正功,探月卫星动能增大,加速度增大,A 、B 选项错误;由于探月卫星质量未知,无法计算出探月卫星受到月球的引力大小,C 选项错误;由GMmr 2=m (2πT )2r 可得:M =4π2r 3GT2,D 选项正确.4.(2019·广西钦州市4月综测)2018年5月,我国成功发射首颗高光谱分辨率对地观测卫星——“高分五号”.“高分五号”轨道离地面的高度约7.0×102 km,质量约2.8×103 kg.已知地球半径约6.4×103 km,重力加速度取9.8 m/s 2.则“高分五号”卫星( ) A .运行的速度小于7.9 km/s B .运行的加速度大于9.8 m/s 2C .运行的线速度小于同步卫星的线速度D .运行的角速度小于地球自转的角速度 答案 A解析 第一宇宙速度是卫星的最大环绕速度,是发射卫星的最小速度,所以卫星的运行速度小于7.9 km/s,故A 正确;由G MmR 2=ma 可知,运行的加速度随着高度的增大而减小,故运行的加速度小于地面的重力加速度,即小于9.8 m/s 2,故B 错误;“高分五号”轨道离地面的高度约7.0×102 km,小于同步卫星的高度(同步卫星的高度约为地球半径的6倍),根据GMmR 2=m v 2R得:v=GMR,故运行的线速度大于同步卫星的线速度,故C 错误;地球的自转角速度与同步卫星相同,根据GMmR2=mω2R 解得ω=GMR 3,轨道越高,角速度越小,故“高分五号”卫星运行的角速度大于地球自转的角速度,故D 错误.5.(2019·西藏山南二中一模)为了观测地球表面的植被覆盖情况,中国发射了一颗人造卫星,卫星的轨道半径约为地球同步卫星轨道半径的14,那么这个卫星绕地球一圈需要多长时间( )A .12小时B .1小时C .6小时D .3小时答案 D解析 地球同步卫星的周期为24小时,根据开普勒第三定律:r 同3T 同2=r 卫3T 卫2,代入数据可得:T卫=3小时,故D 正确,A 、B 、C 错误.6.(2019·云南昆明市4月教学质量检测)已知地球质量为木星质量的p 倍,地球半径为木星半径的q 倍,下列说法正确的是( )A .地球表面的重力加速度为木星表面的重力加速度的pq 2倍B .地球的第一宇宙速度是木星“第一宇宙速度”的pq倍C .地球近地圆轨道卫星的角速度为木星“近木”圆轨道卫星角速度的p 3q倍 D .地球近地圆轨道卫星运行的周期为木星“近木”圆轨道卫星运行的周期的q 3p 倍答案 A解析 万有引力提供向心力,则有:G Mm r 2=m v 2r =mω2r =m 4π2T 2r =ma解得:v =GMr,T =2πr 3GM,ω=GM r 3,a =GMr2 星球表面重力加速度为:g =GM R 2;由g =GMR2可知地球表面的重力加速度为木星表面的重力加速度的pq 2,故A 正确;由v =GMr可知第一宇宙速度为:v =GMR,则地球的第一宇宙速度是木星的“第一宇宙速度”的pq,故B 错误;由ω=GMr 3可知近地卫星的角速度ω=GMR 3,地球近地卫星的角速度为木星“近木”卫星角速度的pq 3,故C 错误;由T =2πr 3GM可知近地卫星的周期T =2πR 3GM,所以地球近地卫星的周期为木星的“近木”卫星周期的q 3p,故D 错误.7.(2019·河南郑州市第一次模拟)“玉兔号”月球车与月球表面的第一次接触实现了中国人“奔月”的伟大梦想.“玉兔号”月球车在月球表面做了一个自由下落试验,测得物体从静止自由下落h 高度的时间为t ,已知月球半径为R ,自转周期为T ,引力常量为G .求:(1)月球表面重力加速度;(2)月球的质量和月球的第一宇宙速度; (3)月球同步卫星离月球表面高度. 答案 (1)2h t 2 (2)2R 2h Gt22hRt 2(3)3T 2R 2h2π2t 2-R 解析 (1)由自由落体运动规律有:h =12gt 2,所以有:g =2ht2.(2)月球的第一宇宙速度为近月卫星的运行速度,根据重力提供向心力mg =m v 12R ,所以:v 1=gR =2hRt 2在月球表面的物体受到的重力等于万有引力,则有: mg =GMm R 2所以M =2R 2hGt2.(3)月球同步卫星绕月球做匀速圆周运动,根据万有引力提供向心力有:GMm(R +h ′)2=m v 2R +h ′=m (R +h ′)4π2T 2解得h ′=3T 2R 2h2π2t 2-R .。
2015高考物理一轮复习—专题系列卷:万有引力定律 天体运动
选择题专练卷(四) 万有引力定律 天体运动一、单项选择题1.(2014·潍坊模拟)截止到2011年9月,欧洲天文学家已在太阳系外发现50余颗新行星,其中有一颗行星,其半径是地球半径的1.2倍,其平均密度是地球0.8倍。
经观测发现:该行星有两颗卫星a 和b ,它们绕该行星的轨道近似为圆周,周期分别为9天5小时和15天12小时,则下列判断正确的是( )A .该行星表面的重力加速度大于9.8 m/s 2B .该行星的第一宇宙速度大于7.9 km/sC .卫星a 的线速度小于卫星b 的线速度D .卫星a 的向心加速度小于卫星b 的向心加速度2.一位同学为了测算卫星在月球表面附近做匀速圆周运动的环绕速度,提出了如下实验方案:在月球表面以初速度v 0竖直上抛一个物体,测出物体上升的最大高度h ,已知月球的半径为R ,便可测算出绕月卫星的环绕速度。
按这位同学的方案,绕月卫星的环绕速度为( )A .v 02h R B .v 0h 2R C .v 02R h D .v 0R 2h 3.(2014·皖南八校联考)2012年6月24日,航天员刘旺手动控制“神舟九号”飞船完成与“天宫一号”的交会对接,形成组合体绕地球圆周运动,速率为v 0,轨道高度为340 km 。
“神舟九号”飞船连同三位宇航员的总质量为m ,而测控通信由两颗在地球同步轨道运行的“天链一号”中继卫星、陆基测控站、测量船,以及北京飞控中心完成。
下列描述错误的是( )A .组合体圆周运动的周期约1.5 hB .组合体圆周运动的线速度约7.8 km/sC .组合体圆周运动的角速度比“天链一号”中继卫星的角速度大D .发射“神舟九号”飞船所需能量是12m v 204.“北斗”卫星导航定位系统由地球静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成。
地球静止轨道卫星和中轨道卫星都在圆轨道上运行,它们距地面的高度分别约为地球半径的6倍和3.4倍,下列说法中正确的是( )A .静止轨道卫星的周期约为中轨道卫星的2倍B .静止轨道卫星的线速度大小约为中轨道卫星的2倍C .静止轨道卫星的角速度大小约为中轨道卫星的1/7D .静止轨道卫星的向心加速度大小约为中轨道卫星的1/75.(2014·长春调研)“天宫一号”目标飞行器相继与“神舟八号”和“神舟九号”飞船成功交会对接,标志着我国太空飞行进入了新的时代。
【创新教程】2015届高考物理一轮总复习 4.4 万有引力与航天课件 新人教版
2 Mm v 2.当卫星的速度突然减小时,G 2 >m ,即万有引力大于所需 r r 要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径 GM 变小, 当卫星进入新的轨道稳定运行时由 v= 可知其运行 r 速度比原轨道时增大.卫星的发射和回收就是利用这一原理.
[例 3] “天宫一号”被长征二号火箭发射后,准确 进入预定轨道,如图所示,“天宫一号”在轨道 1 上运行 4 周后, 在 Q 点开启发动机短时间加速, 关 闭发动机后, “天宫一号”沿椭圆轨道 2 运行到达 P 点,开启发动机再次加速,进入轨道 3 绕地球做 圆周运动,“天宫一号”在图示轨道 1、2、3 上正 常运行时,下列说法正确的是( ) A.“天宫一号”在轨道 3 上的速率大于在轨道 1 上的速率 B.“天宫一号”在轨道 3 上的角速度大于在轨道 1 上的角速度 C.“天宫一号”在轨道 1 上经过 Q 点的加速度大于它在轨道 2 上经过 Q 点的加速度 D.“天宫一号”在轨道 2 上经过 P 点的加速度等于它在轨道 3 上经过 P 点的加速度
Gm1m2 可知,由于各行星质量及离 r2 r3 太阳的距离不同,故引力不同,故 A 错;由 T=2π GM可知, GM r 行>r 地,故 T 行>T 地=1 年,故 B 错;由 a= 2 可知 C 正确; r GM 由 v= r 可知 D 错误. [解析] 由万有引力公式 F=
[答案]
C
[规律总结] 人造天体运行参量的分析与计算方法 分析与计算思路是将人造天体的运动看作绕中心天体做匀速圆 周运动,它受到的万有引力提供向心力,结合牛顿第二定律和圆 2 v2 Mm 4π 周运动的规律建立动力学方程, G 2 =ma=m r =mω2r=m 2 r T r,以及利用人造天体在中心天体表面运行时,忽略中心天体的 自转的黄金代换公式 GM=gR2.
高考物理一轮专题复习学案: 万有引力定律
一、行星的运动 二、万有引力定律 三、引力常量的测定【例题】应用万有引力定律和向心力的公式证明:对于所有在圆周轨道上运动的地球卫星,其周期的二次方与轨道半径的三次方之比为一常量,即T 2/R 3=常量.【证明】设地球的质量为M ,卫星的质量为m ,轨道半径为R ,周期为T .因为卫星绕地球作圆周运动的向心力为万有引力,故F =G 2R Mm =m R ω2=m R 22T 4π. ∴ 32R T =GM 42π=常量. 可见,这一常量只与中心天体(地球)的质量有关.也适用于绕某一中心天体运动的天体系统.●课堂针对训练●(1)关于丹麦天文学家第谷,对行星的位置进行观测所记录的数据,下列说法正确的是:A .这些数据在测量记录时误差相当大;B .这些数据说明太阳绕地球运动;C .这些数据与以行星绕太阳做匀速圆周运动为模型得到的结果相吻合;D .这些数据与以行星绕太阳做椭圆运动为模型得到的结果相吻合.(2)关于行星绕太阳运动的正确说法是:A .所有行星都在同一椭圆轨道上绕太阳运动;B .行星绕太阳运动时太阳位于行星轨道的中心处;C .离太阳越近的行星运动周期越大;D .所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.(3)如图6-1所示,r 远大于两球的半径,但两球半径不能忽略,而球的质量均匀分布、大小分别为m 1与m 2,则两球间的万有引力大小为:A .Gm 1m 2/r 2;B .Gm 1m 2/r 12;C .Gm 1m 2/(r 1+r 2)2;D .Gm 1m 2/(r +r 1+r 2)2.(4)地球对月球具有相当大的万有引力,为什么它们不靠在一起,其原因是:A .不仅地球对月球有万有引力,而且月球对地球也有万有引力,这两个力大小相等,方向相反,互相平衡了;B .地球对月球的引力还不算大;C .不仅地球对月球有万有引力,而且太阳系里其他星球对月球也有万有引力,这些力的合力等于零;D .万有引力不断改变月球的运动方向,使得月球绕地球运行.(5)关于引力常量G ,以下说法正确的是:A .在国际单位制中,G 的单位是N ·kg 2/m 2;B .在国际单位制中,G 的数值等于两个质量各为1kg 的物体,相距1m 时的相互吸引力;C .在不同星球上,G 的数值不一样;D .在不同的单位制中,G 的数值不一样.(6)以下说法正确的是:A .质量为m 的物体在地球上任何地方其重力均相等;B .把质量为m 的物体从地面移到高空上,其重力变小了;C .同一物体在赤道处的重力比在两极处重力大;D .同一物体在任何地方其质量是相同的.(7)有一个半径比地球大两倍、质量是地球质量36倍的行星.同一物体在它表面的重力是在地球表面的重力的多少倍?(8)人造地球卫星运动时,其轨道半径为月球轨道半径的31,则此卫星运动的周期大约是多少天?(9)物体在地面上重力为G 0,它在高出地面0.5R(R 为地球半径)处的重力是多少?(10)已知地面的重力加速度是g ,距地面高等于地球半径处的重力加速度是多少?(11)假设火星和地球都是球体,火星的质量为M 火,地球的质量为M 地,且M 火/M 地=p ,火星的半径和地球的半径之比是R 火/R 地=q ,那么在它们表面的重力加速度之比g 火/g 地等于多少?★滚动训练★(12)小球从高为h 处落到一个倾角为45°的斜面上,如图6-2所示,设小球与斜面碰撞后速率不变,沿水平方向向左运动,求小球第二次与斜面碰撞时离第一次碰撞处的距离是多少?(斜面足够长,不计空气阻力)(13)一辆汽车匀速率通过一座圆形拱桥后,接着又以相同的速率通过圆弧形凹地,设两圆形半径相等,汽车通过桥顶A 时,桥面受到的压力F NA 为车重的一半,汽车在圆弧形凹地最低点B 时,对地面的压力为F NB ,求f NA 与F NB 之比. 四、万有引力定律在天文学上的应用【例题】月亮绕地球转动的周期为T ,轨道半径为r ,则由此可得地球质量表达式为________(引力常量为G).若地球半径为R ,则其密度表达式是________.【分析与解答】月亮绕地球转可看成作匀速圆周运动,且F 向=F 引,∴ G 2r m M 月地=m 月ω2r =m 月(T 2π)2r 故M 地=232GT r 4π. 而 ρ=体V M =232GT r 4π/(34πR 3)=323RGT r 3π. ●课堂针对训练●(1)若已知行星绕太阳公转的半径为r ,公转的周期为T ,万有引力恒量为G ,则由此可求出:A .某行星的质量;B .太阳的质量;C .某行星的密度;D .太阳的密度.(2)若地球绕太阳公转周期及公转轨道半径分别为T 和R ,月球绕地球公转周期和公转轨道半径分别为t 和r ,则太阳质量与地球质量之比M 日/M 地为:A .R 3t 2/r 3T 2;B .R 3T 2/r 3t 2;C .R 3t 2/r 2T 3;D .R 3T 3/r 3t 3.(3)设行星绕恒星的运动轨道是圆,则其运行周期T 的平方与其运行轨道半径R 的三次方之比为常数,即T 2/R 3=k ,那么k 的大小决定于:A .只与行星质量有关;B .只与恒星质量有关;C .与行星及恒星的质量都有关;D .与恒星的质量及行星的速率有关.(4)银河系中有两颗行星环绕某恒星运转,从天文望远镜中观察到它们的运转周期的比为27∶1,则它们的轨道半径的比为:A .3∶1;B .9∶1;C .27∶1;D .1∶9.(5)下列说法正确的是:A .海王星和冥王星是人们依据万有引力定律计算的轨道而发现的;B .天王星是人们依据万有引力定律计算的轨道而发现的;C .天王星的运行轨道偏离根据万有引力计算出来的轨道,其原因是由于天王星受到轨道外面其它行星的引力作用;D .以上均不正确.(6)行星的平均密度是ρ,靠近行星表面的卫星运转周期是T ,试证明:ρT 2是一个常量,即对任何行星都相同.(7)已知某行星绕太阳运动的轨道半径为r ,周期为T ,太阳的半径是R ,则太阳的平均密度是多少?(万有引力恒量为G)(8)已知月球的半径是r ,月球表面的重力加速度为g 月,万有引力恒量为G ,若忽略月球的自转,试求出月球的平均密度表达式.(9)一艘宇宙飞船飞近某一个不知名的行星,并进入靠近该行星表面的圆形轨道,宇航员着手进行预定的考察工作.宇航员能不能仅用一只表通过测定时间来测定该行星的密度?说明理由及推导过程,并说明推导过程中各量的物理意义.(10)太阳光经500s 到达地球,已知地球的半径是6.4×106m ,试估算太阳的质量与地球的质量的比值(光速c =3×108m/s ,结果取1位有效数字).★滚动训练★(11)从离地面高为H 的A 点平抛一物体,其水平射程为2s .在A 点正上方且离地面高为2H 的B 点,以相同方向平抛另一物体,其水平射程为s ,两物体在空中的运动轨道在同一竖直平面内,且都从同一个屏M 的顶端擦过,求屏M 的高度.(12)如图6-3所示,半径为R 的光滑圆环上套有一质量为m 的小环,当圆环以角速度ω绕着环心的竖直轴旋转时,求小环偏离圆环最低点的高度.五、人造卫星 宇宙速度【例1】一人造地球卫星距地球表面的高度是地球半径的15倍.试估算此卫星的线速度(已知地球半径R =6400km).【分析与解答】人造地球卫星绕地球做圆周运动时,满足的关系式为 G 2)R 16(M m =m R 16v 2① 式中:m 为卫星质量;M 为地球质量;16R 为卫星的轨道半径.由于地球质量M 未知,所以应设法用其他已知常数代换,在地球表面mg =G 2RMm ② 由①、②两式消去GM ,解得v =1610468916R 6⨯⨯=..g =2.0×103(m/s). 注意:有些基本常知,尽管题目没有明显给出,必要时可以直接应用,如在地球表面物体受到地球的引力近似等于重力,地球自转周期T =24小时,公转周期T =365天,月球绕地球运动的周期约为30天等.【例2】人造卫星环绕地球运转的速度v =r /R 20g ,其中g 为地面处的重力加速度,R 0为地球的半径,r 为卫星离地球中心的距离,下面哪些说法正确?A .题目中卫星速度表达式是错误的;B .由速度表达式知,卫星离地面越高,其速度也越大;C .由速度表达式知,卫星环绕速度与轨道半径平方根成反比;D .从速度表达式可知,把卫星发射到越远的地方越容易.【分析和解答】卫星绕地球转动时,F 引=F 心所以,G 2r M m =m r v 2(其中m 是卫星质量,M 是地球的质量),故v =r GM , 而在地球表面:mg =G 20R M m (其中m 为地面上物体的质量)故有GM =g R 02,所以v =r /R 20g , 由此可知A 是错的,C 为正确的.又因为v 是环绕速度,故离地球越远处卫星环绕速度越小,但发射卫星到越远,克服地球引力作功越多,所需初速越大,故D 错(注意区分:发射初速度与环绕速度).●课堂针对训练●(1)已知下面的哪组数据,可以算出地球的质量M 地(引力常量G 为已知):A .月球绕地球运动的周期T 1及月球到地球中心的距离R 1;B .地球绕太阳运行的周期T 2及地球到太阳中心的距离R 2;C .人造卫星在地面附近的运行速率v 3和运行周期T 3;D .地球绕太阳运行的速度v 4及地球到太阳中心的距离R 4.(2)关于第一宇宙速度,下面说法中错误的是:A .它是人造地球卫星绕地球飞行的最小速度;B .它是人造地球卫星在近地圆形轨道上的运行速度;C .它是能使卫星进入近地圆形轨道的最小发射速度;D .它是卫星在椭圆轨道上运行时近地点的速度.(3)下列说法正确的是:A .地球同步卫星和地球自转同步,因此同步卫星的高度和速度是一定的;B .地球同步卫星的角速度虽被确定,但高度和速度可以选择,高度增加,速度增大,高度降低,速度减小;C .地球同步卫星只能定点在赤道上空,相对地面静止不动;D .以上均不正确.(4)人造地球卫星中的物体处于失重状态是指物体:A .不受地球引力作用;B .受到的合力为零;C .对支持它的物体没有压力作用;D .不受地球引力,也不受卫星对它的引力.(5)实际中人造地球卫星绕地球做匀速圆周运动时的速度一定________第一宇宙速度.(填“大于”或“小于”或“等于”)(6)两个行星的质量分别为m 和M ,绕太阳运行的轨道半径分别是r 和R ,则:①它们与太阳之间的万有引力之比是多少?②它们公转的周期之比是多少?(7)两颗人造地球卫星,其轨道半径之比为R 1∶R 2=4∶1,求这两颗卫星的:①线速度之比v 1∶v 2=? ②角速度之比ω1∶ω2=?③周期之比T 1∶T 2? ④向心加速度之比a 1∶a 2=?(8)为转播电视节目,发射地球的同步卫星,它在赤道上空某高度处随地球同步运转,地球半径为6400km ,地球表面重力加速度g 取10m/s 2,求它的高度和线速度大小.(9)如图6-4所示,两颗靠得很近的恒星称为双星,这两颗星必须各以一定速率绕某一中心转动才不致于因万有引力作用而吸引在一起.已知双星的质量分别为m 1和m 2,相距为L ,万有引力常数为G .求:①双星转动中心位置O 与m 1的距离; ②转动周期.(10)一颗在赤道上空飞行的人造地球卫星,其轨道半径为r =3R(R 为地球半径),已知地球表面重力加速度为g ,则该卫星的运行周期是多大?若卫星的运动方向与地球自转方向相同,已知地球自转角速度为w 0,某一时刻该卫星通过赤道上某建筑物的正上方,再经过多少时间它又一次出现在该建筑物正上方?★滚动训练★(11)如图6-5所示,长为L 的轻杆,两端各连接一个质量都是m 的小球,使它们以轻杆中点为轴在竖直平面内做匀速圆周运动,周期为T =2πgL .求两小球通过竖直位置时杆分别对上下两球的作用力,并说明是拉力还是支持力.●补充训练●(1)如图6-6中的圆a 、b 、c ,其圆心均在地球的自转轴线上,对卫星环绕地球做匀速圆周运动而言:A .卫星的轨道只可能为a ;B .卫星的轨道可能为b ;C .卫星的轨道不可能为c ;D .同步卫星的轨道一定为b .(2)人造卫星以地心为圆心,做匀速圆周运动,下列说法正确的是:A .半径越大,环绕速度越小,周期越小;B .半径越大,环绕速度越小,周期越大;C .所有卫星的环绕速度均是相同的,与半径无关;D .所有卫星角速度都相同,与半径无关.(3)人造卫星绕地球做匀速圆周运动,其轨道半径为R ,线速度为v ,周期为T ,若要使卫星的周期变为2T ,可能的办法是: A .R 不变,使线速度变为v /2; B .v 不变,使轨道半径变为2R ;C .轨道半径变为43R ;D .无法实现.(4)“黑洞”是近代引力理论所预言的宇宙中一种特殊天体,在“黑洞”引力作用范围内,任何物体都不能脱离它的束缚,甚至连光也不能射出.研究认为,在宇宙中存在的黑洞可能是由于超中子星发生塌缩而形成的.2001年10月22日,欧洲航天局由卫星观测发现银河系中心存在一个超大型黑洞,被命名为:MCG6-30-15.假设银河系中心仅此一个黑洞,已知太阳系绕银河系中心做匀速圆周运动,则根据下列哪一组数据可以估算出该黑洞的质量:A .太阳系质量和运动速度;B .太阳系绕黑洞公转的周期和到“MCG6-30-15”的距离;C .太阳系质量和到“MCG6-30-15”的距离;D .太阳系运行速度和“MCG6-30-15”的半径.(5)物体在月球表面上的重力加速度为地球表面上的1/6,这说明:A .地球的直径是月球直径的6倍;B .月球的质量是地球质量的1/6;C .月球吸引地球的引力是地球吸引月球引力的1/6;D .物体在月球表面的重力是在地球表面的1/6.(6)三颗人造地球卫星A 、B 、C 绕地球作匀速圆周运动,如图6-7所示,已知m A =m B <m C 知,则三个卫星:A .线速度关系:v A >vB =vC ; B .周期关系:T A <T B =T C ;C .向心力大小:F A =F B <F C ;D .半径与周期关系:2C 3C 2B 3B 2A 3A T R T R T R ==. (7)宇航员在一行星上以速度为v 0竖直上抛一个物体经t 秒钟后落回手中,已知该行星半径为R ,要使物体不再落回星球表面,沿星球表面抛出的速度至少应是多少?(8)地球绕太阳公转的周期为T 1,轨道半径为R 1,月球绕地球公转的周期为T 2,轨道半径为R 2,则太阳的质量是地球的质量的多少倍?(9)有m 1和m 2两颗人造卫星,已知m 1=m 2,如果m 1和m 2在同一轨道上运行,则它们的线速度之比v 1∶v 2=?;如果m 1的运行轨道半径是m 2的运行轨道半径的2倍,则它们的速度之比v 1∶v 2=?(10)若取地球的第一宇宙速度为8km/s ,某行星的质量是地球的6倍,半径是地球的1.5倍,这行星的第一宇宙速度约为多少?(11)某一高处的物体的重力是在地球表面上的重力的一半,则其距地心距离是地球半径R 的多少倍?(12)北京时间2002年12月30日零时40分,“神舟”四号无人飞船在酒泉卫星发射中心由长征二号运载火箭发射升空,飞船按计划进入预定轨道,用时t 秒绕地球运行了n 圈后,安全返回地面,这标志着我国航天技术达到新的水平.已知地球半径为R ,地面重力加速度为g ,试求飞船绕地球飞行时离地面的高度.(13)已知地球半径约6.4×106m ,又知月球绕地球的运动可近似看作做圆周运动,则可估算出月球到地心的距离约为多少?(结果保留一位有效数字)(14)在火箭发射卫星的开始阶段,火箭与卫星一起竖直上升的运动可看作匀加速直线运动,加速度大小为a =5m/s 2,卫星封闭舱内用弹簧秤挂着一个质量m =9kg 的物体,当卫星竖直上升到某高度时,弹簧秤的示数为85N ,求此时卫星距地面的高度是多少?(地球半径R =6.4×103km ,g =10m/s 2)(15)宇航员站在一星球表面上的某高处,沿水平方向抛出一个小球.经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L .若抛出时的初速增大到2倍,则抛出点与落地点之间的距离为3L .已知两落地点在同一水平面上,该星球的半径为R ,万有引力常数为G .求该星球的质量M .(16)用打点计时器测量重力加速度,如图6-8所示,A 、B 、C 为纸带上的3个点,测AB 间距离为0.980cm ,BC 间距离为1.372cm ,已知地球半径为6.37×106m ,试计算地球的第一宇宙速度为多少?(电源频率为50Hz)(17)2000年1月26日我国发射了一颗同步卫星,其定点位置与东经98°的经线在同一平面内.若把甘肃嘉峪关处的经度和纬度近似取为东经98°和北纬α=40°,已知地球半径R 、地球自转周期T 、地球表面重力加速度g (视为常量)和微波信号传播速度为c .试求该同步卫星发出的微波信号传到嘉峪关处的接收站所需的时间(要求用题给的已知量的符号表示).参考答案一、行星的运动 二、万有引力定律 三、引力常量的测定:(1)D(2)D(3)D(4)D(5)BD(6)BD(7)4(8)5.8天(9)94G(10)41g (11)p /q 2(12)42h(13)1∶3. 四、万有引力定律在天文学上的应用(1)B(2)A(3)B(4)B(5)AC(6)略(7)323RGT r 3π(8)rG 43π月g (9)3π/GT 2(10)3×105(11)6H/7(12)R -g /ω2.五、人造卫星、宇亩速度:(1)AC(2)AD(3)AC(4)C(5)小于(6)①22Mr R m ;②33R r (7)1∶2,1∶8,8∶1,1∶16(8)3.56×104km ,3.1×103m/s(9)①)(L 212m m m +;②)(G L 2213m m +π(10)6π;03R 3/6ωπ-g (11)21mg ,支持力;23mg ,拉力. 本章补充训练: (1)B(2)B(3)C(4)B(5)D(6)ABD(7)t /R 20v (8)21322231T R T R (9)1∶1,1∶2(10)16km/s(11)2(12)222n 4t R π2g -R(13)4×108m(14)3.2×103km(15)22Gt 3L R 32(16)7.9km/s .(17)C cos )4T R (R 2R )4T R (312223222αππg g 22-+.。
2015届高三物理一轮总复习同步训练:第4章 抛体运动与圆周运动 万有引力定律
5.以v0的速度水平拋出一物体,当其水平分位移与竖直分位移相等时,下列说法错误的是()
A.即时速度的大小是v0
B.运动时间是
C.竖直分速度大小等于水平分速度大小
D.运动的位移是
6.(2012·上海高考卷)如图,斜面上a、b、c三点等距,小球从a点正上方O点拋出,做初速度为v0的平拋运动,恰落在b点.若小球初速变为v,其落点位于c,则()
(2)计算物体的初速度大小;
(3)计算物体在前3s内和前6s内的位移大小.
第2节平抛运动
一、单项选择题
1.人站在平台上平抛一小球,球离手时的速度为v1,落地时速度为v2,不计空气阻力,如图中能表示出速度矢量的演变过程的是()
2.(2013·安徽卷)由消防水龙带的喷嘴喷出水的流量是0.28m3/min,水离开喷口时的速度大小为16m/s,方向与水平面夹角为60°,在最高处正好到达着火位置,忽略空气阻力,则空中水柱的高度和水量分别是(重力加速度g取10m/s2) ()
B.加速度大小为的匀变速直线运动
C.加速度大小为的匀变速曲线运动
D.匀速直线运动
9.如图所示,小船过河时,船头偏向上游与水流方向成α角,船相对于静水的速度为v,其航线恰好垂直于河岸.现水流速度稍有增大,为保持航线不变,且准时到达对岸,下列措施中可行的是()
A.减小α角,增大船速v
B.增大α角,增大船速v
C.vcosαD.
5.如图所示,在水平地面上做匀速直线运动的小车,通过定滑轮用绳子吊起一个物体,若小车和被吊的物体在同一时刻速度分别为v1和v2,绳子对物体的拉力为T,物体所受重力为G,则下面说法正确的是()
A.物体做匀速运动,且v1=v2
高考物理一轮复习 第三章 万有引力定律(第1课时)万有引力定律及应用课件(必修2)
活动二 课堂导学部分
活动一
问题1 万有引力定律
变式:已知引力常量G=6.67×10-11 N·m2/kg2,重力加速度g=9.8 m/s2,地球半径R=6.4×106 m,则可知地球质量的数量级是( )
A.1018 kg B.1020 kg C.1022 kg D.1024 kg
活动二 课堂导学部分
活动一
问题2 万有引力定律的应用
(1)天体表面重力加速度问题
活动二 课堂导学部分
活动一
问题2 万有引力定律的应用
【典型例题2-1】一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v.假 设宇航员在该行星表面上用弹簧测力计测量一质量为m的物体重力,物体静止时, 弹簧测力计的示数为N.已知引力常量为G,则这颗行星的质量为( )
活动二 课堂导学部分
活动一
问题2 万有引力定律的应用
活动二 课堂导学部分
活动一
问题2 万有引力定律的应用
【典型例题2-3】近年来,人类发射的多枚火星探测器已经相继在火星上着陆,正在 进行着激动人心的科学探究,为我们将来登上火星、开发和利用火星资源奠定了坚 实的基础.如果火星探测器环绕火星做“近地”匀速圆周运动,并测得该运动的周期 为T,则火星的平均密度ρ的表达式为(k为某个常数一 一课前预习部分
考纲考点 知识梳理 基础检测
活动二 课堂导学部分
活动一
问题1 万有引力定律
内容:宇宙间的一切物体都是相互吸引的,两个物体 间的引力大小跟它们的质量成积成正比,跟它们的距离平 方成反比,引力方向沿两个物体的连线方向。
高考物理一轮复习导学案:万有引力定律(第1课时)
万有引力定律及应用第1课时-----导学思练测学习目标:1.了解开普勒三定律内容,会用开普勒第三定律进行相关计算。
2.理解万有引力定律的内容,知道适用范围。
3.掌握计算天体质量和密度的方法。
一、考情分析考情分析试题情境生活实践类地球不同纬度重力加速度的比较学习探究类开普勒第三定律的应用,利用“重力加速度法”、“环绕法”计算天体的质量和密度,卫星运动参量的分析与计算,人造卫星,宇宙速度,天体的“追及”问题,卫星的变轨和对接问题,双星或多星模型。
二、考点总结与提升(一)开普勒行星运动定律1、一段探索的历程回扣教材,阅读课本P46--P48,涉及人物:托勒密、哥白尼、第谷、开普勒...2、开普勒行星定律【知识固本】定律内容图示或公式开普勒第一定律(轨道定律) 所有行星绕太阳运动的轨道都是,太阳处在的一个焦点上开普勒第二定律(面积定律) 对任意一个行星来说,它与太阳的连线在相等的时间内扫过的相等开普勒第三定律(周期定律) 所有行星轨道的半长轴的跟它的公转周期的的比都相等a3T2=k,k是一个与行星无关的常量【深入思考】已知同一行星在轨道的两个位置的速度:近日点速度大小为v 1,远日点速度大小为v 2,近日点距太阳距离为r 1,远日点距太阳距离为r 2。
(1)v 1与v 2大小什么关系? (2)试推导r 1v 1=v 2r 2【考向洞察】近似计算可以使题目更加简单! 【知识提升】①行星运动 近似圆 处理。
②开普勒行星运动定律不仅适用于行星绕太阳运转,对于卫星绕行星运转,也遵循类似的运动规律。
③比例系数k 与 有关,与行星或卫星质量无关,是个常量,但不是恒量,在不同的星系中,k 值 。
(二)万有引力定律 【知识固本】万有引力定律的内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与 成正比、与它们之间 成反比。
即F = ,G 为引力常量,通常取G =6.67×10-11N ·m 2/kg 2,由物理学家卡文迪什测定。
高考物理第一轮复习 第五单元 万有引力律 人造地球卫星专题精讲(含解析)
避躲市安闲阳光实验学校第五单元 万有引力定律 人造地球卫星『夯实基础知识』1.开普勒行星运动三定律简介(轨道、面积、比值) 2.万有引力定律及其应用(1) 内容:(2)定律的适用条件: (3) 地球自转对地表物体重力的影响。
地面附近:G2R Mm= mg ⇒GM=gR 2 (黄金代换式) (1)天体表面重力加速度问题 (2)计算中心天体的质量 (3)计算中心天体的密度 (4)发现未知天体 3、人造地球卫星。
1、卫星的轨道平面:由于地球卫星做圆周运动的向心力是由万有引力提供的,所以卫星的轨道平面一定过地球球心,球球心一定在卫星的轨道平面内。
2、原理:由于卫星绕地球做匀速圆周运动,所以地球对卫星的引力充当卫星所需的向心力,于是有实际是牛顿第二定律的具体体现3、表征卫星运动的物理量:线速度、角速度、周期等: 应该熟记常识:地球公转周期1年, 自转周期1天=24小时=86400s , 地球表面半径6.4x103km 表面重力加速度g=9.8 m/s 2月球公转周期30天4.宇宙速度及其意义(1)三个宇宙速度的值分别为(2)当发射速度v 与宇宙速度分别有如下关系时,被发射物体的运动情况将有所不同5.同步卫星(所有的通迅卫星都为同步卫星) ⑴同步卫星。
⑵特点 『题型解析』【例题1】下列关于万有引力公式221r m m GF =的说法中正确的是( )A .公式只适用于星球之间的引力计算,不适用于质量较小的物体B .当两物体间的距离趋近于零时,万有引力趋近于无穷大C .两物体间的万有引力也符合牛顿第三定律D .公式中万有引力常量G 的值是牛顿规定的【例题2】设想把质量为m 的物体,放到地球的中心,地球的质量为M ,半径为R ,则物体与地球间的万有引力是( )A .2R GMmB .无穷大C .零D .无法确定【例题3】设想人类开发月球,不断地把月球上的矿藏搬运到地球上.假如经过长时间开采后,地球仍可看成均匀球体,月球仍沿开采前的圆轨道运动则与开采前比较A .地球与月球间的万有引力将变大B .地球与月球间的万有引力将减小C .月球绕地球运动的周期将变长D .月球绕地球运动的周期将变短表面重力加速度:轨道重力加速度:【例题4】设地球表面的重力加速度为g ,物体在距地心4R (R 是地球半径)处,由于地球的引力作用而产生的重力加速度g ,,则g/g ,为( )A 、1;B 、1/9;C 、1/4;D 、1/16。
万有引力定律高中物理
有关高中物理“万有引力定律”的概念
有关高中物理“万有引力定律”的概念如下:
万有引力定律是描述物体之间相互引力的定律,由艾萨克·牛顿在1687年提出。
它表明任何两个物体之间都存在引力,且这个引力与它们质量的乘积成正比,与它们距离的平方成反比。
在高中物理中,万有引力定律通常表示为:F = G * (m1 * m2) / r^2,其中F 是两个物体之间的引力,m1 和m2 分别是两个物体的质量,r 是它们之间的距离,G 是引力常量,其值约为6.67430 × 10^-11 m^3 kg^-1 s^-2。
万有引力定律在天文学中有着重要的应用,它解释了行星轨道运动和天体运动的规律。
此外,万有引力定律也是研究宇宙学和天体物理学等领域的基础。
在高中物理中,学生通常会学习如何使用万有引力定律计算两个物体之间的引力,以及如何使用它来解释一些天体运动的规律。
同时,学生也会学习到万有引力定律的一些特殊情况,例如在地球表面的物体所受的重力可以看作是地球对该物体的万有引力。
总之,万有引力定律是高中物理中的一个重要概念,它描述了物体之间的引力规律,为我们理解天体运动和宇宙结构提供了基础。
(全国通用)高考物理一轮复习第五章万有引力与航天第1讲万有引力定律及其应用课件
三、天体运动的处理
1.基本方法
把天体(或人造卫星)的运动看成 匀速圆周运动 ,其所需向心力由 万有引力 提
供。
2.“万能”连等式
G���������������2���=ma=
������������2 ������
=
mrω2
=
mr4������������22
成反比
。
万有引力公式适用于质点间引力大小的计算,对于可视为质点的物体间的引力求解,也可
以利用万有引力公式,如两物体间距离远大于物体本身大小时,物体可看成质点;均匀球体
可视为质量集中于球心的质点,r为球心间的距离。
4.四个特性
四性 内容
普遍性 万有引力不仅存在于太阳与行星、地球与月球之间,宇宙间任何两 个有质量的物体之间都存在着这种相互吸引的力
确。
考点一
考点二
考点三
2.如图所示,火箭内平台上放有测试仪器,火箭从地面起动后,以加速度���2���竖直向 上匀加速运动,升到某一高度时,测试仪器对平台的压力为起动前压力的1178。已
知地球半径为 R,求火箭此时离地面的高度(g 为地面附近的重力加速度)。
考点一
考点二
考点三
解:火箭上升过程中,物体受到竖直向下的重力和向上的支持力,设高度为 h 时,
重力加速度为 g',由牛顿第二定律得
17
������
18 mg − mg′ = m × 2
解得 g'=49g
由万有引力定律知 G���������������2��� = mg, (������������+������ℎ������)2=mg'
高考物理万有引力定律知识点总结
高考物理万有引力定律知识点总结万有引力定律是物理学中的一条基础定律,揭示了物体之间的引力相互作用。
下面是对万有引力定律的一些知识点的总结,具体内容如下:1.引力的定义:引力是物体之间由于质量而产生的相互吸引力。
即所有物体都会对其他物体施加引力。
2.万有引力定律的表述:万有引力定律表明,任何两个物体之间的引力大小与它们的质量成正比,与它们之间的距离的平方成反比。
数学表述为F=G*(m1*m2)/r^2,其中F为引力大小,m1和m2分别为两个物体的质量,r为两个物体质心之间的距离,G为万有引力常数。
3. 万有引力定律的量纲:根据万有引力定律的表达式可以得出,引力的量纲为质量的平方与距离的立方的比值。
即[N] = [kg]^2/[m]^35.质心与引力:在万有引力定律中,两个物体之间的引力作用于它们的质心之间的位置。
所以在计算引力大小时,可以将质点近似看作质心。
6.引力与质量的关系:根据万有引力定律可知,引力的大小与物体的质量成正比。
质量越大,引力也越大;质量越小,引力也越小。
7.引力与距离的关系:根据万有引力定律可知,引力的大小与物体之间的距离的平方成反比。
距离越大,引力越小;距离越小,引力越大。
8.万有引力定律的应用:万有引力定律可以用来解释许多物理现象,如行星绕太阳运动、地球上物体的重力、卫星绕地球运动等。
同时,它也是开展天体力学研究的基础,有助于我们对宇宙的理解和天体运行规律的探索。
9.引力的方向:引力的方向始终指向两物体间的质心连线上。
即两物体之间的引力方向与它们质心连线的方向相同。
10.引力的叠加原理:若多个物体同时作用于一个物体上,则它们对该物体的引力按照叠加原理进行叠加。
总结:万有引力定律是物理学中的一条重要定律,揭示了物体之间的引力相互作用规律。
它的数学表达式清晰明确,并可以通过实验求得引力常数G的数值。
万有引力定律对于解释重力现象、天体运行规律等起着重要作用,是天体力学研究的基础。
高三物理一轮复习课件 万有引力定律及其应用
物理
第4节
万有引力定律及其应用
2.(多选)(2013· 浙江高考)如图 442 所示,三颗质量均为 m 的地 球同步卫星等间隔分布在半径为 r 的圆轨 道上,设地球质量为 M,半径为 R。下列 说法正确的是 ( ) GMm A.地球对一颗卫星的引力大小为 r-R2 GMm B.一颗卫星对地球的引力大小为 2 r Gm2 C.两颗卫星之间的引力大小为 2 3r 3GMm D.三颗卫星对地球引力的合力大小为 r2
第4节
万有引力定律及其应用
第4节
万有引力定律及其应用
万 有 引 力 定 律 及 其 应 用
物理
第4节
万有引力定律及其应用
万 有 引 力 定 律 及 其 应 用
物理
第4节
万有引力定律及其应用
(1)所有行星绕太阳运行的轨道都是椭圆。
(√ )
(2)行星在椭圆轨道上运行速率是变化的, 离太阳越远, 运行速率 越大。
物理
(
)
第4节
万有引力定律及其应用
解析:太阳位于木星运行轨道的一个焦点上,A 错误;不同的 行星对应不同的运行轨道,运行速度大小也不相同,B 错误; 同一行星与太阳连线在相等时间内扫过的面积才能相同,D 错 r火3 r木3 T火2 r火3 误;由开普勒第三定律得: 2= 2,故 2= 3,C 正确。 T火 T木 T木 r木
物理
3 3 2 4
3
第4节
万有引力定律及其应用
要点三
天体表面的重力加速度问题
重力是由于物体受到地球的万有引力而产生的,严格说 重力只是万有引力的一个分力,另一个分力提供物体随地球 自转做圆周运动的向心力,但由于向心力很小,一般情况下 GMm 认为重力约等于万有引力,即 mg= 2 ,这样重力加速度 R 就与行星质量、半径联系在一起,高考也多次在此命题。
高考物理一轮复习 第五章 万有引力定律 5.1 万有引力定律及其应用课件
的任何两个,可用
r31 r23
=
T12 T22
分析求解.(2)运用开普勒行星运动定律分析求解椭圆轨道
运动问题时,判断行星运动速度的变化,要分清是从近日点向远日点运动,还是由
远日点向近日点运动.行星(或运动天体)处在离太阳(或所环绕的天体)越远的位置,
速度越小;处在离太阳(或所环绕的天体)越近的位置,速度越大.
h,公转周期为365
天等.
4.注意黄金代换式GM=gR2的应用.
例1
(2015年江苏卷)过去几千年来,人类对行星的认识与研究仅限于太
阳系内,行星“51peg b”的发现拉开了研究太阳系外行星的序幕.“51peg b”绕其中心
恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的 210 ,该中
1 3
.又因为
9
v=2πTR,所以vv12=RR12TT21=3 3,解题时要注意公式的运用及各物理量之间的关系.
答案:BC
二、万有引力定律
1.公式 F=____G__m_1r_·2m__2____,其中G为引力常量,G=6.67×10-11 N·m2/kg2,可由卡文 迪许扭秤实验测定. 2.适用条件 两个_质__点__之__间___的相互作用. (1) 质 量 分 布 均 匀 的 球 体 间 的 相 互 作 用 , 也 可 用 本 定 律 来 计 算 , 其 中 r 为 _两__球__心__间__的距离. (2)一个质量分布均匀的球体和球外一个质点之间的万有引力也适用,其中r为 _质__点__到__球__心___之__间__的距离.
即时突破 (多选)两颗小行星都绕太阳做圆周运动,其周期分别是T、3T,则 ()
A.它们轨道半径之比为1∶3 B.它们轨道半径之比为1∶3 9 C.它们运动的速度之比为3 3∶1 D.以上选项都不对
【高考第一轮复习物理】万有引力与航天知识梳理
一. 万有引力定律:1. 内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比.公式:叫引力常量其中万2211221/1067259.6,kg m N G rm m GF ∙⨯==-2. 条件:此公式适用于质点间的相互作用.当两物体间的距离远远大于物体本身的大小时,物体可视为质点.均匀的球体可视为质点,r 是两球心间的距离.一个均匀球体与球外一个质点间的万有引力也适用,其中r 为球心到质点间的距离.(1)对万有引力定律公式中各量的意义一定要准确理解,尤其是距离r 的取值,一定要搞清它是两质点之间的距离. 质量分布均匀的球体间的相互作用力,用万有引力公式计算,式中的r 是两个球体球心间的距离.(2)不能将公式中r 作纯数学处理而违背物理事实,如认为r→0时,引力F→∞,这是错误的,因为当物体间的距离r→0时,物体不可以视为质点,所以公式F =Gm 1m 2r 2就不能直接应用计算.(3)物体间的万有引力是一对作用力和反作用力,总是大小相等、方向相反的,遵循牛顿第三定律,因此谈不上质量大的物体对质量小的物体的引力大于质量小的物体对质量大的物体的引力,更谈不上相互作用的一对物体间的引力是一对平衡力. 万有定律的应用1.讨论重力加速度g 随离地面高度h 的变化情况: 物体的重力近似为地球对物体的引力,即2)(h R Mm Gmg +=。
所以重力加速度2)(h R M Gg +=,可见,g 随h 的增大而减小。
2.算中心天体的质量的基本思路:(1)从环绕天体出发:通过观测环绕天体运动的周期T 和轨道半径r;就可以求出中心天体的质量M(2)从中心天体本身出发:只要知道中心天体的表面重力加速度g 和半径R 就可以求出中心天体的质量M 。
3.解卫星的有关问题:在高考试题中,应用万有引力定律解题的知识常集中于两点: 一是天体运动的向心力来源于天体之间的万有引力。
高三物理一轮复习《 万有引力定律》教案
芯衣州星海市涌泉学校郯城第三中学高三物理一轮复习万有引力定律★教学目的a) 体会物理研究中猜想与验证的魅力,可以踏着牛顿的足迹理解月地检验。
b) 进一步大胆地推导得出万有引力定律。
c) 理解引力常量的测量及意义。
★教学重点1. 万有引力推导的过程。
2. 万有引力公式的体会及应用。
3. 引力常量的有关知识。
★教学难点(一)万有引力推导的过程。
(二)万有引力公式的体会及应用。
★教学过程一、引入师:通过上节课的学习我们理解到:行星绕太阳做匀速圆周运动的向心力是由太阳与行星间的引力提供的,引力大小为2r Mm G F =,与两星体质量的乘积成正比,与两星体间隔的平方成反比。
师:牛顿接着又考虑:月球绕地球做匀速圆周运动的向心力是不是类似地由地球与月球间的引力提供?地球和月球间的引力与太阳和行星的引力会不会是同一性质的力,遵循同一规律2r Mm G F =呢? 师:正当牛顿在考虑这个问题时,苹果偶然落地引起了他的遐想。
苹果之所以会落回地面是因为地球对苹果的吸引力,还有即使把苹果放到最高的建筑物或者者最高的山顶上,苹果的重力也不会明显地减弱,说明地球对苹果的吸引力必定延伸到远得多的地方。
那假设把苹果放到月球所在的位置,它们应该还会受到地球给它的重力。
按这样的说法,月球肯定会受到地球给它的重力的,那我先前考虑的地球对月球的引力就应该就是月球受到的重力,月球绕地球做圆周运动的向心力就是由月球受到的的重力提供的。
于是牛顿作了一个大胆的猜想:地球对苹果的力、地球对月球的力及太阳对行星的力可能是同一种性质的力,它们可能遵循一样的规律。
二、月地检验师:猜想必须由事实来验证。
由于当时已经可以准确测定地球外表的重力加速度g=9.8m/s2,也能比较准确地测定月球与地球的间隔为60倍地球半径,r=*108m ;月球公转的周期为2天。
所以牛顿就想到了月地检验。
师:假设你是牛顿,你如何利用这些量对你的猜想进展验证呢?学生考虑,教师巡视,应该有不少学生可以考虑出来一点头绪。
高三物理一轮复习教案 万有引力定律及其应用
高三物理一轮复习教案 万有引力定律及其应用课时安排:2课时教学目标:1.掌握万有引力定律的内容2.理解宇宙速度的概念3.会用万有引力定律和牛顿运动定律解决天体的运动问题本讲重点:1.宇宙速度2.用万有引力定律和牛顿运动定律解决天体的运动问题本讲难点:宇宙速度、人造卫星的运动 考点点拨:1.测天体的质量及密度2.行星表面重力加速度、轨道重力加速度问题 3.人造卫星、宇宙速度 4.双星问题第一课时一、考点扫描 〔一〕知识整合 1.万有引力定律〔1〕内容:宇宙间的一切物体都是相互吸引的,两个物体间的引力的大小跟它们的_______成正比,跟它们的成反比。
〔2〕公式:F=,其中G=6.67×10-11N m 2/kg 2,叫。
〔3〕适用条件:公式适用于。
当两个物体间的距离远远大于物体本身的大小时,物体可视为质点。
均匀的球体也可以视为质点,r 是。
2.万有引力定律的应用〔1〕地球、行星表面的重力加速度及在轨道上的重力加速度问题表面重力加速度:2Mm GR =mg ,所以2R GMg =轨道上的重力加速度: 2()h GMmmg R h =+,所以2)(h R GM g h += 〔2〕天体的质量M ,密度ρ的估算测出卫星绕天体做匀速圆周运动的半径R 和周期T ,由2Mm GR =22()m R Tπ可得天体质量为:该天体密度为 :323300343M M R V GT R R πρπ=== 〔R 0为天体的半径〕。
当卫星沿天体表面绕天体运行时,R=R 0,那么ρ= 。
〔3〕卫星的绕行速度、角速度、周期与半径的关系由22GMm v m r r =得,v=,所以R 越大,v 。
由2Mm G r = m ω2r 得,ω=,所以R 越大,ω。
2GMm r =22()m r Tπ得,T =,所以R 越大,T 。
〔4〕三种宇宙速度第一宇宙速度:v 1=7.9km/s 2,是物体在地球表面附近绕地球做匀速圆周运动的速度。
【高中物理】15 16年高考物理第一轮复习万有引力公式总结
【高中物理】15 16年高考物理第一轮复习万有引力公式总结
【高中物理】15-16年高考物理第一轮复习万有引力公式总结
学习永无止境。
高中是人生发展变化最快的阶段,所以我们应该努力思考把每件事都
做好。
物理网为大家整理了万有引力公式的总结,希望能帮助更多的学生!
1.开普勒第三定律:t2/r3=k(=42/gm){r:轨道半径,t:周期,k:常量(与行星质量
无关,取决于中心天体的质量)}
2.万有引力定律:F=gm1m2/R2(g=6.6710-11nm2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:gmm/r2=mg;g=gm/r2{r:天体半径(m),m:天体质量(kg)}
5.第一(第二和第三)宇宙速度:V1=(g/R)1/2=(GM/R)1/2=7.9km/s;
v2=11.2km/s;v3=16.7km/s
6.地球同步卫星:gmm/(r地+h)2=m42(r地+h)/t2{h36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,f向=f万;
(2)天体的质量密度可以用万有引力定律来估计;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)当卫星轨道半径变小时,势能变小,动能变大,速度变大,周期变小(三个倒
数相加);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
万有引力公式的摘要已呈现在所有候选人面前。
我希望同学们认真阅读和学习,取得
更多精彩的成绩
高考
频道。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
〉
〉
vT C.行星运动的轨道半径为 2
Mm v2 4 2 解析:由G 2 m m 2 r r T
2v D.行星运动的加速度为 T
得
v 2 r v 3T 2 M G 2G
A对;
,C对;
无法计算行星的质量,B错;r
2
〉
2
随卫星轨道半径的增加,卫星的向心加速度、线速度、角速度都减 小,其运行周期将增加.
几种常见卫星
〉
(1)近地卫星
〉
〉
〉
近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的 GM gR, 轨道半径可近似认为等于地球的半径,其运行线速度 R 约为7.9 km/s,其运行周期 T 2R ,约为84 min.
〉
3.适用条件:
(1)公式适用于质点间的相互作用.当两个物体间的距离远远大于物体本身 的大小时,物体可视为质点. (2)质量分布均匀的球体可视为质点,r是两球心间的距离
知识点2:宇宙速度
〉 〉 〉
1.第一宇宙速度 (1)第一宇宙速度又叫环绕速度. 推导过程为:由mg=mv2/R=GMm/R2得:
v GM gR =7.9 km/s. R
a 2 r 2 T
T 2 2
T
,D对.
卫星的轨道参量随轨道半径变化的规律:
Mm v 2 2 G 2 man m m r m r r r T M 1 1 1 an G 2 即a n 2 ;同理 ; ;T r 3 r r r2 r3
d R
B. 1 d
R
R d C. R
2
R D. R d
2
4 .地球质量可表示为 M R 3 3
.因质量分布
4 M ' (R d )3 3
g 比为 g '
球壳对球壳内物体的引力为零,所以矿井下以(R-d)为半径的地球的质量为 ,解得M′=[(R-d)/R]3M,则矿井底部处的重力加速
解析:
2 由 GMm m 4π r 2 2
r
T
r13 T 12 知: 3 2 r2 T 2
,又卫星所
4 3
2 g 1 T 2 2 在处重力提供向心力 mg m r,可得: g T 2 1 T
,
故B正确。
例题二:
〉
一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为 v.假 设宇航员在该行星表面上用弹簧测力计测量一质量为 m的物体重力, 物体静止时,弹簧测力计的示数为N.已知引力常量为G,则这颗行星 的质量为( )
〉
,则
4 2 r 3 v 2 r M 2 GT G
〉
〉 3 V R 3 3r 3 3 3v 2 r 得: 3 2 2 GR T GT 4R 3G
变式:
〉
一行星绕恒星做圆周运动.由天文观测可得,其运行周期为T,速度 为v.引力常量为G,则( )
2015高考物理第一轮复习
第3讲 万有引力与航天
知识点1:万有引力定律及其应用
〉
1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上, 引力的大小与物体的质量 m1和m2的乘积成正比,与它们之间距离 r的平方成 反比. 2.表达式: F G
m 1m 2 ,G为引力常量, r2
〉
G=6.67×10-11 N·m2/kg2.
小结:天体质量和密度的估算
〉
(1)利用天体表面的重力加速度g和天体的半径R
Mm 由 G 2 mg R
2 gR ,得 M G
〉
M M 3g , 4 3 4RG V R 3
〉
(2)利用天体的卫星,已知卫星的周期T(或线速度v)和卫星的轨道半 径r
Mm v2 4 2 建立G 2 m m 2 r r T
〉
〉
〉
例题一:
〉
(2012·课标全国卷)假设地球是一半径为 R、质量分布均匀的球体.一矿井深 度为 d. 已知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处 的重力加速度大小之比为( ) A.
〉
1
解析:设地球的密度为ρ,地球的质量为M,根据万有引力定律可知,地球表 面的重力加速度 g GM 均匀的 R2
2 m v A. GN 4 m v B. GN
〉
C.
Nv 2 Gm
4 Nv D. Gm
解析:设卫星的质量为m′,由万有引力提供向心力,
v 得 G Mm m ' 2 R
2
R
①
v2 m' m'g R
N=mg
②
由已知条件:m的重力为N得
③
由③得g=N/m,代入②得:R=mv2/N
代入①得M=
mv 4 , 故A、C、D三项均错误,B项正确. GN
〉
(2)第一宇宙速度是人造地球卫星在地面附近环绕地球做匀速圆周运动时具有 的速度. (3)第一宇宙速度是人造卫星的最大环绕速度,也是人造地球卫星的最小发射 速度. 2.第二宇宙速度(脱离速度):v2=11.2 km/s,使物体挣脱地球引力束缚的最 小发射速度. 3.第三宇宙速度(逃逸速度):v3=16.7 km/s,使物体挣脱太阳引力束缚的最 小发射速度.
度g′=GM’/(R-d)2,则矿井底部处的重力加速度和地球表面的重力加速度之
d = R 1
,选项A正确;选项B、D、D错误.
答案:A
变式:
〉
〉
近地人造卫星1和2绕地球做匀速圆周运动的周期分别为T1和T2.设在 卫星 1 、卫星 2 各自所在的高度上的重力加速度大小分别为 g1 、 g2 , 则( ) 4 2 4 2 g1 T2 g 1 T1 g 1 T 2 3 T1 3 g 1 A. B. C. D. g T g T 2 2 g T 2 2 g 2 T 2 2 1
几种常见卫星
〉 〉
(2)同步卫星 同步卫星与地球自转同步,相对地球静止,可用作为通讯卫星,其特点如 下: ①轨道平面一定:轨道平面和赤道平面重合. ②周期一定:与地球自转周期相同, 即T=24 h=86 400 s. ③角速度一定:与地球自转的角速度相同. GMT Mm 4 2 3 G 2 m 2 r 4 r T ④高度一定:据 得r=