金属热处理工艺
金属热处理工艺
金属热处理工艺金属热处理是一种热加工工艺,它将金属放入高温环境中,使其发生改变,从而达到改善材料性能的目的。
金属热处理分为两种:烘和淬火。
烘是金属热处理工艺中最普遍的一种,它是将金属加热至一定温度,使结构发生变化,从而改善金属的物理性能。
而淬火是将金属加热到一定的温度,然后彻底冷却,使金属的结构发生变化,从而改变金属的力学性能。
烘是改变金属结构的重要方法之一。
它能够改变金属结构的稳定性,改变金属的硬度和强度,从而改善金属的力学行为。
另外,它还能改变金属的抗腐蚀性能,以及降低金属的热膨胀系数,以增强金属的热稳定性。
烘工艺还可以改变金属的表面形貌和结构,提高金属的加工精度和抛光性能。
淬火是改变金属的力学性能的重要方法之一。
它能够改变金属的抗拉应力、抗压应力和弹性系数,从而改善金属的力学行为。
淬火还可以改善金属的热处理性能,以及金属的韧性和抗疲劳性能。
此外,淬火可以改善金属的塑性性能,以及金属结构的稳定性,从而提高金属的塑性变形速度,减少金属结构的破坏率,从而改善金属的性能。
金属热处理工艺除了有烘和淬火外,还有其他热处理工艺,如渗碳、回火、回火和淬火、回火交替、硬质合金热处理等。
金属渗碳是将碳元素渗透到金属表面,从而改变金属的组织结构,从而改变金属的力学性能。
硬质合金热处理是一种将各种原料(金属和金属合金)经过加热和焊接等工艺合成而成的硬质合金,它能够改变金属的抗冲击性能,以及金属的抗热力学性能和抗老化性能,从而提高金属的使用性能。
金属热处理是一种重要的热加工工艺,它能够改善金属的力学性能和热处理性能,从而提高金属的使用性能。
金属热处理工艺有烘、淬火、渗碳和硬质合金热处理等,这些工艺改变金属的力学性能,以及金属的热处理性能,从而提高金属的使用性能。
因此,金属热处理工艺在金属行业越来越重要,可以满足不同应用场合对金属性能要求的需求。
金属的热处理工艺
金属的热处理工艺
金属热处理工艺是一种通过改变金属的组织结构和性能来达到特定要
求的工艺。
它主要包括退火、正火、淬火、回火、表面强化等多种方法,每种方法都有各自不同的特点和适用范围。
退火是一种使金属材料在一定温度下缓慢冷却,从而改变其组织结构
和性能的方法。
退火可以分为全退火和局部退火两种。
全退火是将整
个金属材料加热至一定温度并保持一段时间,然后缓慢冷却至室温。
局部退火则是只对金属材料的某些部位进行加热处理。
正火是一种使金属材料在高温下均匀加热并快速冷却的方法。
正火可
以使金属材料具有更高的硬度和耐磨性,但也会使其脆化。
淬火是一种将已经加热至高温的金属材料迅速浸入水或油中进行快速
冷却的方法。
淬火可以使金属材料达到最高硬度和强度,但也会导致
其脆性增加。
回火是一种使已经淬火的金属材料在一定温度下加热并保温一段时间,然后缓慢冷却的方法。
回火可以使金属材料的硬度和强度降低,但也
可以减少其脆性。
表面强化是一种将金属材料表面进行特殊处理以提高其耐磨性、耐腐蚀性等性能的方法。
常见的表面强化方法包括喷丸、电镀、氮化等。
在金属热处理工艺中,温度和时间是非常关键的因素。
不同的金属材料和不同的工艺需要不同的温度和时间来达到最佳效果。
此外,淬火时冷却介质(如水或油)也会影响结果。
总之,金属热处理工艺可以改变金属材料的组织结构和性能以达到特定要求。
不同的方法有各自不同的特点和适用范围,在实际应用中需要根据具体情况选择合适的方法,并控制好温度、时间等关键因素以保证效果。
金属的热处理工艺
金属的热处理工艺金属热处理工艺是通过加热和冷却金属材料来改变其物理和化学性质的过程。
这种工艺在金属材料的生产和加工过程中起着至关重要的作用。
热处理工艺可以改变金属材料的硬度、强度、韧性、耐蚀性和其他性能,从而满足不同工程应用的需求。
热处理工艺包括加热、保温和冷却三个基本步骤。
首先,将金属材料加热到一定温度,使其达到所需的组织状态。
不同的金属需要不同的加热温度和时间来达到最佳效果。
保温是将加热后的金属材料保持在一定温度下一段时间,以确保材料的组织均匀化。
最后,通过合适的冷却方法,使金属材料迅速冷却到室温,固定其新的组织状态。
常见的热处理工艺包括退火、正火、淬火、回火等。
退火是将金属材料加热到足够高的温度,然后缓慢冷却,以减轻材料内部的应力,改善其韧性和可加工性。
正火是将金属材料加热到临界温度以上,然后以适当速率冷却,以增加材料的硬度和强度。
淬火是将金属材料加热到临界温度以上,然后迅速冷却,使材料快速固化,从而获得高硬度和强度。
回火是在淬火后将金属材料再次加热到适当温度,然后冷却,以减轻淬火过程中产生的应力,提高材料的韧性和可靠性。
除了这些基本的热处理工艺,还有一些特殊的工艺,如表面硬化、气体渗碳、氮化等。
表面硬化是通过在金属表面形成硬质层,以提高材料的耐磨性和耐腐蚀性。
气体渗碳是将金属材料暴露在富含碳的气体环境中,使其表面富含碳元素,从而增加材料的硬度和耐磨性。
氮化是将金属材料暴露在氮气环境中,使其表面形成氮化层,从而提高材料的硬度和耐磨性。
金属热处理工艺的效果与多个因素有关,包括材料的成分、形状和尺寸,加热和冷却速率,以及工艺参数的控制等。
为了获得理想的效果,需要根据具体的材料和应用要求来选择适当的热处理工艺。
金属热处理工艺是一项重要的工艺,通过改变金属材料的组织状态,可以改善其性能和使用特性。
不同的热处理工艺可以使金属材料具有不同的硬度、强度、韧性和耐蚀性,以满足不同工程应用的需求。
正确选择和控制热处理工艺对于确保金属制品的质量和性能至关重要。
金属热处理工艺
回火方法 加热温度 力学性能
(℃)
特点
应用范围
硬度 (HRC)
低温回火 中温回火 高温回火
150~250 350~500 500~650
高硬度、耐磨 性 高弹性、韧性
良好的综合力 学性能
刃具、量具、 冷冲模等
弹簧、钢丝绳 等
连杆、齿轮及 轴类
58~65 35~50 20~30
表面热处理和化学热处理
金属热处理工艺
温度-时间关系曲线
热处理用于消除上一工艺 过程所产生的金属材料内部 组织结构上的某些缺陷,改 善切削性能,还可进一步提 高金属材料的性能,充分发 挥材料性能的潜力。因此, 大部分机器零件都要进行热 处理。
金属热处理类型:
整体处理、表面热处理和化学热处理。 整体处理包括:退火、正火、淬火和回火等;
淬火介质:淬火冷却时所用的介质。
钢的种类不同,淬火介质不同,常用介质:水、油。 水便宜,冷却能力较强,碳素钢件用的多。油冷却能 力较水低、成本高,但,可防止工件产生裂纹等缺陷, 合金钢多用。
后冷却到室温的热处理工 艺。
其目的是稳定组织,减少内应力,降低脆性, 获得所需性能。
一、表面淬火 表面淬火是仅对工件表层进行淬火的工艺。 目的:为了获得高硬度的表面层和有利的残余应力分布,提高
工件的硬度和耐磨性。 表面淬火加热的方法很多,如感应加热、火焰加热、电接触加
热、激光加热等。
二、化学热处理 化学热处理是将金属和合金工件置于一定温度的活性介质中保
温,使一种或几种元素渗入它的表层,以改变其化学成分、组织和 性能的热处理工艺。
与退火类似,但冷却速度比退火快。钢件在正火后的 强度和硬度比退火稍高,但消除残余应力不彻底。又 因操作简便、生产率高,所以,正火常优先采用。低 碳钢件可代替退火。
金属热处理的工艺过程介绍
金属热处理的工艺过程介绍金属热处理是指通过加热和冷却来改变金属材料的化学和物理性质的过程。
金属热处理可以改变材料的硬度、强度、韧性、耐磨性、耐蚀性等性能,使其达到设计要求,同时还可以提高材料的加工性能和使用寿命。
下面将对金属热处理的工艺过程进行详细介绍。
1.加热:金属热处理的第一步是将金属材料加热至一定温度。
加热温度取决于金属的种类和具体的处理要求。
常用的加热方法有电阻加热、火焰加热和感应加热等。
2.保温:在将金属材料加热到所需温度后,需要使其保持一定时间,以确保温度均匀分布,使金属内部结构逐渐达到热平衡状态。
保温时间的长短也取决于金属的种类和要求。
3.冷却:在保温后,需要将金属材料迅速冷却,以固定金属的结构状态和性能。
冷却方法有多种,如油冷、水冷、气体冷却等,具体取决于金属的种类和处理要求。
不同冷却速度将导致不同的组织和性能变化。
4.退火:退火是一种常用的金属热处理方法,通过加热和适当冷却,可以降低金属材料的硬度,增加其韧性。
退火可分为完全退火和回火两种形式。
完全退火是指将金属材料加热至一定温度,然后缓慢冷却至室温。
这种方法可消除应力,改善材料的韧性和塑性,减少晶粒大小,提高机械性能。
回火是指将钢件先加热至一定温度,然后进行适当冷却。
回火可以分为多种类型,如低温回火、中温回火和高温回火等,不同回火温度将产生不同的效果,如提高强度、韧性、抗冲击性等。
5.高温热处理:高温热处理是指将金属材料加热至较高温度,然后进行适当冷却,以改变材料的晶体结构和组织状态。
高温热处理可以提高金属的强度、硬度、耐磨性和抗腐蚀性等性能。
常见的高温热处理方法包括正火、球化退火、奥氏体化、固溶处理等。
这些方法可以调整金属的化学成分、晶体结构和组织状态,以改变其性能。
6.淬火:淬火是将金属材料快速冷却至室温,以快速固化其晶体结构和组织状态。
淬火可以极大地提高材料的硬度和强度,但同时也会增加其脆性。
因此,在进行淬火处理时需要根据具体要求进行适当的调节和控制。
常见热处理工艺
常见热处理工艺
热处理是指通过加热、保温和冷却等工艺,改变金属材料的组织和性能。
在工业生产中,热处理是一种重要的工艺手段,可以使金属材料具有更好的力学性能、物理性能和化学性能。
常见的热处理工艺有退火、正火、淬火、回火等。
1. 退火
退火是指将金属材料加热到一定温度,然后缓慢冷却至室温。
退火可以改善金属的塑性、韧性和可加工性,同时对于去除应力和改善表面质量也有很好的效果。
2. 正火
正火是指将金属材料加热到一定温度,然后在空气中自然冷却。
正火可以提高金属的硬度和强度,同时提高金属的韧性和可焊性。
3. 淬火
淬火是指将金属材料加热到一定温度,然后迅速浸入水或者油中冷却。
淬火可以使金属的硬度和强度提高,但是会降低金属的韧性。
淬火常用于制造高强度、高硬度的零件。
4. 回火
回火是指将经过淬火处理的金属材料再次加热到一定温度,然后冷却。
回火可以改善金属的韧性和韧度,同时可以去除淬火时产生的残余应力。
除了以上四种热处理工艺,还有渗碳、氮化、钝化等特殊的热处理工艺。
渗碳是一种将碳元素渗透到表面的热处理工艺,可以提高金属表面的硬度和耐磨性;氮化是一种将氮元素渗透到表面的热处理工艺,可以提高金属表面的抗腐蚀性;钝化是一种将金属表面形成一层氧化膜的热处理工艺,可以提高金属的抗腐蚀性。
热处理是一种非常重要的工艺手段,可以对金属材料的性能进行改善和调整,因此在工业生产中得到了广泛的应用。
不同的热处理工艺可以适用于不同的金属材料和不同的工艺要求,需要根据具体情况进行选择和应用。
金属材料的常用热处理工艺
金属材料的常用热处理工艺热处理是指通过加热和冷却等过程对金属材料进行加工和改性的一种方法。
通过热处理,可以改变金属材料的组织结构、物理性能和力学性能,从而提高其使用性能。
下面将介绍几种常用的金属材料热处理工艺。
1. 淬火淬火是通过快速冷却金属材料,使其迅速从高温状态转变为室温状态的热处理工艺。
淬火可以增强金属材料的硬度和强度,改善其耐磨性和耐腐蚀性。
淬火一般分为两个步骤:加热和冷却。
加热过程中,金属材料被加热到临界温度以上,以使石墨化和蓝晶质的形成,然后迅速冷却以形成马氏体。
2. 回火回火是将已经淬火的金属材料加热到较低的温度,然后进行慢速冷却的热处理工艺。
回火可以降低金属材料的硬度和脆性,提高其韧性和塑性。
回火过程中,金属材料的晶粒尺寸会增大,同时还会发生析出硬化。
3. 钝化钝化是一种通过在金属材料表面生成一层致密和稳定的氧化物膜来提高其耐腐蚀性能的热处理工艺。
主要适用于不锈钢和铝合金等材料。
钝化可以通过两种方法实现:化学钝化和电化学钝化。
化学钝化是将金属材料浸泡在酸性或碱性溶液中,使其表面生成一层氧化物膜;而电化学钝化则是通过在电解液中进行电化学处理,使材料表面生成一层致密的氧化膜。
4. 固溶处理固溶处理是指将固溶体或合金加热到高温,使其中的溶质原子溶解在基体中,然后迅速冷却以形成固溶体的一种热处理工艺。
固溶处理可以改变金属材料的组织结构和物理性能,提高其强度、硬度和耐腐蚀性。
常见的固溶处理方法包括固溶退火和固溶析出。
5. 淬硬与回火淬硬与回火是淬火和回火两种热处理工艺的组合。
淬硬与回火通常应用于高碳钢和合金钢等材料。
首先,将材料加热并进行淬火,然后通过回火来调整其硬度和韧性。
这种处理方法可以同时提高材料的硬度和韧性,以获得最佳的力学性能。
以上介绍了几种金属材料常用的热处理工艺,包括淬火、回火、钝化、固溶处理和淬硬与回火。
这些工艺可以根据需要,通过改变加热温度、保温时间和冷却速度等参数进行调控,以达到最好的材料性能。
金属材料的热处理工艺及性能改善技术
金属材料的热处理工艺及性能改善技术随着工业技术的不断发展,金属材料在各个领域中扮演着重要的角色。
然而,金属材料的性能往往需要根据具体需求进行改善。
而其中一种常见的方法就是通过热处理工艺来实现。
本文将介绍金属材料的热处理工艺及性能改善技术。
1. 热处理工艺热处理是指通过加热和冷却等一系列工艺过程,使金属材料的结构及性能得到改善的工艺方法。
常见的热处理工艺包括退火、正火、淬火、回火等。
1.1 退火退火是将金属材料加热到一定温度,保持一段时间后缓慢冷却的工艺。
通过退火可使金属材料的晶粒细化、消除内应力以及改善塑性和韧性等性能。
1.2 正火正火是将金属材料加热到适当温度,然后在空气中自然冷却的工艺。
正火可以提高金属的强度和硬度,但相对于淬火而言变形较小。
1.3 淬火淬火是将金属材料加热到临界温度,然后迅速冷却的工艺。
淬火可以使金属材料的组织变为马氏体,从而提高硬度和强度,但会减小其塑性和韧性。
1.4 回火回火是将淬火后的金属材料再次加热到适当温度后冷却的工艺。
通过回火可以减轻淬火带来的脆性,提高金属材料的韧性和塑性。
2. 性能改善技术除了热处理工艺外,还有一些其他的技术可以用于金属材料的性能改善。
2.1 表面处理技术表面处理技术可以通过改变金属材料的表面结构和成分,来提升其耐磨性、耐腐蚀性以及表面光洁度等性能。
常见的表面处理技术包括电镀、喷涂和化学处理等。
2.2 合金化合金化是指将金属材料与其他元素进行混合,形成新的合金材料的过程。
通过合金化可以改变金属材料的组织结构和成分,从而改善其硬度、耐磨性、耐腐蚀性等性能。
2.3 疲劳寿命改善技术金属材料在长时间的使用过程中往往会出现疲劳破坏。
为了提高金属材料的疲劳寿命,可以采用表面强化、应力调控和表面涂覆等技术来改善材料的耐疲劳性能。
2.4 加工技术金属材料在加工过程中,其组织结构可能会发生变化,从而影响其性能。
因此,通过精确的加工技术可以使金属材料的性能得到改善。
金属常见热处理工艺
1.热处理基本工艺整体热处理是对工件整体加热,然后以适当的速度冷却,以改变其整体力学性能的金属热处理工艺。
钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。
退火是将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷却,目的是使金属内部组织达到或接近平衡状态,或者是使前道工序产生的内部应力得以释放,获得良好的工艺性能和使用性能,或者为进一步淬火作组织准备。
正火或称常化是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。
淬火是将工件加热保温后,在水、油或其他无机盐溶液、有机水溶液等淬冷介质中快速冷却。
淬火后钢件变硬,但同时变脆。
为了降低钢件的脆性,将淬火后的钢件在高于室温而低于650℃的某一适当温度进行较长时间的保温,再进行冷却,这种工艺称为回火。
退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。
2.概念1)退火退火是一种金属热处理工艺,将金属加热到一定温度,保持足够时间,然后以适宜速度冷却(通常是缓慢冷却,有时是控制冷却)的一种金属热处理工艺。
目的是降低硬度,改善切削加工性;消除残余应力,稳定尺寸,减少变形与裂纹倾向;细化晶粒,调整组织,消除组织缺陷。
准确的说,退火是一种对材料的热处理工艺,包括金属材料、非金属材料。
而且新材料的退火目的也与传统金属退火存在异同。
目的:(1) 降低硬度,改善切削加工性.(2)消除残余应力,稳定尺寸,减少变形与裂纹倾向;(3)细化晶粒,调整组织,消除组织缺陷。
(4)均匀材料组织和成分,改善材料性能或为以后热处理做组织准备。
在生产中,退火工艺应用很广泛。
根据工件要求退火的目的不同,退火的工艺规范有多种,常用的有完全退火、球化退火、和去应力退火等。
2)正火正火,又称常化,是将工件加热至Ac3(Ac是指加热时自由铁素体全部转变为奥氏体的终了温度,一般是从727℃到912℃之间)或Acm(Acm是实际加热中过共析钢完全奥氏体化的临界温度线)以上30~50℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。
金属热处理基础知识
金属热处理基础知识金属热处理是通过控制金属材料在高温下的加热、保温和冷却过程,以调整其组织和性能的一种工艺。
在金属热处理过程中,我们需要了解一些基础知识,包括常见的热处理工艺、影响金属性能的因素以及常见的热处理设备。
一、常见的热处理工艺1. 固溶处理固溶处理是指将固溶体加热至高温,使其中存在的合金元素完全溶解,然后在适当的温度下保温一段时间,最后通过快速冷却来获得均匀的组织。
固溶处理通常用于合金强化、改善材料的韧性和疲劳性能等方面。
2. 然后冷却处理淬火是一种快速冷却工艺,通过将金属材料迅速从高温加热状态冷却至室温或低温,以使金属材料的组织发生相变,从而获得所需的性能。
淬火可以有效提高金属材料的硬度、抗拉强度和磨损性能。
3. 回火处理回火是指在淬火后,将材料重新加热到较低的温度,保温一段时间后冷却,以减轻淬火带来的材料脆性和应力。
回火可以降低材料的硬度,提高其韧性和可加工性。
二、影响金属性能的因素1. 温度温度是热处理过程中最重要的因素之一。
不同的金属和热处理工艺需要不同的温度范围,过高或过低的温度都会对金属的性能产生负面影响。
2. 时间保温时间是指在加热过程中保持金属材料在一定温度范围内的时间。
适当的保温时间可以使金属内部的相变和晶粒生长完成,从而得到所需的性能。
3. 冷却速度冷却速度会影响金属的组织和性能。
快速冷却可以获得细小且均匀的组织,从而提高金属的强度和硬度。
相反,缓慢冷却则可以使金属的组织更加柔韧。
三、常见的热处理设备1. 炉子炉子是最常见的热处理设备之一,在炉子内加热金属材料可以实现固溶、淬火和回火等工艺。
2. 水槽水槽是用于淬火的设备,在高温加热后,将金属迅速浸入冷却介质(通常是水或油)中,以实现材料的淬火工艺。
3. 回火炉回火炉用于回火处理工艺,将经过淬火处理的材料加热到适当的温度,保温一段时间后进行冷却。
4. 空气冷却器空气冷却器通常用于对材料进行较慢的冷却过程,可以通过控制冷却速度来调整材料的性能。
金属热处理工艺
真空热处理一、可控气氛热处理。
1)在少无氧化热处理技术的发展趋势中,首推可控气氛和真空热处理的发展迅猛。
在目前少品种、大批量生产中,尤其是碳素钢和一般合金结构钢件的光亮淬火、退火、渗碳淬火、碳氮共渗淬火、气体氮碳共渗仍以应用可控气氛为主要手段。
所以可控气氛热处理仍是先进热处理技术的主要组成部分。
2)制备气氛的气源。
我国在掌握和推广可控气氛过程中,在解决气氛问题上走过了漫长的道路。
最早的吸热式气氛发生炉主要用液化气,即纯度较高的丙烷或丁烷。
近几年已证实,我国的天然气资源丰富,为用甲烷制备吸热式气氛创造了良好的条件。
使用不用了生炉的直生式气氛也是一条不容忽视的途径。
3)加热设备。
密封多用炉和多用炉生产线自动化程度高,生产柔性大,适用性强,因而发展前途广,市场需求也大。
4)可控气氛热处理工艺。
渗碳。
高温渗碳是渗碳技术发展趋势之一。
提高渗碳温度可以显著提高生产率和节省能耗。
为此研究开发可用于1000℃以上的电辐射管材料是当务之急,低压渗碳技术的开发和完善为实现高温渗碳(1040℃)创造了条件。
钢件的渗碳层深度要求一般都较保守,有时也很盲目。
看来有必要研究决定渗碳层深度的力学因素,探讨减少渗层规定的可能性。
碳氮共渗。
碳氮共渗温度比渗碳低,工件畸变小。
在渗层深度为0.6mm以下时的渗速接近于930℃渗碳。
钢碳氮共渗时容易出现反常组织,淬火后表面硬度有下降现象,渗层中有较多的残留奥氏体。
如何合理选择工艺,充分发挥碳氮共渗潜力仍是值得探讨的问题。
过去曾有人提倡过高浓度碳氮共渗,也曾有过钢件碳氮共渗时表面含碳量在0.6%,具有最好综合力学性能的报道,为此众说纷纭。
看来有必要掌握这些规律,对生产工艺的优选有所帮助。
过去和现在都有对滚动轴承施行碳氮共渗以提高接触疲劳强度的报道。
例如AISI52100(相当于GCr15)钢制的球和滚柱则由过去的淬火、回火改为碳氮共渗、淬火、回火、轴承的破坏寿命提高了2.42倍。
看来,要充分发挥碳氮共渗工艺的潜力还有许多工作需要做。
金属热处理工艺
金属热处理工艺金属热处理工艺是一种通过加热和冷却金属材料来改变其物理、化学和机械性质的工艺。
这种工艺可以用于改善材料的硬度、强度、耐磨性、耐腐蚀性以及其他性能。
以下将介绍金属热处理工艺的一些常见方法。
首先是退火工艺。
退火是将金属加热到高温,然后缓慢冷却的过程。
这种方法可以消除金属内部的应力,改善其塑性和韧性。
退火还可以改变晶粒的大小和形状,从而影响金属的力学性能。
第二种常见的金属热处理方法是淬火。
淬火是将金属加热到高温,然后迅速冷却的过程。
这种方法可以使金属迅速冷却,从而产生高硬度和高强度。
淬火会在金属中形成马氏体,这是一种具有良好机械性能的组织结构。
第三种金属热处理方法是正火。
正火是将金属加热到适当温度,然后缓慢冷却的过程。
这种方法可以使金属获得良好的机械性能和一定的韧性。
正火是一种常用的工艺方法,通常用于提高金属的强度和硬度。
此外,还有时效处理。
时效处理是将金属加热到一定温度保持一段时间,然后迅速冷却的过程。
这种方法主要用于改善金属的强度和耐腐蚀性能。
时效处理可以使金属中的时效相转化成更稳定且可靠的相,从而提高金属的性能。
金属热处理工艺可以显著改善金属的性能和使用寿命。
通过选择合适的热处理方法,可以使金属具备各种不同的性能,满足不同工程需求。
然而,金属热处理也存在一些问题,例如可能会引入新的应力和变形,需要加以控制和解决。
总而言之,金属热处理工艺是一种重要的金属加工方法。
通过适当的加热和冷却过程,可以改善金属的物理、化学和机械性能。
这些工艺方法在各个行业和领域中被广泛应用,为我们创造更高质量和更可靠的金属产品。
如今,金属热处理工艺在工业领域中扮演着重要的角色。
它不仅可以提升金属材料的性能,还可以使得金属材料在复杂的工程环境中表现出色。
首先,金属热处理工艺可以通过改变晶粒结构来改善金属的性能。
在金属材料中,晶粒的大小和形状对其力学性能起着重要的影响。
通过退火工艺,可以使金属材料中的晶粒成长并变得均匀,从而提高其硬度和韧性。
金属热处理工艺基本知识
金属热处理工艺基本知识金属热处理工艺是指通过加热、保温和冷却等方式对金属材料进行一系列的热处理操作,从而改变其组织结构和性能的工艺过程。
金属热处理工艺被广泛应用于各个领域中,包括航空航天、汽车制造、电子制造等,以提高金属材料的强度、韧性和耐腐蚀性。
金属热处理工艺的基本目的是通过控制热处理过程中的温度、时间和冷却速率,使金属材料达到所需的物理和化学性能。
常用的金属热处理工艺包括退火、淬火、回火、正火等。
退火是指将金属材料加热到适当的温度,在该温度下保持一段时间后,缓慢冷却。
退火的目的是降低金属材料的硬度和强度,提高其塑性和韧性。
退火又分为全退火和球化退火两种类型,分别适用于不同的材料和应用场合。
淬火是将金属材料加热到适当的温度后,迅速冷却到室温,以快速固化金属的组织结构。
淬火可以使金属材料获得高硬度和高强度,但韧性相对较低。
淬火过程中的冷却速率和冷却介质的选择对最终的组织和性能有着重要影响。
回火是在淬火后再次加热金属材料到一定温度,并持续保温一段时间,然后缓慢冷却。
回火的目的是消除淬火产生的应力和改善金属材料的韧性。
回火的温度和时间取决于金属材料的成分和硬度要求。
正火是将金属材料加热到适当的温度,保持一定时间,然后缓慢冷却。
正火常用于低碳钢等材料,可以提高材料的强度和硬度,同时保持一定的塑性和韧性。
除了上述常见的金属热处理工艺外,还有多种特殊的热处理方法,如表面强化处理、气体渗碳等。
这些工艺方法可以通过在热处理过程中加入特定的物质或改变处理条件,使金属材料表面形成一层具有特殊性能的薄层,以提高金属材料的耐磨性、抗腐蚀性等。
金属热处理工艺的选择要根据具体的金属材料、工艺要求和应用环境来决定。
通过合理的热处理工艺,可以改善金属材料的性能,延长其使用寿命,提高产品质量,满足各种工业应用的需求。
金属热处理工艺在现代工业中发挥着重要的作用。
通过精确控制金属的加热和冷却过程,可以改善金属的物理和化学性能,进而提高产品的质量和性能。
金属的热处理工艺
金属的热处理工艺1. 引言金属是人类生活和工业制造的重要材料之一,其物理和化学性质可以通过热处理工艺进行调控和改善。
金属的热处理工艺是指对金属材料进行加热、保温和冷却等处理过程,以达到改变其组织结构和性能的目的。
本文将详细介绍金属的热处理工艺,包括加热方式、保温时间和冷却速率等关键参数,以及常见的金属热处理工艺方法。
2. 热处理工艺的分类金属的热处理工艺可以分为三类,包括回火处理、退火处理和淬火处理。
2.1 回火处理回火处理是指在淬火后,通过加热和保温使金属材料的硬度降低,从而改善其韧性和强度的过程。
回火可以分为低温回火、中温回火和高温回火三种方式,不同的温度对材料的机械性能有不同的影响。
2.2 退火处理退火处理是指将金属材料加热到一定温度并保温,然后慢慢冷却,以改善其结构和性能的过程。
退火可以分为全退火和局部退火,全退火是对整个金属材料进行处理,而局部退火只对特定部分进行处理。
2.3 淬火处理淬火处理是将金属材料迅速加热到临界温度并快速冷却,以增加其硬度和强度的过程。
淬火可以分为油淬、水淬和盐淬等不同的冷却介质。
3. 热处理工艺的参数金属的热处理工艺需要控制一系列参数,以确保最终得到所需的材料性能。
3.1 加热方式常见的金属加热方式包括电阻加热、火焰加热和感应加热。
不同的加热方式会对金属材料的结构和性能产生不同的影响。
3.2 保温时间保温时间是指材料在一定温度下保持稳定的时间。
保温时间的长短会直接影响到金属的组织结构和性能。
3.3 冷却速率冷却速率是指金属材料在热处理过程中从高温到低温的冷却速度。
不同的冷却速率会导致金属的组织结构和性能发生变化。
4. 常见的金属热处理工艺方法金属的热处理工艺方法非常丰富,根据不同的金属材料和需求,可以选择不同的方法进行处理。
4.1 硬化硬化是指通过淬火处理,使金属材料达到更高的硬度和强度。
硬化可以增加金属的耐磨性和耐腐蚀性,常用于制造刀具和摩擦零件等。
4.2 回火回火是指通过加热处理,使淬火后的金属材料硬度降低,从而提高其韧性和强度。
金属热处理工艺学
1.碳势:纯铁在一定温度下于加热炉气中加热时达到既部增碳也不脱碳并与炉气保持平衡时表面的含碳量.2.脱碳:钢中的碳也会和气氛作用,使钢的表面失去一部分碳,含碳量降低,这种现象成为脱碳。
3.过烧:加热温度过高,出现晶界氧化,甚至晶界局部熔化,造成工件报废。
4.放热式气体:原料气与较充足的空气混合,仅靠其本身的不完全燃烧所放出的热量就能维持其反应时,所制成的气体。
5.光亮热处理:是指在热处理过程中(主要是淬火和退火),采用气体保护或者是真空状态,避免或减少被热处理的工件表面与氧气接触而发生氧化,从而达到工件表面的光亮或相对光亮。
6.淬火烈度:淬火介质的冷却能力。
7.淬透性:钢材淬火时获得马氏体的能力的特性.8.淬硬性:淬硬性是指钢在淬火时的硬化能力,用淬火后马氏体所能达到的最高硬度表示,它主要取决于马氏体中的含碳量。
9.自回火:当淬火后尚未完全冷却,利用在工件内残留的热量进行回火。
10.退火:将组织偏离平衡状态的金属或合金加热到适当的温度,保持一定时间,然后缓慢冷却以达到接近平衡状态组织的热处理工艺。
11.表面淬火:被处理工件在表面有限深度范围内加热至相变点以上,然后迅速冷却,在工件表面一定深度范围内达到淬火目的的热处理工艺。
12.连续加热法:对工件需淬火部位中的一部分同时加热,通过感应器与工件之间的相对运动,把已加热部位逐渐移到冷却位置冷却,待加热部位移至感应器中加热,如此连续进行,直至需硬化的全部部位淬火完毕。
13.化学热处理:将工件放置于某种渗入元素的活性介质中,通过加热、保温和冷却,使渗入元素被吸附并扩散渗入工件表面层,以改变表面层化学成分和组织,从而使其表面具有与心部不同的特殊性能的一种工艺。
14.淬火:把钢加热到临界点Ac1或Ac3以上,保温并随之以大于临界冷却速度(Vc)冷却,以得到介稳状的M或B下组织的热处理工艺。
15.反应扩散:由溶解度较低的固溶体转变成浓度更高的化合物,这种扩散称为反应扩散。
金属热处理工艺
金属热处理工艺金属热处理,又称金属热处理工艺,是指在热处理设备中将金属材料经过一定的温度,时间和处理环境的变化,以改变材料的性能的工艺方法。
它可以分为固定、装配、冷处理和热处理四大类工艺。
热处理是机械加工中重要的一环,它是改变金属材料结构和性能的有效方法。
通过热处理可以改变金属材料的组织结构、提高它的硬度、强度、抗拉强度和塑性,改善金属材料的使用性能,以适应其他过程的要求,从而满足机械性能的要求。
热处理可以分为四种基本工艺:回火、正火、凝固和淬火。
回火是一种加热金属材料,使材料达到一定温度,然后将其放在稳定的环境中,使其恢复机械性能,有效改善金属材料的硬度、强度、抗拉强度和塑性,以改善材料的使用性能而被称为回火。
正火是一种加热金属材料,使其达到一定温度,然后冷却凝固,以改善金属材料的冷却性能而被称为正火。
凝固是一种加热金属材料,使其达到一定温度,然后慢慢冷却凝固,使金属材料的结构和性能达到最佳。
淬火是一种加热金属材料,使其达到一定的温度和时间,然后冷却凝固,使钢材有一定的淬火硬度,以改善金属材料的耐磨性能而被称为淬火。
金属热处理工艺还可以分为表面处理工艺和表面金属热处理工艺,主要用于改变金属材料的表面性能。
表面处理工艺可以分为氧化处理和热处理。
氧化处理包括涂装、渗氮、氧化处理和渗碳处理等。
热处理工艺包括热处理、熔炼处理、热处理和热处理表面金属处理等。
金属热处理的质量是非常重要的,它直接影响着金属产品的性能和使用寿命。
因此,在金属热处理中,必须采用严格的质量控制技术,对加工过程中的温度变化、温度超标、温度不均匀度以及处理环境进行严格检测,确保金属热处理的质量。
金属热处理工艺是一种重要的工艺,它的作用在机械加工中越来越重要。
如果金属热处理工艺在加工过程中未得到足够重视,将会严重影响机械性能,甚至破坏产品的使用寿命。
因此,在加工中,金属热处理工艺必须得到正确的应用,以便提高金属加工产品的性能,提高产品的质量和使用寿命。
金属热处理工艺(退火、正火、淬火、回火)
冷却也是热处理工艺过程中不可缺少的步骤,冷却方法因工艺不同而不同,主要是控制 冷却速度。一般退火的冷却速度最慢, 正火的冷却速度较快 ,淬火的冷却速度更快。但还 因钢种不同而有不同的要求,例如空硬钢就可以用正火一样的冷却速度进行淬硬。
金属热处理工艺大体可分为整体热处理、表面热处理、 局部热处理和化学热处理等 。 根据加热介质、加热温度和冷却方法的不同,每一大类又可区分为若干不同的热处理工艺。 同一种金属采用不同的热处理工艺,可获得不同的组织,从而具有不同的性能。钢铁是工业 上应用最广的金属,而且钢铁显微组织也最为复杂,因此钢铁热处理工艺种类繁多。
在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。 早在公元前 770~前 222 年中国人在生产实践中就已发现,铜铁的性能会因温度和加压 变形的影响而变化。白口铸铁的柔化处理就是制造农具的重要工艺。
公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。 中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过 淬火的。
三 钢的分类
钢是以铁、碳为主要成分的合金,它的含碳量一般小于 2.11% 。钢是经济建设中极为 重要的金属材料。 钢按化学成分分为碳素钢(简称碳钢) 与合金钢两大类 。碳钢是由生铁 冶炼获得的合金,除铁、碳为其主要成分外,还含有少量的锰、硅、硫、磷等杂质。碳钢具 有一定的机械性能,又有良好的工艺性能, 且价格低廉。因此,碳钢获得了广泛的应用。 但随着现代工业与科学技术的迅速发展,碳钢的性能已不能完全满足需要,于是人们研制了 各种合金钢。合金钢是在碳钢基础上, 有目的地加入某些元素(称为合金元素) 而得到的 多元合金。与碳钢比,合金钢的性能有显著的提高,故应用日益广泛。
金属的热处理工艺提高材料的强度和耐腐蚀性
金属的热处理工艺提高材料的强度和耐腐蚀性热处理是一种常用的金属加工方法,通过改变材料的组织结构和性能,可以显著提高金属的强度和耐腐蚀性。
本文将介绍金属热处理的基本原理、常见的热处理方法以及其对材料性能的影响。
一、热处理的基本原理热处理通过加热金属到一定温度,然后在适当的条件下进行冷却,从而改变材料的晶体结构和组织性能。
主要包括以下几个方面:1. 晶体相变:热处理可以引起金属晶体内部的相变,如固溶体的析出和溶解、共晶和共析反应等。
这些相变可以改变晶体的晶型、晶尺寸和晶界的分布,进而影响材料的强度和硬度。
2. 冷却速率控制:冷却速率是热处理中一个重要的参数,它决定了金属的组织和性能。
快速冷却可以产生细小的晶粒和均匀的组织,从而提高材料的强度和耐腐蚀性。
3. 时效处理:时效处理是一种通过热处理和长时间保温来改善金属组织和性能的方法。
通过时效处理,可以使金属的晶体再次发生相变,产生更加稳定的组织和性能。
二、常见的热处理方法1. 固溶处理:固溶处理是将金属加热到固溶温度,使固溶体中的溶质原子溶解在基体中,然后通过快速冷却来形成固溶体。
固溶处理可以提高金属的强度和硬度,改善材料的塑性和可加工性。
2. 淬火处理:淬火是一种快速冷却的热处理方法,通过迅速将金属从高温加热到淬火温度,然后迅速冷却,使金属产生马氏体转变。
淬火可以显著提高金属的硬度和强度,但对材料的塑性和韧性会产生负面影响。
3. 回火处理:回火是将淬火后的金属加热到回火温度,然后进行适当的保温时间,最后迅速冷却。
回火可以消除淬火过程中产生的内应力,提高材料的塑性、韧性和抗脆性能。
三、热处理对材料性能的影响1. 强度提高:通过热处理,可以使金属产生更加稳定的组织结构,包括细小的晶粒和均匀的相分布,从而提高材料的强度和硬度。
2. 耐腐蚀性改善:热处理可以改变金属的化学成分和晶体结构,提高材料的耐腐蚀性能。
例如,经过固溶处理和时效处理的铝合金可以获得更好的抗腐蚀性能。
金属材料热处理工艺精选全文
适用于中碳钢0.4~0.5%C
表面:M回
心部:S回(调质)或F+S(正火)
渗碳
向钢表面渗入碳原子的过程
提高表面含碳量,获得表硬里韧的性能
渗碳温度:900~950℃
适用于低碳钢0.1~0.25%C
淬火温度:
心部Ac3+30~50℃
表面Ac1+30~50℃
渗碳缓冷后组织:表层P+网状Fe3CⅡ;心部F+P;中间为过渡区
心部:M回+F(渗透时)
表面:M回+A’(少)+颗粒状Fe3C
获得马氏体组织
亚共析钢Ac3+(30~50)℃
共析钢Ac1+(30~50)℃
过共析钢Ac1+(30~50)℃
≦0.5%C, M
>0.5%C, M+A’
Ac1~Ac3,M+F
M+A’
M细+A’+粒状Fe3C
回火
将淬火钢加热到A1以下某温度后再冷却的热处理工艺
可编辑修改精选全文完整版
热处理方法
概念
目的
加热温度
组织
退火
将钢加热至适当温度保温,然后缓慢冷却(炉冷)
1.调整硬度,便于切削加工。
2.消除残余内应力
3.细化晶粒,为最终热处理作组织准备
亚共析钢Ac3+(30~50)℃
共析钢Ac1+(30~50)℃
过共析钢Ac1+(30~50)℃
F+P
P
P球
正火
将亚共析钢加热到Ac3+(30~80)℃,共析钢加热到Ac1+(30~80)℃,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表1
较强的淬火介质。如表
所示:
● 油主要用于合金钢
或小尺寸碳钢工件的 淬火。
● 熔融状态的盐也常用作淬火介质,称作盐浴。这 类介质只适用于形状复杂和变形要求严格的小件的分 级淬火和等温淬火。
● 近年来出现聚乙烯醇水溶液、三乙醇铵水溶液、 高浓度硝盐水溶液等淬火介质。
4) 淬火方法
●常用淬火方法如图所示。
度、保温时间和冷却速度。通常把加热速度、 最高加热温度、保温时间和冷却速度称为工件 热处理的四个要素,也称工艺参数。正确地确
定和保证实施好工艺,就能获得预期的效果, 并将得到满意的性能。
从数学的观点看,热处理的质量是温度和 时间的函数,所以工件的热处理工艺规范可用 时间一温度为坐标表示出来,任何工件的热处 理,都应包括:
●正火具有以下几方面的应用:
① 含碳量≤0.25%经正火后硬度提高,改善了切削 加工性能。
② 消除过共析钢中的二次渗碳体。 ③ 作为普通结构零件的最终热处理。
●正火的冷却速度稍快于退火,由C曲线可知,二
者的组织是不一样的。正火后的组织比退火细,如图 所示。
图3 正火与退火后组织的比较
2) 钢的淬火
目的:降低硬度,改善切削加工性能;形成球状
珠光体,为后面的淬火作组织准备。
● 扩散退火
将工件加热到略低于固相线温度,保温后缓慢冷 却的热处理工艺称为扩散退火。
目的:消除成份偏析。
●去应力退火 将工件加热到 Ac1以下某一温度,保温后随炉冷却
的热处理工艺称为去应力退火。
目的:消除铸、锻、焊的内应力。
温后●空正气火中是冷将却钢的加热热处到理工Ac3艺或。Accm以上30~50℃,保
淬火是将钢加热到临界点以上,保温后以大于
Vk的速度冷却的热处理工艺。
目的:为了获得马氏体,提高钢的力学性能。
●淬火温度
选择淬火温度的原则是 获得均匀细小的奥氏体。 如图所示,一般淬火温度 在临界点以上。
图4 碳钢的淬火温度范围
组●织对为亚马共氏析体钢,,如淬图火所温示度。为Ac3+30~50℃,淬火
为●马氏亚体温加淬铁火素:体加,热如温图度所在示Ac。1~亚A温c3之淬间火,也淬是火一组种织强
韧化处理方法。
图5 马氏体
图6 马氏体加铁素体
● 对共析钢和过共析钢
组淬织火为温细度马为氏Ac体1+加30颗~粒50状℃, 渗碳体和少量残余奥氏体, 如图所示。
图7
●对合金钢,一般淬火温度为临界点以上50~100℃。
将亚共析钢加热到
Ac3 +30~50℃、过共析
钢加热到Ac1+30~50℃,
保温后快冷到Ar1以下
某一温度保温,然后出
炉空冷。如图是高速钢
等温退火与普通退火的
比较
图3 高速钢等温退火与普通退火的比较
● 球化退火 将共析钢或过共析钢加热到 Ac1 +20~30℃,保温
适当时间后缓慢冷却的热处理工艺称为球化退火。
●退火:将钢加热、保温,然后缓慢冷却的热处理
工艺。 退火工艺可分为完全退火、等温退火、球化退火、
去应力退火、再结晶退火等,如图所示。
图2 各种退火及正火的加热范围
图3 箱式炉
● 完全退火
将亚共析钢加热到Ac3+30~50℃,保温后缓冷
的退火工艺称为完全退火。
目的:降低硬度,消除内应力。
● 等温退火
1. 金属热处理工艺基本知识
●都应包括 四个重要因素:
(1)加热速度V; (2)最高加热温度T; (3)保温时间h; (4)冷却速度Vt.
图1 热处理规范示意图
(a)简单的热处理规范 (b)复杂的热处理规范
2.钢的热处理基本工艺及应用 1) 钢的退火与正火
● 退火与正火的目的
① 调整硬度以便进行切削加工 ② 消除残余应力 ③ 细化晶粒,改善组织 ④ 为最终热处理做好组织上的准备
● 测定钢的淬透
性最常用的方法是
末端淬火法。
●将φ25×100mm 的标准试样经奥氏 体化后,对末端进 行喷水冷却。如图 所示。
提高淬火温度有利于合金元素在奥氏体中充分溶解和 均匀化。
3) 淬火介质
●为了保证得到马氏体
组织,淬火速度必须大 于临界冷却速度Vk,但 往往会引起工件变形和 开裂。
● 要想既得到马氏体又 避免变形和开裂,理想 的淬火冷却曲线如图所 示。
图8 理想的淬火冷却曲线
● 最常用的淬火介质是水和油。
● 水是经济且冷却能力
● 单液淬火法
将加热的工件放入一 种淬火介质中连续冷却 至室温的操作方法,如 水淬、油淬等。
● 双液淬火法
图9 各种淬火方法示意图
将加热的工件放入一种冷却能力较强的介质中冷却, 然后转入另一种冷却能力较弱的介质冷却的淬火方法。 如水淬油冷或油淬空冷。双液淬火主要用于形状复杂 的高碳钢工件及大型合金钢工件。
5) 钢的淬透性
● 淬透性
淬透性是指钢在淬火时获得淬硬层深度的能力。 一般规定由工件表面到半马氏体区的深度作为淬硬 层深度。
● 淬透性对钢力 学性能的影响:
钢的淬透性直接 影响其热处理后 的力学性能。
● 淬透性高的钢, 其力学性能沿截 图10 面均匀分布
● 淬透性低的钢,其截面心部的力学性能低
● 淬透性的测定及其表示方法
增补章: 金属材料与金属热处理工艺基本知识
B 金属热处理工艺基本知识
热处理是指通过对工件的加热、保温和冷却,使
金属或合金的组织结构发生变化,从而获得预期的性 能(如机械性能、加工性能、物理性能和化学性能等) 的操作工艺称为热处理。
工件热处理的目的是通过热处理这一重要手段, 来改变(或改善)工件内部组织结构,从而获得所需要 的性能并提高工件的使用寿命。
● 分级淬火法
将加热的工件在Ms点附近的盐浴或碱浴中淬火, 然后取出缓冷的淬火方法。其特点是显著减少淬火 变形与开裂,是用于截面尺寸较小淬透性较高的钢近温度的盐浴或碱 浴中冷却并保温足够时间而获得下贝氏体组织的淬 火方法。其特点是工件具有良好的综合力学性能, 一般不必回火。多用于形状复杂和要求较高的小件。
热处理工艺一般包括加热、保温、冷却三个过
程,有时只有加热和冷却两个过程。这些过程互
相衔接,不可间断。加热是热处理的重要工序之
一。
1. 金属热处理工艺基本知识
●热处理过程中四个重要因素:
在热处理时,因工件的大小不同,形状不 同,材料的化学成分不同,所以在具体热处理 过程中,要用不同的加热速度、最高的加热温