数字微波传输系统的应用与发展资料

合集下载

SDH应用与发展

SDH应用与发展

SDH应用与发展摘要:SDH(Synchronous Digital Hierarchy,同步数字系列),是一种将复接、线路传输及交换功能融为一体、并由统一网管系统操作的综合信息传送网络。

已应用于我国石油专用长途光纤通信传输系统工程设计,成为石油工业实现采油自动化、生产管理现代化、信息化带动产业化的重要基础。

SDH可实现网络有效管理、实时业务监控等多项功能,因此成为了当今世界信息领域在传输技术方面发展和应用的焦点。

关键词:SDH;同步传输;复用一、SDH概述1.SDH的定义SDH是同步数字体系(Synchronous Digital Hierarchy)的缩写,根据ITU-T 的建议定义,它为不同速度的数字信号的传输提供相应等级的信息结构,包括复用方法和映射方法,以及相关的同步方法组成的一个技术体制。

2.SDH传输网的基本构成SDH有全世界统一的网络节点(NNI),从而简化了信号的互通以及信号的传送、复用、交叉连接和交换过程,它有一套标准化的信息结构等级,称为同步传送模块(Synchronous Transport Module),STM-N。

当n=1、4、16时,其最基本的模块为STM-1、STM-4和STM-16,并具有一种块状帧结构,允许安排丰富的开销比特用于网络的运行、管理和维护(OAM)。

3.SDH技术的传输原理SDH用来承载信息的是一种块状帧结构,块状帧由纵向9行和横向270×N 列字节组成,每个字节含8b(bit)。

整个帧结构由段开销区、净负荷区和管理单元指针区三部分组成。

其中段开销区主要用于网络的运行、管理、维护及指配,以保证信息能够正常灵活地传送,管理单元指针用来指示净负荷区域内的信息首字节在STM-N帧内的准确位置,以便接收时能正确分离净负荷。

净负荷区域用来存放用于信息业务的比特和少量的用于通道维护管理的通道开销字节。

SDH的帧传输时,按由左向右,由小到大的顺序排成串型码流依次进行。

微波无线通信技术理论与应用

微波无线通信技术理论与应用

微波无线通信技术理论与应用一、引言随着信息技术的飞速发展和普及,人们对于通信技术的需求不断增加。

微波无线通信技术作为一种高速、高效的无线通信方式,具有较高的实用价值和发展空间。

本文将系统介绍微波无线通信技术的发展历程、基本原理、应用领域与未来发展趋势。

二、微波无线通信技术发展历程微波无线通信技术起源于20世纪30年代,当时主要是应用于军事领域。

二战之后,微波无线通信技术开始应用于民用领域。

20世纪60年代,移动通信开始发展,微波无线通信技术成为移动通信的主要技术之一。

70年代末80年代初,数字通信技术的发展促使微波无线通信技术向数字化方向发展,数字微波无线通信技术开始应用。

近年来,随着5G技术的推广,微波无线通信技术得到广泛应用。

三、微波无线通信技术基本原理1.无线信号的传输方式微波无线通信技术的基本原理是利用电磁波在空气中的传播,接收和发送信息。

电磁波的特点是传播速度快、穿透力强、抗干扰能力强等,因此微波无线通信技术成为远距离通信的主要手段。

2.微波无线通信的频谱微波无线通信技术一般使用的频段有UHF、VHF、SHF、EHF、THF等。

UHF(0.3-3GHz)主要用于民航、国防等领域的通信,VHF(3-30MHz)主要用于海事通信、天气通信、民用航空领域等。

SHF(3-30GHz)主要用于卫星通信、雷达和通信设备等,EHF(30-300GHz)主要用于雷达和无线通信设备等。

3.微波无线通信的常用技术常用的微波无线通信技术包括频分多路复用(FDMA)、时分多路复用(TDMA)、码分多路复用(CDMA)和正交分复用(OFDM)等。

四、微波无线通信技术应用领域微波无线通信技术具有高速、高效和大容量等优点,因此在许多领域得到了广泛应用。

1.移动通信领域无线通信技术被广泛应用于移动通信领域,如GSM、CDMA、WCDMA、TD-SCDMA等。

现在的移动通信网络已经发展到了第四代(4G)和第五代(5G)。

SDH数字微波通信技术的特点及其应用

SDH数字微波通信技术的特点及其应用

SDH数字微波通信技术的特点及其应用摘要:SDH是当今世界高速发展下所形成的一种通信技术,它的成功运用促进了整个通信技术的发展。

本文通过对 SDH数字微波技术特性的简单剖析,进而讨论 SDH技术在当今世界的具体运用,关键词:SDH数字微波通信技术;技术特征;运用特点引言:SDH的数字微波技术是为了适应当前的发展和对通信技术的需要而产生的。

SDH微波技术在实际中具有很优秀的传输能力和良好的传输性能,目前已广泛用于广播电视产业,可以在基站建设、微波网络建设、信号传输网络建设等各个领域提高信号传输的稳定性。

它能很好地弥补现有微波技术的缺陷,使当代社会通信的品质得到了显著的提升。

一、SDH数字微波通信技术概述1.1 SDH通信的数据传送.从 SDH系统总体上分析,数字微波的传送是一个非常繁琐的环节,它在这个系统中扮演着非常关键的角色,它在接收信号的同时也扮演着很重要的角色,而数字微波的发射是通过一个端向下一个端发射,这个过程中要根据具体的情况对传播线进行相应的调整,所以在这个环节中,数字微波中继和分支台就扮演了很关键的角色。

详细地说,从一个终端接收到一个数字微波信号,需要进行合理的数字压缩,然后再对其进行调整、加工,最终得到一个规范的中频数字调制,保证了传输过程的顺畅和方便。

然后,将接收到的数据传输到传输装置中,经过一系列的数字加工,以保证传输介质的安全性,然后将微波信号传输给中继站,再将微波信号传输给接收台。

可见微波信号的传递是一个非常繁琐的环节,它需要对其进行进一步的深度加工,以确保通信的品质。

二.SDH技术应用的关键特点2.1XPIC的交叉极化技术SDH是利用 XPIC交叉极化技术来实现减少对数字传输的干扰,从而消除了对数字传输的负面影响。

XPIC的交叉极化技术的实施,要求采用技术人员对多态系统进行适当的调整,提高系统的频域利用率,提高系统的频谱利用率,从而提高系统的传输能力。

XPIC的交叉极化技术的主要工作是在信号经过交叉极化后,去除了发送时的正交信号,减少了发送信号的冗余,减小了干扰信号的目标体积,减小了干扰信号的信号强度。

关于数字微波传输技术在广播电视中的应用探讨

关于数字微波传输技术在广播电视中的应用探讨

关于数字微波传输技术在广播电视中的应用探讨1. 引言1.1 研究背景数字微波传输技术在广播电视中的应用越来越广泛,被广播电视行业广泛采用。

数字微波传输技术可以提供更高质量的信号传输,更高速度的数据传输,更可靠的传输服务,有效提升了广播电视信号的传输效率和质量。

研究数字微波传输技术在广播电视中的应用具有重要意义。

随着科技的不断发展,数字微波传输技术在广播电视中的应用也在不断完善和拓展。

目前仍存在一些挑战和问题,比如信号干扰、传输距离限制、设备成本较高等。

为了更好地解决这些问题,需要对数字微波传输技术进行深入研究和探讨。

本文旨在开展关于数字微波传输技术在广播电视中的应用探讨,以期为广播电视行业提供更好的传输技术支持和解决方案。

通过深入了解数字微波传输技术的概述、应用、优势、挑战和未来发展方向,可以更好地把握数字微波传输技术在广播电视中的重要性和未来发展趋势,为广播电视行业的发展提供参考和指导。

1.2 研究目的研究目的是通过深入探讨数字微波传输技术在广播电视领域的应用,分析其优势和挑战,探讨未来发展方向,从而揭示数字微波传输技术在广播电视中的重要性和潜在价值。

通过本研究,我们旨在为行业相关人士提供关于数字微波传输技术的全面了解,帮助他们更好地应用这一技术,提高广播电视传输质量和效率。

通过对数字微波传输技术的未来发展趋势进行分析,我们也希望为科研人员和企业提供一些建议和参考,促进数字微波传输技术在广播电视领域的进一步创新和应用。

本研究旨在加深对数字微波传输技术在广播电视中的作用认识,为推动行业发展和技术进步做出贡献。

2. 正文2.1 数字微波传输技术概述数字微波传输技术是一种基于数字信号传输的无线通信技术,它使用微波频段来传输数据和信息。

与传统的模拟微波传输技术相比,数字微波传输技术具有更高的数据传输速度、更强的抗干扰能力和更稳定的传输质量。

数字微波传输技术可以分为两种主要类型:点对点传输和点到多点传输。

数字微波通讯传输系统

数字微波通讯传输系统

数字微波通讯传输系统系统概述:数字微波采用SDH/PDH组网,设备配置灵活,可同时实现三网融合,干线传输。

微波收发信机采用NEC、Ericsson小功率,大容量,高增益,相对要求接收门限值低的顶尖产品,传输距离远,能有效对抗雨衰,设备的频点现场通过软件可调,能有效地避免同频干扰。

发射系统具备ATPC发信功率控制、AGC自动增益控制、抗干扰FEC前向纠错,自适应输入电平的正常波动, 具有空间分集功能,频率稳定度高,高温稳定性好。

符合相关的ITU标准和我国工信部、广电总局标准,技术先进成熟,且功耗低,MTBF值达26万小时,设备运行稳定可靠。

系统特点:数字微波点对点传输系统提供标准机型和全室内型两种设计。

标准型设备由室外高频部分(ODU)、室内中低频(IDU)两大部分组成,高频部分与天线馈源无损耗连接;ODU与IDU通过中频电缆连接,安装灵活。

工作频段为8GHz、11GHz、13GHz、18GHz、 23GHz传输,PDH容量为E1、2E1、4E1、5E1、16E1、22E1;SDH传输容量从100Mbps、155.52Mbps、270Mbps、622Mbits。

本设备采用模块化设计,可提供ASI、DS3、E3、100BASE-T、STM-1、STM-4多种接口模块,可实现图像、语音、数据单向和双向接入,无人值守,中继传输,便于用户根据需求灵活配置。

该设备可选用1+0、1+1或N+1热备份方式。

通过前后面板指示,网管系统检测设备的工作状况、接收电平、发信功率等,控制设备的工作状态。

系统优势:数字微波传输接收门限、相位噪声等指标要求很低,接收灵敏度高、抗干扰能力强,稳定可靠。

系统设备设备适合于高寒、高温、高湿的各种环境,并且具有体积小、重量轻、结构合理,易于安装、调试和维护方便等特点。

特别适合于没有机房情况下,无人值守,接力传输的应用。

广泛应用于电信、电力、广电、军事、水利、油田、交通及各种专业网络,特别适用于移动、联通、铁通等的基站间传输及互联互通和各政府、企业、院校的网络连接。

微波射频技术的发展趋势与应用前景

微波射频技术的发展趋势与应用前景

微波射频技术的发展趋势与应用前景微波射频技术是一种基于电磁波的通信技术,它能够在高频率范围内传输信号,具有传输速度快、抗干扰性强、信号延迟低等优点,因此在无线通信、雷达、卫星通信等领域得到了广泛应用。

随着信息技术的飞速发展,微波射频技术也在不断地升级与更新。

本文将介绍微波射频技术的发展趋势以及未来的应用前景。

一、微波射频技术的发展历程微波射频技术的历史可以进行概括为三个阶段。

第一阶段是20世纪30年代至60年代,这个阶段内微波射频技术主要处于研究阶段,人们开始探索利用电磁波进行通信的可能性。

在第二阶段,80年代至90年代,微波射频技术的应用范围非常广泛。

无线通信、雷达、卫星通信等领域都开始使用微波射频技术。

在这个时候,微波射频技术已经比较成熟,且设备制造技术也大大进步。

第三阶段是21世纪以来,微波射频技术已经进入了数字化与智能化阶段。

与此同时,微波射频技术也在不断创新与改进。

二、微波射频技术的发展趋势在微波射频技术的发展过程中,存在着许多可以预见的趋势。

以下是几个主要的发展趋势:1. 高频率随着通信技术的发展,需要传输的数据在不断增多,因此需要更高的频率来实现更大的带宽。

同时,新的无线通信协议如5G、6G等也需要更高的频率支持,因此未来微波射频技术将向更高频率的方向发展。

2. 小型化随着电子设备的不断迭代更新,微波射频器件更趋向小型化。

对于手机等智能设备来说,小型化的需求非常强烈。

未来的微波射频技术设备将向更加小型化的方向发展。

3. 数字化作为一种通信技术,数字化是微波射频技术发展的必然趋势。

未来的微波射频技术将会更加数字化,例如数字化调制、数字信号处理等。

4. 智能化在未来,微波射频技术不仅需要更高频率和更小型化的设备,还需要能够智能地进行数据处理和控制。

比如智能自适应天线阵等技术将会大力发展。

5. 绿色环保随着环保意识的不断提高,未来的微波射频技术不仅要更高效、更省电,还要更加环保,减少对环境的影响。

SDH数字微波通信关键技术及应用

SDH数字微波通信关键技术及应用

探讨SDH数字微波通信的关键技术及应用摘要:本文主要介绍了sdh 数字微波通信系统的组成及其采用的关键技术,同时探讨了现代通信中数字微波的应用。

关键词:现代通信sdh数字微波关键技术一.引言sdh微波通信是新一代的数字微波传输体制。

在sdh数字微波通信中,微波只是作为一种载体,其主要任务就是传送数字信息到终端站,因其具有直线空间传输的特点,因此,sdh微波通信又称为视距数字微波中继通信。

本文主要介绍了sdh数字微波通信系统的组成及其采用的关键技术,同时探讨了现代通信中数字微波的应用。

二.sdh数字微波通信系统的组成数字微波中继通信线路示意图如图1所示,其中直线表示数字微波中继通信线路的主干线,其长可以达到几千公里;短划线表示中继线路的支线,在一条主干线上会出现若干条支线,而一条数字微波中继通信线路就是由主干线、若干支线、线路两端的终端站、大量中继站和分路站构成。

数字微波传输线路的组成形式也可以是一个微波枢纽站向若干方向分支。

微波站可分为数字微波终端站、数字微波中继站、数字微波分路站,但若微波站具有2个以上方向的上、下话路,则可称为数字微波枢纽站,这些都是由其工作性质的不同而分类的。

sdh 数字微波终端站具有相当多的功能,具体有:公务联络方面所具有的全线公务和选站公务2种能力;网络管理方面的网管系统配置管理及遥控、遥测指令,这个功能是通过软件将终端站设定为网管主站,然后将各站汇报过来的信息收集起来,再监视线路运行质量并执行,需要时还可通过q3接口与电信管理网(tmn)连接;另外还具有识别倒换基准、发送与接收倒换指令、启动与证实倒换动作等的备用倒换功能。

微波终端站的发送端与收信端的工作是不一致的,发送端的主要工作包括纠错编码、发信差分编码、扰码等调制工作,还包括提取旁路业务、插入微波帧开销、插入与提取sdh 开销以及变换cmi/nrz等主信号发送基带处理工作,以及放大发信混频与发信功率等。

而收信端的主要工作有含纠错译码、解扰码、收信差分译码、基带或中频时域均衡、中频频域均衡等的解调工作,完成主信号的低噪声接收(根据需要可含分集接收与分集合成),包含变换nrz/cmi、插入或提取sdh开销、插入或提取微波帧开销、提取旁路业务等处理收信基带工作。

分析SDH数字微波技术的特点及其应用

分析SDH数字微波技术的特点及其应用
2 - 1编 码调 制技 术
在S D H数字微 波传 播当 中, 微 波作为一种传输媒质 , 其 频带存在 着一定的局限性 。为避免这种传 播局限性,要采用 高状态 的调制技术 , 对频 带内的 S D H传输信 号进行处理。中 国对 于 4~ 1 1 G Hz频段会采用 2 8~ 3 0 MHz或者是 2 8~ 4 0 MH z的 频 道 间 隔 。
注 :C C 表示交叉极 化同波道传输方式是采用交叉极化干 扰抵消技术来 实现 的。
2 . 2 交叉 极化 干扰 抵 消( X P I C ) 技 术
在数字微波 系统当中, 一般会采用双 极化频率复用技术 , 可 以使系统 的容量 进一步地增加 。单波道 的数据传输技 术呈 现出快速增长 的趋 势,频谱 的利 用率也相应地得到提高 。然 而, 此 时却很容易出现交叉极化干扰 的现 象, 即为交叉极化鉴 别率 由于多径衰落而有所降低 。 此时, 就需要采取抗干扰措施。 干扰主要来 自于正交集 化信号 。安装 自适应交叉极化干 扰抵消器 , 可 以将干扰程度 降低 。其工作原 理是, 采用信 号累 加 的方式 ,将干扰信号抵消 。取 出干 扰信 号经过技术处理之 后, 为 了叠加在 有用信号之上 , 起 到抵消信号干扰 的作用 。
备上面 。 其作为上、 下话路的中继站, 主要的任务是完成信号 的 转发于双向接收工作。安装有调制与解调设备的中继站, 被称 为是“ 再生中继站” 。再生 中继站要具备遥控、 遥测等能力, 承担 着配置管理工作, 诸如线路运行质量 、 网管系统的运行状况等等。
2 S DH 数字 微 波采 用 的主 要技术
缩压缩处理之后 , 就可 以进入到容器 , 最 终形成广播 电视节 目 的视频和音频信号 , 在微波发射 的作用下 , 或者是通过 网线 网 络的传 输, 覆盖到指定 的范围内。 ’ S DH的传输速率 , 一般会选择 3 4 . 3 6 8 Mb i t / s 和1 3 9 . 2 6 4 Mb i t / s , 以使模拟广播电视信号传播效果更好。

微波技术发展及应用

微波技术发展及应用

微波技术发展及应用【摘要】微波技术是20-21世纪最重要的科学技术之一,微波技术应用广泛,从国防军事上的雷达技术到广播、卫星通信再到民用的微波炉,微波技术已经紧紧的融入每一个人的生活之中,微波技术正在成为尖端科学发展中不可或缺的现代技术。

本文主要是叙述了微波技术的发展起源以及它在各个领域中的应用,最后根据对微波技术这些年的发展情况,提出了微波技术的不足,以及展望了未来。

【关键词】微波技术;国防军事;国民;生活;发展情况1、微波的起源与发展微波的理论研究起步于1900年。

经过科学家几十年的不断的研究,二战时期成为微波技术蓬勃发展的时期,在那个时候国防军事领域,雷达,也就是无线电检测的概念和理论逐步发展,因为电磁波在波导中传输中表现出的优良特性,使得微波电真空振荡器、微波管、微波无线电的发展十分迅速。

在二战之后,微波技术的研究与应用逐渐从国防军事为主转变向民用工业领域过渡,其实最具有代表性的便是家用微波炉以及工业微波炉等一系列产品的推出。

人们快速的接受了这种产品,因为微波炉是一种快捷的、能量能够转化均匀的加热工具。

在设计微波炉时,通常使炉腔的边长为1/2微波导波波长的倍数,并且在金属板上涂覆非磁性材料,形成谐振腔。

微波经波导管输入炉腔内时,在腔壁内来回反射,每次传播都穿过和经过食物使食物加热,同时采取一定的措施使微波电场能量分布均匀。

微波加热的特点就是内加热,所需时间短,不依靠热传导,均匀受热,操作简单,安全无害,节约能源。

如今微波炉已经成为全世界各地广泛使用的食品加工器具。

2、微波的特点2.1 波长短微波是一种波长范围在1mm-1m的电磁波。

可细分为米波、分米波、厘米波、毫米波。

它的波长和频率如表格所示:微波具有似光性,如表格所知,波长很短,具有直线传播的性质。

根据似光性,制作出的天线系统具有良好的方向性,可以接收不同的波段。

这样,几十空间或地面发出的微弱回声也不担心接收不到,因此可以通过微波来确定该物体的方向和距离。

浅谈SDH数字微波传输系统的应用与优点分析

浅谈SDH数字微波传输系统的应用与优点分析

浅谈SDH数字微波传输系统的应用与优点分析摘要:本文首先介绍了sdh数字微波传输系统的工作原理和应用,结合广播电视信号传输中频谱的利用情况,对该系统的特性和优点进行比较分析。

同时,对sdh数字微波传输技术与模拟微波技术的传输性能进行了定量比较,得出sdh数字微波传输系统的优点是频谱利用率高和传输质量好。

关键词:sdh数字微波传输系统;广播电视信号;频谱利用率;传输质量中图分类号:f253.3文献标识码:a 文章编号:1. sdh数字微波传输系统sdh数字微波传输系统由若干个终端站和中间站构成,包括枢纽站、分路站和大量的中继站。

其工作过程如图1所示,从甲地终端站送来的数字信号,经过数字基带信号处理(数字多路复用或数字压缩处理)后,经数字调制,形成数字中频调制信号,信号频率为70 mhz或140 mhz。

将调制信号送入发送设备,进行射频调制,成为微波信号,通过发射天线向微波中继站发送。

微波中继站收到信号后再处理,并向下一站再发送,当传送到收端站时,收端站把微波信号经过混频、中频解调,恢复出数字基带信号,最后经分路还原,恢复成原始的数字信号。

图1 sdh数字微波通信系统框图2.sdh数字微波传输系统在广播电视信号传输中的应用模拟广播电视的频谱资源非常有限,有效地开发利用数字技术,使得频谱资源得到更有效地释放,是目前发展广播电视业的一个重要方面。

2.1 sdh技术传输广播电视信号的过程用sdh技术传输广播电视信号必须先对信号进行数字化处理,数字化处理分为取样、量化、编码等步骤。

sdh的传输速率中34.368mbit/s和139.264mbit/s是最适合电视图像传输的速率,广播电视节目信号是模拟信号,要先经过编码器变换成数字信号压缩后形成139.264mbit/s码率进入到c4容器或者压缩后形成34.368mbit/s进入c3容器并最终形成stm-1,广播电视节目的视频和音频信号存放在sdh的帧结构中的净负荷区域内,sdh设备的45mbit/s和139.264mbit/s接口接图像编码器,2mbit/s接口数据和话音输入设备,转换成sdh形式的广播电视信号通过光纤或者微波发射进行传输,信号传到业务站点后经解码器视网传到用户家中。

微波传输的现状与发展

微波传输的现状与发展

微波传输的现状与发展摘要:微波传输是现在广泛应用的传输方式,具有灵活、适用性强、保密性高等优势,在广播电视的信号传输方面起着重要的作用,本文介绍了微波传输的现状和未来将要发展的趋势。

关键词:微波传输;数字化;现状;发展;无线电电子,作为高科技的产物,已经深入到了各个科学领域之中,而微波传输可以说是无线电电子最成功的应用领域。

微波传输是一种最灵活、适应性最强的通信手段,具有建设快、投资小、应用灵活的特点,不仅在移动网络中广泛的应用,同样得到固定网络运营商的青睐;应用广泛,可以用用在广播电视,安防视频监控传输、控制等。

到目前,中国还拥有全国的骨干微波链路。

而作为服务社会传播信息的广播电视,由20世纪的80年代开始就将微波传输引入并开始使用,到现在经历了三十多个年头,微波传输为大众主流的传播媒介起到了无可替代的作用。

1、微波传输现状。

伴着光纤传输、卫星通信的发展,传统的模拟微波传输已经渐渐地被更为稳定的数字传输而取代,应运而生的是世界各国对数字微波传输所定的不同的标准。

虽然数字微波传输没有同意的标准,但是这对数字微波传输不仅不是一个阻碍甚至是促使数字微波传输的力量,尤其在20世纪90年代,同步数字系列(sdh)得到了广泛应用,以sdh为基础的数字微波传输的研究有了重大发展,并广范地应用在世界各地,是现代通信传输支柱之一。

模拟微波传输,就是把视频信号直接调制在微波的信道上,通过天线发射出去,监控中心通过天线接收微波信号,然后再通过微波接收机,解调出原来的视频信号。

如果不安中云台的五小镜头,那么无须发射指令,监控前端和监控中心就不断接到想管的命令,尾端产物就是图像清晰、不延时。

具体工作中好处也是颇多的,比如施工、调试较为简单,中继也不是很多,节约了大量经费,符合现代绿色环保可持续发展的工作理念。

数字微波技术,他的播出过程中,需要先压缩视频,编码后通过天线发射。

接受过程则相反。

这种发射接受方式造价相对较高。

广播电视信号传输中数字微波传输网

广播电视信号传输中数字微波传输网

9数字通信世界2022.121 数字微波传输的技术研究数字微波传输技术是在数字微波通信技术发展基础上形成的新技术,该技术采用的波长为1 mm~1.0 m ,频率为300 M H z ~300 G H z ,具有频率范围广、适用性广泛的优势。

与传统技术相比,数字微波传输技术可以强化广播电视信号传输的能力,尤其是在地震、水灾等极端恶劣自然灾害下保持良好的信息通信。

该技术的主要优势:一是有更强的穿透性。

因为数字微波传输所使用的波长范围达到了1 m m~1.0 m ,该波段的信号传输能力更强,可以消除传统技术因为墙壁阻挡的影响,避免信号大范围衰减。

二是传输能力强。

数字微波通信技术有更强的信号模拟能力,并且在技术应用中能够与数字压缩技术联用,所以在信号容量相同的情况下,该技术能够传输更多的信息,可以保证音频的清晰度。

同时在信号传输中,通过数字微波传输技术可以采用多路传输的方式将视频资料发送至客户端,按照不同的载波频点提升信号传输效果。

因此随着数字信号容量的增大,数字微波传输技术可以更好地适应当前广播电视4K 节目的要求,例如,现阶段相关地区借助数字微波传输技术能够接收Ku 波段与C 波段的视频信号,并且视频信号传输质量有明显提升。

2 数字微波传输网的作用研究2.1 在广播电视信号传输中实现了前向纠错从广播信号传输的角度来看,前向纠错技术的出现被认为具有跨时代的意义,该技术不仅可以提升广播电视网络中信号的传输质量,也能降低误码率,而在数字微波传输技术中也采用了该技术,通过在网络传输信号中添加冗余信息实现纠错。

同时在网络信号传输前,通过发送端信号识别与编码处理的方法,将相关信息进行比较后,根据信息比较结果的差异实现信号纠错。

同时在广播电视信号传输中,数字微波传输技广播电视信号传输中数字微波传输网的作用研究褚丽蓉(山西广播电视无线管理中心,山西 太原 030001)摘要:数字微波传输网技术在推动广播电视行业发展中发挥着重要作用,文章先对数字微波传输技术进行深入研究,并分析了数字微波传输技术在广播电视信号传输中的作用,并讨论了强化数字微波传输技术功能的相关措施,最后对该技术的未来发展趋势进行展望,希望为全面推动广播电视行业发展提供支持。

现代通信技术概论第5章数字微波通信系统

现代通信技术概论第5章数字微波通信系统
44
本章习题解题指导
概念部分主要给出对应的知识点,教学中可 以指导学生在相关章节中自己归纳。
45
✓ 频率再用方案 • 同波道型频率再用 • 插入波道型频率再用
36
5.3.2 微波波道及其频率配置
同波道型频率再用
37
5.3.2 微波波道及其频率配置
插入波道型频率再用
38
5.3.3 发信设备
直接调制式发信机
变频式发信机
39
5.3.3 发信设备
发信机的主要性能指标
✓ 工作频段 ✓ 输出功率 ✓ 频率稳定度
20
5.3.1 中继通信线路与设备组成
数字微波终端站
✓ 数字微波终端站指的是位于线路两端或分支线路终点的 微波站。在SDH微波终端站设备中包括发信端和收信端 两大部分。
✓ SDH微波终端站的发信端主要负责完成主信号的发信基 带处理(包括CMI/NRZ变换、SDH开销的插入与提取、 微波帧开销的插入和旁路业务的提取等)、调制(包括 纠错编码、扰码和差分编码等)、发信混频和发信功率 方法等。
27
5.3.2 微波波道及其频率配置
微波通信频率配置的基本原则是使整个微波传输系统中的相 互干扰最小,频率利用率最高。
频率配置时应考虑的因素
✓ 整个频率的安排要紧凑,使得每个频段尽可能获得充分利用。 ✓ 在同一中继站中,一个单向传输信号的接收和发射必须使用不
同的频率,以避免自调干扰。 ✓ 在多路微波信号传输频率之间必须留有足够的频率间隔以避免
16
5.3.1 中继通信线路与设备组成
数字微波通信线路
17
5.3.1 中继通信线路与设备组成
数字微波通信系统组成
用户终端;交换机 ;数字终端机;微波站

SDH数字微波通信技术的特点及其应用探讨

SDH数字微波通信技术的特点及其应用探讨

Technological Innovation8《华东科技》SDH 数字微波通信技术的特点及其应用探讨尚 博1,同朝辉2(1.四川通信科研规划设计有限责任公司,四川 成都 610041;2.中国铁塔股份有限公司咸阳市分公司,陕西 咸阳 712000)摘要:近年来,通信行业取得了长足的发展进步,SDH 数字微波通信技术以独特的优势取得了重要的应用进展。

本文从技术特点、设备特点以及通信系统三个方面对SDH 数字微波通信技术进行了概述,从六个方面讨论了SDH 数字微波通信技术的优势及应用特点。

关键词:SDH;数字微波通信;应用1 SDH 数字微波传输系统概述 SDH 是一种全新的同步数字体系,能够实现数字传输功能。

现阶段通信技术的不断发展使信息容量大幅度增加,光纤技术也出现了较大进步,在这种基础上SDH 应运而生。

1.1 SDH 微波传输技术特点 现在的通信系统技术体系中有三种较为主要通信技术手段,数字微波通信就是其中之一。

数字微波通信的传输容量较大,在远距离传输场景中质量较高,需要进行的设施资金投入少,同时建设数字通信传输设施的项目周期较短,对数字微波传输基站的维护成本很低,在通信领域备受青睐。

SDH 对速率的要求很高,因此数字微波接力通信系统的传输速度就需要保持同步提高才能满足基本应用需求。

如今数字微波接力通信系统的单波道速率能够超过300Mbit/s,得益于64QAM、128QAM 以及512QAM 调制技术对数字微波接力通信系统的单波道速率增益,然而使用了全新的调制技术以后微波波形不能达到要求,这就导致SDH 微波传输系统出现了较高的误码率,在这种情况下降低误码率的研发工作也激烈展开,一系列降低误码率的方法也因此出现。

1.2 SDH 微波传输设备 SDH 微波传输设备主要由以下三个部分组成,分别是中频调制解调部分、微波收发信机部分、操作管理维护和参数配置部分。

1.3 SDH 微波接力通信系统 一个SDH 微波接力通信系统可由端站、枢纽站、分路站及若干中继站组成。

数字微波通信技术

数字微波通信技术

数字微波通信技术摘要:微波是卫星、光缆、微波三大电视信号传输方式之一。

微波通信定义是指波长在0.1mm-1m 区间的电磁波所进行的通信方式。

数字微波是在微波的频段内通过地表视距来进行传播数字信息的无线通信。

关键词:微波通信;数字微波通信;直线距离内无障碍数字微波通信是在微波传输过程当中使用数字信号处理技术的一种通信方式,它同时具备了微波通信投资很小、建线迅速、应用灵活等特点,还拥有抗干扰强、传输可靠、传输线路很长等优势。

如今数字微波通信在中国国民经济建设中发挥着极大的作用。

一、我国数字微波通信发展经历了以下三个阶段1. 发展模拟微波的阶段我国模拟微波通信技术的发展始于1958 年,到20 世纪70 年代中,全数字化﹑全固态化﹑无人值守,三个技术问题始终没有得到解决,影响它的推广使用。

2. 发展中、小容量数字微波的阶段20 世纪80 年代初期我们已经掌握了中、小容量数字微波所有的技术,也逐步在通信专用网上实施应用。

3. 发展大容量数字微波的阶段20 世纪80 年代末期,国家“七五”科技攻关项目提出,大容量数字微波通信将逐步进入系统的研发过程。

20 世纪80 年代中、后期,我国的数字微波发展受阻,光纤通信技术的推广成为了主要原因,而数字微波干线传输也逐步被光纤通信取代。

因光纤通信具有超大的带宽、极低的损耗以及建设超低成本而成为了干线传输的主要方式,从而对数字微波产生强烈的冲击。

从20世纪90 年代开始,大容量光纤传输成为了我国信息道路建设的重要传输方式。

在这样的现实面前,数字微波该如何发展已经是该领域研发和使用的单位及人员非常关心的问题。

随着时代的发展、科技的进步,快节奏的生活使得人们对于随时随地学习、购物、娱乐、办公的需求越来越高,组建安全且高效的全光信息网络已然成为了国家当前重要发展战略的一步;IPTV产业的产生及发展让日渐萧条的固网运营重现活力;通过北京奥运圣会和上海世博会带来的众多契机,都使得FTTH的大规模应用具有从未有过的现实需求以及市场机遇。

数字微波传输的发展前景

数字微波传输的发展前景

数字微波传输的发展前景作者:焦少梅来源:《中国新通信》 2018年第8期一、数字微波传输的概况1、数字微波传输的含义。

数字微波是一种广泛应用的通信技术,主要依靠于微波发送设备和微波接受设备进行数字微波信号的接受。

数字微波传输具有超强可靠性的信号,数字微波是由运行信号传递时间从而采取中继站的方式,也就是说两个信号的传输点之间设置中继站,设置了接力地点,最终实现了信息传输的目的。

继而使传输目更强、更快以及更精准。

2、数字微波的特征。

数字微波传输比传统的传输方式具有多路的特点,通常说,数字微波在射频频段中通过了设置多个载波频点达到加大信息空间为目的,使得数字微波传输的更大信息化的来达到传输。

然而,数字微波在受到外来因素干扰时,抵御效果强,继而使数字微波更好的为人类发展而进步。

3、数字微波传输方式。

目前为止,数字微波的传输方式是借用地球的曲面性,由一条或者多条微波线路构成,设计为每段都可以看成了点对点的无线通信系统。

无线数字传输具有似光性,和极化特性,似光性也就是指电磁波谱中因光而直线传播的,因此,数字微波也具有这一特性,而电磁波在传播过程中,电磁场和电场在同一地点随着时间而变化,从变化中存在这某种规律,这种规律也就是通常称之为极化特性。

由于数字微波具有和光一样的传播特性,因而数字微波只能在一自由空间顺着直线而传播,如果传播中遇到不均匀的介子质设时,将会产生了光的折射现象和反射现象。

因而,数字微波每经过一段距离的传播就需要能量的补充,从而使数字微波将信号传递的更远。

二、数字微波传输在生产生活中的应用1、农村、海岛、以及边远地区的应用。

由于我国还处于发展中的状态,边远地区卫星信号接收较弱,容易受到外界因素的干扰,因而,使得数字微波传输技术在我国处于良好的发展状态。

由于传统的传输方式较慢,传递信息量空间少,容易受到外界因素干扰的一系列的问题,数字微波由于信息量大,抗干扰能力强,目前应广泛的应用在我国农村海岛以及边远地区。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固定宽带接入领域 28GHz频段的LMDS(本地多点分配 业务)
3G(第三代移动通信技术标准)网络 2.4GHz微波扩频数据传输系统 GSM、CDMA的基站间信号传输 非通信行业的专用通信网络 军用数字微波通信系统,主要用于军事指挥和导弹制导方
面。
数字微波的主要发展方向
提高QAM调制级数及减小滚降系数
干线光纤传输的备份及补充
点对点的SDH微波、PDH微波等 主要用于干线光纤传输系统在遇到自然灾害时的
紧急修复 由于种种原因不适合使用光纤的地段和场合主要
用于农村、山区、海岛等边远地区和专用通信网。
移动及固定型的用户接入
本地多点分配业务(LMDS)。
小区制的宽带综合业务接入方式,被称为无 线光纤。
为降低系统误码率,必须采用复杂的纠错编码技术, 但由此会导致频带利用率的下降。为了解决这个问题,可 采用网格编码调制(TCM)技术。采用TCM技术需利用 维特比算法解码。
数字微波的主要发展方向
自适应时域均衡技术
使用高性能、全数字化二维时域均衡技术减少码间干 扰、正交干扰及多径衰落的影响。
多载波调制技术(OFDM)
多载波正交调制方式可显著降低发信码元的速率,减少 传播色散的影响。运用双载波并联传输可使瞬断率降低到 原来的1/10。
数字微波技术的主要发展方向
其它技术
多重空间分集接收 发信功放非线性预校正 发信功率自动控制技术 自适应正交极化干扰消除电路等。
微波传输系统的应用前景
未来通信网的基本框架
远距离传输干线以有线为主(光缆),微波传 输作为备用和补充。用户接入端以无线为主,为 用户提供最大的便利。这就给数字微波的今后发 展提供了十分广阔的天地。
我国微波传输的发展过程
模拟微波与同轴电缆载波传输系统构成通信网长途传输干 线
70年代起研制出了中小容量(如8Mb/s、34Mb/s)的数 字微波通信系统
80年代后期,随着同步数字系列(SDH)在传输系统中 的推广应用
现在,数字微波通信和光纤、卫星一起被称为现代通信传 输的三大支柱。
微波传输系统的组成
数字微波传输系统的应用与发展
微波通信的基本概念
上世纪50年代开始实际应用的无线通信方式 通过地面视距进行信息传播 频率范围为:300MHZ到300GHZ 一种带宽很大的频率资源
微波通信的特点
能穿透电离层进行传播 可进行中继接力传输 建设速度快、费用相对较低 易于跨越复杂地形 维护方便,质量稳定可靠
收发信机部分 调制解调部分 复分接部分 天馈线部分 监控和网管部分 公务和辅助通道部分
数字微波传输广播电视节目的优点
频道利用率高 接收门限电平低、传输距离远 图像质量好,抗干扰能力强 传输容量大,传输的节目套数多 可传送全数字广播电视节目,减少信号转换损失。
微波传输的其他应用
数字微波点对多点传送业务(MMDS)
传输数字广播电视节目,用户单向接收。
3G移动业务
交互式多媒体节目的传送,手机电视等来自为了提高频谱利用率,数字调制方式采用多电平的 QAM调制技术,目前已达到256/ 512QAM,很快就可 实现1024/2048QAM。与此同时,对信道滤波器的设计 提出了极为严格的要求。在某些情况下,其余弦滚降系数 应低至0.1。目前已可做到0.2左右。
数字微波的主要发展方向
网格编码调制及维特比检测技术
相关文档
最新文档