二次函数复习课(优质课)教学精品PPT课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16
难点突破之庖丁解牛
1.直接求函数解析式
1. 已知抛物线y=ax2+bx+c经过点(-1,0) ,(0,3) ,(3,0),求这个抛物线的解析式.
2. 已知抛物线的顶点坐标是(-2,4),与y轴的交点为
(0,3),求这个函数解析式.
1.解:由题意设这个抛物线 的解析式为y=a(x+1)(x-3)
令x=-1,看纵坐标
4a+2b+c 令x=2,看纵坐标
4a-2b+c
令x=-2,看纵坐标
7
难点突破之牛刀小试
1.已知y=ax2+bx+c的图象如图所示,
a_<__0, b_< _0, c_>__0, abc_>__0
b = 2a, 2a-b_=__0, 2a+b__<___0 b2-4ac__>___0
《二次函数图象与性质》
复习课
1
数学家眼里的二次函数: 数 ,图像
诗人眼里的二次函数: 优美而舒张的抛物线,犹如人生 的轨迹,年少时的努力攀升,力 争到达人生的巅峰,但岁月无情 的流逝,转而向下
难 同学们眼里的二次函数:
2
本节复习重难点
1.二次函数的概念 2.二次函数的图象与性质 3. a 、b、c、△符号的确定 4.待定系数法求二次函数解析式
(1)当a __0_ 时,是二次函数. (2)当a_=__0, b___0 时,是一次函数
4
难点回顾二、 函数图像和性质
二次函数的图象是__抛__物__线______.
y
a0
y
a0
o
x
x o
图 开口方向 像 顶点
与 对称轴
性 质
增减性 最值
5
难点突破之牛刀小试
1、[2013·泰安]二次函数y=x2+1的图象的顶点坐标是 (0,1) .
2.解:由题意设这个函数的解析 式为y=a(x+2)2+4
∵抛物线经过点(0,-3), ∴-3=a(0+1)(0-3) ,
∵与y轴的交点为(0,3),
∴3=a(0+2)2+4∴a=
1 4
∴所求解析式为
∴a=1
1
∴这个抛物线的解析式为
y=
4
(x+2)2+4
1 4
1 4 1 4
y= (x+1)(x-3)即y=x2-
2、[2013·浙江]二次函数y=ax2+bx+c的图象与x轴的两 个交点分别为A(1,0),B(-3,0)则它的对称轴是 直线x=-1 .
3、[2013·烟台]二次函数y=x2-2x+2 当x=1 .
时,y的最小为 值 1
.
4、[2012·广安]抛物线y=ax2+bx+c如图所示,则( By
)
(A)a>0,b>0,c>0 (B)a>0,b<0,c<0 (c)a>0,b>0,c<0 (D)a>0,b<0,c>0
19
小结:
方法归纳
回
头
一 看
函数的解析式为载体,
, 我 想
图像为核心
说
…
本节课重要的数学思想方法 :
数形结合法
20
数形本是相倚依, 焉能分作两边飞? 数缺形时少直观, 形缺数时难入微。 数形结合百般好, 隔离分家万事休。 几何代数统一体, 永远联系莫分离。
----华罗庚
21
独立 作业
y
o
x
10
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号:
y
o
x
11
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号:
y
o
x
12
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号:
y
o
x
13
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号:
即
y=
1 4
x2-x+3
2x-3
17
2 . 由图象信息求抛物线的解析式
[2013·连云港]
如图,抛物线 y=x2+bx+c
与x轴交于A(-1,0), B(3,0) 两点.
求该抛物线的表达式;
18
小结: 知识点归纳
二次函数巧记口诀:
二次函数抛物线,图像对称是关键; 开口、顶点和交点,它们确定图像现; 开口、大小由a断,c与y轴来相见, b的符号较特别,符号与a相关联; 顶点位置先找见,y轴作为参考线, 左同右异中为0,牢记心中莫混乱; 顶点坐标最重要,一般式配方它就现, 横标即为对称轴,纵标函数最值见。 一般、顶点、交点式,不同表达能互换。
3
难点回顾一、 二次函数的概念
▪ 形如y=ax2+bx+c(a,b,c是常数,a≠0)的函 数,叫做二次函数。
练习: 1. [2013·烟台] 二次函数y=3x-x2 中 a=-_1_, b=3__, c=0__.
2.函数 y (m 1)xm21 3x 1 ,当 m= -1 时,它是二次
函数 3.已知函数y=ax2+bx+c(其中a,b,c是常数)
a+b+c__<___0,
a-b+c__>__0 4a-2b+c__>___0
-2 -1 0 1
8
利用以上知识主要解决以下几方面问题: (1)由a,b,c,∆的符号确定抛物线在坐标系中的大 致位置; (2)由抛物线的位置确定系数a,b,c,∆等符号及有关 a,b,c的代数式的符号;
9
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号:
y
o
x
14
难点回顾四、待定系数法求二次函数解析式
a≠0
名称
顶点式
二次函数解析式
y=a(x-h)2+k
对称轴
直线x= h
顶点源自文库标
( h, k)
一般式
交点式
y=ax2+bx+c y=a(x-x1)(x-x2)
直线x=
b 2a
直线x=
x1
2
x2
( b , 4ac b2 ) 2a 4a
15
求抛物线解析式的三种方法
0
x
6
难点回顾三、 a 、b、c、△符号的确定
a
开口方向大小 向上a>0 向下a<o
b
对称轴与y轴比较 左侧ab同号 右侧ab异号
c
与y轴交点 交于上半轴c>o 下半轴c<0
2a+b
2a-b b2-4ac a+b+c
-b 2a b
- 2a
与1比较 与-1比较
与x轴交点个数
令x=1,看纵坐标
a-b+c
1、一般式:已知抛物线上的三点,通常设解 析式为__y_=_a_x_2_+_b_x_+_c_(a_≠__0_)
2,顶点式:已知抛物线顶点坐标(h, k), 通常设抛物线解析式为_y_=_a_(_x_-_h_)2_+_k_(_a_≠_0_) 求出表达式后化为一般形式. 3,交点式:已知抛物线与x 轴的两个交点(x1,0)、 (x2,0),通常设解析式为_y_=_a_(x_-_x_1_)(_x_-_x_2)_(a≠0) 求出表达式后化为一般形式.
难点突破之庖丁解牛
1.直接求函数解析式
1. 已知抛物线y=ax2+bx+c经过点(-1,0) ,(0,3) ,(3,0),求这个抛物线的解析式.
2. 已知抛物线的顶点坐标是(-2,4),与y轴的交点为
(0,3),求这个函数解析式.
1.解:由题意设这个抛物线 的解析式为y=a(x+1)(x-3)
令x=-1,看纵坐标
4a+2b+c 令x=2,看纵坐标
4a-2b+c
令x=-2,看纵坐标
7
难点突破之牛刀小试
1.已知y=ax2+bx+c的图象如图所示,
a_<__0, b_< _0, c_>__0, abc_>__0
b = 2a, 2a-b_=__0, 2a+b__<___0 b2-4ac__>___0
《二次函数图象与性质》
复习课
1
数学家眼里的二次函数: 数 ,图像
诗人眼里的二次函数: 优美而舒张的抛物线,犹如人生 的轨迹,年少时的努力攀升,力 争到达人生的巅峰,但岁月无情 的流逝,转而向下
难 同学们眼里的二次函数:
2
本节复习重难点
1.二次函数的概念 2.二次函数的图象与性质 3. a 、b、c、△符号的确定 4.待定系数法求二次函数解析式
(1)当a __0_ 时,是二次函数. (2)当a_=__0, b___0 时,是一次函数
4
难点回顾二、 函数图像和性质
二次函数的图象是__抛__物__线______.
y
a0
y
a0
o
x
x o
图 开口方向 像 顶点
与 对称轴
性 质
增减性 最值
5
难点突破之牛刀小试
1、[2013·泰安]二次函数y=x2+1的图象的顶点坐标是 (0,1) .
2.解:由题意设这个函数的解析 式为y=a(x+2)2+4
∵抛物线经过点(0,-3), ∴-3=a(0+1)(0-3) ,
∵与y轴的交点为(0,3),
∴3=a(0+2)2+4∴a=
1 4
∴所求解析式为
∴a=1
1
∴这个抛物线的解析式为
y=
4
(x+2)2+4
1 4
1 4 1 4
y= (x+1)(x-3)即y=x2-
2、[2013·浙江]二次函数y=ax2+bx+c的图象与x轴的两 个交点分别为A(1,0),B(-3,0)则它的对称轴是 直线x=-1 .
3、[2013·烟台]二次函数y=x2-2x+2 当x=1 .
时,y的最小为 值 1
.
4、[2012·广安]抛物线y=ax2+bx+c如图所示,则( By
)
(A)a>0,b>0,c>0 (B)a>0,b<0,c<0 (c)a>0,b>0,c<0 (D)a>0,b<0,c>0
19
小结:
方法归纳
回
头
一 看
函数的解析式为载体,
, 我 想
图像为核心
说
…
本节课重要的数学思想方法 :
数形结合法
20
数形本是相倚依, 焉能分作两边飞? 数缺形时少直观, 形缺数时难入微。 数形结合百般好, 隔离分家万事休。 几何代数统一体, 永远联系莫分离。
----华罗庚
21
独立 作业
y
o
x
10
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号:
y
o
x
11
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号:
y
o
x
12
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号:
y
o
x
13
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号:
即
y=
1 4
x2-x+3
2x-3
17
2 . 由图象信息求抛物线的解析式
[2013·连云港]
如图,抛物线 y=x2+bx+c
与x轴交于A(-1,0), B(3,0) 两点.
求该抛物线的表达式;
18
小结: 知识点归纳
二次函数巧记口诀:
二次函数抛物线,图像对称是关键; 开口、顶点和交点,它们确定图像现; 开口、大小由a断,c与y轴来相见, b的符号较特别,符号与a相关联; 顶点位置先找见,y轴作为参考线, 左同右异中为0,牢记心中莫混乱; 顶点坐标最重要,一般式配方它就现, 横标即为对称轴,纵标函数最值见。 一般、顶点、交点式,不同表达能互换。
3
难点回顾一、 二次函数的概念
▪ 形如y=ax2+bx+c(a,b,c是常数,a≠0)的函 数,叫做二次函数。
练习: 1. [2013·烟台] 二次函数y=3x-x2 中 a=-_1_, b=3__, c=0__.
2.函数 y (m 1)xm21 3x 1 ,当 m= -1 时,它是二次
函数 3.已知函数y=ax2+bx+c(其中a,b,c是常数)
a+b+c__<___0,
a-b+c__>__0 4a-2b+c__>___0
-2 -1 0 1
8
利用以上知识主要解决以下几方面问题: (1)由a,b,c,∆的符号确定抛物线在坐标系中的大 致位置; (2)由抛物线的位置确定系数a,b,c,∆等符号及有关 a,b,c的代数式的符号;
9
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号:
y
o
x
14
难点回顾四、待定系数法求二次函数解析式
a≠0
名称
顶点式
二次函数解析式
y=a(x-h)2+k
对称轴
直线x= h
顶点源自文库标
( h, k)
一般式
交点式
y=ax2+bx+c y=a(x-x1)(x-x2)
直线x=
b 2a
直线x=
x1
2
x2
( b , 4ac b2 ) 2a 4a
15
求抛物线解析式的三种方法
0
x
6
难点回顾三、 a 、b、c、△符号的确定
a
开口方向大小 向上a>0 向下a<o
b
对称轴与y轴比较 左侧ab同号 右侧ab异号
c
与y轴交点 交于上半轴c>o 下半轴c<0
2a+b
2a-b b2-4ac a+b+c
-b 2a b
- 2a
与1比较 与-1比较
与x轴交点个数
令x=1,看纵坐标
a-b+c
1、一般式:已知抛物线上的三点,通常设解 析式为__y_=_a_x_2_+_b_x_+_c_(a_≠__0_)
2,顶点式:已知抛物线顶点坐标(h, k), 通常设抛物线解析式为_y_=_a_(_x_-_h_)2_+_k_(_a_≠_0_) 求出表达式后化为一般形式. 3,交点式:已知抛物线与x 轴的两个交点(x1,0)、 (x2,0),通常设解析式为_y_=_a_(x_-_x_1_)(_x_-_x_2)_(a≠0) 求出表达式后化为一般形式.