人教版八年级数学上册(教案):11.1 与三角形有关的线段

合集下载

人教版八年级上册数学教案:11.1与三角形有关的线段

人教版八年级上册数学教案:11.1与三角形有关的线段

11.1与三角形有关的线段第1课时三角形的边教学目标1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形.2.会判断三条线段可否构成一个三角形的方法,并能运用它解决有关问题.教学重点:三角形的有关概念,能用符号语言表示三角形,三角形的三边关系.教学难点:三边关系的推导及应用.教学过程:一、创设情景,明确目标投影:金字塔,斜拉大桥,塔吊,自行车等,让学生感受生活中处处有三角形的身影,我们研究的“三角形”这个课题来源于实际生活之中.请说一说你已经学习了三角形的哪些知识?二、自主学习,指向目标三、合作探究,达成目标探究点一三角形的概念表示方法及分类活动一:阅读教材第1至2页内容,并思考以下问题:(1)具有什么特征的图形叫三角形?(不在同一直线上的三条线段,首尾顺次相接所组成的图形)(2)三角形有几条边?有几个内角?有几个顶点?(3,3,3)(3)三角形ABC用符号如何表示?三角形ABC的边AB、AC和BC怎样用小写字母分别表示?(a,b,c)(4)三角形按边分可以分成几类?按角分呢?展示点评:学生结合图形分别回答,师生共同点评.小组讨论:三角形的概念,如何用符号表示及分类?反思小结:三角形的图形特征,有三条边,三个内角,三个顶点,边可以用两个大写字母表示,也可以用一个小写字母表示.探究点二三角形的三边关系活动二:画出一个△ABC,假设有一只小虫要从B出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长有什么数量关系?请说明你结论的正确性.展示点评:(1)小虫从B出发沿三角形的边爬到C如下几条线段.a.从__B____C__b.从__B____A____C__(2)从B沿边BC到C的路线长为__BC__.从B沿边BA到A,从A沿C到C的路线长为__AB+AC__.经过测量可以说__AB+AC__>__BC__,可以说这两条路线的长是__不相等__的.小组讨论:在同一个三角形中,任意两边之和与第三边有什么关系?任意两边之差与第三边有什么关系?三角形的三边有怎么样的不等关系?反思小结:三角形的任意两边之和大于第三边,任意两边之差小于第三边.探究点三三角形有关知识的运用活动三:见教材P3例题小组讨论:等腰三角形中有几个不同的边长?第(2)问中的长4 cm没有明确是腰还是底时应怎么处理?展示点评:等腰三角形的底和腰的长度,不确定时,应分情况予以讨论.反思小结:当题目中的条件不明确时要分类讨论.所有的三角形必须要满足三边关系定理.四、总结梳理,内化目标1.概念:三角形,内角,边,顶点2.符号语言.3.三边关系.4.三角形的分类.五、达标检测,反思目标1.现有两根木棒,它们的长度分别为20 cm和30 cm,若不改变木棒的长度,要钉成一个三角形木架,应在下列四根木棒中选取( B )A.10 cm的木棒B.20 cm的木棒C.50 cm的木棒D.60 cm 的木棒2.已知等腰三角形的两边长分别为3和6,则它的周长为( C )A.9 B.12 C.15 D.12或153.已知三角形的三边长为连续整数,且周长为12 cm,则它的最短边长为( B ) A.2 cm B.3 cm C.4 cm D.5 cm4.若五条线段的长分别是1 cm,2 cm,3 cm,4 cm,5 cm,则以其中三条线段为边可构成__3__个三角形.若等腰三角形的两边长分别为3和7,则它的周长为__17__;若等腰三角形的两边长分别是3和4,则它的周长为__10或11__.5.如果以5 cm为等腰三角形的一边,另一边为10 cm,则它的周长为__25_cm__.6.工人师傅用35 cm长的铁丝围成一个等腰三角形铁架.(1)若腰长是底边长的3倍,那么各边的长分别是多少?(2)能围成有一边长为7 cm的等腰三角形吗?为什么?●布置作业,巩固目标教学难点课本P1、2、6、7.8教学反思:第2课时三角形的高、中线与角平分线教学目标:会用工具准确画出三角形的高、中线与角平分线,通过画图了解三角形的三条高(及所在的直线)交于一点,三角形的三条中线,三条角平分线等都交于一点.教学重点:了解三角形的高、中线与角平分线的概念,会画出三角形的高、中线与角平分线.教学难点:三角形角平分线与角的平分线的区别,三角形的高与垂线的区别.教学设计一、创设情景,明确目标你还记得“过一点画已知直线的垂线”吗?让学生动手操作,画一画.在此基础上再提问:过三角形的一个顶点,你能画出它的对边的垂线吗?从而引入课题.二、自主学习,指向目标三、合作探究,达成目标探究点一三角形的高活动一:画出下面三角形的高AD.展示点评:三角形的高是什么线?三个图形中的高有什么区别?同一个三角形有几条高?他们在位置上有什么关系?请分别画出各个三角形的高.小组讨论:三角形的高的交点位置有何特征?反思小结:锐角三角形的高在三角形内部,直角三角形有两条高在边上,钝角三角形有两条高在三角形外部.任意三角形都有三条高,并且三条高所在的直线相交于一点.探究点二三角形的中线活动二:有一块三角形的草地,要把它平均分给四个牧民,且每个牧民所分得的草地都是三角形,请你探究出几种不同的分法.展示点评:如何将一个三角形分成两个面积相等的三角形?三角形的中线是什么线?一个三角形有几条中线?在位置上有什么关系?小组讨论:三角形的中线所分成的两个三角形的面积有什么关系?反思小结:三角形的中线可以把三角形分成面积相等的两个三角形.三角形的三条中线相交与一点,这一点在三角形的内部,这个点是三角形的重心.探究点三三角形的角平分线活动三:动手画出锐角三角形、直角三角形和钝角三角形的三角的角平分线.展示点评:学生分组合作画图,师生共同点评.小组讨论:三角形的角平分线是什么线?与角平分线有什么区别?一个三角形有几条角平分线?它们在位置上有什么关系?反思小结:任何三角形有三条角平分线,并且都在三角形的内部交于一点,我们把这个交点叫做三角形的内心.三角形的角平分线是一条线段,而角平分线是一条射线.四、总结梳理,内化目标1.本节学习的数学知识是三角形的中线、角平分线、高的概念.2.本节学习的数学方法是三角形中线、角平分线、高的画法.五、达标检测,反思目标1.下列各组图形中,哪一组图形中AD是△ABC的高( D )2.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( B )A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形3.如图,在△ABC中,∠1=∠2,G为AD中点,延长BG交AC于E,F为AB上一点,CF⊥AD于H,判断下列说法哪些是正确的,哪些是错误的.①AD是△ABE的角平分线(×)②BE是△ABD边AD上的中线(×)③BE是△ABC边AC上的中线(×)④CH是△ACD边AD上的高(√)4.如图,点D、E、F分别是BC、AD、BE的中点,且S△ABF =2,求S△ABC.(第4题图)●布置作业,巩固目标教学难点课本P83、4、8.教学反思:第3课时三角形的稳定性教学目标:1.了解三角形的稳定形,四边形不具有稳定形.2.能够用三角形稳定性解释生活中的现象.教学重点:了解三角形稳定性在生产、生活中的实际应用.教学难点:准确使用三角形稳定性于生产生活之中.教学设计:一、创设情景,明确目标多媒体展示:将四边形木架上再钉一根木条,将它的一对顶点连接起来,然后再扭动它,这时木架的形状还会改变吗?盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条.为什么要这样做呢?二、自主学习,指向目标三、合作探究,达成目标探究点一三角形的稳定性活动一:见教材P6“探究”部分.展示点评:1.用三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?(不会)2.用四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?(会) 3.在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?(不会)小组讨论:从以上活动中,可以分别发现三角形和四边形各具有什么特点?反思小结:三角形是具有稳定性的图形,而四边形等其它多边形不具稳定性.探究点二三角形稳定性的应用活动二:如图是四根木条钉成的四边形,为了使它不变形,小明加了一根木条AE,小明的做法正确吗?为什么?若不正确应怎样做?展示点评:小明可以有几种正确的做法?小组讨论:小明各种做法的依据是什么?反思小结:三角形具有稳定性.四边形不具有稳定性,生活中各有用途.四、总结梳理,内化目标1.本节课学习的数学知识:三角形具有稳定性,四边形具有不稳定性.2.本节课学习的数学方法是观察与操作.五、达标检测,反思目标1.下列图形中具有稳定性的是( C )A.正方形B.长方形C.直角三角形D.平行四边形2.要使下列木架稳定各至少需要多少根木棍?(1根) (2根) (3根)3.如图,工人师傅砌门时,常用木条EF固定门框ABCD,使其不变形,这种做法的根据是( D )A.两点之间线段最短B.矩形的对称性C.矩形的四个角都是直角D.三角形的稳定性4.人站在晃动的公共汽车上,若你分开两腿站立,则需伸出一只手去抓住栏杆才能站稳,这是利用了__三角形的稳定性__.5.下列设备,没有利用三角形的稳定性的是( A )A.活动的四边形衣架B.起重机C.屋顶三角形钢架D.索道支架●布置作业,巩固目标教学难点5、9、10.课本P8教学反思:。

人教版初中数学八年级上册11.1与三角形有关的线段(教案)

人教版初中数学八年级上册11.1与三角形有关的线段(教案)
3.培养学生的数据分析能力,使学生能够运用三角形的性质和定理解决实际问题,提高解题能力;
4.增强学生的合作意识,通过小组讨论、交流,培养学生的团队协作能力,共同解决问题;
5.培养学生的创新意识,鼓励学生运用所学知识,探索三角形相关的新问题,激发学生的求知欲和创造力。
本节课将紧密围绕核心素养目标,注重培养学生的综合能力,使学生在掌握知识的同时,提高学科素养。
6.三角形相似的条件:SS、SAS、AA;
7.三角形中位线定理及其应用。
本节课将围绕以上内容,结合实际例题,帮助学生掌握与三角形有关的线段的基本性质和应用。
二、核心素养目标
1.培养学生的逻辑推理能力,通过探索三角形的基本性质和定理,使学生能够运用逻辑思维分析、解决问题;
2.提升学生的空间想象力,通过观察、操作三角形模型,让学生在脑海中形成清晰的三角形形象,为后续几何学习打下基础;
三、教学难点与重点
1.教学重点
-三角形的定义及其内角和定理:使学生明确三角形的定义,掌握三角形的三个内角和为180°的定理,并能应用于实际问题。
-三角形全等的条件:重点讲解SSS、SAS、ASA、AAS全等条件,让学生熟练运用这些条件判断三角形全等。
-三角形相似的条件:强调SS、SAS、AA相似条件,培养学生运用这些条件解决实际问题的能力。
3.课堂上关注每个学生的学习情况,及时发现问题并给予指导;
4.课后及时进行教学反思,不断调整教学策略,以提高教学效果。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形有关的实际问题。
2.实验操位线定理的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)

人教版八年级上册11.1《与三角形有关的线段》说课稿

人教版八年级上册11.1《与三角形有关的线段》说课稿
2.多媒体资源:PPT、几何画板等,展示动态的几何图形和性质,增强学生的空间想象能力。
3.技术工具:网络资源、在线学习平台等,提供丰富的学习资料,拓展学生的学习视野。
它们在教学中的作用主要有:
1.直观展示几何图形和性质,降低学生的理解难度。
2.提供丰富的学习资源,满足学生的个性化学习需求。
3.创设生动、有趣的学习情境,激发学生的学习兴趣。
人教版八年级上册11.1《与三角形有关的线段》说课稿
一、教材分析
(一)内容概述
本节课选自人教版八年级上册11.1《与三角形有关的线段》,它是整个课程体系中几何部分的重要内容,主要介绍了三角形的中线、高线、角平分线等基本概念及其性质。这部分内容是对三角形知识的深入探究,旨在帮助学生巩固对三角形基本概念的理解,并为后续学习相似三角形、解直角三角形等知识打下基础。
(二)新知讲授
在新知讲授阶段,我将采用以下步骤逐步呈现知识点,引导学生深入理解:
1.通过动态PPT或几何画板展示三角形的中线、高线、角平分线的定义和性质,让学生直观地理解这些概念。
2.结合实际例题,讲解中线、高线、角平分线的判定方法和应用,让学生在具体情境中掌握知识。
3.分步骤演示如何准确地画出三角形的中线、高线、角平分线,并指导学生进行动手操作,加深对知识点的理解。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.基础练习:布置一些基本的画图题目,如画出给定三角形的中线、高线、角平分线,让学生独立完成。
2.提高练习:设计一些综合性的题目,让学生运用所学知识解决实际问题,如求三角形的面积、判断三角形的类型等。
3.小组合作活动:组织小组讨论,让学生共同探究与三角形有关的线段在生活中的应用,培养学生的团队合作能力和创新思维。

人教版数学八年级上册教学设计11.1《与三角形有关的线段》

人教版数学八年级上册教学设计11.1《与三角形有关的线段》

人教版数学八年级上册教学设计11.1《与三角形有关的线段》一. 教材分析人教版数学八年级上册第11.1节《与三角形有关的线段》主要包括三角形的两边之和大于第三边,两边之差小于第三边的基本性质。

这些性质是三角形的基本构成要素,对于学生深入理解三角形的结构特征,以及在后续学习中解决三角形相关问题具有重要意义。

二. 学情分析学生在七年级已经学习了线段的性质,能够理解线段的基本概念和性质。

但是对于三角形两边之和大于第三边,两边之差小于第三边的性质的理解,还需要通过具体操作和实例来加深。

此外,学生对于抽象几何图形的理解能力也在逐步提高,但仍需要具体的形象支持。

三. 教学目标1.知识与技能:理解并掌握三角形的两边之和大于第三边,两边之差小于第三边的性质。

2.过程与方法:通过观察、操作、证明等方法,培养学生的几何思维和解决问题的能力。

3.情感态度价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。

四. 教学重难点1.教学重点:三角形的两边之和大于第三边,两边之差小于第三边的性质。

2.教学难点:对于这些性质的理解和应用。

五. 教学方法采用问题驱动法、观察操作法、小组合作法等,引导学生主动探究,发现并证明三角形的这些基本性质。

六. 教学准备1.教师准备:教材、PPT、几何模型等。

2.学生准备:课本、笔记本、尺子、圆规等。

七. 教学过程1.导入(5分钟)通过提问方式复习线段的性质,为新课的学习打下基础。

然后,引入三角形的基本性质,激发学生的学习兴趣。

2.呈现(10分钟)利用PPT展示三角形的两边之和大于第三边,两边之差小于第三边的性质,引导学生观察和思考。

3.操练(10分钟)学生分组进行操作,用尺子和圆规构造三角形,验证这两条性质。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)学生独立完成教材中的相关练习题,教师选取部分题目进行讲解和分析,巩固所学知识。

5.拓展(10分钟)引导学生思考:这些性质在实际生活中有哪些应用?如何解决与三角形相关的实际问题?6.小结(5分钟)教师引导学生总结本节课所学内容,强调三角形的两边之和大于第三边,两边之差小于第三边的性质。

人教版八年级数学上册说课稿11.1与三角形有关的线段

人教版八年级数学上册说课稿11.1与三角形有关的线段

人教版八年级数学上册说课稿11.1 与三角形有关的线段一. 教材分析人教版八年级数学上册第11.1节《与三角形有关的线段》,这部分内容是学生在学习了三角形的性质和分类后,进一步研究三角形的线段性质。

本节内容主要包括三角形的角平分线、中线和高线的性质及其应用。

这些线段在三角形中具有重要的地位,对于学生深入理解三角形的结构特征和解决三角形相关问题具有重要意义。

二. 学情分析学生在学习本节内容前,已经掌握了三角形的基本性质和分类,对三角形有一定的认识。

但学生对于三角形的角平分线、中线和高线的性质及其应用可能还比较陌生,因此需要在教学过程中引导学生通过观察、思考、探究,从而理解和掌握这些线段的性质。

三. 说教学目标1.知识与技能目标:使学生了解三角形的角平分线、中线和高线的定义,掌握它们的性质及其应用。

2.过程与方法目标:通过观察、思考、探究,培养学生解决问题的能力和空间想象力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。

四. 说教学重难点1.教学重点:三角形的角平分线、中线和高线的性质及其应用。

2.教学难点:理解和证明三角形的角平分线、中线和高线的性质,以及如何在实际问题中灵活运用。

五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,引导学生通过观察、思考、探究,从而理解和掌握三角形的角平分线、中线和高线的性质。

2.教学手段:利用多媒体课件辅助教学,通过动画演示和图形展示,帮助学生直观地理解三角形的线段性质。

六. 说教学过程1.导入新课:通过复习三角形的基本性质和分类,引出三角形的角平分线、中线和高线的概念。

2.探究性质:引导学生观察三角形,发现角平分线、中线和高线的特点,学生分组讨论,总结出它们的性质。

3.证明性质:学生代表上台演示和证明三角形的角平分线、中线和高线的性质,其他学生进行评价和补充。

4.应用拓展:给出一些实际问题,让学生运用所学的线段性质进行解决,教师进行指导和点评。

人教版八年级数学上册全套教案

人教版八年级数学上册全套教案

11.1 与三角形有关的线段11.1.1 三角形的边1.理解三角形的概念,认识三角形的顶点、边、角,会数三角形的个数.(重点) 2.能利用三角形的三边关系判断三条线段能否构成三角形.(重点) 3.三角形在实际生活中的应用.(难点)一、情境导入 出示金字塔、战机、大桥等图片,让学生感受生活中的三角形,体会生活中处处有数学. 教师利用多媒体演示三角形的形成过程,让学生观察. 问:你能不能给三角形下一个完整的定义?二、合作探究探究点一:三角形的概念图中的锐角三角形有( )A .2个B .3个C .4个D .5个解析:(1)以A 为顶点的锐角三角形有△ABC 、△ADC 共2个;(2)以E 为顶点的锐角三角形有△EDC 共1个.所以图中锐角三角形的个数有2+1=3(个).故选B.方法总结:数三角形的个数,可以按照数线段条数的方法,如果一条线段上有n 个点,那么就有n (n -1)2条线段,也可以与线段外的一点组成n (n -1)2个三角形.探究点二:三角形的三边关系【类型一】判定三条线段能否组成三角形以下列各组线段为边,能组成三角形的是( )A.2cm,3cm,5cmB.5cm,6cm,10cmC.1cm,1cm,3cmD.3cm,4cm,9cm解析:选项A中2+3=5,不能组成三角形,故此选项错误;选项B中5+6>10,能组成三角形,故此选项正确;选项C中1+1<3,不能组成三角形,故此选项错误;选项D中3+4<9,不能组成三角形,故此选项错误.故选B.方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.【类型二】判断三角形边的取值范围一个三角形的三边长分别为4,7,x,那么x的取值范围是( ) A.3<x<11 B.4<x<7C.-3<x<11 D.x>3解析:∵三角形的三边长分别为4,7,x,∴7-4<x<7+4,即3<x<11.故选A.方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进行解决.【类型三】等腰三角形的三边关系已知一个等腰三角形的两边长分别为4和9,求这个三角形的周长.解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.【类型四】三角形三边关系与绝对值的综合若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.三、板书设计三角形的边1.三角形的概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形.2.三角形的三边关系:两边之和大于第三边,两边之差小于第三边.本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系”.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既提高了学生学习的兴趣,又增强了学生的动手能力.11.1 与三角形有关的线段11.1.1 三角形的边教学目标知识与技能1.进一步认识三角形的概念及其基本要素;2. 掌握三角形三条边之间关系.过程与方法经历度量三角形边长的实践活动中,理解三角形三边不等的关系.情感态度价值观帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣教学重点了解三角形定义、三边关系。

人教版八年级上册数学教学设计《11.1 与三角形有关的线段》

人教版八年级上册数学教学设计《11.1 与三角形有关的线段》

人教版八年级上册数学教学设计《11.1 与三角形有关的线段》一. 教材分析本节课的主题是“与三角形有关的线段”,这是人教版八年级上册数学的一个重要内容。

本节课主要让学生了解并掌握三角形的中线、角平分线、高线等概念,以及它们之间的关系。

通过对这些线段的性质和作用的学习,培养学生空间想象能力和逻辑思维能力,为学生进一步学习几何知识打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,如三角形的内角和、三角形的分类等。

但学生对三角形的中线、角平分线、高线等概念及性质可能较为陌生,因此,教师在教学中要注重引导学生从已知知识出发,探索新知识,培养学生自主学习的能力。

三. 教学目标1.知识与技能:让学生掌握三角形的中线、角平分线、高线的概念,理解它们之间的关系。

2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的合作意识,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:三角形的中线、角平分线、高线的概念及性质。

2.难点:三角形的中线、角平分线、高线之间的相互关系。

五. 教学方法1.情境教学法:通过设置问题情境,引导学生观察、操作、猜想、验证,激发学生的学习兴趣。

2.合作学习法:学生进行小组讨论,培养学生合作意识,提高学生解决问题的能力。

3.启发式教学法:教师引导学生从已知知识出发,探索新知识,培养学生的自主学习能力。

六. 教学准备1.教具:三角板、直尺、圆规、多媒体设备等。

2.学具:学生每人一份三角板、直尺、圆规等。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的基本概念和性质,为新课的学习做好铺垫。

2.呈现(10分钟)教师利用多媒体展示三角形的中线、角平分线、高线的图片,引导学生观察并思考这些线段的特征。

3.操练(10分钟)教师学生进行小组讨论,让学生通过实际操作,探索三角形的中线、角平分线、高线之间的关系。

人教版八年级数学上册第十一章《三角形11.1与三角形有关的线段第3课时》教学设计

人教版八年级数学上册第十一章《三角形11.1与三角形有关的线段第3课时》教学设计

人教版八年级数学上册第十一章《三角形11.1与三角形有关的线段第3课时》教学设计一. 教材分析人教版八年级数学上册第十一章《三角形11.1与三角形有关的线段第3课时》主要介绍三角形的角平分线、中线和高线的性质及应用。

这部分内容是学生对三角形知识深入理解的重要环节,为后续学习三角形面积、三角形的分类等知识打下基础。

本节课的内容在学生的认知结构中处于从具体到一般的过渡阶段,需要通过大量的实例让学生体会和理解三角形的角平分线、中线和高线的性质。

二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念、性质和判定,具备了一定的观察、分析和推理能力。

但对于三角形角平分线、中线和高线的性质,以及它们之间的相互关系,可能还较为陌生。

因此,在教学过程中,需要注重引导学生通过观察、操作、推理等活动,自主探索和发现三角形的角平分线、中线和高线的性质,培养学生的问题解决能力和合作交流意识。

三. 教学目标1.知识与技能:理解三角形的角平分线、中线和高线的性质,能够运用这些性质解决相关问题。

2.过程与方法:通过观察、操作、推理等活动,培养学生的问题解决能力和合作交流意识。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的耐心和自信心,使学生体验到成功的喜悦。

四. 教学重难点1.重点:三角形的角平分线、中线和高线的性质。

2.难点:三角形角平分线、中线和高线性质的证明和应用。

五. 教学方法1.情境教学法:通过生活实例和几何画板的演示,引导学生观察和操作,激发学生的学习兴趣。

2.问题驱动法:教师提出问题,引导学生思考和讨论,培养学生的问题解决能力。

3.合作学习法:学生分组讨论和交流,共同探索三角形的角平分线、中线和高线的性质。

4.引导发现法:教师引导学生发现三角形的角平分线、中线和高线的性质,培养学生的推理能力。

六. 教学准备1.教学课件:制作三角形的角平分线、中线和高线的相关课件,用于引导学生观察和操作。

2.几何画板:用于展示三角形的角平分线、中线和高线的性质。

11.1与三角形有关的线段教案

11.1与三角形有关的线段教案
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三角形及其相关线段的基本概念。三角形是由三条线段首尾相连围成的图形,其内角和为180度。三角形的中位线、角平分线、高、中线等线段在几何学中有着重要的作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了三角形的中位线在实际中的应用,以及如何帮助我们解决实际问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角形及其相关线段的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些线段的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
其次,在小组讨论环节,我发现部分学生参与度不高,可能是因为他们对讨论主题不够熟悉,或者是对问题解决的方法不够了解。针对这个问题,我计划在下次教学中,提前为学生提供一些与讨论主题相关的参考资料,引导他们如何在讨论中提出问题、分析问题,并解决问题。
此外,关于教学难点和重点的把握,我觉得自己在课堂上对这两个方面的讲解和强调还不够。在今后的教学中,我需要更加明确地指出哪些是重点,哪些是难点,并通过举例、提问等方式,帮助学生更好地理解和掌握。
3.重点难点解析:在讲授过程中,我会特别强调三角形中位线定理和角平分线定理这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形相关线段实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示三角形中位线的基本原理。

人教版数学八年级上册教案11.1《与三角形有关的线段》

人教版数学八年级上册教案11.1《与三角形有关的线段》

人教版数学八年级上册教案11.1《与三角形有关的线段》一. 教材分析人教版数学八年级上册第11.1节《与三角形有关的线段》主要介绍了三角形的中线、角平分线和高的概念。

通过本节课的学习,学生能够理解三角形中线、角平分线和高的定义,掌握它们的基本性质,并为后续的三角形全等和三角形的证明打下基础。

二. 学情分析学生在七年级已经学习了线段的性质和三角形的基本概念,对线段和三角形有一定的认识。

但部分学生对概念的理解不够深入,对性质的运用不够熟练。

因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,加深对三角形中线、角平分线和高的理解,提高运用性质解决问题的能力。

三. 教学目标1.了解三角形的中线、角平分线和高的定义,掌握它们的基本性质。

2.能够运用中线、角平分线和高的性质解决一些简单问题。

3.培养学生的观察能力、操作能力、思考能力和交流能力。

四. 教学重难点1.重点:三角形的中线、角平分线和高的定义及基本性质。

2.难点:运用中线、角平分线和高的性质解决问题。

五. 教学方法1.采用问题驱动法,引导学生观察、操作、思考、交流,发现规律。

2.运用多媒体辅助教学,展示清晰的图形和动画,帮助学生形象地理解概念和性质。

3.采用案例分析法,精选典型例题,让学生在解决实际问题中掌握知识。

六. 教学准备1.多媒体教学设备。

2.三角板、直尺、量角器等绘图工具。

3.准备相关课件和教学素材。

七. 教学过程1. 导入(5分钟)利用多媒体展示一个三角形,引导学生观察并思考:三角形有哪些特殊的线段?2. 呈现(10分钟)介绍三角形的中线、角平分线和高的概念,并用多媒体展示它们的定义和性质。

让学生通过观察和思考,发现它们之间的关系。

3. 操练(10分钟)学生分组讨论,每组选择一个三角形,画出它的中线、角平分线和高,并观察它们之间的关系。

教师巡回指导,解答学生的疑问。

4. 巩固(10分钟)学生独立完成教材中的练习题,教师选取部分题目进行讲解和分析。

人教数学八上11.1.1 三角形的边教案

人教数学八上11.1.1 三角形的边教案

第十一章三角形11.1 与三角形有关的线段11.1.1 三角形的边【知识与技能】1.掌握三角形的定义及相关概念.2.掌握等腰三角形、等边三角形、不等边三角形的定义,掌握三角形按边分类的方法.3.掌握三角形三边关系定理.【过程与方法】通过具体的图形学习三角形、等边三角形、不等边三角形的定义,运用“两点之间,线段最短”推导出三角形三边关系定理.【情感态度】通过求三角形的边长时必须注意三角形的三边关系,训练学生思维的严密性.【教学重点】三角形的三边关系.【教学难点】三角形三边关系的运用.一、情境导入,初步认识问题1 画一个三角形,结合图形探究三角形的定义及相关概念.问题2 出示等边三角形、等腰三角形、不等边三角形探究等边三角形、等腰三角形、不等边三角形定义及概念.问题3 如图,利用“两点之间,线段最短”探究AB、AC、BC之间的关系.【教学说明】全班同学合作交流,共同完成上面三个问题,教师巡回指导,必要时给予个别指导或集体指导,在全班同学基本完成的情况下,针对问题3进行重点讲解.教师讲课前,先让学生完成“名师导学”.二、思考探究,获取新知思考 1.三角形按边怎样分类?2.三角形的三边关系是怎样的.3.已知三条线段,怎样判断它们能否围成三角形?【归纳结论】 1.主要定义:三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.等边三角形:三条边都相等的三角形叫做等边三角形.等腰三角形:有两条边相等的三角形叫做等腰三角形.不等边三角形:三边都不相等的三角形叫做不等边三角形.2.三角形三边关系定理:三角形的两边之和大于第三边.3.已知三条线段,可用如下简易方法判断它们能否围成三角形:若两条较短边的和大于最长边,则能围成三角形,否则不能.4.已知三角形两边长a,b,第三边长为x,则x的取值范围是a-b<x<a+b(a ≥b).三、运用新知,深化理解1.以下列长度的三条线段为边,哪些可以构成一个三角形,哪些不能构成一个三角形?(1)6,8,10;(2)3,8,11;(3)3,4,11;(4)三条线长度之比4:6:72.等腰△ABC中,AB=AC,D是AB的中点,连CD,若CD将△ABC周长分成19和8两部分,求△ABC的腰长及底边的长.【教学说明】可由学生抢答完成,再由教师总结归纳.【答案】略.四、师生互动,课堂小结请若干同学口头小结,之后将小结放映在屏幕上.1.布置作业:从教材“习题11.1”中选取.2.完成创优作业中本课时练习的“课时作业”部分.教学过程中,强调学生自主探索和合作交流,经历观察、实验、归纳、类比、直觉、数据处理等思维过程,从中获得数学知识与技能,体验教学活动的方法,同时升华学生的情感、态度和价值观.。

人教版八年级数学上册第11章11.1.1三角形的三边关系教学设计

人教版八年级数学上册第11章11.1.1三角形的三边关系教学设计
(四)课堂练习
在这一环节,我会设计一系列具有代表性的练习题,让学生独立完成。这些题目将涵盖三角形三边关系的基础知识和拓展应用,包括判断三条线段是否能构成三角形、计算三角形中未知边的长度等。
在学生解题过程中,我会巡回指导,及时解答他们的疑问。对于普遍存在的问题,我会进行集中讲解,确保学生掌握解题方法和技巧。此外,我还会鼓励学生分享自己的解题心得,以便他们相互启发、共同提高。
7.教学评价,关注个体
采取多元化的教学评价方式,关注学生的个体差异,及时发现和解决问题。注重过程性评价,鼓励学生积极参与课堂活动,提高学习积极性。
四、教学内容与过程
(一)导入新课
在这一环节,我将利用生活中的实例来引导学生进入三角形的学习。首先,我会向学生展示一些包含三角形的日常物品图片,如自行车三角架、屋顶尖、三角尺等,并提出问题:“你们在生活中还见到过哪些三角形?它们有什么共同的特点?”通过这个问题,让学生意识到三角形无处不在,并激发他们对三角形性质的好奇心。
3.拓展题:
(1)结合教材第11章11.1节内容,思考三角形三边关系在桥梁建筑、房屋结构等方面的应用。
(2)尝试解决以下问题:已知一个三角形的两边长度,如何确定第三边的可能长度范围?
作业要求:
1.认真完成必做题,确保掌握基础知识。
2.选做题根据自己的实际情况和能力进行选择,可向同学或老师请教。
3.拓展题鼓励学生积极思考,培养创新意识和几何思维能力。
接着,我会引导学生回顾之前学过的几何图形知识,如线段、角的性质等,为新课的学习做好铺垫。然后,我会提出一个关键问题:“如何判断三条线段能否构成一个三角形?”从而引出本节课的主题——三角形的三边关系。
(二)讲授新知
在这一环节,我将系统地讲授三角形的基本概念和三边关系。首先,我会给出三角形的定义,并强调三角形是由三条线段首尾相连所围成的图形。然后,我会引导学生观察三角形的三个内角,回顾角度和的性质。

人教版数学八年级上册说课稿11.1《与三角形有关的线段》

人教版数学八年级上册说课稿11.1《与三角形有关的线段》

人教版数学八年级上册说课稿11.1《与三角形有关的线段》一. 教材分析《人教版数学八年级上册》第11.1节《与三角形有关的线段》是学生在学习了平面几何基础知识后,进一步探讨三角形中的一些重要线段,如三角形的中线、高线、角平分线等。

这些线段在解决三角形相关问题中起着关键作用,对于学生来说,这是一个新的知识层面,需要他们通过观察、思考、操作、交流等活动,掌握这些线段的性质和运用。

二. 学情分析八年级的学生已经具备了一定的几何知识基础,对平面几何图形有了一定的认识。

但是,对于三角形中线的性质、高线的分类、角平分线的判定等知识,还需要通过实例和操作来进一步理解和掌握。

此外,学生在学习过程中,需要逐步培养观察、分析、解决问题的能力。

三. 说教学目标1.知识与技能:使学生了解三角形的中线、高线、角平分线的定义,掌握它们的基本性质,能够运用这些性质解决实际问题。

2.过程与方法:培养学生通过观察、操作、思考、交流等方式,探究几何问题的能力。

3.情感态度与价值观:激发学生学习几何的兴趣,培养他们勇于探究、合作交流的精神。

四. 说教学重难点1.教学重点:三角形的中线、高线、角平分线的定义及其性质。

2.教学难点:三角形高线的分类,以及角平分线的判定。

五. 说教学方法与手段1.教学方法:采用问题驱动、案例教学、合作学习等方法,引导学生主动探究,提高他们分析问题和解决问题的能力。

2.教学手段:利用多媒体课件、几何模型等辅助教学,增强学生对几何图形的直观认识。

六. 说教学过程1.导入:通过复习平面几何中的相关知识,如线段的性质、平行线的性质等,为学生学习本节内容做好铺垫。

2.新课导入:介绍三角形的中线、高线、角平分线的定义,并通过实例使学生初步理解这些线段的性质。

3.课堂讲解:详细讲解三角形的中线、高线、角平分线的性质,并通过几何模型展示这些线段的运用。

4.课堂练习:安排一些具有代表性的练习题,使学生在实践中掌握这些线段的性质和运用。

人教版数学八年级上册第11章第3课11.1与三角形有关的线段(教案)

人教版数学八年级上册第11章第3课11.1与三角形有关的线段(教案)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形线段在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
2.提升逻辑推理能力:在教学过程中,引导学生运用已知性质推导三角形中线、高和角平分线的性质,培养学生的逻辑思维和推理能力。
3.培养数据分析观念:通过解决与三角形有关的实际问题,使学生能够运用所学知识进行数据分析,提高解决实际问题的能力。
4.强化数学运算能力:在学习过程中,使学生熟练掌握三角形相关线段的计算方法,提高数学运算速度和准确性。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角形中线、高和角平分线的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些线段的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现学生们对于三角形的中线、高和角平分线的概念掌握得还算不错。他们在实践活动和小组讨论中表现出了较高的兴趣和参与度。不过,我也注意到几个需要改进的地方。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三角形的中线、高和角平分线的基本概念。中线是连接三角形一边中点与对角的线段,它等分三角形;高是从三角形的一个顶点垂直于对边的线段,它可以帮助我们计算三角形的高度;角平分线是从三角形的一个顶点出发,将顶角平分的线段,它在几何图形中有着重要的应用。

人教版八年级数学上册教案(RJ) 第十一章 三角形

人教版八年级数学上册教案(RJ) 第十一章 三角形

11.1 与三角形有关的线段11.1.1 三角形的边1.结合具体的实例,进一步认识三角形的概念及其基本要素.2.会用符号、字母表示三角形,并了解按边的相等关系对三角形进行分类.3.理解三角形任何两边之和大于第三边与任意两边之差小于第三边的性质,并会初步运用这些性质来解决问题.重点三角形的三边关系. 难点三角形的三边关系.一、创设情境,引入新课老师出示一个用硬纸板剪好的三角形,并提出问题;小学中我们已经认识了三角形,那么你能不能给三角形下一个完整的定义? 老师出示教具,提出问题.让学生观察教具,然后给出三角形的定义. 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 二、探究问题,形成概念(一)探究三角形的有关概念1.三角形的顶点及符号表示方法. 2.三角形的内角. 3.三角形的边.教师继续利用教具向学生直接指明相关的概念. 学生注意记忆相关的概念. 教师再出示另外剪好的三角形,各顶点字母与原来不同,然后通过新三角形让学生巩固刚才的有关概念.(二)探究三角形的分类问题1:小学中已经学过,如何将三角形进行分类?问题2:如何将三角形按边分类? 教师提出问题,学生举手回答. 教师提示,分类的标准是什么?学生回答:有两边相等和有三边相等,以及三条边均不相等.教师进一步提出新的问题,并进一步讲解等边三角形、等腰三角形的有关概念,然后给出三角形按边分类的方法:三角形⎩⎪⎨⎪⎧三边都不相等的三角形等腰三角形⎩⎪⎨⎪⎧底边和腰不相等的等腰三角形等边三角形之后师生共同归纳三角形的分类方法.按不同的标准分类,可以有不同的分法.(三)探究三角形的三边关系探究:画出一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C点,它有几种路线可以选择?各条路线的长一样吗?教师提出问题,学生先画图然后进行讨论,并思考问题,然后教师指定学生回答问题.(1)小虫从点B出发沿三角形的边爬到点C有如下几条路线:a.从B→Cb.从B→A→C(2)从B→C路线最短.然后老师进一步提出问题:这条路线为什么是最短的?学生举手回答:“两点之间,线段最短.”然后师生共同归纳得出:AC+BC>AB①AB+AC>BC②AB+BC>AC③即三角形两边的和大于第三边.教师提问:(1)由不等式①②③移项,你能得到怎样的不等式?(2)通过刚才得到的不等式,你有什么发现?学生回答,师生共同归纳:三角形两边的差小于第三边.教师出示教材第3页例题.分析:(1)“用一条长18 cm的细绳围成一个等腰三角形”,这句话有什么含义?(2)有一边长为4 cm是什么意思,哪一边的长度是4 cm?三、练习巩固练习:教材第4页练习第1,2题.老师布置练习,学生举手回答即可.第2题注意让学生说明理由.解决完以后,教师利用投影出示补充练习,学生独立完成.补充练习:一个三角形有两条边相等,周长为20 cm,一条边长是6 cm,求其他两条边长.四、小结与作业小结:谈谈本节课的收获.老师引导学生主要从对三角形的分类和三边关系的认识方面进行小结.布置作业:习题11.1第1,2,7题.三角形的三边关系是在学生了解了三角形的一些基本特征的基础上学习的,学生虽然知道了三角形有三条边,但三角形“边”的研究却是学生首次接触,让学生自己动手操作,初步感知三条边之间的关系,接着重点研究“能围成三角形的三条边之间到底有什么关系?”通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论。

人教版八年级数学上--教案-(-11.1 与三角形有关的线段

人教版八年级数学上--教案-(-11.1 与三角形有关的线段

11.1 与三角形有关的线段 11.1.1 三角形的边【出示目标】1.通过观察、操作、想象、推理、交流等活动,发展空间观念、推理能力和表达能力. 2.通过具体实例,进一步认识三角形的概念及其基本要素.3.学会三角形的表示及根据“是否有边相等”对三角形进行的分类. 4.掌握三角形三条边之间的关系. 【预习导学】自学指导:阅读教材P2—4,完成下列各题. 【自学反馈】 一、三角形1.定义:由不在__同一条直线上__的三条线段首尾__顺次相接__所组成的图形叫做三角形.2.有关概念如图,线段AB ,BC ,CA 是三角形的__边__,点A ,B ,C 是三角形的__顶点__,∠A ,∠B ,∠C 是相邻两边组成的角,叫做三角形的__内角__,简称三角形的角.3.表示方法:顶点是A ,B ,C 的三角形,记作“__△ABC __”,读作“__三角形ABC __”. 二、三角形的分类1.等边三角形:三条边都__相等__的三角形.2.等腰三角形:有两边__相等__的三角形,其中相等的两条边叫做__腰__,另一边叫做__底边__,两腰的夹角叫做__顶角__,腰和底边的夹角叫做__底角__.3.不等边三角形:三条边都__不相等__的三角形. 4.三角形按边的相等关系分类三角形⎩⎪⎨⎪⎧不等边三角形等腰三角形⎩⎪⎨⎪⎧底边和腰不相等的等腰三角形等边三角形【合作探究】活动1 自主学习三角形的相关概念 (1)什么是三角形:如图,由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.(2)三角形的有关概念:①边:组成三角形的三条线段叫做三角形的三条边.②角:三角形相邻两边的夹角叫做三角形的内角,简称三角形的角. ③顶点:三角形相邻两边的公共端点叫做三角形的顶点. (3)三角形的表示:如图,以A 、B 、C 为顶点的三角形记作“△ABC ”,读作“三角形ABC ”.【教师点拨】(1)三角形的表示方法中“△”代表“三角形”,后边的字母为三角形的三个顶点,字母的顺序可以自由安排,即△ABC ,△ACB ,△BAC ,△BCA ,△CAB ,△CBA 为同一个三角形.(2)角的两边为射线,三角形的三条边为线段.(3)由于在三角形内一个角对着一条边,那么这条边就叫这个角的对边,同理,这个角也叫做这个边的对角.如图,∠A 的对边是BC (经常也用a 表示),∠B 的对边是AC (经常也用b 表示),∠C 的对边为AB (经常也用c 表示);AB 的对角为∠C ,AC 的对角为∠B ,BC 的对角为∠A .活动2 跟踪训练1.小强用三根木棒组成下列图形,其中符合三角形概念是( C )2.找一找,图中有多少个三角形,并把它们写下来.解:图中有5个三角形.分别是:△ABE 、△DEC 、△BEC 、△ABC 、△DBC . 活动3 三角形的分类三角形按角分类如下:三角形⎩⎪⎨⎪⎧锐角三角形直角三角形纯角三角形三角形按边分类如下:三角形⎩⎪⎨⎪⎧等腰三角形⎩⎪⎨⎪⎧腰和底边不相等的等腰三角形等边三角形不等边三角形【教师点拨】等边三角形是特殊的等腰三角形,即底边和腰相等的等腰三角形.活动4 三角形的三边关系(1)三角形任意两边之和大于第三边.【教师点拨】组成一个三角形必须满足任意两条线段的和大于另一条线段.(2)推论:由于a +b >c ,根据不等式的性质,得c -b <a ,即三角形两边之差小于第三边. (3)利用三角形三边关系,可以确定在已知两边的三角形中,第三边的取值范围,以及判断任意三条线段能否构成三角形.【教师点拨】三角形两边之和大于第三边指的是三角形任意两边之和大于第三边,即a +b >c ,b +c >a ,c +a >b 三个不等式同时成立.活动5 跟踪训练下列长度的三条线段能否组成三角形?(1)3,4,8( 不能 ) (2)2,5,6( 能 )_(3)5,6,10( 能 ) (4)5,6,11( 不能 ) 问题:判断三条线段能否组成三角形,是否一定要检验三条线段中任何两条的和都大于第三条?根据你刚才的解题经验,你有没有更简便的判断方法?【教师点拨】用较短的两条线段之和与最长的线段比较,若和大,能组成三角形;反之,则不能.活动6 例题解析【例1】 若三角形的两边长分别是2和7,第三边长为奇数,求第三边的长.解:设第三边的长为x ,根据两边之和大于第三边得:x <2+7即x <9.根据两边之差小于第三边得:x >7-2即x >5.所以x 的值大于5小于9,又因为它是奇数,所以x 只能取7.【例2】用一根长为18厘米的细铁丝围成一个等腰三角形. (1)如果腰长是底边的2倍,那么各边的长是多少? (2)能围成有一边的长为4厘米的等腰三角形吗? 解:(1)设底边长为x 厘米,则腰长为2x 厘米.则 x +2x +2x =18.解得x =3.6.∴三边长分别为3.6厘米,7.2厘米,7.2厘米; (2)①当4厘米长为底边,设腰长为x 厘米, 则4+2x =18.解得x =7.∴等腰三角形的三边长为7厘米、7厘米、4厘米; ②当4厘米长为腰长,设底边长为x 厘米,可得 4×2+x =18.解得x =10. ∵4+4<10,∴此时不能构成三角形.综上可得,可围成等腰三角形,且三边长分别为7厘米、7厘米和4厘米. 活动7 跟踪训练1.现有两根木棒,它们的长度分别为20cm 和30cm ,若不改变木棒的长度,要钉成一个三角形木架,应在下列四根木棒中选取(B)A.10cm的木棒B.20cm的木棒C.50cm的木棒D.60cm的木棒2.已知等腰三角形的两边长分别为3和6,则它的周长为(C)A.9B.12C.15D.12或153.已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为(B)A.2cm B.3cm C.4cm D.5cm4.若五条线段的长分别是1cm,2cm,3cm,4cm,5cm,则以其中三条线段为边可构成__3__个三角形.5.若等腰三角形的两边长分别为3和7,则它的周长为__17__;若等腰三角形的两边长分别是3和4,则它的周长为__10或11__.活动8课堂小结【随堂训练】教学至此,敬请使用学案随堂训练部分11.1.2三角形的高、中线与角平分线【出示目标】1.三角形的高、中线与角平分线的概念.2.三角形的高、中线与角平分线的画法.【预习导学】自学指导:阅读教材P4—5,回答下列问题:【合作探究】1.从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做__三角形的高__.2.在三角形中,连接一个顶点与它对边中点的线段,叫做这个__三角形的中线__.3.在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫__三角形的角平分线__.【自学反馈】1.三角形的高从△ABC的顶点A向它所对的边BC所在直线画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的__高__.如图1,AD是△ABC的高,则AD⊥__BC__.图1图2图32.连接△ABC的顶点A和它所对的边BC的中点D,所得线段AD叫做△ABC的边BC 上的__中线__.如图2,AD是△ABC的中线,则BD=__CD__.3.∠BAC的平分线AD,交∠BAC的对边BC于点D,所得线段AD叫做△ABC的__角平分线__.如图3,AD是△ABC的角平分线,则∠BAD=__∠CAD__.4.三角形的角平分线与角的平分线有什么区别?高与垂线呢?解:三角形的角平分线是线段,角的平分线是射线;高是线段,垂线是直线.5.一个三角形有几条高?几条中线?几条角平分线?解:一个三角形有3条高,3条中线,3条角平分线.【合作探究】活动1三角形的高用工具准确画出三角形的高.三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.如图,线段AD是BC边上的高.注意:画三角形的高时要标明垂直的记号和垂足的字母.【教师点拨】回忆并演示“过一点画已知直线的垂线”画法.分别在锐角三角形、直角三角形、钝角三角形中画出所有的高,观察高与三角形的位置关系.由作图可得出如下结论:(1)三角形的三条高线相交于__一__点;(2)锐角三角形的三条高线相交于三角形的__内部__;(3)钝角三角形的三条高线相交于三角形的__外部__;(4)直角三角形的三条高线相交于三角形的__直角顶点__;活动2三角形的中线三角形的中线:在三角形中连接一个顶点与它对边中点的线段,叫做这个三角形的中线.如图,AD是△ABC中BC边上的中线.分别在锐角三角形、直角三角形、钝角三角形中画出所有的中线,观察中线与三角形的位置关系.由作图可得出如下结论:(1)三角形的三条中线相交于__一__点;(2)锐角三角形的三条中线相交于三角形的__内部__;(3)钝角三角形的三条中线相交于三角形的__内部__;(4)直角三角形的三条中线相交于三角形的__内部__.活动3三角形的角平分线以前所学的“角平分线”是一条射线,“三角形的角平分线”还是射线吗?三角形的角平分线:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫三角形的角平分线.如图,AD是△ABC的角平分线,图中∠BAD=∠CAD.【教师点拨】三角形的角平分线”是一条线段.分别在锐角三角形、直角三角形、钝角三角形中画出所有的角平分线,观察角平分线与三角形的位置关系.由作图可得出如下结论:(1)三角形的三条角平分线相交于__一__点;(2)锐角三角形的三条角平分线相交于三角形的__内部__;(3)钝角三角形的三条角平分线相交于三角形的__内部__;(4)直角三角形的三条角平分线相交于三角形的__内部__.活动4课堂小结【随堂训练】教学至此,敬请使用学案随堂训练部分11.1.3三角形的稳定性【出示目标】1.通过观察和实地操作得知三角形具有稳定性,四边形没有稳定性.2.稳定性与不稳定性在生产、生活中广泛应用.【预习导学】自学指导:阅读教材P6—7,回答下列问题.【合作探究】1.下列图形中具有稳定性的是(C)A.正方形B.长方形C.直角三角形D.平行四边形2.要使下列木架变稳定各至少需要多少根木棍?解:四、五、六边形木架分别需要一、二、三根木棍才能使其变稳定.【自学反馈】1.下列图中具有稳定性的有(C)A.1个B.2个C.3个D.4个2.下列设备中,没有利用三角形的稳定性的是(A)A.活动的四边形衣架B.起重机C.屋顶三角形钢架D.索道支架3.人站在晃动的公共汽车上,若你分开两腿站立,则需伸出一只手去抓住栏杆才能站稳,这是利用了__三角形的稳定性__.【合作探究】活动1思考盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢?(防止窗框变形)【教师点拨】家里的门窗最怕变形.观察下面的图片,有什么共同点?(都具有三角形的形状.)活动2讨论观察上面这些图片,你发现了什么?发现这些物体都用到了三角形.【教师点拨】这说明三角形有它所独有的性质.到底是什么性质呢?下面我们通过实验来探讨三角形的特性.活动3动手操作探究三角形的稳定性1.用三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?(不会)错误!,第2题图),第3题图)2.用四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?(会) 3.在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?(不会)从上面实验过程你能得出什么结论?与同学交流.解:三角形木架形状不会改变,四边形木架形状会改变,这就是说,三角形具有稳定性,四边形没有稳定性.【教师点拨】第一个三角形不变形,第二个四边形变形,当在四边形的木架上再钉一根木条,然后扭动它,不变形.通过对比得出三角形具有稳定性的结论.还有什么发现?解:还可以发现,斜钉一根木条的四边形木架的形状不会改变.原因是斜钉一根木条后,四边形变成两个三角形,由于三角形有稳定性,所以斜钉一根木条的四边形木架的形状不会改变.【教师点拨】现在你知道为什么窗框未安装好之前,要先在窗框上斜钉一根木条了吧.其实就是利用了三角形的稳定性.活动4理解三角形的稳定性只要三角形三条边的长度固定,这个三角形的形状和大小也就完全确定,三角形的这种性质叫做三角形的稳定性.这就是说,三角形的稳定性不是“拉得动、拉不动”的问题,其实质应是“三角形边长确定,其形状和大小就确定了”.活动5四边形的不稳定性的应用四边形的不稳定性是我们常常需要克服的,那么四边形的不稳定性在生活中有没有应用价值呢?如果有,你能举出实例吗?活动6跟踪训练1.下列图形中哪些具有稳定性?【教师点拨】判断一个图形是否稳定,关键是看图形中是否都是三角形.2.如图,桥梁的斜拉钢索是三角形的结构,主要是为了(C)A.节省材料,节约成本B.保持对称C.利用三角形的稳定性D.美观漂亮,第2题图),第3题图)3.如图,工人师傅砌门时,常用木条EF和EG固定门框ABCD,使其不变形,这种做法的根据是(D)A.两点之间线段最短B.矩形的对称性C.矩形的四个角都是直角D.三角形的稳定性【随堂训练】教学至此,敬请使用学案随堂训练部分。

人教版八年级数学上册教案:11.1 与三角形有关的线段

人教版八年级数学上册教案:11.1 与三角形有关的线段

教材分析一、情景导入三角形是一种最常见的几何图形, [投影1-6]如古埃及金字塔,香港中银大厦,交通标志,等等,处处都有三角形的形象。

那么什么叫做三角形呢?二、三角形及有关概念不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。

注意:三条线段必须①不在一条直线上,②首尾顺次相接。

组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。

三角形ABC 用符号表示为△ABC 。

三角形ABC 的顶点C 所对的边AB 可用c 表示,顶点B 所对的边AC 可用b 表示,顶点A 所对的边BC 可用a 表示.三、三角形三边的不等关系探究:[投影7]任意画一个△ABC,假设有一只小虫要从B 点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么?有两条路线:(1)从B→C ,(2)从B→A→C ;不一样, AB+A C >BC ①;因为两点之间线段最短。

同样地有 AC+BC >AB ②AB+BC >AC ③由式子①②③我们可以知道什么?三角形的任意两边之和大于第三边.四、三角形的分类我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形统称为斜三角形。

按角分类:三角形 直角三角形 斜三角形 锐角三角形 钝角三角形那么三角形按边如何进行分类呢?请你按“有几条边相等”将三角形分类。

三边都相等的三角形叫做等边三角形; 有两条边相等的三角形叫做等腰三角形;三边都不相等的三角形叫做不等边三角形。

⎧⎨⎩⎧⎨⎩ ab c (1)CBA 腰 腰 底边顶角 底角 底角。

人教版初二数学第十一章 三角形的边教案

人教版初二数学第十一章 三角形的边教案

第十一章三角形11.1 与三角形有关的线段11.1.1 三角形的边第1课时三角形的边一、教学目标【知识与技能】1.进一步认识三角形的概念及其基本要素;2.学会对三角形进行分类;3.理解并掌握三角形三条边之间的关系。

【过程与方法】经历度量三角形边长的实践活动,理解三角形三边不等的关系。

【情感态度与价值观】帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣。

二、课型新授课三、课时第1课时四、教学重难点【教学重点】理解三角形定义、证明三角形三边关系。

【教学难点】1.在具体的图形中不重复,且不遗漏地识别所有三角形.2.用三角形三边不等关系判定三条线段可否组成三角形.五、课前准备教师:课件、三角尺、屋顶架结构图等。

学生:三角尺、铅垂纸、小刀。

六、教学过程(一)导入新课(出示课件2)1. 你能从中找出4个不同的三角形吗?与同学交流各自找出的三角形.2. 这些三角形有什么共同特点?(二)探索新知1.观察三角形的构成,探索三角形的概念(出示课件4)教师问1:你能画出一个三角形吗?让学生画出三角形,直观感受三角形的构成.教师问2:结合你画的三角形,说明三角形是由什么组成的?学生回答:三角形是由三条线段组成的.教师问3:什么叫三角形?学生回答:由三条线段组成的图形叫做三角形.教师问4:如下图,是由三条线组成的图形,这样的图形是三角形吗?学生回答:这样的不是三角形.教师问5:你们讨论一下,如何给三角形下定义呢?学生讨论回答:需要满足以下条件:三角形的特征有:(1)三条线段;(2)不在同一直线上;(3)首尾顺次连接.教师画出图形:如图所示:教师归纳:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.(出示课件5)2.自主学习三角形的表示方法及分类阅读教材第2页到第3页探究前内容,回答下列问题.教师问6:根据右图回答以下问题:(1)在三角形中,什么叫边?什么叫内角?什么叫顶点?学生回答:如图:线段AB、BC、CA是△ABC的三边;点A、B、C△ABC的三个顶点;∠A、∠B、∠C是△ABC的三个内角.教师总结(出示课件6):①边:组成三角形的每条线段叫做三角形的边. ②顶点:每两条线段的交点叫做三角形的顶点. ③内角:相邻两边组成的角.(2)如何用小写字母表示三角形ABC的三条边?学生回答:△ABC的边AB为∠C所对的边,可以用顶点C的小写字母c表示,同样,边AC可用b表示,边BC可用a表示.教师出示下图边讲解:(3)如何用符号表示三角形ABC?(出示课件7)学生回答:三角形用符号“△”表示. 记作“△ABC”读作“三角形ABC”.例 1: 说出图中有多少个三角形,用符号“△”表示,并指出每一个三角形的三条边,三个顶点,三个内角. (出示课件8)师生共同讨论解答如下:解:图中有3个三角形,分别是△EHG,△EHF,△EFG.△EHG 的三边是EH 、HG 、GE ,三内角是∠G、∠GHE、∠HEG,三个顶点是G 、H 、E ;△EHF 的三边是EH 、HF 、FE ,三内角是∠EHF、∠HFE、∠HEF,三个顶点是F 、H 、E ;△EFG 的三边是EF 、FG 、GE ,三内角是∠G、∠GFE、∠FEG,三个顶点是G 、F 、 E.Q F E P GH 1 2总结点拨:(出示课件9)在查三角形的个数时,先给单个三角形编号,查单个的三角形,再查两个三角形组成的较大三角形,然后再查三个,四个三角形组成的三角形.出示课件10,找学生读出三角形。

八年级数学上册11.1与三角形有关的线段11.1.1三角形的边说课稿(新版)新人教版

八年级数学上册11.1与三角形有关的线段11.1.1三角形的边说课稿(新版)新人教版

八年级数学上册 11.1 与三角形有关的线段 11.1.1 三角形的边说课稿(新版)新人教版一. 教材分析新人教版八年级数学上册第11.1节“与三角形有关的线段”,主要介绍了三角形的三条边:两边之和大于第三边,两边之差小于第三边。

这部分内容是三角形基本性质的重要组成部分,对于学生理解和掌握三角形的相关知识具有重要作用。

二. 学情分析八年级的学生已经学习了平面几何的基本知识,对图形的认识有一定的基础。

但是,对于三角形边长的性质的理解和应用还需要加强。

因此,在教学过程中,需要引导学生通过观察、思考、探索,从而深入理解三角形的这一基本性质。

三. 说教学目标1.知识与技能目标:使学生理解和掌握三角形两边之和大于第三边,两边之差小于第三边的性质。

2.过程与方法目标:通过观察、思考、探索,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探究的精神。

四. 说教学重难点1.教学重点:三角形两边之和大于第三边,两边之差小于第三边的性质。

2.教学难点:如何引导学生通过观察、思考、探索,深入理解三角形的这一基本性质。

五. 说教学方法与手段本节课采用问题驱动的教学方法,引导学生通过观察、思考、探索,从而得出三角形的边长性质。

同时,利用多媒体手段,展示三角形的各种图形,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入:通过展示一些生活中的三角形图形,引导学生回顾三角形的基本知识,为新课的学习做好铺垫。

2.新课导入:介绍三角形的三条边,引导学生思考三角形边长之间是否存在某种关系。

3.学生探究:分组讨论,每组尝试找出三角形边长之间的规律。

4.汇报交流:各组汇报探究结果,师生共同总结出三角形两边之和大于第三边,两边之差小于第三边的性质。

5.练习巩固:出示一些练习题,让学生运用所学知识解决问题,加深对三角形边长性质的理解。

6.课堂小结:回顾本节课所学内容,引导学生总结三角形边长性质的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学目标:
知识与技能:结合三角形的实例,探索、掌握三角形3条边之间的关系.
会用符号表示三角形,了解按边关系对三角形进行分类.
理解三角形三边之间的不等关系,并会初步应用它们来解决问
题.
过程与方法:结合具体实例,进一步认识三角形的概念及其基本要素,掌握三角形三边关系。

情感、态度和价值观:通过观察、操作、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力
重点:三角形的三边之间的不等关系.
难点:应用三角形的三边之间的不等关系判断3条线段能否组成三角形. 教学过程:
一、问题情境:
三角形是我们早已熟悉的图形,你能列举出日常生活中有什么物体是三角形吗?对于三角形,你了解了哪些方面的知识?你能画一个三角形吗?
二、新课学习:
⒈三角形的相关概念.
⑴什么是三角形:
如图⑴,由不在同一条直线上的三条线段首尾顺次相接
所组成的图形叫做三角形.
⑵三角形的有关概念:
①边:组成三角形的三条线段叫做三角形的三条边.
②角:三角形相邻两边的夹角叫做三角形的内角,简称三角形的角 .
③顶点:三角形相邻两边的公共端点叫做三角形的顶点.
⑶三角形的表示:
如图⑴以A、B、C为顶点的三角形记作“⊿ABC ”,读作“三角形ABC”.
⑷三角形的分类:如图⑵
①等边三角形:图⑵中⑴的⊿ABC的边
AB=BC=AC,⊿ABC是等边三角形.
即:三条边都相等的三角形叫做等边三角形.
②等腰三角形:图⑵中⑵的⊿ABC的边
AB=AC,但AB≠BC, AC≠BC,⊿ABC是等腰三角形.
即:有两条边相等的三角形叫做等腰三角形.等腰三角形中,相等的边叫做腰,另一边叫做底,两腰的夹角叫做顶角,腰和底的夹角叫做底角.
注意:等边三角形是特殊的等腰三角形,即腰和底相等的等腰三角形.
③不等边三角形:图⑵中⑶的⊿ABC的边AB≠AC≠BC≠AB,⊿ABC是不等边三角形.
即:三条边都不相等的三角形叫做不等边三角形.
综上三角形按边分类关系如下
三条边都不相等的三角形: .
三角形腰和底不相等的: .
有两条边相等的三角形
⎧⎪⎧⎪⎪⎪⎧⎨⎨⎨⎪⎪⎩⎩⎪⎪⎩
定义:由不在同一条直线上的三条线段首尾依次连接所组成的图形不等边三角形按边分类底边和腰不等的等腰三角形等腰三角形等边三角形三边不等关系:任意一边之小于其它两边的和而大于其它两边的差边腰和底相等的: .
⑸练习:教材P65练习 “1”(口答)
⑹讨论与交流: 如图⑶,存在AB 1,AB 2,AB 3,···AB 9,
AB 10,10条线段,且B 1,B 2, ···B 10在同一条直线上,
则,图中三角形共有45 个.
⒉三角形三边关系: 阅读教材P64“探究”完成下列问题:
⑴如图⑷,根据线段公里“两点之间线段最短”可得,⊿ABC 的三边 满足下列关系:AB +BC >AC ;AB +AC >BC ;BC +AC >AB .
或:c +a >b ; c +b >a ; a +b >c .
即:三角形任意两边的和 大于第三边 .
上述关系也可表示为:
a -
b <
c ; b -c <a ; c -a <b 或b -a <c ; c -b <a ; a -c <b .
即:三角形任意两边的差 小于第三边 .
注意:综合上可知:三角形任意一边小于 其他两边的和,并且大于 其他两边的差.
⑵练习:教材P65练习“2” (口答)
说明:应用三角形三边之间的关系判定三条线段能否构成三角形时,常常只要两
条较短的线段长度之和大于第三条线段的长度即可.
⑶例解与应用:阅读教材P64例,解答下列问题:
一个等腰三角形的周长为28cm.
①已知腰长是底边长的3倍,求各边的长;
②已知其中一边的长为6cm,求其它两边的长.
解:①设底边长为x cm ,则腰长为3x cm ,根据题意得x +3x +3x =28
解得 x =4.
所以 3x =3×4=12.即:等腰三角形的三边长分别为4 cm ,12 cm ,12 cm .
②若腰长为6cm ,则底边长为28-2×6=16cm ,此时6+6<16,故不能组成三角形,所以腰长不能为6.
若底边长为6cm ,则腰长为﹙28-6﹚÷2=11cm ,它能构成三角形.
所以它的其它边长为11cm 、11cm .
⑷讨论与交流:
①如果三条线段的比是①1∶3∶4;②1∶2∶3;③1∶4∶6;④3∶3∶6;⑤6∶6∶
10;⑥3∶4∶5.其中能构成三角形的有 2 个.
②若a ,b ,c 分别是三角形的三边,化简︱a -b -c ︱+︱b -c -a ︱+︱c -a +b ︱
= .
③已知一个等腰三角形的两边长分别为5cm 和9cm ,那么这个三角形的周长为19cm 或23cm. .
三、课堂小结:
四、课堂检测:
1.如图⑸,共有个三角形,
其中以AC为边的三角形有个.
2.一个等腰三角形的两边分别为7cm和10cm,则它的周长
为 .
3.一个等腰三角形的两边分别为2cm和5cm;则它的周长为 .
4.一个三角形的周长为15cm,且其中两边都等于第三边的2倍,,那么这个三角形的最短边长为 .
5.已知一个三角形的两边长分别为5cm和9cm,那么这个三角形的第三边x的取
值范围
是<x< .
六、课后作业
⒈书面作业:
⑴课本P69习题7.1“1”(做书上)
⑵课本P69习题7.1“2”(做书上)
⑶等腰三角形底边为4.腰长为b,则b一定满足( )
A.b>2 B. 2<b<4 C. 2<b<8 D.b<8 ⑷已知三条线段的比是:①2∶3∶4;②1∶2∶3;③2∶4∶6;④3∶3∶6;⑤6∶6∶10;⑥6∶8∶10.其中可构成三角形的有 ( )
A. 1个
B. 2个
C. 3个
D. 4个
⑸已知三角形的三边长为连续的整数,且周长为12cm,则它的最短边长为( )
A. 2cm
B. 3cm
C. 4cm
D. 5cm
⑹已知a,b,c为三角形的三边,则︱a+b―c︱-︱b-c-a︱的化简结果是( )
A.2a
B. -2b
C.2a+2b
D.2b-2c
⑺已知等腰三角形的两边长分别为4cm和6cm,且它的周长大于14cm,则第三边长为
⑻已知等腰三角形的两边长分别为4,9,求它的周长.
⒉跟踪训练:
⑴如图⑹所示,为估计池塘岸边A、B的距离,小方在池塘
的一侧选取一点O,测得OA=15cm,OB=10cm,A、B间的
距离不可能是()
A.20cm
B.15cm
C.10cm
D.5cm
⑵下列说法①等边三角形是等腰三角形;
②三角形任意两边的和大于第三边;
③三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;
④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.其中正确的有()
A. 1个
B. 2个
C. 3个
D. 4个
⑶已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()
A.13cm
B.6cm
C.5cm
D.4cm
⑷三角形的一边长为5,一边长为13,则第三边x的取值范围是()
A. 5<x< 13
B. 8<x<18
C.x>8
D. x<18
⑸已知三角形三边的比是3∶4∶5,其周长为48cm,那么它的三边长为 .
⑹三角形有两边长为5和1,第三边为奇数,则此三角形的周长为 .
⑺已知周长小于13的三角形三边长都是质数,且其中一条边a长为3,求符合条件的三角形的个数.
⑻一个等腰三角形的一条边长为6,另两边长是不小于3且不大于13的奇数,求这个等腰三角形的周长.。

相关文档
最新文档