知识表示方法 人工智能

合集下载

人工智能中知识的表示法

人工智能中知识的表示法

人工智能中知识的表示法
在人工智能领域,知识的表示是将信息组织成可供计算机理解和处理的形式的过程。

不同的问题和应用需要不同的知识表示方法。

以下是一些常见的知识表示方法:
谓词逻辑:使用谓词和逻辑运算符表示事实和关系。

一阶逻辑和高阶逻辑是常见的形式。

图表示法:使用图结构表示对象和它们之间的关系。

图可以是有向图或无向图,节点表示实体,边表示关系。

框架表示法: 将知识组织成框架或者类似于面向对象编程中的类的结构。

每个框架包含关于实体或概念的属性和关系。

语义网络:与图表示法相似,语义网络使用节点表示概念,边表示关系,但通常具有更丰富的语义。

产生式系统:使用规则的集合,每个规则描述了在特定条件下执行的操作。

用于表示推理和问题解决的过程。

向量表示法: 将实体和概念表示为向量,例如词嵌入(Word Embeddings)用于表示单词,将语义相近的单词映射到相似的向量空间位置。

本体论:使用本体来描述概念、实体和它们之间的关系。

本体是一种形式化的知识表示,用于共享和集成信息。

模型表示法:使用数学模型表示知识,例如概率图模型、
贝叶斯网络等。

这些模型可以用于推理、学习和决策。

神经网络表示法:利用神经网络来学习和表示知识,例如深度学习中的各种神经网络结构。

人工智能_第2章知识表示方法

人工智能_第2章知识表示方法
5
框架网络
◆框架间的横向联系: 由于框架中的槽值或侧面值都可以是另一个框架的名字,这 就在框架之间 建立起了联系,通过一个框架可以找到另一个 框架,这称为横向联系。 ◆框架间的纵向联系: 当某些事物有一些共同的属性时,在对它们进行描述时,可 以将它们具有的共同属性抽取出来,构成一个上层框架,然 后再对各自独有的属性分别构成下层框架。 为了指明框架间的这种上下关系,可在下层框架中设立一个 专用的槽,用以指出他的上层框架是哪一个。这样就在框架 间建立了纵向联系。 ◆具有横向联系及纵向联系的一组框架称为框架网络。
16
框架的推理-例
【例】师生员工的框架网络已建立在知识库中,从知识库中找出一
个满足以下条件的教师:男性,年龄在30岁以下,身体健康,职称
为讲师把这些条件用框架表示出来,就可得到如下的初始问题框架
框架名:<教师-x>
姓名:
师生
年龄:<30
员工
继 性别:男
承 健康状况:健康
性 职称:讲师
某个教师的事例框架为: 框架名:<教师-1> 继承:<教师> 姓名:孙林 年龄:28 健康状况:健康 部门:计算机系软件教研室
6
框架间的继承
◆框架的继承性,就是当子节点的某些槽值或侧面值没有被 直接记录时,可以从其父节点继承这些值。 继承性是框架表示法的一个重要特性,它不仅可以在两个框 架之间实现继承关系,而且还可以通过两两的继承关系,从 最低层追搠到最高层,使高层的信息逐层向低层传递。 例如,椅子一般都有4条腿,如果一把具体的椅子没有说明它 有几条腿,则可以通过一般椅子的特性,得出它也有4条腿。 如果一个在上层框架中描述的属性在下层框架需作进一步说 明时,则需要在下层框架中再次给出描述。 如果在下层框架中对某些槽没有作特别的声明,那么它将自 动继承上层框架相应槽的槽值。

人工智能第二章知识表示方法

人工智能第二章知识表示方法

框架的构建与实现
80%
确定框架的结构
根据实际需求和领域知识,确定 框架的槽和属性,以及它们之间 的关系。
100%
填充框架的实例
根据实际数据和信息,为框架的 各个槽和属性填充具体的实例值 。
80%
实现框架的推理
通过逻辑推理和规则匹配,实现 基于框架的知识推理和应用。
框架表示法的应用场景
自然语言处理
模块化
面向对象的知识表示方法可以将 知识划分为独立的模块,方便管 理和维护。
面向对象表示法的优缺点
• 可扩展性:面向对象的知识表示方法可以通过继承和多态实现知识的扩展和复用。
面向对象表示法的优缺点
复杂性
面向对象的知识表示方法需要建立复 杂的类和对象关系,可能导致知识表 示的复杂性增加。
冗余性
面向对象的知识表示方法可能导致知 识表示的冗余,尤其是在处理不相关 或弱相关的事实时。
人工智能第二章知识表示方法

CONTENCT

• 知识表示方法概述 • 逻辑表示法 • 语义网络表示法 • 框架表示法 • 面向对象的知识表示法
01
知识表示方法概述
知识表示的定义
知识表示是人工智能领域中用于描述和表示知识的符号系统。它 是一种将知识编码成计算机可理解的形式,以便进行推理、学习 、解释和利用的过程。
知识表示方法通常包括概念、关系、规则、框架等元素,用于描 述现实世界中的实体、事件和状态。
知识表示的重要性
知识表示是人工智能的核心问题之一,它决定了知 识的可理解性、可利用性和可扩展性。
良好的知识表示方法能够提高知识的精度、可靠性 和一致性,有助于提高人工智能系统的智能水平和 应用效果。
知识表示方法的发展对于推动人工智能技术的进步 和应用领域的拓展具有重要意义。

人工智能_知识表示

人工智能_知识表示

_知识表示_知识表示引言:(Artificial Intelligence,简称)是一门研究如何使计算机能够像人一样进行思考和决策的学科。

知识表示是的一个重要研究领域,主要涉及如何以一种能够被计算机理解和处理的形式表示和组织知识,以支持计算机程序进行推理、学习和解决问题。

本文档旨在介绍中的知识表示领域的基本概念、方法和应用。

主要内容包括:语义网络、谓词逻辑、产生式规则、本体论、语义解释器等方面的内容。

一、语义网络语义网络是一种以图形化形式表示知识的方法。

它通过节点和边来表示概念和关系,节点表示概念,边表示概念之间的关系。

语义网络常用于知识图谱的构建,它能够有效地表示和表达知识之间的关联性。

1.1 节点和边的定义在语义网络中,节点用来表示概念,边用来表示概念之间的关系。

节点和边可以通过标签表示其含义,例如,一个表示“猫”的节点可以用标签“猫”表示,一个表示“属于”的边可以用标签“属于”表示。

1.2 常见的语义网络表示法在语义网络中,有多种常见的表示法,包括二元关系表示法、三元关系表示法和本体图表示法。

其中,二元关系表示法通过一对节点和一个边来表示关系,三元关系表示法通过三个节点和两个边来表示关系,本体图表示法通过节点、边和属性来表示关系。

二、谓词逻辑谓词逻辑是一种用符号逻辑表示知识的方法。

它通过定义一组谓词和一组公式来表示概念和关系,谓词表示概念,公式表示概念之间的关系。

谓词逻辑常用于知识推理和自动推理的领域,它能够通过逻辑推理来解决问题。

2.1 谓词和公式的定义在谓词逻辑中,谓词用来表示概念,公式用来表示概念之间的关系。

谓词可以具有多个参数,用来表示概念的属性。

公式由谓词和参数组成,用来表示概念之间的关系。

2.2 常见的谓词逻辑表示法在谓词逻辑中,有多种常见的表示法,包括命题逻辑、一阶逻辑和高阶逻辑。

其中,命题逻辑用来表示简单的真值关系,一阶逻辑用来表示概念和关系的复杂性,高阶逻辑用来表示关系的进一步抽象性。

人工智能_第2章 知识表示方法

人工智能_第2章  知识表示方法

14
标准槽名
6) Infer槽:指出两个框架所描述的事物间的逻辑推理关系, 用它可以表示相应的产生式规则。 【例】设有下面知识:如果咳嗽,发烧且流涕,则八成是患 了感冒,需服用感冒清,一日三次,每次2-3粒。并要多喝开 水。对该知识 ,可用如下两个框架表示: 框架名:<诊断规则> 框架名:<结论> 病名:感冒 症状1:咳嗽 治疗方法:服用感冒清,一日三 症状2:发烧 次,每次2-3粒 症状3:流涕 注意事项 :多喝开水 Infer: <结论> 愈后:良好 可信度:0.8 7) Possible-Reason槽:与Infer槽作用相反,用来把某个结论 与可能的原因联系起来。 15
12
标准槽名
2) AKO槽:用于具体的指出事物间的类属关系。其直观含义 是“是一种”,下层框架可以继承其上层框架所描述的属性及值。 对上面的例子,可将棋手框架中的ISA改为AKO。 3)Subclass槽:用于指出子类与类之间的类属关系。 上例中,由于“棋手”是“运动员的一个子类,故可将ISA该为 Subclass。 4) Instance槽:用来建立AKO槽的逆关系。 用它作为某框架的槽时,可用来指出它的下层框架是哪些。 【例】框架名:<运动员> Instance:<棋手>,<足球运动员>,<排球运动员> 姓名:单位(姓,名) 年龄:单位(岁) 性别:范围(男,女) 缺省:男
18
剧本表示-例
【例】餐厅剧本 (1) 开场条件: (a)顾客饿了,需要进餐。(b)顾客有足够的钱。 (2) 角色:顾客,服务员,厨师,老板。 (3) 道具:食品,桌子,菜单,钱。 (4) 场景: 场景1 进入餐厅 (a) 顾客走入餐厅。(b) 寻找桌子。 (c) 在桌子旁坐下。 场景2 点菜 (a) 服务员给顾客菜单。(b) 顾客点菜。 (c) 顾客把菜单还给服务员。(d) 顾客等待服务员送菜。 场景3 等待 (a) 服务员把顾客所点的菜告诉厨师。(b) 厨师做菜。

人工智能 知识表示方法

人工智能 知识表示方法

知识表示方法一、引言()是一门研究如何使计算机能够像人类一样思考和学习的领域。

在中,知识表示方法是一项关键技术,它用于存储、组织和操作各种类型的知识。

本文将介绍几种常用的知识表示方法及其优缺点。

二、逻辑推理逻辑推理是一种基于逻辑规则的知识表示方法。

它将知识表示为逻辑语句,通过推理规则进行推导和推理。

逻辑推理具有形式化、准确和可靠的特点,但对于处理不确定性和复杂度较高的问题有一定局限性。

1、命题逻辑命题逻辑是一种简单的知识表示方法,它基于真值逻辑和布尔代数。

命题逻辑包括命题符号、逻辑连接词和推理规则,可以表示复杂的命题和逻辑关系。

2、一阶谓词逻辑一阶谓词逻辑扩展了命题逻辑,引入了对象、属性和关系等概念。

它可以表示更加复杂的逻辑关系,包括量词、函数和谓词。

3、非经典逻辑非经典逻辑是对传统逻辑的扩展和改进,用于处理不确定性和模糊性问题。

常见的非经典逻辑包括模糊逻辑、默认逻辑和多值逻辑等。

三、网络表示网络表示是一种基于图的知识表示方法,将知识表示为节点和边的网络结构。

网络表示方法可以表示实体和关系之间的拓扑结构,用于构建知识图谱和语义网络等。

1、语义网络语义网络是一种最早的网络表示方法,它将实体表示为节点,将关系表示为边。

语义网络可以用于表示概念关系、语义关系和实体属性。

2、本体论本体论是一种基于本体的知识表示方法,它建立了实体之间的层次和关系。

本体论可以用于构建丰富的知识模型,支持语义推理和知识发现。

3、图神经网络图神经网络是一种基于深度学习的知识表示方法,它将图结构作为输入,并通过神经网络进行表示学习。

图神经网络可以学习节点和边的嵌入表示,用于图分类、节点分类和预测等任务。

四、框架表示框架表示是一种基于框架的知识表示方法,它将知识表示为事实、槽位和约束的框架结构。

框架表示可以用于表示领域知识、推理规则和行为策略等。

1、语义网格语义网格是一种基于框架的知识表示方法,它将知识表示为描述事实和槽位的网格结构。

人工智能2第二章知识表示方法

人工智能2第二章知识表示方法

2.状态空间表示详释
我们先用数码难题(puzzle problem)来 说明状态空间表示的概念。由15个编有1至 15并放在4×4方格棋盘上的可走动的棋子 组成。
11 9 4 15
13
12
7586
13 2 10 14
初试棋局
1 2 34 5 6 78 9 10 11 12 13 14 15
目标棋局
是有关知识的知识,是知识库中的高层知识。 包括怎样使用规则、解释规则、校验规则、解释 程序结构等知识。元知识与控制知识是有重迭的, 对一个大的程序来说,以元知识或说元规则形式 体现控制知识更为方便,因为元知识存于知识库 中,而控制知识常与程序结合在一起出现,从而 不容易修改。
知识表示是研究用机器表示知识的可行

求解过程实际上是一个搜索过程。
那么如果进行搜索呢?为了进行搜索,就必须
用某种形式把问题表示出来,其表示是否适当,将
直接影响到搜索效率。
状态空间法就是用来表示问题及其搜索过程的 一种方法。它是人工智能中最基本的形式化方法, 用“状态”和“算符”来表示问题。
状态空间法三要素
(1) 状态(state):表示问题解法中每一步问题状 况的数据结构;
·显式表示:各节点及其具有代价的弧线由 一张 表明确给出。此表可能列出该图中的每 一节点、它的后继节点以及连接弧线的代价。
Q [q0,q1,...qn ]T
式中每个元素qi(i=0,1,…,n)为集合的量,称 为状态变量。
·算符:使问题从一种状态变化为另一种状态的手 段称为操作符或算符。操作符可为走步、过程、规 则、数学算子、运算符号或逻辑符号等。
· 问题的状态空间(state space):是一个表示该问题 全部可能状态及其关系的图,它包含三种说明的 集合,即所有可能的问题初始状态集合S、操作符 集合F以及目标状态集合G。可把状态空间记为三 元状态(S,F,G)。

人工智能第二章知识表示方法

人工智能第二章知识表示方法

人工智能第二章知识表示方法答:状态空间法:基于解答空间的问题表示和求解方法,它是以状态和算符为基础来表示和求解问题的。

一般用状态空间法来表示下述方法:从某个初始状态开始,每次加一个操作符,递增的建立起操作符的试验序列,直到达到目标状态为止。

问题规约法:已知问题的描述,通过一系列变换把此问题最终变成一个子问题集合:这些子问题的解可以直接得到,从而解决了初始问题。

问题规约的实质:从目标(要解决的问题)出发逆向推理,建立子问题以及子问题的子问题,直至最后把出示问题规约为一个平凡的本原问题集合。

谓词逻辑法:采用谓词合式公式和一阶谓词算法。

要解决的问题变为一个有待证明的问题,然后采用消解定理和消解反演莱证明一个新语句是从已知的正确语句导出的,从而证明这个新语句也是正确的。

语义网络法:是一种结构化表示方法,它由节点和弧线或链组成。

节点用于表示物体、概念和状态,弧线用于表示节点间的关系。

语义网络的解答是一个经过推理和匹配而得到的具有明确结果的新的语义网络。

语义网络可用于表示多元关系,扩展后可以表示更复杂的问题2-2利用图2.3,用状态空间法规划一个最短的旅行路程:此旅程从城市A开始,访问其他城市不多于一次,并返回A。

选择一个状态表示,表示出所求得的状态空间的节点及弧线,标出适当的代价,并指明图中从起始节点到目标节点的最佳路径。

710910D图2.32-3试用四元数列结构表示四圆盘梵塔问题,并画出求解该问题的与或图。

用四元数列(nA,nB,nC,nD)来表示状态,其中nA表示A盘落在第nA号柱子上,nB表示B盘落在第nB号柱子上,nC表示C盘落在第nC号柱子上,nD表示D盘落在第nD号柱子上。

初始状态为1111,目标状态为3333如图所示,按从上往下的顺序,依次处理每一个叶结点,搬动圆盘,问题得解。

2-4把下列句子变换成子句形式:(1)某y(On(某,y)→Above(某,y))(2)某yz(Above(某,y)∧Above(y,z)→Above(某,z))(1)(ANY某)(ANYy){On(某,y)Above(某,y)}(ANY某)(ANYy){~On(某,y)ORAbove(某,y)}~On(某,y)ORAbove(某,y)最后子句为~On(某,y)ORAbove(某,y)(2)(ANY某)(ANYy)(ANYz){Above(某,y)ANDAbove(y,z)Above(某,z)}(命题联结词之优先级如下:否定→合取→析取→蕴涵→等价)(ANY某)(ANYy)(ANYz){~[Above(某,y)ANDAbove(y,z)]ORAbove(某,z)}~[Above (某,y)ANDAbove(y,z)]ORAbove(某,z)最后子句为~[Above(某,y),Above(y,z)]ORAbove(某,z)2-5用谓词演算公式表示下列英文句子(多用而不是省用不同谓词和项。

人工智能知识表示

人工智能知识表示

人工智能——产生式表示法1. 产生式的基本形式或 IF P THEN Q表1 产生式表示的常用结构及示例2. 产生式系统把一组产生式放在一起,让它们互相配合,协同作用,一个产生式生成的结论可以供另一个产生式作为已知事实使用,以求得问题的解决,这样的系统称为产生式系统。

图1 产生式系统图2 产生式求解系统问题的一般步骤3. 动物识别系统产生式推理链设动物识别知识库中已包含识别虎、金钱豹、斑马、长颈鹿、企鹅、鸵鸟、海鸥等7中动物15条规则。

R1:IF 某动物是哺乳动物 AND 是食肉动物 AND 是黄褐色 AND 身上有斑点 THEN 该动物是金钱豹R2:IF某动物是哺乳动物 AND 是食肉动物 AND 是黄褐色 AND 身上有黑色条纹 THEN 该动物是老虎R3:IF 某动物是有蹄类动物 AND 有长脖子 AND 有长腿 AND 身上有暗斑点 THEN 该动物是长颈鹿R4:IF 某动物是有蹄类动物 AND 身上有黑色条纹 THEN 该动物是斑马R5:IF 该动物是鸟 AND有长脖子 AND 有长腿 AND不会飞 AND有黑白两色 THEN 该动物是鸵鸟R6:IF 某动物是鸟 AND会游泳 AND不会飞 AND有黑白两色 THEN 该动物是企鹅R7:IF 某动物是鸟 AND会游泳 AND善于飞 THEN 该动物是海鸥R8:IF动物是哺乳动物 AND 嚼反动物 THEN 该动物是有蹄类动物R9:IF 某动物有毛发 THEN 该动物是哺乳动物R10:IF 某动物有奶 THEN该动物是哺乳动物R11:IF 某动物有羽毛 THEN 该动物是鸟R12:IF 某动物会飞 AND 会下蛋 THEN该动物是鸟R13:IF 某动物吃肉 THEN 该动物是食肉动物R14:IF 某动物有犬齿 AND 有爪子 AND 眼盯前方 THEN该动物是食肉动物R15:IF 某动物是哺乳动物 AND 有蹄子 THEN该动物是有蹄类动物图3 动物识别系统的推理链已知有斑点、长脖子、长腿、有奶、有蹄子正向推理:R10-->R8-->R3反向推理:假设R1到R7的某个结论成立,逐个与现有事实匹配正反向混合推理:正向推理,有斑点-->豹子或长颈鹿;根据其他事实反向推理表1 产生式表示法的特点4. 产生式表示法的适用范围1) 由许多相对独立的知识元组成的领域知识,彼此间关系不密切,不存在结构关系2) 具有经验型及不确定性的知识,而且相关领域对这些知识没有严格、统一的理论3) 领域问题的求解过程可被表示为一系列相对独立的操作,而且每个操作可被表示为一条或多条产生式规则人工智能——面向对象表示法1. 面向对象基本概念1) 对象:客观世界中的任何事物2) 类:一组相似对象的抽象3) 封装:对象之间除了互递消息之外,不再有其它的联系对象的状态只能由它的私有操作来改变当一个对象要改变另一个对象时,它只能向该对象发送消息,该对象接受消息后就根据消息的模式找出相应的操作,并执行操作改变自己的状态4) 继承:父类所具有的数据和操作可被子类继承5) 面向对象的基本特征:模块性、继承性、封装性、多态性、易维护性、便于进行增量设计2. 表示知识的方法一个智能求解系统可用具有层次结构的四元组模型:,其中S依据系统反映的主题(Subject)来命名,称为主题层ID是对象标识符,又称为对象名,反映当前对象及其所属类别DS是数据结构,又称属性层,描述了当前对象的内部状态及静态属性。

人工智能中的知识表示方法

人工智能中的知识表示方法

人工智能中的知识表示方法1.一阶谓词逻辑表示方法2.产生式表示方法3.语义网络表示方法4.框架表示方法、5.过程表示方法除了以上五种表示方法,比较常用的还有以下几种表示方法:6.面向对象表示方法:对象是有一组数据和该数据相关的操作构成的实体。

类由一组变量和一组操作组成,它描述了一组具有相同属性和操作的对象。

每个对象都属于某一个类,每个对象都可由相关的类生成,类的生成过程就是例化。

面向对象的基本特征主要体现在模块性、封装性、继承性、多态性、易维护性等。

7.状态空间表示方法:状态空间表示法是以状态和运算符为基础来表示和求解问题的一种方法。

(1)状态描述问题求解过程中任一时刻状况的数据结构,一般用一组变量的有序组合表示。

(2)算符引起状态中某些分量发生变化,从而使问题由一个状态变为另一个状态的操作称为算符。

(3)状态空间由问题的全部状态以及一切可用算符所构成的集合称为问题的状态空间。

空间状态表示方法的应用举例:猴子与香蕉的问题状态空间表示用四元组(W,x,y,z)其中:W-猴子的水平问题;x-当猴子在箱子顶上时取x=1;否则x=0;y-箱子的水平位置;z-当猴子摘到香蕉时取1,否则取0。

算符(1)g oto(U)猴子走到水平位置U;(2)p ushbox(V)猴子把箱子推到水平位置V;(3)c limbbox猴子爬上箱顶;(4)g rasp猴子摘到香蕉。

求解过程令初始状态为(a,0,b,0)。

这时,goto(U)是唯一使用的操作,并导致下一状态(U,0,b,0)。

现在有三个适用的操作,若把所有适用操作继续应用于每个状态,就能得到状态空间图。

8.问题归约表示法:问题归约法的基本思想是从目标出发进行逆向推理,通过一系列变换把初始问题变换为子问题集合和子-子问题集合,直至最后归约为一个平凡的本原问题集合。

采用问题归约表示可由下列3部分组成:一个初始问题的描述;一套把问题变换为子问题的操作符;一套本原问题描述。

人工智能知识表示方法

人工智能知识表示方法
2024/6/19
一阶或多阶谓词
• 任何函数符号和谓词符号都取指定个数变元。 • 若函数符号f中包含的个体数目为n,则称f为n元函数
符号。如father(x)是一元函数 • 若谓词符号P中包含的个体数目为n,则称P为n元谓
词符号。如Less(x,y)是二元谓词。 • 如果谓词P中的所有个体都是个体常量、变元或函数
2024/6/19
对于规则,表示事物间的因果关系,以下式描述: “if Condition then action”
举例1
聪明人智力竞赛:主持人在三个竞赛者头上戴一顶帽子, 帽子颜色分红白两种,但至少有一顶是白帽,题目是说 出自己所戴帽子的颜色。戴毕,主持人连问两次,三人 面面相觑,无一人能答。问到第三次时,某甲抢先给出 了答案。试问某甲的判断的依据是什么?
一个 控制系统
一组产生 式规则
2024/6/19
2024/6/19
一般形式: if…then… 描述了应用这条规则所采用的 行动或得出的结论。
2.3.1 产生式的基本形式
产生式通常用于表示具有因果关系的知识,其基本形式是 P→Q 或 IF P THEN Q
其中,P是产生式的前提或条件,用于指出该产生式是否 是可用的条件;Q是一组结论或动作,用于指出该产生式的 前提条件P被满足时,应该得出的结论或应该执行的操作。 P和Q都可以是一个或一组数学表达式或自然语言。
知识表示的分类
•陈述性知识表示:将知识表示与知识的运用分开处理,在表示知识时,并不
涉及如何运用知识的问题,是一种静态的描述方法。如学生统计表。
•过程性知识表示:将知识表示与知识的运用相结合,知识包含于程序中,是
一种动态的描述方法。如转置矩阵的程序隐含了专职矩阵的知识。

人工智能概论第2章-知识表示

人工智能概论第2章-知识表示

按照作用的层次,知识还可以分成以下两类: (1)对象级知识 (2)元级知识
知识表示的方法按其表示的特征可分为两类: (1)叙述性表示 (2)过程性表示
所谓表示就是为描述世界所作的一组约定,是把 知识符号化的过程、知识的表示与知识的获取、 管理、处理、解释等有直接的关系。
首先,将适用的算符作用于初始状态,以产生新的状态; 然后,再把一些适用的算符作用于新的状态;这样继续下 去,直到产生的状态为目标状态为止。 最后,就得到了问题的一个解,这个解是从初始状态到目 标状态所用算符构成的序列。
产生式可表示的知识种类及其基本形式 1.可表示的知识种类 2.产生式的基本形式 3.产生式与谓词逻辑中蕴涵式的区别
同构变换可使问题更明确,更便于求解。同构问题的解答 等价于原始问题的解答。
同态变换可使问题更加简化,易于求解。原始问题有解, 则同态问题有解,同态问题无解,则原始问题无解。
它们之间是蕴含关系,通过同构或同态变换,可以将原始 问题转化为比较清晰、简单的同构或同态问题。
2.2 状态空间表示法
2.7.1 状态空间表示法的构成
(3) 状态空间 由表示一个问题的全部状态及一切可用算符构
成的集合称为该问题的状态空间。
(4) 问题的解 从问题的初始状态集S出发,经过一系列的算
符运算,到达目标状态。由初始状态到目标状 态所用算符的序列就构成了问题的一个解。
2.2.2 状态空间方法表示问题时的步骤
2.7.1 状态空间表示法的构成
状态空间表示法就是以“状态空间”的形式对问 题进行表示。
(1) 状态:状态是描述问题求解过程中不同时刻状 况的数据结构。
(2) 算符:引起状态中某些分量发生变化,从而使 问题由一个状态变为另一个状态的操作称为算符。 算符可分为走步、过程、规则、数学算子、运算 符号或逻辑符号等。

人工智能知识表示方法

人工智能知识表示方法

2020/8/15
相关概念
命题逻辑 所谓命题就是具有真假意义的陈述句。如“今天下雨”、 “1+100=101”,真或假用符号T或F表示。
命题的分类
•原子命题:不能分解成更简单的陈述语句。 •复合命题:由联结词、标点符号和原子命题等复合构成的命题。
命题逻辑
命题逻辑就是研究命题和命题之间关系的符号逻辑系统。通常用大写字母P、Q 、R、S等来表示命题。如: P:今天下雨 P是命题的名或命题标识符 命题常量:命题标识符表示一个确定的命题。 命题变元:命题标识符只表示任意命题的位置标志。当命题变元P用一个特定的 命题取代时,P才能确定真值,这时称为对P进行指派。
2020/8/15
举例
产生式系统 设计
(1)帽色(聪明人A,红)∧帽色(聪明人B,红) ∧ AǂB → 帽色(自己,白)
(2)帽色(聪明人A,红) ∧帽色(聪明人B,白) ∧答不出(聪明人B) → 帽色(自己,白)
(3)帽色(聪明人A,红) ∧帽色(聪明人B,白) ∧答出(聪明人B) → 帽色(自己,红)
元知识 有关知识的知识,是知识库中的高层知识。例如,怎样使用规则,解释 规则、校验规则、解释程序结构等知识。 它可以决定哪一个知识库适 用。
2020/8/15
2.1.1 知识
知识分类
事实性知识 过程性知识 行为性知识 实例性知识 类比性知识
元知识
例如
北京是中国的首都;太湖在苏州的西边 怎样制作松鼠桂鱼;手机维修法。 微分方程刻划了一个函数的行为。 燕子低飞;南京是江苏省的省会。
第二步
将个体代入谓词中,得到 BCity(wuhan), HCity(wuhan), Boy(mal), Girl(zhangh), High(mal,zhangh)

人工智能第2章知识表示方法

人工智能第2章知识表示方法
框架表示法
知识的框架表示法1975年由M.Minsky提出,最早用作视觉 感知、自然语言对话等问题的知识表示;目前已作为一种 通用数据结构来表示知识对象(实体)。 框架理论认为,人们对现实世界中各种事物的认识都是以 一种类似于框架的结构存储在记忆中的,当面临一种新事 物时,就从记忆中找出一个合适的框架并根据实际情况对 其细节加以修改、补充,从而形成对当前事物的认识。 【例】对教室的知识:在记忆中建立关于教室的框架,指 出相应事物的名称(教室),以及事物各有关方面的属性 (如有四面墙、有课桌、有黑板,……)。通过对该框架 的查找,很容易得到教室的各有关特征。 当实际接触了教室后,经观察得到了教室的大小、门窗的 个数、桌凳的数量、颜色等细节,把它们填入到教室框架 中,就得到了教室框架的一个具体事例,称为事例框架。
侧面名11:侧面值111…侧面值11p
侧面名12:侧面值121…侧面值12p
… 槽名2:槽值2
侧面名21:侧面值211…侧面值21p
… 槽名n:槽值n
侧面名n1:侧面值n11…侧面值n1p

侧面名nm:侧面值nm1…侧面值nmp
3
框架表示法-例
【例】一个人可以用其职业、身高和体重等项描述,用这些 项目组成框架的槽。 当描述一个具体的人时,再用这些项目的具体值填入到相应 的槽中。 下面是描述John的框架。 框架名:<PERSON-1>
(以此类推)
8
框架网络-例
师生员工框架为: 框架名:<师生员工> 姓名: 单位(姓,名) 年龄: 单位(岁) 性别: 范围(男,女) 缺省:男
健康状况: 范围(健康,一般,差) 缺省:一般
住址: <住址框架> 教职工框架为: 框架名:<教职工>

人工智能常用的知识表示方法

人工智能常用的知识表示方法

人工智能常用的知识表示方法
在人工智能领域,知识表示是一项重要的任务,其目的是将现实世界中的知识
以适合计算机处理的形式进行表示。

有许多常用的知识表示方法被广泛应用于人工智能领域。

一种常见的知识表示方法是谓词逻辑。

谓词逻辑是使用谓词和量词来描述现实
世界中的事实和关系的一种形式化方法。

它基于一阶逻辑,通过定义谓词和量词的语义来表示知识。

谓词逻辑可以用来表达对象、属性和关系之间的多种关联关系,为推理和问题求解提供了一种有效的方式。

另一种常用的知识表示方法是本体。

本体是一种概念模型,用于描述现实世界
中一类事物的本质属性和关系。

通过定义概念、属性和关系的语义,本体可以用于组织和分类知识,提供一种标准化的表示方法。

本体在语义网和知识图谱等领域得到广泛应用,并被用于信息检索、智能推荐和自然语言处理等任务中。

除了谓词逻辑和本体,还有其他一些常用的知识表示方法,如框架(Frame)、规则(Rule)、语义网络(Semantic Network)等。

这些方法都相对灵活,可以根
据具体任务的需求选择合适的表示方式。

总之,人工智能领域中有许多常用的知识表示方法,包括谓词逻辑、本体、框架、规则和语义网络等。

这些方法在不同场景下有各自的优势和适用性,选择合适的表示方法对于实现有效的知识表达和应用是非常重要的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档