【精品】2017年新疆高考数学试卷及参考答案(理科)(全国新课标ⅱ)
2017年全国统一高考新课标版Ⅱ卷全国2卷理科数学试卷及参考答案与解析
2017年全国统一高考新课标版Ⅱ卷全国2卷理科数学试卷及参考答案与解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)=( )A.1+2iB.1-2iC.2+iD.2-i2.(5分)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=( )A.{1,-3}B.{1,0}C.{1,3}D.{1,5}3.(5分)在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔(古称浮屠),本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?你算出的结果是( )A.6B.5C.4D.34.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90πB.63πC.42πD.36π5.(5分)设x,y满足约束条件,则z=2x+y的最小值是( )A.-15B.-9C.1D.96.(5分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A.12种B.18种C.24种D.36种7.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩8.(5分)执行如图的程序框图,如果输入的a=-1,则输出的S=( )A.2B.3C.4D.59.(5分)若双曲线C:-=1(a>0,b>0)的一条渐近线被圆(x-2)2+y2=4所截得的弦长为2,则C的离心率为( )A.2B.C.D.10.(5分)已知直三棱柱ABC-A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为( )A. B. C. D.11.(5分)若x=-2是函数f(x)=(x2+ax-1)e x-1的极值点,则f(x)的极小值为( )A.-1B.-2e-3C.5e-3D.112.(5分)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是( )A.-2B.-C.-D.-1二、填空题:本题共4小题,每小题5分,共20分。
2017年高考数学全国卷(理科新课标Ⅱ)(含答案解析)[1]
2017年高考数学全国卷(理科新课标Ⅱ)(含答案解析)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年高考数学全国卷(理科新课标Ⅱ)(含答案解析)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年高考数学全国卷(理科新课标Ⅱ)(含答案解析)(word版可编辑修改)的全部内容。
2017年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)=()A.1+2i B.1﹣2i C.2+i D.2﹣i2.(5分)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=() A.{1,﹣3}B.{1,0} C.{1,3} D.{1,5}3.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏4.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π5.(5分)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.96.(5分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种7.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A.乙可以知道四人的成绩 B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩8.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=( )A.2 B.3 C.4 D.59.(5分)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2 B. C. D.10.(5分)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.11.(5分)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1 B.﹣2e﹣3C.5e﹣3D.112.(5分)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣C.﹣D.﹣1三、填空题:本题共4小题,每小题5分,共20分。
2017年高考理科数学全国2卷(附答案)
给丁看甲的成绩。看后甲对大家说:我还是不知道我的成绩。根据以上信息,
则
A .乙可以知道四人的成绩
C .乙、丁可以知道对方的成绩 8. 执行右面的程序框图,如果输入的
A .2 B.3 C.4 D .5
B.丁可以知道四人的成绩 D.乙、丁可以知道自己的成绩 a=–1,则输出的 S=
22
9. 若双曲线 C:xa2–yb2=1(a>0,b>0) 的一条渐近线被圆 (x –2)2+y2=4 所截得的弦长为
A .–15
B .–9
C. 1
6. 安排 3 名志愿者完成 4 项工作,每人至少完成
不同的安排方式共有
D .9 1 项,每项工作由 1 人完成,则
A .12 种
B.18 种
C. 24 种
D. 36 种
7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞猜的成绩。老师说:你们四
人中有 2 位优秀, 2 位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,
8sin 2 ,故 2
上式两边平方,整理得 17cos2B-32cosB+15=0
解得 cosB= 1(舍去), cosB= 15 17
- 11 -
(2)由
15 cosB =
得
sin
B
17
又 S ABC =2,则 ac 17 2
由余弦定理及 a c 6 得
8 ,故 S ABC
17
1
4
acsin B ac
直线 l 过 C 的左焦点 F.
21. ( 12 分)已知函数 f (x) ax 2 ax x ln x, 且 f ( x) 0 .
( 1)求 a;
( 2)证明: f ( x) 存在唯一的极大值点
2017新课标全国卷2高考理科数学试题和答案解析
绝密★启用前2017年普通高等学校招生全国统一考试理科数学注意事项: 1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内.2。
选择题必须使用2B 铅笔填涂;非选择题必须使用0。
5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚3。
请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效4。
作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5。
保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+( ) A .12i + B .12i - C .2i + D .2i -2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π5。
设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种 7。
甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 8。
(完整word)2017年高考理科数学全国2卷-含答案,推荐文档
2017年普通高等学校招生全国统一考试理科数学(全国2卷)一、选择题:本题共要求的。
12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目3 i 八1 iA. 1 2iB. 1 2iC. 22.设集合1,2,4 , x 2 x4x m 0 .若D. 2 i1 ,则()A. 1, 3B. 1,0C. 1,3D. 1,53. 我国古代数学名著《算法统宗》中有如下问题:请问尖头几盏灯?”意思是:一座7层塔共挂了倍,则塔的顶层共有灯()A. 1盏B. 3盏C. 5盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A. 90B. 63C.422x 5.设x , y满足约束条件2x 3y3y3 (0,则z"远望巍巍塔七层,红光点点倍加增,共灯三百八^一,381盏灯,且相邻两层中的下一层灯数是上一层灯数的2D. 9盏2xD. 36y的最小值是()A. 15B.6. 安排3名志愿者完成4项工作,则不同的安排方式共有()A. 12 种B. 18 种C.每人至少完成1项,D. 9每项工作由1人完成,C. 24 种D.36种你们四人中7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩C.乙、丁可以知道对方的成绩8. 执行右面的程序框图,如果输入的A. 2B. 3C.B. 丁可以知道四人的成绩D.乙、丁可以知道自己的成绩1,则输出的S ()D. 59.若双曲线0)的一条渐近线被圆2 y2得的弦长为2,贝U C的离心率为()A. 2B. 3 C. D .10•已知直三棱柱C 1 1C1 中, C 120o,CC1面直线1与C1所成角的余弦值为()A .B. fC.卫 D .仝25 5311 若X 2是函数f (x) (x 2ax 1)e x 1的极值点,贝Uf (x )的极小值为()A .1B .2e 3C.5e 3D.1uuu uuu uuu12. 已知 ABC 是边长为2的等边三角形,P 为平面ABC 内一点,贝U PA (PB PC )的最小值是()3 4 ’A. 2B.C.D. 123二、填空题:本题共 4小题,每小题5分,共20分。
(完整word)2017年高考理科数学全国2卷-含答案,推荐文档
输出S K=K+1a =a S =S +a ∙K 是否输入a S =0,K =1结束K ≤6开始2017年普通高等学校招生全国统一考试理科数学(全国2卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =I ,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏 4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则() A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的1a =-,则输出的S =() A .2 B .3 C .4 D .59.若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为()A .2B .3C .2D .2310.已知直三棱柱111C C AB -A B 中,C 120∠AB =o,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为()ABCD11.若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.112.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是()A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。
(完整版)2017全国二卷理科数学高考真题及答案
2017年普通高等学校招生全国统一考试理科数学(全国2卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有() A .12种 B .18种 C .24种 D .36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的1a =-,则输出的S =()A .2B .3C .4D .59.若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为()A .2B .3C .2D .23310.已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为()输出S K=K+1a =a S =S +a ∙K 是否输入a S =0,K =1结束K ≤6开始ABCD11.若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.1 12.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是() A.2- B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。
2017年高考全国Ⅱ理科数学试题及答案(word解析版)
2017年普通高等学校招生全国统一考试(全国II)数学(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2017年全国Ⅱ,理1,5分】31ii+=+( )(A )12i + (B )12i - (C )2i + (D )2i - 【答案】D【解析】()()()()3i 1i 3i 42i2i 1i 1i 1i 2+-+-===-++-,故选D . (2)【2017年全国Ⅱ,理2,5分】设集合{}1,2,4A =,{}240B x x x m =-+=.若{1}A B =,则B =( )(A ){}1,3- (B){}1,0 (C ){}1,3 (D ){}1,5 【答案】C【解析】集合{}1,2,4A =,24{|}0B x x x m -=+=.若{}1AB =,则1A ∈且1B ∈,可得140m -+=-,解得3m =, 即有243013{|}{,}B x x x =+==-,故选C . (3)【2017年全国Ⅱ,理3,5分】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )(A )1盏 (B )3盏 (C )5盏 (D )9盏 【答案】B【解析】设这个塔顶层有a 盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a 为首项的等比数列,又总共有灯381盏,∴()71238112712a a -==-,解得3a =,则这个塔顶层有3盏灯,故选B .(4)【2017年全国Ⅱ,理4,5分】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( ) (A )90π (B)63π (C )42π (D )36π 【答案】B【解析】由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,22131036632V πππ=⋅⨯-⋅⋅⨯=,故选B .(5)【2017年全国Ⅱ,理5,5分】设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )(A )15- (B )9- (C)1 (D )9 【答案】A【解析】x 、y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩的可行域如图:2z x y =+经过可行域的A时,目标函数取得最小值,由32330y x y =-⎧⎨-+=⎩解得()6,3A --,则2z x y =+的最小值是:15-,故选A .(6)【2017年全国Ⅱ,理6,5分】安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )(A )12种 (B)18种 (C )24种 (D)36种【答案】D【解析】4项工作分成3组,可得:24C 6=,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:336A 36⨯=种,故选D . (7)【2017年全国Ⅱ,理7,5分】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )(A )乙可以知道四人的成绩 (B )丁可以知道四人的成绩 (C )乙、丁可以知道对方的成绩 (D )乙、丁可以知道自己的成绩 【答案】D 【解析】四人所知只有自己看到,老师所说及最后甲说话,甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)→乙看到了丙的成绩,知自己的成绩→丁看到甲、丁中也为一优一良,丁知自己的成绩,故选D .(8)【2017年全国Ⅱ,理8,5分】执行右面的程序框图,如果输入的1a =-,则输出的S = ( )(A )2 (B )3 (C)4 (D )5 【答案】B【解析】执行程序框图,有0S =,1k =,1a =-,代入循环,第一次满足循环,1S =-,1a =,2k =;满足条件,第二次满足循环,1S =,1a =-,3k =;满足条件,第三次满足循环,2S =-, 1a =,4k =;满足条件,第四次满足循环,2S =,1a =-,5k =;满足条件,第五次满足 循环,3S =-,1a =,6k =;满足条件,第六次满足循环,3S =,1a =-,7k =;76≤不 成立,退出循环输出,3S =,故选B .(9)【2017年全国Ⅱ,理9,5分】若双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )(A )2 (B )3 (C )2 (D )233【答案】A【解析】双曲线()2222:10,0x y C a b a b-=>>的一条渐近线不妨为:0bx ay +=,圆()2242x y +=-的圆心()2,0,半径为:2,双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2242x y +=-所截得的弦长为2,可得圆心到直线的距离为:22222213b a b -==+,得:222443c a c -=,可得2e 4=,即e 2=,故选A . (10)【2017年全国Ⅱ,理10,5分】已知直三棱柱111ABC A B C -中,120ABC ∠=,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( ) (A)32(B ) 155(C ) 105(D )33【答案】C【解析】如图所示,设M 、N 、P 分别为AB ,1BB 和11B C 的中点,则1AB 、1BC 夹角为MN和NP 夹角或其补角(因异面直线所成角为0,2π⎛⎤⎥⎝⎦,可知11522MN AB ==,11222NP BC ==;作BC 中点Q ,则PQM ∆为直角三角形;∵1PQ =,12MQ AC =,ABC ∆中,由余弦定理得2222AC AB BC AB BC cos ABC =+-⋅⋅∠141221172⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,∴7AC =,∴72MQ =;在MQP ∆中,22112MP MQ PQ =+=;在PMN ∆中,由余弦定理得222222521122210cos 2552222MN NP PM MNP MH NP ⎛⎫⎛⎫⎛⎫+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭∠===-⋅⋅⨯⨯;又异面 直线所成角的范围是0,2π⎛⎤⎥⎝⎦,∴1AB 与1BC 所成角的余弦值为105,故选C .(11)【2017年全国Ⅱ,理11,5分】若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( ) (A )1- (B )32e -- (C )35e - (D )1【答案】A【解析】函数()()121x f x x ax e -=+-,得()()()11221x x e f x x a x ax e --'=+++-,2x =-是21`()(1)x f x x ax e -=+-的极值点,得:()4320a a -++-=.得1a =-.可得()()()()211212211x x x e e x x e f x x x x ---'=-+--=+-,函数的极值点为:2x =-,1x =,当2x <-或1x >时,()0f x '>函数是增函数,()2,1x ∈-时,函数是减函数,1x =时,函数取得极小值:()()21111111f e -=--=-,故选A .(12)【2017年全国Ⅱ,理12,5分】已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+ 的最小值是( )(A)2- (B )32- (C )43- (D )1-【答案】B【解析】建立如图所示的坐标系,以BC 中点为坐标原点,则()0,3A ,()1,0B -,()1,0C ,设(),P x y ,则(),3PA x y =--,()1,PB x y =---,()1,PC x y =--,则()PA PB PC ⋅+2222332232224x y y x y ⎡⎤⎛⎫⎢⎥=-+=+-- ⎪ ⎪⎢⎥⎝⎭⎣⎦∴当0x =,32y =时,取得最小值33242⎛⎫⨯-=- ⎪⎝⎭,故选B . 二、填空题:本题共4小题,每小题5分,共20分. (13)【2017年全国Ⅱ,理13,5分】一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX =______. 【答案】1.96【解析】由题意可知,该事件满足独立重复试验,是一个二项分布模型,其中,0.02p =,100n =,则()11000.020.98 1.96DX npq np p ==-=⨯⨯=.(14)【2017年全国Ⅱ,理14,5分】函数()23sin 3cos 0,42f x x x x π⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是______.【答案】1【解析】()2233sin 3cos 1cos 3cos 44f x x x x x =+-=-+-,令cos x t =且[]0,1t ∈,则()22133142f t t t t ⎛⎫=-++=--+ ⎪ ⎪⎝⎭,当32t =时,()max 1f t =,即()f x 的最大值为1. (15)【2017年全国Ⅱ,理15,5分】等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑______. 【答案】21nn + 【解析】等差数列{}n a 的前n 项和为n S ,33a =,410S =,()423210S a a =+=,可得22a =,数列的首项为1,公差为1,()12n n n S -=,()1211211n S n n n n ⎛⎫==- ⎪++⎝⎭,则11111111121223341nk kS n n =⎡⎤=-+-+-++-⎢⎥+⎣⎦∑122111n n n ⎛⎫=-=⎪++⎝⎭. (16)【2017年全国Ⅱ,理16,5分】已知F 是抛物线C :28y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则FN =_______.【答案】6【解析】抛物线C :28y x =的焦点()2,0F ,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,可知M 的横坐标为:1,则M 的纵坐标为:22±,()()2222122206FN FM ==-+±-=.三、解答题:共70分。
(完整版)2017年全国高考理科数学试题及答案-全国卷2,推荐文档
绝密★启用前理科数学注意事项:1. 答题前,考生先将自己的姓名、 准考证号填写清楚, 将条形码准确粘贴在条形码区域 内。
2. 选择题必须使用2B 铅笔填涂;非选择题必须使用 0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚3. 请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效; 在草稿纸、试卷上答题无效4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5•保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀项是符合题目要求的。
A. 1 2i灯三百八十一,请问尖头几盏灯?”意思是:一座 7层塔共挂了 381盏灯,且相邻两层中的下一层灯数是上一层灯数的 2倍,则塔的顶层共有灯() A. 1盏B. 3盏C. 5盏D. 9盏4. 如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( ) A. 90B . 63C. 42D . 362x 3y 3 05.设x , y 满足约束条件 2x 3y 3 0,则z 2x y 的最小值是()y 3 02017年普通高等学校招生全国统一考试(全国卷2)、选择题:本题共12小题,每5分,共60分。
在每小题给出的四个选项中,只有 2.设集合A1,2,4 ,4x•若 AI B{1},则 B3. A.1, 3 1,01,31,5我国古代数学名着《算法统宗》中有如下问题:"远望巍巍塔七层,红光点点倍加增,共 2i26. 7. 8. 9. 10. 11. 12. A.15安排3名志愿者完成 排方式共有( )A. 12 种4项工作,每人至少完成.18种1项,每项工作由 .24种 1人完成,则不同的安.36种甲乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有位优秀,2位良好,我现在给甲看乙、 后甲对大家说:我还是不知道我的成绩. A.乙可以知道四人的成绩 C.乙、丁可以知道对方的成绩 执行右面的程序框图,如果输入的 A. B. C. D.若双曲线C: A. 2C. 2丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看 根据以上信息,则( .丁可以知道四人的成绩 2x~~2a已知直三棱柱 4所截得的弦长为2,.-.3.乙、丁可以知道自己的成绩DABC AB1G 中,C 120o ,C CC 1 1,则异面直线 1与G 所成角的余弦值为(15 5.10 5若x 2是函数f(x)(x 2axx 1'1)e 的极值点,则f(x)的极小值为A. 1B.2e 3C.5e 3D.1已知 ABC 是边长为2uun 的等边三角形, P 为平面ABC 内一点,贝U PA uuu uuu(PB PC)的最小值是( ) 3 4 A. 2B.C.D.123二、填空题:本题共 4小题,每小题5分,共20分。
2017年高考真题全国2卷理科数学(附答案解析)
说不知道自已的成绩,假定丙是优,则乙是良,乙就知道自己成绩.给丁看甲成绩,因
为甲不知道自己成绩,乙丙是一优一良,则甲丁也是一优一良,丁看到甲成绩,假定甲
是优,则丁是良,丁肯定知道自已的成绩了
故选:D.
【点睛】
本题考查了合情推理的问题,关键掌握四人所知只有自己看到,老师所说及最后甲说话,
属于中档题. 8.B
2x + 3y − 3 ≤ 0 作出 2x − 3y + 3 ≥ 0 表示的可行域,如图,
y + 3 ≥ 0
2x + 3y − 3 =0 x = −6
由
可得
,
2x − 3y + 3 =0 y = −3
将=z 2x + y 变形为 y =−2x + z , 平移直线 y =−2x + z ,
由图可知当直 y =−2x + z 经过点 (−6, −3) 时,
4 − 2i
=2-i.
2
参考答案
故选 D. 【点睛】 这个题目考查了复数的除法运算,复数常考的还有几何意义,z=a+bi(a,b∈R)与复平面上
uuur 的点 Z(a,b)、平面向量 OZ 都可建立一一对应的关系(其中 O 是坐标原点);复平面内,实
轴上的点都表示实数;虚轴上的点除原点外都表示纯虚数.涉及到共轭复数的概念,一般地, 当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,复数 z 的共轭
a2 b2
截
得的弦长为 2,则 C 的离心率为
()
A.2
B. 3
C. 2
D. 2 3 3
10.已知直三棱柱 ΑΒC − Α1Β1C1 中, ∠ΑΒC = 120o, ΑΒ = 2 , ΒC= CC=1 1,则
(完整版)2017新课标全国卷2高考理科数学试题及答案解析,推荐文档
WORD 格式整理一、选择题(本大题共 12 小题,共 60.0 分)1.已知z=(m+3)+(m-1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是()A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3)2.已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=()A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}3.已知向量=(1,m),=(3,-2),且(+)⊥,则m=()A.-8B.-6C.6D.84.圆x2+y2-2x-8y+13=0 的圆心到直线ax+y-1=0 的距离为1,则a=()A.-B.-C.D.25.如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.96.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π7.若将函数y=2sin2x 的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x= -(k∈Z)B.x= +(k∈Z)C.x= - (k∈Z)D.x= + (k∈Z)- 8. 中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的 x=2,n=2,依次输入的 a 为 2,2,5,则输出的 s=( )A.7B.12C.17D.349. 若 cos (-α)= ,则 sin2α=()A. B. C.- D.-10. 从区间[0,1]随机抽取 2n 个数 x 1,x 2,…,x n ,y 1,y 2,…,y n 构成 n个数对(x 1,y 1),(x 2,y 2)…(x n ,y n ),其中两数的平方和小于 1 的数对共有 m 个,则用随机模拟的方法得到的圆周率 π 的近似值为( ) A. B. C. D.11. 已知 F 1,F 2 是双曲线 E : =1 的左、右焦点,点 M 在E 上,MF 1 与x 轴垂直,sin∠MF 2F 1= ,则 E 的离心率为( )A.B.C.D.212. 已知函数 f (x )(x∈R)满足 f (-x )=2-f (x ),若函数 y=与 y=f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则 (x i +y i )=( )A.0B.mC.2mD.4m二、填空题(本大题共 4 小题,共 20.0 分)13. △ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,若 cosA=,cosC= ,a=1,则 b= .14. α,β 是两个平面,m ,n 是两条直线,有下列四个命题:①如果 m⊥n,m⊥α,n∥β,那么 α⊥β. ②如果 m⊥α,n∥α,那么 m⊥n. ③如果 α∥β,m ⊂α,那么 m∥β.④如果 m∥n,α∥β,那么 m 与 α 所成的角和 n 与 β 所成的角相等. 其中正确的命题是 (填序号)15. 有三张卡片,分别写有 1 和 2,1 和 3,2 和 3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是 2”,乙看了丙的卡片后说:“我与丙的卡片上相同 的数字不是 1”,丙说:“我的卡片上的数字之和不是 5”,则甲的卡片上的数字是 . 16.若直线 y=kx+b 是曲线 y=lnx+2 的切线,也是曲线 y=ln (x+1)的切线,则 b=.WORD 格式整理三、解答题(本大题共 8 小题,共 94.0 分)17. S n 为等差数列{a n }的前 n 项和,且 a 1=1,S 7=28,记 b n =[lga n ],其中[x]表示不超过 x 的最 大整数,如[0.9]=0,[lg99]=1. (Ⅰ)求 b 1,b 11,b 101;(Ⅱ)求数列{b n }的前 1000 项和.18. 某保险的基本保费为 a (单位:元),继续购买该保险的投保人成为续保人,续保人本年度的保费与其上年度出险次数的关联如下: 上年度出险次数 保费 设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数1234≥5概率 0.30 0.15 0.20 0.20 0.10 0.05 (Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出 60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值.19. 如图,菱形 ABCD 的对角线 AC 与 BD 交于点O ,AB=5,AC=6,点 E ,F 分别在 AD ,CD 上,AE=CF= ,EF 交于 BD 于点 M ,将△DEF 沿 EF 折到△D′EF 的位置,OD′= .(Ⅰ)证明:D′H⊥平面 ABCD ;(Ⅱ)求二面角 B-D′A -C 的正弦值.0 1 2 3 4 ≥5 0.85aa1.25a1.5a1.75a2a+20.已知椭圆 E:=1 的焦点在x 轴上,A 是E 的左顶点,斜率为k(k>0)的直线交 E 于A,M 两点,点 N 在 E 上,MA⊥NA.(Ⅰ)当 t=4,|AM|=|AN|时,求△AMN 的面积;(Ⅱ)当 2|AM|=|AN|时,求 k 的取值范围.21.(Ⅰ)讨论函数f(x)=e x的单调性,并证明当x>0 时,(x-2)e x+x+2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数 h(a)的值域.22.如图,在正方形 ABCD 中,E,G 分别在边 DA,DC 上(不与端点重合),且DE=DG,过 D 点作DF⊥CE,垂足为 F.(Ⅰ)证明:B,C,G,F 四点共圆;(Ⅱ)若 AB=1,E 为 DA 的中点,求四边形 BCGF 的面积.23.在直角坐标系 xOy 中,圆 C 的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求 C 的极坐标方程;(Ⅱ)直线l 的参数方程是(t 为参数),l 与C 交与A,B 两点,|AB|= ,求l 的斜率.WORD 格式整理24.已知函数 f(x)=|x- |+|x+ |,M 为不等式 f(x)<2 的解集.(Ⅰ)求 M;(Ⅱ)证明:当 a,b∈M 时,|a+b|<|1+ab|.2016年全国统一高考数学试卷(新课标Ⅱ)(理科)答案和解析【答案】1.A2.C3.D4.A5.B6.C7.B8.C9.D 10.C 11.A 12.B13.14.②③④15.1和316.1-ln217.解:(Ⅰ)S n为等差数列{a n}的前 n 项和,且 a1=1,S7=28,7a4=28.可得 a4=4,则公差 d=1.a n=n,b n=[lgn],则 b1=[lg1]=0,b11=[lg11]=1, b101=[lg101]=2.(Ⅱ)由(Ⅰ)可知:b1=b2=b3=…=b9=0,b10=b11=b12=…=b99=1.b100=b101=b102=b103=…=b999=2,b10,00=3.数列{b n}的前 1000 项和为:9×0+90×1+900×2+3=1893.18.解:(Ⅰ)∵某保险的基本保费为 a(单位:元),上年度出险次数大于等于 2 时,续保人本年度的保费高于基本保费,∴由该险种一续保人一年内出险次数与相应概率统计表得:一续保人本年度的保费高于基本保费的概率:p1=1-0.30-0.15=0.55.(Ⅱ)设事件 A 表示“一续保人本年度的保费高于基本保费”,事件 B 表示“一续保人本年度的保费比基本保费高出60%”,由题意 P(A)=0.55,P(AB)=0.10+0.05=0.15,由题意得若一续保人本年度的保费高于基本保费,则其保费比基本保费高出 60%的概率:p2=P(B|A)= = = .(Ⅲ)由题意,续保人本年度的平均保费与基本保费的比值为:=1.23,∴续保人本年度的平均保费与基本保费的比值为1.23.19.(Ⅰ)证明:∵ABCD 是菱形,∴AD=DC,又 AE=CF= ,∴,则EF∥AC,又由 ABCD 是菱形,得AC⊥BD,则EF⊥BD,∴EF⊥DH,则EF⊥D′H,∵AC=6,∴AO=3,又 AB=5,AO⊥OB,∴OB=4,∴OH=,则DH=D′H=3,∴|OD′|2=|OH|2+|D′H|2,则D′H⊥OH,又OH∩EF=H,∴D′H⊥平面 ABCD;(Ⅱ)解:以 H 为坐标原点,建立如图所示空间直角坐标系,∵AB=5,AC=6,∴B(5,0,0),C(1,3,0),D′(0,0,3),A(1,-3,0),,,设平面ABD′的一个法向量为,由,得,取x=3,得y=-4,z=5.∴.同理可求得平面设二面角二面角AD′C 的一个法向量B-D′A-C 的平面角为θ,,则|cosθ|=.∴二面角B-D′A-C 的正弦值为sinθ=.20.解:(Ⅰ)t=4 时,椭圆E 的方程为+=1,A(-2,0),直线 AM 的方程为 y=k(x+2),代入椭圆方程,整理可得(3+4k2)x2+16k2x+16k2-12=0,解得 x=-2 或 x=- ,则|AM|= •|2- |= •,由AN⊥AM,可得|AN|=•= •,由|AM|=|AN|,k>0,可得•= •,WORD 格式整理整理可得(k-1)(4k2-k+4)=0,由4k2-k+4=0 无实根,可得k=1,即有△AMN的面积为|AM|2= (•)2= ;(Ⅱ)直线AM 的方程为y=k(x+),代入椭圆方程,可得(3+tk2)x2+2t k2x+t2k2-3t=0,解得x=- 或x=-,即有|AM|= •|- |= •,|AN|═•= •,由2|AM|=|AN|,可得2 •= •,整理得t= ,由椭圆的焦点在x 轴上,则t>3,即有>3,即有<0,可得<k<2,即k 的取值范围是(,2).21.解:(1)证明:f(x)=f'(x)=e x()=∵当x∈(-∞,-2)∪(-2,+∞)时,f'(x)>0∴f(x)在(-∞,-2)和(-2,+∞)上单调递增∴x>0 时,>f(0)=-1即(x-2)e x+x+2>0(2)g'(x)= =a∈[0,1]由(1)知,当x>0 时,f(x)=的值域为(-1,+∞),只有一解使得,t∈[0,2]当x∈(0,t)时,g'(x)<0,g(x)单调减;当x∈(t,+∞),g'(x)>0,g(x)单调增;h(a)===记k(t)=,在t∈(0,2]时,k'(t)= >0,故 k(t)单调递增,所以 h(a)=k(t)∈(, ].22.(Ⅰ)证明:∵DF⊥CE,∴Rt△DFC∽Rt△EDC,∴=,∵DE=DG,CD=BC,∴=,又∵∠GDF=∠DEF=∠BCF,∴△GDF∽△BCF,∴∠CFB=∠DFG,∴∠GFB=∠GFC+∠CFB=∠GFC+∠DFG=∠DFC=90°,∴∠GFB+∠GCB=180°,∴B,C,G,F 四点共圆.(Ⅱ)∵E 为 AD 中点,AB=1,∴DG=CG=DE= ,∴在Rt△DFC中,GF= CD=GC,连接 GB,Rt△BCG≌Rt△BFG,∴S 四边形BCGF=2S△BCG=2× ×1× = .23.解:(Ⅰ)∵圆 C 的方程为(x+6)2+y2=25,∴x2+y2+12x+11=0,∵ρ2=x2+y2,x=ρcosα,y=ρsinα,∴C 的极坐标方程为ρ2+12ρcosα+11=0.(Ⅱ)∵直线l 的参数方程是(t 为参数),∴直线 l 的一般方程y=tanα•x,∵l与C 交与A,B 两点,|AB|= ,圆C 的圆心C(-6,0),半径r=5,∴圆心C(-6,0)到直线距离d== ,解得 tan2α=,∴tanα=±=±.∴l的斜率k=±.24.解:(I)当x<时,不等式f(x)<2 可化为:-x-x- <2,解得:x>-1,WORD 格式整理∴-1<x<,当≤x≤时,不等式f(x)<2 可化为:-x+x+ =1<2,此时不等式恒成立,∴≤x≤,当x>时,不等式 f(x)<2 可化为:- +x+x+ <2,解得:x<1,∴<x<1,综上可得:M=(-1,1);证明:(Ⅱ)当 a,b∈M 时,(a2-1)(b2-1)>0,即a2b2+1>a2+b2,即a2b2+1+2ab>a2+b2+2ab,即(ab+1)2>(a+b)2,即|a+b|<|1+ab|.【解析】1. 解:z=(m+3)+(m-1)i 在复平面内对应的点在第四象限,可得:,解得-3<m<1.故选:A.利用复数对应点所在象限,列出不等式组求解即可.本题考查复数的几何意义,考查计算能力.2. 解:∵ 集合 A={1,2,3}, B={x|(x+1)(x-2)<0,x∈Z}={0,1},∴A∪B={0,1,2,3}.故选:C.先求出集合 A,B,由此利用并集的定义能求出A∪B 的值.本题考查并集的求法,是基础题,解题时要认真审题,注意并集定义的合理运用.3. 解:∵向量=(1,m),=(3,-2),∴+=(4,m-2),又∵(+ )⊥,∴12-2(m-2)=0,解得:m=8,故选:D.求出向量+的坐标,根据向量垂直的充要条件,构造关于m 的方程,解得答案.本题考查的知识点是向量垂直的充要条件,难度不大,属于基础题.4. 解:圆 x2+y2-2x-8y+13=0 的圆心坐标为:(1,4),故圆心到直线ax+y-1=0 的距离d==1,3解得:a= , 故选:A .求出圆心坐标,代入点到直线距离方程,解得答案.本题考查的知识点是圆的一般方程,点到直线的距离公式,难度中档.5. 解:从 E 到F ,每条东西向的街道被分成 2 段,每条南北向的街道被分成 2 段, 从 E 到F 最短的走法,无论怎样走,一定包括 4 段,其中 2 段方向相同,另 2 段方向相同,每种最短走法,即是从 4 段中选出 2 段走东向的,选出 2 段走北向的,故共有 C 2=4 6 种走法.同理从 F 到G ,最短的走法,有 C 1=3 种走法. ∴小明到老年公寓可以选择的最短路径条数为 6×3=18 种走法. 故选:B .从 E 到 F 最短的走法,无论怎样走,一定包括 4 段,其中 2 段方向相同,另 2 段方向相同,每种最短走法,即是从 4 段中选出 2 段走东向的,选出 2 段走北向的,由组合数可得最短的走法,同理从 F 到G ,最短的走法,有 C 3 1=3 种走法,利用乘法原理可得结论.本题考查排列组合的简单应用,得出组成矩形的条件和最短走法是解决问题的关键,属基础题 6. 解:由三视图知,空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是 4,圆锥的高是 2 ,∴在轴截面中圆锥的母线长是=4,∴圆锥的侧面积是 π×2×4=8π,下面是一个圆柱,圆柱的底面直径是 4,圆柱的高是 4, ∴圆柱表现出来的表面积是 π×22+2π×2×4=20π ∴空间组合体的表面积是 28π, 故选:C .空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是 4,圆锥的高是 2 ,在轴截面 中圆锥的母线长使用勾股定理做出的,写出表面积,下面是一个圆柱,圆柱的底面直径是 4,圆柱的高是 4,做出圆柱的表面积,注意不包括重合的平面.本题考查由三视图求表面积,本题的图形结构比较简单,易错点可能是两个几何体重叠的部分忘记去掉,求表面积就有这样的弊端. 7. 解:将函数 y=2sin2x 的图象向左平移个单位长度,得到 y=2sin2(x+)=2sin (2x+),由 2x+=kπ+(k∈Z)得:x= +(k∈Z), 即平移后的图象的对称轴方程为 x= +(k∈Z),故选:B .利用函数 y= A sin ( ωx + φ)( A >0, ω>0)的图象的变换及正弦函数的对称性可得答 案.本题考查函数 yy= A sin ( ωx + φ)( A >0, ω>0)的图象的变换规律的应用及正弦函数的对称性质,属于中档题.8. 解:∵输入的 x=2,n=2,当输入的 a 为 2 时,S=2,k=1,不满足退出循环的条件;WORD 格式整理当再次输入的 a 为2 时,S=6,k=2,不满足退出循环的条件;当输入的 a 为5 时,S=17,k=3,满足退出循环的条件;故输出的 S 值为17,故选:C根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量 S 的值,模拟程序的运行过程,可得答案.本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.9. 解:∵cos(-α)= ,∴sin2α=cos(-2α)=cos2(-α)=2cos2(-α)-1=2×-1=- ,故选:D.利用诱导公式化sin2α=cos(-2α),再利用二倍角的余弦可得答案.本题考查三角函数的恒等变换及化简求值,熟练掌握诱导公式化与二倍角的余弦是关键,属于中档题.10. 解:由题意,,∴π=.故选:C.以面积为测度,建立方程,即可求出圆周率π 的近似值.古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.11.解:设|MF1|=x,则|MF2|=2a+x,∵MF1与 x 轴垂直,∴(2a+x)2=x2+4c2,∴x=∵sin∠MF2F1= ,∴3x=2a+x,∴x=a,∴=a,∴a=b,∴c=a,∴e==.故选:A.设|MF1|=x,则|MF2|=2a+x,利用勾股定理,求出 x= ,利用sin∠MF2F1= ,求得 x=a,可得=a,求出 a=b ,即可得出结论.专业技术参考资料本题考查双曲线的定义与方程,考查双曲线的性质,考查学生分析解决问题的能力,比较基础.12. 解:函数 f(x)(x∈R)满足 f(-x)=2-f(x),即为 f(x)+f(-x)=2,可得 f(x)关于点(0,1)对称,函数y=,即y=1+的图象关于点(0,1)对称,即有(x1,y1)为交点,即有(-x1,2-y1)也为交点,(x2,y2)为交点,即有(-x2,2-y2)也为交点,…则有(x i+y i)=(x1+y1)+(x2+y2)+…+(x m+y m)= [(x1+y1)+(-x1+2-y1)+(x2+y2)+(-x2+2-y2)+…+(x m+y m)+(-x m+2-y m)]=m.故选 B.由条件可得f(x)+f(-x)=2,即有f(x)关于点(0,1)对称,又函数y=,即y=1+的图象关于点(0,1)对称,即有(x1,y1)为交点,即有(-x1,2-y1)也为交点,计算即可得到所求和.本题考查抽象函数的运用:求和,考查函数的对称性的运用,以及化简整理的运算能力,属于中档题.13.解:由cosA=,cosC= ,可得sinA= = =,sinC= = = ,sinB=sin(A+C)=sinAcosC+cosAsinC= ×+×=,由正弦定理可得b== =.故答案为:.运用同角的平方关系可得 sinA,sinC,再由诱导公式和两角和的正弦公式,可得 sinB,运用正弦定理可得b=,代入计算即可得到所求值.本题考查正弦定理的运用,同时考查两角和的正弦公式和诱导公式,以及同角的平方关系的运用,考查运算能力,属于中档题.高中数学试卷第 12 页,共 15 页WORD 格式整理 专业技术参考资料14. 解:①如果 m⊥n,m⊥α,n∥β,那么 α∥β,故错误;②如果 n∥α,则存在直线 l ⊂α,使 n∥l,由 m⊥α,可得 m⊥l,那么 m⊥n.故正确;③如果 α∥β,m ⊂α,那么 m 与 β 无公共点,则 m∥β.故正确④如果 m∥n,α∥β,那么 m ,n 与α 所成的角和 m ,n 与β 所成的角均相等.故正确;故答案为:②③④根据空间直线与平面的位置关系的判定方法及几何特征,分析判断各个结论的真假,可得答案. 本题以命题的真假判断与应用为载体,考查了空间直线与平面的位置关系,难度中档.15. 解:根据丙的说法知,丙的卡片上写着 1 和 2,或 1 和 3;(1) 若丙的卡片上写着 1 和 2,根据乙的说法知,乙的卡片上写着 2 和 3;∴根据甲的说法知,甲的卡片上写着 1 和 3;(2) 若丙的卡片上写着 1 和 3,根据乙的说法知,乙的卡片上写着 2 和 3;又甲说,“我与乙的卡片上相同的数字不是 2”;∴甲的卡片上写的数字不是 1 和 2,这与已知矛盾;∴甲的卡片上的数字是 1 和3. 故答案为:1 和 3.可先根据丙的说法推出丙的卡片上写着 1 和 2,或 1 和 3,分别讨论这两种情况,根据甲和乙的说法可分别推出甲和乙卡片上的数字,这样便可判断出甲卡片上的数字是多少.考查进行简单的合情推理的能力,以及分类讨论得到解题思想,做这类题注意找出解题的突破口.16. 解:设 y=kx+b 与 y=lnx+2 和 y=ln (x+1)的切点分别为(x 1,kx 1+b )、(x 2,kx 2+b );由导数的几何意义可得 k= =,得 x 1=x 2+1 再由切点也在各自的曲线上,可得联立上述式子解得; 从 而 kx 1+b=lnx 1+2 得 出 b=1-ln2. 先设切点,然后利用切点来寻找切线斜率的联系,以及对应的函数值,综合联立求解即可本题考查了导数的几何意义,体现了方程思想,对学生综合计算能力有一定要求,中档题17.17.(Ⅰ)利用已知条件求出等差数列的公差,求出通项公式,然后求解 b 1,b 11,b 101;(Ⅱ)找出数列的规律,然后求数列{b n }的前 1000 项和.本题考查数列的性质,数列求和,考查分析问题解决问题的能力,以及计算能力.18.18.(Ⅰ)上年度出险次数大于等于 2 时,续保人本年度的保费高于基本保费,由此利用该险种一续保人一年内出险次数与相应概率统计表根据对立事件概率计算公式能求出一续保人本年度的保费高于基本保费的概率.(Ⅱ)设事件 A 表示“一续保人本年度的保费高于基本保费”,事件 B 表示“一续保人本年度的保费比基本保费高出 60%”,由题意求出 P (A ),P(AB ),由此利用条件概率能求出若一续保人本年度的保费高于基本保费,则其保费比基本保费高出 60%的概率.(Ⅲ)由题意,能求出续保人本年度的平均保费与基本保费的比值.本题考查概率的求法,是中档题,解题时要认真审题,注意对立事件概率计算公式、条件概率计算公式的合理运用.19.19.(Ⅰ)由底面 ABCD 为菱形,可得 AD=CD,结合 AE=CF 可得EF∥AC,再由 ABCD 是菱形,得AC⊥BD,进一步得到EF⊥BD,由EF⊥DH,可得EF⊥D′H,然后求解直角三角形得D′H⊥OH,再由线面垂直的判定得D′H⊥平面 ABCD;(Ⅱ)以 H 为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到的坐标,分别求出平面ABD′与平面AD′C的一个法向量,设二面角二面角B- D′A-C 的平面角为θ,求出|cosθ|.则二面角 B-D′A-C 的正弦值可求.本题考查线面垂直的判定,考查了二面角的平面角的求法,训练了利用平面的法向量求解二面角问题,体现了数学转化思想方法,是中档题.20.20.(Ⅰ)求出 t=4 时,椭圆方程和顶点 A,设出直线 AM 的方程,代入椭圆方程,求交点 M,运用弦长公式求得|AM|,由垂直的条件可得|AN|,再由|AM|=|AN|,解得 k=1,运用三角形的面积公式可得△AMN的面积;(Ⅱ)直线AM 的方程为y=k(x+ ),代入椭圆方程,求得交点M,可得|AM|,|AN|,再由2|AM|=|AN|,求得t,再由椭圆的性质可得t>3,解不等式即可得到所求范围.本题考查椭圆的方程的运用,考查直线方程和椭圆方程联立,求交点,以及弦长公式的运用,考查化简整理的运算能力,属于中档题.21.21.从导数作为切入点探求函数的单调性,通过函数单调性来求得函数的值域,利用复合函数的求导公式进行求导,然后逐步分析即可该题考查了导数在函数单调性上的应用,重点是掌握复合函数的求导,以及导数代表的意义,计算量较大,中档题.22.22.(Ⅰ)证明 B,C,G,F 四点共圆可证明四边形 BCGF 对角互补,由已知条件可知∠BCD=90°,因此问题可转化为证明∠GFB=90°;(Ⅱ)在Rt△DFC中,GF= CD=GC,因此可得△GFB≌△GCB,则S 四边形BCGF=2S△BCG,据此解答.本题考查四点共圆的判断,主要根据对角互补进行判断,注意三角形相似和全等性质的应用.23.(Ⅰ)把圆 C 的标准方程化为一般方程,由此利用ρ2=x2+y2,x=ρcosα,y=ρsinα,能求出圆C 的极坐标方程.(Ⅱ)由直线 l 的参数方程求出直线 l 的一般方程,再求出圆心到直线距离,由此能求出直线 l 的斜率.本题考查圆的极坐标方程的求法,考查直线的斜率的求法,是中档题,解题时要认真审题,注意点到直线公式、圆的性质的合理运用.24.(I)分当x<时,当≤x≤时,当x>时三种情况,分别求解不等式,综合可得答案;高中数学试卷第 14 页,共 15 页WORD 格式整理(Ⅱ)当a,b∈M时,(a2-1)(b2-1)>0,即a2b2+1>a2+b2,配方后,可证得结论.本题考查的知识点是绝对值不等式的解法,不等式的证明,难度中档.专业技术参考资料“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
(完整)2017年新课标全国卷2高考理科数学试题及答案(2),推荐文档
绝密★启用前2017年普通高等学校招生全国统一考试理科数学注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+( ) A .12i + B .12i - C .2i + D .2i -2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =I ,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π5.设x,y满足约束条件2330233030x yx yy+-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y=+的最小值是()A.15-B.9-C.1D.96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩8.执行右面的程序框图,如果输入的1a=-,则输出的S=()A.2 B.3 C.4 D.59.若双曲线C:22221x ya b-=(0a>,0b>)的一条渐近线被圆()2224x y-+=所截得的弦长为2,则C的离心率为()A.2 B.3C.2D.310.已知直三棱柱111C C AB -A B 中,C 120∠AB =o ,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )ABCD11.若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.112.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r 的最小值是( )A.2-B.32-C. 43- D.1-二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年新疆高考数学试卷(理科)(全国新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)=()A.1+2i B.1﹣2i C.2+i D.2﹣i2.(5分)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5}3.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏 B.3盏 C.5盏 D.9盏4.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π5.(5分)设x,y满足约束条件,则z=2x+y的最小值是()6.(5分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种7.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩8.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.59.(5分)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2 B.C.D.10.(5分)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.11.(5分)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1 B.﹣2e﹣3C.5e﹣3 D.112.(5分)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣ C.﹣ D.﹣1二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次.X表示抽到的二等品件数,则DX=.14.(5分)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是.15.(5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.16.(5分)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y 轴于点N.若M为FN的中点,则|FN|=.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分。
17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.18.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:K2=.19.(12分)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.2垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l 过C的左焦点F.21.(12分)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
[选修4-4:坐标系与参数方程](10分)22.(10分)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.[选修4-5:不等式选讲](10分)23.已知a>0,b>0,a3+b3=2.证明:(1)(a+b)(a5+b5)≥4;(2)a+b≤2.2017年新疆高考数学试卷(理科)(全国新课标Ⅱ)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)=()A.1+2i B.1﹣2i C.2+i D.2﹣i【解答】解:===2﹣i,故选D.2.(5分)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5}【解答】解:集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则1∈A且1∈B,可得1﹣4+m=0,解得m=3,即有B={x|x2﹣4x+3=0}={1,3}.故选:C.3.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏 B.3盏 C.5盏 D.9盏【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,4.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10﹣•π•32×6=63π,故选:B.5.(5分)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.9【解答】解:x、y满足约束条件的可行域如图:z=2x+y 经过可行域的A时,目标函数取得最小值,由解得A(﹣6,﹣3),则z=2x+y 的最小值是:﹣15.故选:A.6.(5分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种【解答】解:4项工作分成3组,可得:=6,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:6×=36种.故选:D.7.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【解答】解:四人所知只有自己看到,老师所说及最后甲说话,甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)→乙看到了丙的成绩,知自己的成绩→丁看到甲、丁也为一优一良,丁知自己的成绩,给甲看乙丙成绩,甲不知道自已的成绩,说明乙丙一优一良,假定乙丙都是优,则甲是良,假定乙丙都是良,则甲是优,那么甲就知道自已的成绩了.给乙看丙成绩,乙没有说不知道自已的成绩,假定丙是优,则乙是良,乙就知道自己成绩.给丁看甲成绩,因为甲不知道自己成绩,乙丙是一优一良,则甲丁也是一优一良,丁看到甲成绩,假定甲是优,则丁是良,丁肯定知道自已的成绩了故选:D.8.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.5【解答】解:执行程序框图,有S=0,K=1,a=﹣1,代入循环,第一次满足循环,S=﹣1,a=1,K=2;满足条件,第二次满足循环,S=1,a=﹣1,K=3;满足条件,第三次满足循环,S=﹣2,a=1,K=4;满足条件,第四次满足循环,S=2,a=﹣1,K=5;满足条件,第五次满足循环,S=﹣3,a=1,K=6;满足条件,第六次满足循环,S=3,a=﹣1,K=7;K≤6不成立,退出循环输出S的值为3.故选:B.9.(5分)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2 B.C.D.【解答】解:双曲线C:﹣=1(a>0,b>0)的一条渐近线不妨为:bx+ay=0,圆(x﹣2)2+y2=4的圆心(2,0),半径为:2,双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,可得圆心到直线的距离为:=,解得:,可得e2=4,即e=2.故选:A.10.(5分)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.【解答】解:【解法一】如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN=AB1=,NP=BC1=;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ=AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)∴AC=,∴MQ=;在△MQP中,MP==;在△PMN中,由余弦定理得cos∠MNP===﹣;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.【解法二】如图所示,补成四棱柱ABCD﹣A1B1C1D1,求∠BC1D即可;BC1=,BD==,C1D=,∴+BD2=,∴∠DBC1=90°,∴cos∠BC1D==.11.(5分)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1 B.﹣2e﹣3C.5e﹣3 D.1【解答】解:函数f(x)=(x2+ax﹣1)e x﹣1,可得f′(x)=(2x+a)e x﹣1+(x2+ax﹣1)e x﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,可得:﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)e x﹣1+(x2﹣x﹣1)e x﹣1,=(x2+x﹣2)e x﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选:A.12.(5分)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣ C.﹣ D.﹣1【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P(x,y),则=(﹣x,﹣y),=(﹣1﹣x,﹣y),=(1﹣x,﹣y),则•(+)=2x2﹣2y+2y2=2[x2+(y﹣)2﹣]∴当x=0,y=时,取得最小值2×(﹣)=﹣,故选:B二、填空题:本题共4小题,每小题5分,共20分。