南开大学2006年数学分析考研试题答案
2017年南开大学精算学考研+2006年考试试题+考试题型+经验心得+出题老师
a Q b b Q1 a Q 则消费者剩余为 CS ( ) dQ PQ 1 1 0 b b a 1 2 Q1 PQ = Q1 1 1 b 2b a 1 2 Q1 =( P 1 )Q1 b 2b
反需求函数为
P
把 Q1= a-bP1 带入整理得: CS
a2 b 2 aP P 1 1 2b 2
TC FC 0.1q2 q 0.1 q 1 则 AVC q q SMC TC 0.2q 1 q
显然,当产量 q 为任何数时(当然产量一定大于或等于 0) ; MC ≥AVC,故厂商的短期 供给函数为 P=MC,即 p=0.2q+1,即 q=5p-5 由于行业的供给曲线是各个厂商供给曲线水平的相加,故行业的短期供给曲线也即 供 给函数为:Q=500P-500 2.当市场需求函数为 Qd=4000-400P 时,可以由下面三式联立解出市场均衡价格和产 量: QS=500P-500 Qd=4000-400P Q S= Q d 解得 P=5,Q=2000 3.征收单位产品税,意味着产品的成本增加,从而供给价格上升,也就是说,同样的 价格水平上,现在的供给更少了。因此,对每单位产品征收 0.9 元的税后,行业的供给函数 为 Q´S=500(P-0.9)-500。 把新的行业供给函数与需求函数联立: Q´S=500(P-0.9)-500 Qd=4000-400P Q S= Q d 解得 P=5.5,Q=1800 (3)假设货币需求为 L=0.2Y-10r,实际货币供给为 M=200,消费需求为 C=60+0.8Yd, 税收为 T=100,投资需求为 I=150,政府支出为 G=100; 1.导出 IS 和 LM 方程,求出均衡收入、利率和投资; (5 分) 2.其他不变,G 增加 20,收入、利率和投资有什么变化?(5 分) 3.是否存在“挤出效应”?(5 分)
2006年数学四考研试题和答案
2006年数学四试题分析、详解和评注一、填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上. (1)()11lim 1.nn n n -→∞+⎛⎫=⎪⎝⎭(2)设函数()f x 在2x =的某邻域内可导,且()()e f x f x '=,()21f =,则()322e .f '''=(3)设函数()f u 可微,且()102f '=,则()224z f x y =-在点(1,2)处的全微分()1,2d 4d 2d .zx y =-(4) 已知12,αα为2维列向量,矩阵1212(2,)A αααα=+-,12(,)B αα=.若行列式||6A =,则||2B =-(5)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则B =(6)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤= .二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A) 0d y y <<∆. (B) 0d y y <∆<.(C) d 0y y ∆<<. (D) d 0y y <∆< . [ ](8)设函数()f x 在0x =处连续,且()22lim1h f h h→=,则(A) ()()000f f -'=且存在 (B) ()()010f f -'=且存在(C) ()()000f f +'=且存在 (D) ()()010f f +'=且存在 [ ](9)设函数()f x 与()g x 在[0,1]上连续,且()()f x g x ≤,且对任何(0,1)c ∈, (A )1122()d ()d c cf t tg t t ≥⎰⎰(B )1122()d ()d c cf t tg t t ≤⎰⎰(C )11()d ()d ccf t tg t t ≥⎰⎰(D )11()d ()d ccf t tg t t ≤⎰⎰ [ ](10)设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解12(),(),y x y x C 为任意常数,则该方程的通解是(A)[]12()()C y x y x -. (B)[]112()()()y x C y x y x +-.(C)[]12()()C y x y x +. (D)[]112()()()y x C y x y x ++ [ ] (11)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A) 若00(,)0x f x y '=,则00(,)0y f x y '=. (B) 若00(,)0x f x y '=,则00(,)0y f x y '≠. (C) 若00(,)0x f x y '≠,则00(,)0y f x y '=.(D) 若00(,)0x f x y '≠,则00(,)0y f x y '≠. [ ] (12)设12,,,s ααα均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是(A) 若12,,,s ααα线性相关,则12,,,s A A A ααα线性相关. (B) 若12,,,s ααα线性相关,则12,,,s A A A ααα线性无关. (C) 若12,,,s ααα线性无关,则12,,,s A A A ααα线性相关.(D) 若12,,,s ααα线性无关,则12,,,s A A A ααα线性无关.[ ] (13)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则(A)1C P AP -=. (B)1C PAP -=.(C)TC P AP =. (D)TC PAP =. [ ](14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-< 则必有(A) 12σσ< (B) 12σσ>(C) 12μμ< (D) 12μμ> [ ] 三 、解答题:15-23小题,共94分. 解答应写出文字说明、证明过程或演算步骤. (15)(本题满分7分)设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+,求 (Ⅰ) ()()lim ,y g x f x y →+∞=;(Ⅱ) ()0lim x g x +→. (16)(本题满分7分)计算二重积分d Dx y ,其中D 是由直线,1,0y x y x ===所围成的平面区域.(17)(本题满分10分)证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++.(18)(本题满分8分)在xOy 坐标平面上,连续曲线L 过点()1,0M ,其上任意点()(),0P x y x ≠处的切线斜率与直线OP 的斜率之差等于ax (常数>0a ).(Ⅰ) 求L 的方程;(Ⅱ) 当L 与直线y ax =所围成平面图形的面积为83时,确定a 的值. (19)(本题满分10分) 试确定,,A B C 的值,使得23e (1)1()x Bx Cx Ax o x ++=++,其中3()o x 是当0x →时比3x 高阶的无穷小.(20)(本题满分13分)设4维向量组()()()T T T1231,1,1,1,2,2,2,2,3,3,3,3,a a a ααα=+=+=+()T44,4,4,4a α=+,问a 为何值时1234,,,αααα线性相关?当1234,,,αααα线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出. (21)(本题满分13分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()T T121,2,1,0,1,1αα=--=-是线性方程组0Ax =的两个解.(Ⅰ) 求A 的特征值与特征向量;(Ⅱ) 求正交矩阵Q 和对角矩阵Λ,使得TQ AQ =Λ;(Ⅲ)求A 及632A E ⎛⎫- ⎪⎝⎭,其中E 为3阶单位矩阵.(22)(本题满分13分)设二维随机变量(,X Y )的概率分布为其中,,a b c 为常数,且X 的数学期望0.2EX =-,{0|0}0.5P Y X ≤≤=,记Z X Y =+, 求(Ⅰ) ,,a b c 的值; (Ⅱ) Z 的概率分布; (Ⅲ) {}P X Z =.(23)(本题满分13分)设随机变量X 的概率密度为()1,1021,0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩ 其他,令()2,,Y X F x y =为二维随机变量(,)X Y 的分布函数.(Ⅰ) 求Y 的概率密度()Y f y ; (Ⅱ) Cov(,)X Y ;(Ⅲ)1,42F⎛⎫-⎪⎝⎭.1…. 【分析】将其对数恒等化ln eNN =求解.【详解】()(1)111ln lim (1)ln 1lim lim eennn n n n n n n n n n -→∞-++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭→∞→∞+⎛⎫== ⎪⎝⎭,而数列{}(1)n -有界,1lim ln 0n n n →∞+⎛⎫= ⎪⎝⎭,所以1lim(1)ln 0n n n n →∞+⎛⎫-= ⎪⎝⎭. 故 ()101lim e 1nn n n -→∞+⎛⎫==⎪⎝⎭.【评注】对于幂指函数的极限,总是将其化为指数函数后求解.完全类似例题见文登暑期辅导班《高等数学》第1讲第2节【例23】,《数学复习指南》(经济类)P.30【例1.41】.2….. 【分析】利用复合函数求导即可. 【详解】由题设知,()()ef x f x '=,两边对x 求导得()()()2e()ef x f x f x f x '''==,两边再对x 求导得 ()()23()2e()2ef x f x f x f x ''''==,又()21f =,故 ()323(2)2e2e f f '''==.【评注】本题为抽象复合函数求导,注意计算的准确性.完全类似例题见文登暑期辅导班《高等数学》第2讲第2节【例11】,【例12】,《数学复习指南》(经济类)P.53【例2.18】(几乎一样).3…. 【分析】利用二元函数的全微分公式或微分形式不变性计算. 【详解】方法一:因为22(1,2)(1,2)(4)84z f x y xx∂'=-⋅=∂,()22(1,2)(1,2)(4)22z f x y y y∂'=-⋅-=-∂,所以 ()()()1,21,21,2d d d 4d 2d z z z x y x y xy⎡⎤∂∂=+=-⎢⎥∂∂⎣⎦. 方法二:对()224z f x y=-微分得()222222d (4)d(4)(4)8d 2d z f x y x y f x y x x y y ''=--=--,故 ()()1,2d (0)8d 2d 4d 2d z f x y x y '=-=-. 【评注】本题为基本题型.完全类似例题见文登暑期辅导班《高等数学》第9讲第1节【例12】,《数学复习指南》(经济类)P.162【例6.13】,《考研数学过关基本题型》(经济类)P.62【例6,例7】及练习.4…….【分析】利用矩阵乘积的行列式运算AB A B =即可. 【详解】()1212122121(2,),1111A B αααααα⎛⎫⎛⎫=+-==⎪ ⎪--⎝⎭⎝⎭,所以 21311A B B ==--,而||6A =,故 ||2B =-.【评注】本题关键是将其转化为用矩阵乘积形式表示.完全类似例题见文登暑期辅导班《线性代数》第1讲【例6】,《数学复习指南》(经济类)P.287【例2.12】.5…….【分析】 将矩阵方程改写为AX B XA B AXB C ===或或的形式,其中X 是待求矩阵,再通过左乘或右乘可逆阵,解出待求矩阵即可.【详解】 由题设,有()2B A E E -=于是有 1111111112()221111112B A E ----⎛⎫⎛⎫⎛⎫=-==⋅= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.【评注】 本题关键是将被求矩阵B 转化为矩阵方程中的一个乘积因子.完全类似例题见文登暑期辅导班《线性代数》第2讲【例10,例11】,《数学复习指南》(经济类)P.290【例2.20-例2.22】.6…….【分析】 利用X Y 与的独立性及分布计算. 【详解】 由题设知,X Y 与具有相同的概率密度1,3()30,x f x ⎧≤≤⎪=⎨⎪⎩ 0 其他.则 {}{}{}max ,11,1P X Y P X Y ≤=≤≤{}{}11P X P Y =≤≤{}()2120111d 39P X x ⎛⎫=≤== ⎪⎝⎭⎰.【评注】 本题属几何概型,也可如下计算,如下图:则 {}{}{}1max ,11,19S P X Y P X Y S ≤=≤≤==阴. 完全类似例题见文登暑期辅导班《概率论与数理统计》第3讲例5,《数学复习指南》(经济类)P.431【例2.31】P.442【例2.50】7…….【分析】 题设条件有明显的几何意义,用图示法求解. 【详解】 由()0,()0f x f x '''>>知,函数()f x 单调增加,曲线()y f x =凹向,作函数()y f x =的图形如右图所示,显然当0x ∆>时,00d ()d ()0y y f x x f x x ''∆>==∆>,故应选(A).【评注】 对于题设条件有明显的几何意义或所给函数图形容易绘出时,图示法是求解此题的首选方法.本题还可用拉格朗日中值定理求解:0000()()(),y f x x f x f x x x x ξξ'∆=+∆-=∆<<+∆因为()0f x ''>,所以()f x '单调增加,即0()()f f x ξ''>,又0x ∆>, 则 0()()d 0y f x f x x y ξ''∆=∆>∆=>,即0d y y <<∆.定义一般教科书均有,类似例题见《数学复习指南》(经济类)P.129【例5.1】,P.151【1(3)】.8…. 【分析】从()22lim1h f h h→=入手计算(0)f ,利用导数的左右导数定义判定(0),(0)f f -+''的存在性.【详解】由()22lim1h f h h→=知,()20lim 0h f h →=.又因为()f x 在0x =处连续,则()2(0)lim ()lim 0x h f f x f h→→===.令2t h =,则()()22(0)1limlim (0)h t f h f t f f h t++→→-'===.所以(0)f +'存在,故本题选(C ).【评注】本题联合考查了函数的连续性和左右导数的定义,属基本题型. 完全类似例题见文登暑期辅导班《高等数学》第2讲第1节【例2】,《数学复习指南》(经济类)P.46【例2.2】.9…..【分析】 利用定积分的比较定理即可 .【详解】因为()f x 与()g x 在[0,1]上连续,则对任何(0,1)c ∈,()f x 与()g x 在[,1]c 上连续,且()()f x g x ≤,所以11()d ()d ccf t tg t t ≤⎰⎰.故选(D ).【评注】 本题属基本题型.由于12c 与比较大小未知,所以不能选(A )(B ).完全类似例题见文登暑期辅导班《高等数学》第5讲第1节【例1】,《数学题型集粹与练习题集》(经济类)P.72典例精析2及题型演练(2).10….【分析】 利用一阶线性非齐次微分方程解的结构即可.【详解】由于12()()y x y x -是对应齐次线性微分方程()0y P x y '+=的非零解,所以它的通解是 []12()()Y C y x y x =-,故原方程的通解为[]1112()()()()y y x Y y x C y x y x =+=+-,故应选(B).【评注】本题属基本题型,,考查一阶线性非齐次微分方程解的结构:*y y Y =+.其中*y 是所给一阶线性微分方程的特解,Y 是对应齐次微分方程的通解. 相关性质和定理见《数学复习指南》(经济类)P.219.11……..【分析】 利用拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+在000(,,)x y λ(0λ是对应00,x y 的参数λ的值)取到极值的必要条件即可.【详解】 作拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+,并记对应00,x y 的参数λ的值为0λ,则000000(,,)0(,,)0x y F x y F x y λλ⎧'=⎪⎨'=⎪⎩, 即0000000000(,)(,)0(,)(,)0x x y y f x y x y f x y x y λϕλϕ⎧''+=⎪⎨''+=⎪⎩ .消去0λ,得00000000(,)(,)(,)(,)0x y y x f x y x y f x y x y ϕϕ''''-=, 整理得 000000001(,)(,)(,)(,)x y x y f x y f x y x y x y ϕϕ'''='.(因为(,)0y x y ϕ'≠), 若00(,)0x f x y '≠,则00(,)0y f x y '≠.故选(D).【评注】 本题考查了二元函数极值的必要条件和拉格朗日乘数法. 本题属基本题型,相关定理见《数学复习指南》(经济类)P.170定理1及P.171条件极值的求法.12…..【分析】 本题考查向量组的线性相关性问题,利用定义或性质进行判定.【详解】 记12(,,,)s B ααα=,则12(,,,)s A A A AB ααα=.所以,若向量组12,,,s ααα线性相关,则()r B s <,从而()()r AB r B s ≤<,向量组12,,,s A A A ααα也线性相关,故应选(A).【评注】 对于向量组的线性相关问题,可用定义,秩,也可转化为齐次线性方程组有无非零解进行讨论.完全类似例题及性质见《数学复习指南》(经济类)P.309【例3.7】,几乎相同试题见文登2006最新模拟试卷(数学一)P.2(11).13……【分析】利用矩阵的初等变换与初等矩阵的关系以及初等矩阵的性质可得. 【详解】由题设可得110110*********,010010010001001001001B A C B A --⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,而 1110010001P --⎛⎫ ⎪= ⎪ ⎪⎝⎭,则有1C PAP -=.故应选(B).【评注】(1)每一个初等变换都对应一个初等矩阵,并且对矩阵A 施行一个初等行(列)变换,相当于左(右)乘相应的初等矩阵.(2)牢记三种初等矩阵的转置和逆矩阵与初等矩阵的关系.完全类似例题及性质见文登暑期辅导班《线性代数》第2讲【例12】,《数学复习指南》(经济类)P.290【例2.19】.14…..【分析】 利用标准正态分布密度曲线的几何意义可得. 【详解】 由题设可得12112211X Y P P μμσσσσ⎧-⎫⎧-⎫<><⎨⎬⎨⎬⎩⎭⎩⎭,则 12112121σσ⎛⎫⎛⎫Φ->Φ-⎪ ⎪⎝⎭⎝⎭,即1211σσ⎛⎫⎛⎫Φ>Φ ⎪ ⎪⎝⎭⎝⎭.其中()x Φ是标准正态分布的分布函数. 又()x Φ是单调不减函数,则1211σσ>,即12σσ<.故选(A).【评注】 对于服从正态分布2(,)N μσ的随机变量X ,在考虑它的概率时,一般先将X 标准化,即X μσ-.完全类似例题见文登暑期辅导班《概率论与数理统计》第2讲【例7】和【例8】,《数学复习指南》(经济类)P.417【例2.7】.15….. 【分析】第(Ⅰ)问求极限时注意将x 作为求解,此问中含,0∞⋅∞∞型未定式极限;第(Ⅱ)问需利用第(Ⅰ)问的结果,含∞-∞型未定式极限.【详解】(Ⅰ) ()()1sin lim ,lim 1arctan y y x y y y g x f x y xy x π→+∞→∞⎛⎫- ⎪⎪==-+⎪ ⎪⎝⎭sin 11111lim 1arctan arctan y x yxy x x x x y ππ→∞⎛⎫ ⎪ ⎪-⎪⎪-=-=-⎪ ⎪+ ⎪ ⎪ ⎪⎝⎭. (Ⅱ) ()200011arctan lim lim lim arctan arctan x x x x x x x g x x x x xππ+++→→→--+⎛⎫=-= ⎪⎝⎭ (通分)22200112arctan 1lim lim 2x x x x x x x x xππ++→→-+-++== 2202(1)lim 2x x x x xππ+→-++== 【评注】本题为基本题型,注意利用洛必达法则求极限时,要充分利用等价无穷小代换,并及时整理极限式,以使求解简化.对∞-∞型未定式极限,一般利用通分将其转化为∞∞或型未定式,然后再计算. 完全类似例题见文登暑期辅导班《高等数学》第1讲第2节【例21】,《数学复习指南》经济类P.32【例1.45(1)】,P.29【例1.35】,【例1.36】,P.30【例1.40】,《考研数学过关基本题型》(经济类)P.8【例14】,P.9【例16】.16…… 【分析】画出积分域,将二重积分化为累次积分即可. 【详解】积分区域如右图.因为根号下的函数为关于x 的一次函数,“先x 后y ”积分较容易,所以1220d d d d yDy xy x y y y xy x -=-⎰⎰⎰⎰()311222002122d d 339y y xy y y y y=--==⎰⎰.【评注】计算二重积分时,首先画出积分域的图形,然后结合积分域的形状和被积函数的形式,选择坐标系和积分次序.完全类似例题见文登暑期辅导班《高等数学》第10讲第2节【例8】,《数学复习指南》(经济类)P.181【例7.2】,《考研数学过关基本题型》(经济类)P.65【例1】,P.66【例3】及练习.17…..【分析】 利用“参数变易法”构造辅助函数,再利用函数的单调性证明.【详解】 令()sin 2cos sin 2cos ,0f x x x x x a a a a a x b πππ=++---<≤≤<, 则 ()sin cos 2sin cos sin f x x x x x x x x ππ'=+-+=-+,且()0f π'=. 又 ()cos sin cos sin 0f x x x x x x x ''=--=-<,(0,sin 0x x x π<<>时), 故当0a x b π<≤≤<时,()f x '单调减少,即()()0f x f π''>=,则()f x 单调增加,于是()()0f b f a >=,即sin 2cos sin 2cos b b b b a a a a ππ++>++.【评注】 证明数值不等式一般需构造辅助函数,辅助函数一般通过移项,使不等式一端为“0”,另一端即为所作辅助函数()f x ,然后求导验证()f x 的增减性,并求出区间端点的函数值(或极限值),作比较即得所证. 本题也可用拉格朗日中值定理结合函数的单调性证明. 完全类似例题见文登暑期辅导班《高等数学》第8讲第2节【例4】,《数学复习指南》(经济类)P.242【例10.18】,《考研数学过关基本题型》(经济类)P.98【例11】,P.99【例13】及练习.18….. 【分析】(Ⅰ)利用导数的几何意义建立微分方程,并求解;(Ⅱ)利用定积分计算平面图形的面积,确定参数. 【详解】(Ⅰ) 设曲线L 的方程为()y f x =,则由题设可得 y y ax x '-=,这是一阶线性微分方程,其中1(),()P x Q x ax x=-=,代入通解公式得()11d d 2e e d x x x x y ax x C x ax C ax Cx -⎛⎫⎰⎰=+=+=+ ⎪⎝⎭⎰,又(1)0f =,所以C a =-.故曲线L 的方程为 2y ax ax =-(0)x ≠.(Ⅱ) L 与直线y ax =(>0a )所围成平面图形如右图所示. 所以()220d D ax ax ax x ⎡⎤=--⎣⎦⎰ ()220482d 33a x x x a =-==⎰,故2a =.【评注】本题涉及了导数和定积分的几何意义,一阶线性微分方程的求解,属基本题型.完全类似例题见《数学复习指南》(经济类)P.136【例5.13】,P.149【例5.34】,《考研数学过关基本题型》(经济类)P.272【例15】及练习8.2.19…….【分析】题设方程右边为关于x 的多项式,要联想到e x的泰勒级数展开式,比较x 的同次项系数,可得,,A B C 的值.【详解】将e x的泰勒级数展开式233e 1()26xx x x o x =++++代入题设等式得233231()[1]1()26x x x o x Bx Cx Ax o x ⎡⎤++++++=++⎢⎥⎣⎦整理得233111(1)()1()226B B x B C x C o x Ax o x ⎛⎫⎛⎫+++++++++=++ ⎪ ⎪⎝⎭⎝⎭比较两边同次幂系数得11021026B A B C B C ⎧⎪+=⎪⎪++=⎨⎪⎪++=⎪⎩,解得132316A B C ⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩.【评注】题设条件中含有高阶无穷小形式的条件时,要想到用麦克劳林公式或泰勒公式求解.要熟练掌握常用函数的泰勒公式.相应公式见《数学复习指南》(经济类)P.202表格.20…. 【分析】因为向量组中的向量个数和向量维数相同,所以用以向量为列向量的矩阵的行列式为零来确定参数a ;用初等变换求极大线性无关组. 【详解】记以1234,,,αααα为列向量的矩阵为A ,则312341234(10)12341234aa A a a a a++==+++.于是当0,010A a a ===-即或时,1234,,,αααα线性相关.当0a =时,显然1α是一个极大线性无关组,且2131412,3,4αααααα===; 当10a =-时,1α 2α 3α 4α9234183412741236A -⎛⎫ ⎪-⎪= ⎪- ⎪-⎝⎭, 由于此时A 有三阶非零行列式9231834000127--=-≠-,所以123,,ααα为极大线性无关组,且123441230αααααααα+++==---,即. 【评注】本题属常规题型.91年,00年和04年均考过.完全类似例题见文登暑期辅导班《线性代数》第3讲【例1,例2】,《数学复习指南》(经济类)P.306【例3.2】,《考研数学过关基本题型》(经济类)P.134【例3】.21……..【分析】 由矩阵A 的各行元素之和均为3及矩阵乘法可得矩阵A 的一个特征值和对应的特征向量;由齐次线性方程组0Ax =有非零解可知A 必有零特征值,其非零解是0特征值所对应的特征向量.将A 的线性无关的特征向量正交化可得正交矩阵Q ;由T Q AQ =Λ可得到A 和632A E ⎛⎫- ⎪⎝⎭.【详解】 (Ⅰ) 因为矩阵A 的各行元素之和均为3,所以1311331131A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则由特征值和特征向量的定义知,3λ=是矩阵A 的特征值,T(1,1,1)α=是对应的特征向量.对应3λ=的全部特征向量为k α,其中k 为不为零的常数.又由题设知 120,0A A αα==,即11220,0A A αααα=⋅=⋅,而且12,αα线性无关,所以0λ=是矩阵A 的二重特征值,12,αα是其对应的特征向量,对应0λ=的全部特征向量为 1122k k αα+,其中12,k k 为不全为零的常数.(Ⅱ) 因为A 是实对称矩阵,所以α与12,αα正交,所以只需将12,αα正交. 取 11βα=,()()21221111012,3120,61112αββαβββ⎛⎫-⎪-⎛⎫⎛⎫ ⎪- ⎪ ⎪=-=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪⎝⎭.再将12,,αββ单位化,得1212312,,0ββαηηηαββ⎛⎛⎪====== ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭, 令 []123,,Q ηηη=,则1T QQ -=,由A 是实对称矩阵必可相似对角化,得T 3Q AQ⎡⎤⎢⎥==Λ⎢⎥⎢⎥⎣⎦.(Ⅲ)由(Ⅱ)知T 3Q AQ⎡⎤⎢⎥==Λ⎢⎥⎢⎥⎣⎦,所以T3111001110111A Q Q⎛⎫⎪⎪⎛⎫⎛⎫⎪⎪ ⎪=Λ==⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎪ ⎪⎪⎪⎝⎭⎭.666T T T333222Q A E Q Q A E Q Q AQ E⎡⎤⎛⎫⎛⎫⎛⎫-=-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦66666332233332223322E⎛⎫⎛⎫⎡⎤⎛⎫ ⎪⎪⎢⎥⎪⎝⎭⎪⎛⎫⎢⎥⎪ ⎪⎛⎫⎛⎫⎪⎢⎥⎪ ⎪=-==⎪ ⎪⎪⎢⎥⎪ ⎪⎝⎭⎝⎭⎪⎢⎥⎪ ⎪⎝⎭⎢⎥⎪⎛⎫⎪⎪⎢⎥ ⎪⎝⎭⎣⎦ ⎪⎝⎭⎝⎭,则666T333222A E Q EQ E⎛⎫⎛⎫⎛⎫-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【评注】本题主要考查求抽象矩阵的特征值和特征向量及矩阵的对角化问题,抽象矩阵特征值和特征向量问题一般用定义求解,要想方设法将题设条件转化为Ax xλ=的形式.矩阵的对角化用常规方法求解.完全类似例题见文登暑期辅导班《线性代数》第5讲【例12】,《数学复习指南》(经济类)P.370【例5.24】,P.282【例2.7】,《考研数学过关基本题型》(经济类)P.167【例6】及练习3.1,3.4.22…..【分析】利用二维离散型随机变量概率分布的性质和定义计算.【详解】(I)由概率分布的性质知0.20.10.20.11a b c++++++=,即0.4a b c++=. ①由(,X Y)可写出X的边缘概率分布为X-1 0 1P0.2a+0.3b+0.1c+故(0.2)(0.1)0.2EX a c=-+++=-,即0.1a c-=. ②又因 {}{}0,00.10.5{0|0}00.5P X Y a b P Y X P X a b ≤≤++=≤≤==≤++,即0.3a b +=. ③ 将①,②,③联立解方程组得0.2,0.1,0.1a b c ===. (II )Z 的可能取值为2,1,0,1,2--,则{}{}{}221,10.2P Z P X Y P X Y =-=+=-==-=-=, {}{}{}11,00,10.1P Z P X Y P X Y =-==-=+==-=,{}{}{}{}01,10,01,10.3P Z P X Y P X Y P X Y ===-=+==+==-=, {}{}{}11,00,10.3P Z P X Y P X Y ====+===, {}{}21,10.1P Z P X Y =====. 故Z 的概率分布为(Ⅲ) {}{}{}000.10.10.2P X Z P X X Y P Y ===+===++=.【评注】 本题属基本题型,只需注意计算的准确性,应该可以顺利求解. 完全类似例题见文登暑期辅导班《概率论与数理统计》第3讲【例2】,《数学复习指南》(经济类)P.438【例2.42】,P.439【例2.43】,《考研数学过关基本题型》(经济类)P.213【例2】,P.217【例7】及练习3.1.23….【分析】 第1问求一维随机变量函数的概率密度一般先求分布,然后求导得相应的概率密度或利用公式计算. 第2,3问利用定义和性质可求解.【详解】 (I ) 设Y 的分布函数为()Y F y ,即2()()()Y F y P Y y P X y =≤=≤,则1) 当0y <时,()0Y F y =;2) 当01y ≤<时, (2()()Y F y P X y P X =<=<<01d 4x x =+=⎰3) 当14y ≤<时,(2()()1Y F y P X y P X =<=-<<1011d d 242x x -=+=⎰.4) 当4y ≥,()1Y F y =. 所以1()()40,Y Y y f y F y y <<⎪'==≤<⎪⎩其他.(II ) 22232Cov(,)Cov(,)()()X Y X X E X EX X EX EX EXEX ==--=-,而 02101d d 244x x EX x x -=+=⎰⎰,22022105d d 246x x EX x x -=+=⎰⎰, 3323107d d 248x x EX x x -=+=⎰⎰, 所以 7152Cov(,)8463X Y =-⋅=. (Ⅲ) 1,42F ⎛⎫-⎪⎝⎭211,4,422P X Y P X X ⎛⎫⎛⎫=≤-≤=≤-≤ ⎪ ⎪⎝⎭⎝⎭11,22222P X X P X ⎛⎫⎛⎫=≤--≤≤=-≤≤- ⎪ ⎪⎝⎭⎝⎭12111d 24x --==⎰. 【评注】 本题属基本题型,只需注意计算的准确性,应该可以顺利求解.求随机变量函数分布,一般都是通过定义用分布函数法讨论.注意熟记随机变量的数字特征的定义和性质.完全类似例题见文登暑期辅导班《概率论与数理统计》第2讲【例4】,第3讲【例6】,《数学复习指南》(经济类)P.423【例2.21】,P.469【例3.32】.。
2006年考研数学一真题及答案
2006年全国硕士研究生入学考试数学(一)一、填空题 (1)0ln(1)lim1cos x x x x→+=-.(2)微分方程(1)y x y x-'=的通解是 .(3)设∑是锥面z =01z ≤≤)的下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰ .(4)点(2,1,0)到平面3450x y z ++=的距离z = .(5)设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2B A B E =+,则B = .(6)设随机变量X 与Y 相互独立,且均服从区间[0, 3]上的均匀分布,则{}m a x {,}1P X Y ≤=.二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A )0.dx y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<<(D )0.dy y <∆<【 】(8)设(,)f x y 为连续函数,则1400(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A )0(,).xf x y dy ⎰⎰(B )00(,).f x y dy ⎰⎰(C )0(,).yf x y dx ⎰⎰(C )00(,).f x y dx ⎰⎰【 】(9)若级数1n n a ∞=∑收敛,则级数(A )1n n a ∞=∑收敛.(B )1(1)n n n a ∞=-∑收敛.(C )11n n n a a ∞+=∑收敛.(D )112n n n a a ∞+=+∑收敛. 【 】(10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是 (A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【 】(11)设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关.(C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关.(D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关. 【 】 (12)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则 (A )1.C P AP -= (B )1.C PAP -=(C ).TC P AP =(D ).TC PAP = 【 】(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有 (A )()().P A B P A ⋃> (B )()().P A B P B ⋃>(C )()().P A B P A ⋃=(D )()().P A B P B ⋃= 【 】(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{||1}{||1},P X P Y μμ-<>-<(A )1 2.σσ< (B )1 2.σσ>(C )1 2.μμ<(D )1 2.μμ> 【 】三 解答题 15 设区域D=(){}22,1,0x y xy x +≤≥,计算二重积分2211DxyI dxdy xy+=++⎰⎰ 。
2006年考研数学试题详解及评分参考
.
(6) 设随机变量 X 与 Y 相互独立,且均服从区间 [0, 3] 上的均匀分布,则
P{ max { X , Y } £ 1 } =
【答】 应填 1 / 9 .
【解】 P{ max { X , Y } £ 1} = P{ X £ 1, Y £ 1} = P{ X £ 1} × P{Y £ 1} =
(13) 设 A , B 为随机事件,且 P ( B ) > 0 , P ( A | B ) = 1 ,则必有 (C) P ( A U B ) = P ( A) . 【答】 应选 (C). 【解】 因 P ( A | B ) = (A) P ( A U B ) > P ( A) . (D) P ( A U B ) = P ( B ) . (B) P ( A U B ) > P ( B ) .
.
【答】 应填 2 . 【解】 因 x ® 0 时, ln(1 + x) : x, 1 - cos x : (2) 微分方程 y ¢ =
1 2 x×x x ,故原式= lim 1 2 = 2 . x 0 ® 2 2 x
y (1 - x) 的通解是 . x 【答】 应填 y = C x e - x ( C 为任意常数). dy 1 - x 【解】 分离变量,得 = dx . 两边积分,有 ln | y |= ln | x | - x + C1 ,即 y x | y |= eC1 | x | e- x . 记 C = ± eC1 ,则有 y = C x e - x . 由于 y = 0 也是原方程的解,故上式中 C 可以为零,于是得通解 y = C x e - x ( C 为任意常数). x 2 + y 2 ( 0 £ z £ 1 )的下侧,则 òò xdydz + 2 ydzdx + 3( z - 1)dxdy = .
2006年南开大学数学分析考研试题及解答
南开大学2006年数学分析考研试题及解答1.求极限()204sin limtt tx dx t→⎰.2.设123222212311111231111nn n n n n nx x x x u x x x x x x x x ----=,试证()112ni i in n u x u x =-∂=∂∑.3.设()f x 在[]0,2上有界可积,()20f x dx =⎰,求证存在[]0,1a ∈,使得()10a af x dx +=⎰.4.若幂级数0n n n a x ∞=∑在()1,1-内收敛于()f x ,设()01,1n x ≠∈-,满足lim 0n n x →∞=和()0n f x =,1,2n = ,则()0f x =,对所有()1,1x ∈-.5.设函数()f x 在(),-∞+∞有任意阶导数,且导数数列()()n f x 在(),-∞+∞一致收敛于()x ϕ,()01ϕ=,求证()x x e ϕ=.6.设(),,f x y z 在球(){}222,,:1x y z x y z ++≤上连续,令()(){}2222,,:B r x y z x y z r =++≤,()(){}2222,,:S r x y z x y z r =++=,0r >,求证()()()(),,,,B r S r df x y z dxdydz f x y z dS dr =⎰⎰⎰⎰⎰,()0,1r ∈. 7.设(),,f x y z 在全空间上具有连续的偏导数,且关于,,x y z 都是周期的,即对任意点(),,x y z ,成立()()()()1,,,1,,,1,,f x y z f x y z f x y z f x y z +=+=+=,则对任意实数,,αβγ,有0f f f dxdydz x y z αβγΩ⎛⎫∂∂∂++= ⎪∂∂∂⎝⎭⎰⎰⎰,这里[][][]0,10,10,1Ω=⨯⨯是单位方体.8.设A 为三阶实对称方阵,定义函数()(),,,,x h x y z x y z A y z ⎛⎫⎪= ⎪ ⎪⎝⎭,求证(),,h x y z 在条件2221x y z ++=下的最大值为矩阵A 的最大特征值.9.(1)设数列0n a ≠,满足0n a →,()n →+∞,定义集合{}:,i P ka k Z i N =∈∈,Z 为整数集,N 为自然数集,求证对任何实数b ,存在数列k b P ∈,使得lim k k b b →∞=;(2)试证 一个非常数的周期连续函数必有最小正周期.10.设()x ϕ是(),-∞+∞上的周期连续函数,周期为1,且()10x dx ϕ=⎰,令()1xn a e nx dx ϕ=⎰,()1,2,n = ,求证级数21n n a ∞=∑收敛.南开大学2006年数学分析考研试题解答1、解 当0t +→时, 令2tx y =,12dx dy yt=, 原式341sin 2lim t t y dyy tt+→⋅=⎰3902sin 2lim t t ydy y t+→=⎰323702sin 32lim 92t t t t t +→⋅=330sin 1lim 33t t t +→==. 当0t -→时,同理()204sin 1lim 3tt tx dx t -→=⎰故()240sin 1lim3tt tx dx t →=⎰. 2、证明 将行列式按第一列展开11112111n n u A x A x A -=+++ , 所以()111211111n n ux x A n x A x -∂=++-∂ ,同理将行列式按第i 列展开,得()121n ii i i ni iux x A n x A x -∂=++-∂ ,1,2,,i n = , 于是()12122221nin n i iux x A x A x A x =∂=+++∂∑ ()22213123232n n x A x A x A ++++)()11111221n n n n n n nn n x A x A x A ---+-+++ ()()1212n n u u n u u -=+++-= . 3、证明 构造函数()()1x xF x f t dt +=⎰,[]0,1x ∈,()()()()()1221010F F f t dt f t dt f t dt +=+==⎰⎰⎰,由()f x 在[]0,2上有界可积,知()F x 在[]0,1上连续,存在[]0,1α∈,使得()()()0102F F F α+==, 即()10f x dx αα+=⎰.4、证明 设()()()n n g x f x =,由于()(){}nf x 一致收敛于()x ϕ,()()()()()()1lim lim n n n n f x f x x ϕ+→∞→∞'==,则有(){}n g x 一致收敛于()x ϕ,(){}n g x '一致收敛于()x ϕ, 于是()()x x ϕϕ'=,()x x Ce ϕ=, 又因为()01ϕ=,故()x x e ϕ=.5、证明 令sin cos x t ϕθ=,sin sin y t ϕθ=,cos z t ϕ=0t r ≤≤,0ϕπ≤≤,02θπ≤≤,则()(),,B r df x y z dxdydz dr ⎰⎰⎰ ()22000sin cos ,sin sin ,cos sin r d dt d f t t t t d drππθϕθϕθϕϕϕ=⋅⎰⎰⎰ ()220sin cos ,sin sin ,cos sin d f r r r r d ππθϕθϕθϕϕϕ=⋅⎰⎰,在()S r 中:sin cos x r ϕθ=,sin sin y r ϕθ=,cos z r ϕ=,0ϕπ≤≤,02θπ≤≤,2dS EG F d d ϕθ=-2sin r d d ϕϕθ=,()()()220,,sin cos ,sin sin ,cos sin S r f x y z dS d f r r r r d ππθϕθϕθϕϕϕ=⋅⎰⎰⎰⎰.故结论得证.6、证明 由偏导数连续,()()()1,,,,0yzD fdxdydz f x y z f x y z dydz x ααΩ∂=+-=∂⎰⎰⎰⎰⎰, 同理()()(),1,,,0xzD fdxdydz f x y z f x y z dxdz y ββΩ∂=+-=∂⎰⎰⎰⎰⎰, ()()(),,1,,0xyD fdxdydz f x y z f x y z dydz z γγΩ∂=+-=∂⎰⎰⎰⎰⎰, 故有0f f f dxdydz x y z αβγΩ⎛⎫∂∂∂++= ⎪∂∂∂⎝⎭⎰⎰⎰.7、证明 由幂级数的收敛性知()f x 连续, 于是()()0lim 0n n f f x →∞==,由幂级数的性质()()k f x 都在()1,1-上连续,()1,2,k = 由()0n f x =,()1,2,n = ,存在n ξ在n x 与0之间,使得()0n f ξ'=,显然有lim 0n n ξ→∞=,0n ξ≠,()()0lim 0n n f f ξ→∞''==,由()0n f ξ'=,()1,2,n = ,存在n η在n ξ与0之间,使得()0n f η''=, 显然有lim 0n n η→∞=,0n η≠,()()0lim 0n n f f ξ→∞''''==,同理这样继续下去,可得()()00k f =,()0,1,2,3,k = ,由于()f x 已展开成收敛的幂级数 ()0n n n f x a x ∞==∑,所以()()00!n n f a n ==,()0,1,2,3,n = ,故()0f x =,()1,1x ∈-.8、设A 为n 阶实对称方阵,定义函数()T f x x Ax =,其中()12,,,Tn x x x x = ,求证:()f x 在条件12211ni i x x =⎛⎫== ⎪⎝⎭∑下的最大值和最小值分别为矩阵A 的最大特征值和最小特征值.证明 因为{}:1n S x R x =∈=是有界闭集,()f x 在S 上连续,所以()f x 在S 上存在最大值和最小值. 设0x S ∈,使得()()0max x Sf x f x M ∈==,0y S ∈,使得()()0min x Sf y f x m ∈==,则对任意的实数t ,n h R ∈都有,00x thf M x th⎛⎫+≤ ⎪ ⎪+⎝⎭, ()()00201Tx th A x th M x th++≤+,()()2000Tx th A x th M x th ++≤+,2200000022T T T TT T x Ax th Ax t h Ah Mx x Mth x t h h ++≤++,220022T T T T th Ax t h Ah Mth x t h h +≤+, 对0t >时,有0022T T T T h Ax th Ah Mh x th h +≤+, 令0t +→,得00T T h Ax Mh x ≤,对于0t <时,有0022T T T T h Ax th Ah Mh x th h +≥+, 令0t -→,得00T T h Ax Mh x ≥, 故有00T T h Ax Mh x =,(任意n h R ∈)从而00Ax Mx =,M 是A 的特征值, 同理可证m 也是A 的特征值,设λ为A 的特征值,对应的特征向量为n R ξ∈,1ξ=,A ξλξ=,T A ξξλ=,于是m M λ≤≤,所以M 是A 的最大特征值,m 是A 的最小特征值.8、证明 因为A 是实对称矩阵,所以存在正交阵T ,使得12300000T AT λλλ⎛⎫⎪'= ⎪ ⎪⎝⎭,123,,λλλ为实数, 于是()()12300,,,,0000x h x y z x y z T T y z λλλ⎛⎫⎛⎫⎪ ⎪'= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,令()()111,,,,x y z T x y z =, 则()()111,,,,x y z x y z T '=,又因为111x x y T y z z ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以()2221x x y z xyz y z ⎛⎫⎪=++= ⎪ ⎪⎝⎭()111111,,x x y z T T y z ⎛⎫ ⎪'= ⎪ ⎪⎝⎭222111x y z =++, 即2221111x y z ++=,()222112131,,h x y z x y z λλλ=++, 不妨设123λλλ≤≤,则有()()()22222211113111,,x y z h x y z x y z λλ++≤≤++, 显然(),,h x y z 有最大值3λ.9、证明(1)对任意固定实数b ,存在11b a ,使得()1111,1b b a b a ∈+⎡⎤⎣⎦,1b 为整数, 将闭区间进一步缩小,存在i ka , 使得()()1111,1,1i i b ka k a b a b a ∈+⊂+⎡⎤⎡⎤⎣⎦⎣⎦,记i ka 为22n n b a ,一直进行下去,得到一列闭区间套,使得()()1111,1,1k k k k k k k k n n n n n n n n b b a b a b a b a ----⎡⎤⎡⎤∈+⊂+⎣⎦⎣⎦,因为lim 0n n a →∞=,所以{}n a 的任何子列比收敛于零,则()lim 1lim 0k k k k k n n n n n k k b a b a a →∞→∞⎡⎤+-==⎣⎦, 利用闭区间套定理,存在(),1k k k k n n n n b a b a ξ⎡⎤∈+⎣⎦, 使得lim k k n n k b a ξ→∞=,由ξ是唯一公共点,知b ξ=. 令k k n n k b a b P =∈,则有lim k k b b →∞=.(2) (a )因为集合{}f 的正周期有下界0, 有确界存在定理,{}0inf f T =的正周期存在, (b )现证明{}0inf f T ∈的周期,根据下确界的性质,存在{}inf f n T ∈的正周期,1,2,n = , 使得0lim n n T T →∞=,对任意x R ∈,由()f x 得连续性,得()()()()0lim lim n n n f x T f x T f x f x →∞→∞+=+==,所以0T 是f 的周期.(c )因为0n T >,0lim n n T T →∞=,所以00T ≥,若00T =,则lim 0n n T →∞=,于是f 得周期网点(指等于周期整数倍的点)在实数轴R 上稠密,从而,任意x R ∈,存在{}n x ,{}n y 是有一些周期网点所组成的序列,lim n n x x →∞=,由此()()()()lim lim 00n n n n f x f x f x f →∞→∞==+=,即()()0f x f ≡(为常数),矛盾, 故00T >,结论得证.10、 证明 设()()0xx t dt ϕΦ=⎰,由于()t ϕ是周期为1的连续函数,且()10t dt ϕ=⎰,易知()x Φ亦是周期为1的连续函数,且()()x x ϕ'Φ=,()00Φ=,()0n Φ=,()1,2,n =()()1n a f x nx dx ϕ=⎰()01n u f u du n n ϕ⎛⎫= ⎪⎝⎭⎰()01n x f x dx n n ⎛⎫'=Φ ⎪⎝⎭⎰()()00111nn x x x f f x dx nn n nn ⎛⎫⎛⎫⎛⎫'=Φ-Φ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰()011n x f x dx n nn ⎛⎫'=-Φ ⎪⎝⎭⎰,()011n n x a f x dx n n n ⎛⎫'≤Φ ⎪⎝⎭⎰()00111max n x x x f dx n n n≤≤⎛⎫'≤Φ⋅ ⎪⎝⎭⎰()()10011max x x f t dt n ≤≤'=Φ⋅⎰1K n=, 其中K 为常数,()()101max x K x f t dt ≤≤'=Φ⋅⎰,22210na K n ≤≤,而2211n K n ∞=∑收敛,所以21n n a ∞=∑收敛.。
2006—数一真题、标准答案及解析
2006年全国硕士研究生入学考试数学一真题一、填空题(1)0ln(1)lim1cos x x x x→+=-.(2)微分方程(1)y x y x-'=的通解是 .(3)设∑是锥面z =(01z ≤≤)的下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰.(4)点(2,1,0)到平面3450x y z ++=的距离z = .(5)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2B A BE =+,则B = .(6)设随机变量X 与Y 相互独立,且均服从区间[0, 3]上的均匀分布,则{}max{,}1P X Y ≤= . 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A )0.dx y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<<(D )0.dy y <∆<【 】(8)设(,)f x y 为连续函数,则14(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A )2210(,).x xf x y dy -⎰⎰(B )2210(,).x f x y dy -⎰⎰(C )2210(,).y yf x y dx -⎰⎰(C )2210(,).y f x y dx -⎰⎰【 】(9)若级数1nn a∞=∑收敛,则级数(A )1nn a∞=∑收敛. (B )1(1)nn n a ∞=-∑收敛.(C )11n n n a a ∞+=∑收敛.(D )112n n n a a ∞+=+∑收敛. 【 】(10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【 】(11)设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关.(C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关.(D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关. 【 】(12)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A )1.C P AP -= (B )1.C PAP -=(C ).T C P AP =(D ).TC PAP = 【 】(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有 (A )()().P A B P A ⋃> (B )()().P A B P B ⋃>(C )()().P A B P A ⋃=(D )()().P A B P B ⋃= 【 】(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{||1}{||1},P X P Y μμ-<>-<(A )1 2.σσ<(B )1 2.σσ>(C )1 2.μμ<(D )1 2.μμ> 【 】三 解答题 15 设区域D=(){}22,1,0x y xy x +≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰. 16 设数列{}n x 满足()110,sin 1,2,...n x x x n ππ+<<== . 求: (Ⅰ)证明lim n x x →∞存在,并求之 .(Ⅱ)计算211lim n x n x n x x +→∞⎛⎫ ⎪⎝⎭. 17 将函数()22xf x x x =+-展开成x 的幂级数.18 设函数()()0,,f u +∞在内具有二阶导数且22z fx y=+满足等式22220z zx y∂∂+=∂∂.(Ⅰ)验证()()0f u f u u'''+=. (Ⅱ)若()()()10,11,f f f u '==求函数的表达式. 19 设在上半平面D=(){},0x y y >内,数(),f x y 是有连续偏导数,且对任意的t>0都有()()2,,f tx ty t f x y =.证明: 对L 内的任意分段光滑的有向简单闭曲线L,都有0),(),(=-⎰dy y x xf dx y x yf L.20 已知非齐次线性方程组12341234123414351331x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩有个线性无关的解 Ⅰ证明方程组系数矩阵A 的秩()2r A = Ⅱ求,a b 的值及方程组的通解21 设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1TTαα=--=-是线性方程组A x =0的两个解, (Ⅰ)求A 的特征值与特征向量 (Ⅱ)求正交矩阵Q 和对角矩阵A,使得TQ AQ A =.22 随机变量x 的概率密度为()()21,1021,02,,40,x x f x x y x F x y ⎧-<<⎪⎪⎪=≤<=⎨⎪⎪⎪⎩令其他为二维随机变量(X,Y)的分布函数.(Ⅰ)求Y 的概率密度()Y f y (Ⅱ)1,42F ⎛⎫-⎪⎝⎭23 设总体X 的概率密度为()()01,0112010x F X x θθθθ<<⎧⎪=-≤<<<⎨⎪⎩其中是未知参数其它,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,1n x x x 中小于的个数,求θ的最大似然估计.2006年全国硕士研究生入学考试数学一真题解析一、填空题(1)0ln(1)lim1cos x x x x→+-= 2 .221cos 1,)1ln(x x x x -+ (0x →当时)(2)微分方程(1)y x y x-'=的通解是(0)x y cxe x -=≠,这是变量可分离方程.(3)设∑是锥面1)Z ≤≤的下侧,则23(1)2xdydz ydzdx z dxdy π∑++-=⎰⎰补一个曲面221:1x y z ⎧+≤∑⎨=⎩1上侧,2,3(1)P x Q y R z ===-1236P Q Rx y z∂∂∂++=++=∂∂∂ ∴16dxdydz ∑∑Ω+=⎰⎰⎰⎰⎰⎰⎰(Ω为锥面∑和平面1∑所围区域)6V =(V 为上述圆锥体体积)623ππ=⨯=而123(1)0dydz ydzdx z dxdy ∑⨯++-=⎰⎰(∵在1∑上:1,0z dz ==)(4),1,0,4502x y z d ++==点(2)到平面3的距离22232412502345d ⨯+⨯====++(5)设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4,计算出|A -E |=2,因此|B |=2. (6)91 二、选择题(7)设函数()y f x =具有二阶导数,且()0f x '>,()0f x ''>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分.若0>∆x ,则[A]0)(0)(0)(0)(<∆<<<∆<∆<∆<<y dy D dy y C dy y B y dy A()0,()f x f x '>因为则严格单调增加 ()0,()f x f x ''>则是凹的 y dy x ∆<<>∆0,0故又1(8)(,)(cos ,sin )[C](A)(,)(B)(,)xf x y d f r r rdr f x y dyf x y dyπθθθ⎰⎰⎰⎰⎰⎰40设为连续函数,则等于222110(C)(,)(D)(,)y y yf x y dxf x y dx --⎰⎰⎰111111111(9)[D]()()(1)()()()2n n n n n n n n n n n n n n n a A a B a a a C a a D a ∞=∞∞==∞∞∞+++===-+∑∑∑∑∑∑ 若级数收敛,则级数收敛收敛收敛收敛也收敛00000000000000000(10)(,)(,)(,)0,(,)(,)0y x y x y x y x y f x y x y x y x y f x y x y f x y f x y f x y f x y f x y f x y f x y f x ϕϕϕ'≠=''''≠''''≠≠设与均为可微函数,且已知(,)是在约束条件下的一个极值点,下列选项正确的是[D](A)若(,)=0,则(,)=0(B)若(,)=0,则(,)0(C)若(,)0,则(,)=0(D)若(,)0,则(,00000000000000000(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0(,)(,)(,)(,)0,(,)(,)(,)(,)0x x x y y y y y xy x y y x y f x y x y f x y x y f x y x y x y f x y f x y x y x y f x y x y x y f x y λλϕλϕλϕϕϕϕλϕϕ≠+'''⎧+=⎪'''+=⎨⎪'=⎩'''''≠∴=-='''≠)0构造格朗日乘子法函数F=F =F =F =今代入(1)得今00,(,)0[]y f x y D '≠则故选(11)设α1,α2,…,αs 都是n 维向量,A 是m ⨯n 矩阵,则( )成立.(A) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性相关. (B) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性无关. (C) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性相关. (D) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性无关. 解: (A)本题考的是线性相关性的判断问题,可以用定义解.若α1,α2,…,αs 线性相关,则存在不全为0的数c 1,c 2,…,c s 使得c 1α1+c 2α2+…+c s αs =0,用A 左乘等式两边,得c 1A α1+c 2A α2+…+c s A αs =0,于是A α1,A α2,…,A αs 线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是: 1. α1,α2,…,αs 线性无关⇔ r(α1,α2,…,αs )=s. 2. r(AB )≤ r(B ).矩阵(A α1,A α2,…,A αs )=A ( α1, α2,…,αs ),因此r(A α1,A α2,…,A αs )≤ r(α1, α2,…,αs ).由此马上可判断答案应该为(A).(12设A 是3阶矩阵,将A 的第2列加到第1列上得B ,将B 的第1列的-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则 0 0 1(A) C =P -1AP . (B) C =PAP -1.(C) C =P T AP . (D) C =PAP T.解: (B)用初等矩阵在乘法中的作用得出B =PA ,1 -1 0C =B 0 1 0 =BP -1= PAP -1. 0 0 1(13)根据乘法公式与加法公式有: P(AB)=P(B)P(A/B)=P(B)P(A ⋃B)=P(A)+P(B)-P(AB)=P(A) 应选C (14)依题:).1,0(~),10(~2211N Y N x σμσμ--,,1}1{1111⎭⎬⎫<⎩⎨⎧-=<-σσμμX P X P .1}1{2222⎭⎫⎩⎨⎧<-=<-σσμμY P Y P 因 },1{}1{21<-><-μμY P X P即 .11222111⎭⎬⎫⎩⎨⎧<->⎭⎬⎫⎩⎨⎧<-σσμσσμY P X p 所以.,112121σσσσ<>应选A三、解答题{}22222212120222021(15)(,)1,0,1:011ln(1)ln 21122DDDxyD x y x y x I dxdyx y xydxdy x yr I dxdy d dr r x yr ππππθ-+=+≤≥=++=++===+=+++⎰⎰⎰⎰⎰⎰⎰⎰ 设区域计算二重积分解{}{}{}211112121(16)0,sin (1,2,)(1)lim (2)lim():(1)sin ,01,2sin ,0,lim ,n n n n n n x n n nn n n n n n n n x x x x n x x x x x x n x x x x x x x A π+→∞+→∞+→∞<<===∴<≤≥=≤≥∴= 设数列满足求证明存在,并求之计算解因此当时单调减少又有下界,根据准则1,存在递推公式两边取极限得sin ,0A A A =∴=21sin (2)lim(,n x n n n x x ∞→∞原式=为"1"型离散型不能直接用洛必达法则22011sin lim ln()0sin lim(t ttt tt t e t→→=先考虑2323203311(cos sin )1110()0()lim 26cos sin sin 1262limlim2262t t t t t t t t t t t t t t tt t t ttteeeee →→→⎡⎤⎡⎤--+--⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦-=====2(17)()2xf x x x x =+-将函数展开成的幂极数()(2)(1)21x A Bf x x x x x ==+-+-+解:2(1)(2)2,32,3A xB x x x A A ++-====令 11,31,3x B B =-=-=-令)](1[131)21(131)1(131)2(132)(x x x x x f --⨯--⨯=+⨯--⨯=10001111((1)(1),132332n n nn n n n n n x x x x ∞∞∞+===⎡⎤=--=+-<⎢⎥⎣⎦∑∑∑(18)设函数()(0,)f u +∞在内具有二阶导数,且Z f=满足等式22220z z x y ∂∂+=∂∂ (I )验证()()0f u f u u'''+= (II )若(1)0,(1)1f f '== 求函数()f u 的表达式 证:(I )(22222222zzf x y f x y xyx yx y∂∂''=+=+∂∂++()()22222222222222x x y x y zxf x yf x yxx y xy+-+∂'''=+++∂++()()222222322222x y f x yf x yx y x y '''=+++++()(()22222223222222zy x f x yf x yyx y x y ∂'''=+++∂++同理2222222222()()()0f x y z z f x yx y x yf u f u u'+∂∂''+=++=∂∂+'''∴+=代入得成立(II )令(),;dp p dp du f u p c du u p u'==-=-+⎰⎰则ln ln ,()cp u c f u p u'=-+∴==22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+=== 由得于是(19)设在上半平面{}(,)|0D x y y =>内,函数(,)f x y 具有连续偏导数,且对任意0t >都有2(,)(,)f tx ty t f x y-= 证明:对D 内任意分段光滑的有向简单闭曲线L ,都有0),(),(=-⎰dy y x xf dx y x yf L.证:把2(,)(,)f tx ty t f x y t -=两边对求导 得:(,)(,)2(,)x y xf tx ty yf tx ty tf x y ''+=- 令 1t =,则(,)(,)2(,)x y xf x y yf x y f x y ''+=- 再令 (,),(,)P yf x y Q xf x y ==-所给曲线积分等于0的充分必要条件为Q Px y∂∂=∂∂ 今(,)(,)x Qf x y x f xy x∂'=--∂(,)(,)y Pf x y y f xy y∂'=+∂ 要求Q Px y∂∂=∂∂成立,只要(,)(,)2(,)x y xf x y yf x y f x y ''+=- 我们已经证明,Q Px y∂∂∴=∂∂,于是结论成立. (20)已知非齐次线性方程组 x 1+x 2+x 3+x 4=-1, 4x 1+3x 2+5x 3-x 4=-1,a x 1+x 2+3x 3+bx 4=1 有3个线性无关的解.① 证明此方程组的系数矩阵A 的秩为2. ② 求a,b 的值和方程组的通解.解:① 设α1,α2,α3是方程组的3个线性无关的解,则α2-α1,α3-α1是AX =0的两个线性无关的解.于是AX =0钻石卡高级辅导系统——全程、全方位、系统化解决考研所有问题,成功率趋近100%的基础解系中解的个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A 的行向量是两两线性无关的,所以r(A )≥2.两个不等式说明r(A )=2.② 对方程组的增广矩阵作初等行变换:1 1 1 1 -1 1 1 1 1 -1(A |β)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换:1 02 -4 2→ 0 1 -1 5 -3 .0 0 0 0 0得同解方程组x 1=2-2x 3+4x 4,x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T 和AX =0的基础解系(-2,1,1,0)T ,(4,-5,0,1) T .得到方程组的通解:(2,-3,0,0)T +c 1(-2,1,1,0)T +c 2(4,-5,0,1)T , c 1,c 2任意.(21) 设3阶实对称矩阵A 的各行元素之和都为3,向量α1=(-1,2,-1)T , α2=(0,-1,1)T 都是齐次线性方程组AX =0的解.① 求A 的特征值和特征向量.② 求作正交矩阵Q 和对角矩阵Λ,使得Q T AQ =Λ.解:① 条件说明A (1,1,1)T =(3,3,3)T ,即 α0=(1,1,1)T 是A 的特征向量,特征值为3.又α1,α2都是AX =0的解说明它们也都是A 的特征向量,特征值为0.由于α1,α2线性无关, 特征值0的重数大于1.于是A 的特征值为3,0,0.属于3的特征向量:c α0, c ≠0.属于0的特征向量:c 1α1+c 2α2, c 1,c 2不都为0.② 将α0单位化,得η0=(33,33,33)T . 对α1,α2作施密特正交化,的η1=(0,-22,22)T , η2=(-36,66,66)T . 作Q =(η0,η1,η2),则Q 是正交矩阵,并且3 0 0Q T AQ =Q -1AQ = 0 0 0 .0 0 0 (22)随机变量X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-=其他,020,4101,21)(x x x f X ,令2X Y =,),(y x F 为二维随机变量)(Y X ,的分布函数.(Ⅰ)求Y 的概率密度;(Ⅱ))4,21(-F 解: (Ⅰ)⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<=≤=≤=yy y y y X P y Y P y F Y 4,141,)2(10,)1(0,0)()()(2式式⎰⎰=+=≤≤-=-y yy dx dx y X y P 00434121)()1(式; ⎰⎰+=+=≤≤-=-y y dx dx y X y P 00141214121)()2(式. 所以:⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<==其他,041,8110,83)()('y yy y y F y f Y Y 这个解法是从分布函数的最基本的概率定义入手,对y 进行适当的讨论即可,在新东方的辅导班里我也经常讲到,是基本题型.(Ⅱ))4,21(-F 212()22,21()4,21()4,21(2-≤≤-=≤≤--≤=≤-≤=≤-≤=X P X X P X X P Y X P 4121211==⎰--dx . (23)设总体X 的概率密度为⎪⎩⎪⎨⎧≤≤-<<=其他,021,110,),(x x x f θθθ,其中θ是未知参数(0<θ<1).n X X X ,,21为来自总体的简单随机样本,记N 为样本值n x x x ,,21中小于1的个数.求θ的最大似然估计.解:对样本n x x x ,,21按照<1或者≥1进行分类:pN p p x x x ,,21<1,pn pN pN x x x ,,21++≥1.似然函数⎩⎨⎧≥<-=++-其他,,01,,,1,,)1()(2121pn pN pN pN p p N n N x x x x x x L θθθ, 在pN p p x x x ,,21<1,pn pN pN x x x ,,21++≥1时,)1ln()(ln )(ln θθθ--+=N n N L ,01)(ln =---=θθθθN n N d L d ,所以nN =最大θ.。
2006考研数学(二)真题及参考答案
2006年全国硕士研究生入学考试数学(二)一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为 .(2)设函数231sin ,0,(),x t dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰在0x =处连续,则a = .(3)广义积分22(1)xdxx +∞=+⎰.(4)微分方程(1)y x y x-'=的通解是 . (5)设函数()y y x =由方程1yy xe =-确定,则A dy dx== .(6)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2B A BE =+,则B = . 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则 (A )0.dy y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<<(D )0.dy y <∆<【 】(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()x f t dt ⎰是(A )连续的奇函数. (B )连续的偶函数(C )在0x =间断的奇函数 (D )在0x =间断的偶函数. 【 】(9)设函数()g x 可微,1()(),(1)1,(1)2g x h x e h g +''===,则(1)g 等于(A )ln 31-. (B )ln 3 1.--(C )ln 2 1.--(D )ln 2 1.-【 】(10)函数212xxx y C e C e xe -=++满足一个微分方程是(A )23.xy y y xe '''--= (B )23.xy y y e '''--=(C )23.xy y y xe '''+-=(D )23.xy y y e '''+-=(11)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A )22120(,).x xdx f x y dy -⎰⎰(B )22120(,).x dx f x y dy -⎰⎰(C )22120(,).y ydy f x y dx -⎰⎰(D )22120(,).y dy f x y dx -⎰⎰【 】(12)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【 】(13)设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关.(C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关.(D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关. 【 】(14)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A )1.C P AP -= (B )1.C PAP -=(C ).T C P AP =(D ).TC PAP =三 解答题15.试确定A ,B ,C 的常数值,使得23(1)1()xe Bx Cx Ax o x ++=++,其中3()o x 是当30x x →时比的高阶无穷小.16.arcsin xxe dx e ⎰求. 17.{}22(,)1,0D x y x y x =+≤≥设区域,221.1DxyI dxdy x y +=++⎰⎰计算二重积分 18.{}110,sin (0,1,2,)n n n x x x x n π+<<== 设数列满足1lim n x x +→∞证明: (1) 存在,并求极限;211(2)lim()n x n x nx x +→∞计算. 19.sin 2cos sin cos .<a <b b b b b a a a a a πππ<++>++证明: 当0时, 20 设函数()()0,,f u +∞在内具有二阶导数且()22z fx y=+满足等式22220z zx y∂∂+=∂∂.(Ⅰ)验证()()0f u f u u'''+=;(Ⅱ)若()()()10,11,f f f u '==求函数的表达式. 21 已知曲线L 的方程为221,(0),4x l t y l t⎧=+≥⎨=-⎩(Ⅰ)讨论L 的凹凸性;(Ⅱ)过点(-1,0)引L 的切线,求切点00(,)x y ,并写出切线的方程; (Ⅲ)求此切线与L (对应于0x x ≤的部分)及x 轴所围成的平面图形的面积.22 已知非齐次线性方程组12341234123414351331x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩有个线性无关的解Ⅰ证明方程组系数矩阵A 的秩()2r A =; Ⅱ求,a b 的值及方程组的通解.23 设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1TTαα=--=-是线性方程组A x =0的两个解, (Ⅰ)求A 的特征值与特征向量 (Ⅱ)求正交矩阵Q 和对角矩阵A,使得TQ AQ A =.真题解析一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为15y =4sin 11lim lim2cos 55x x xx y x x→∞→∞+==-(2)设函数2301sin ,0(),0xt dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 在x =0处连续,则a =132200()1lim ()lim 33x x sm x f x x →→==(3)广义积分22(1)xdxx +∞=+⎰1222222201(1)11110(1)2(1)2(1)22xdx d x x x x +∞+∞+∞+==-⋅=+=+++⎰⎰(4)微分方程(1)y x y x-'=的通解是xy cxe -=)0(≠x(5)设函数()y y x =由方程1yy xe =-确定,则0x dy dx==e-当x =0时,y =1,又把方程每一项对x 求导,y yy e xe y ''=--01(1)1x x y yyyye y xe ey e xe ===''+=-=-=-+(6) 设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4, 计算出|A -E |=2,因此|B |=2. 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0,f x f x x '''>>∆为自变量x 在点x 0处的增量,0()y dy f x x ∆与分别为在点处对应增量与微分,若0x ∆>,则[A](A )0dy y <<∆(B )0y dy <∆<(C )0y dy ∆<<(D )0dy y <∆<由()0()f x f x '>可知严格单调增加()0()f x f x ''>可知是凹的即知(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()xf t dt ⎰是[B](A )连续的奇函数 (B )连续的偶函数(C )在x =0间断的奇函数 (D )在x =0间断的偶函数(9)设函数()g x 可微,1()(),(1)1,(1)2,g x h x e h g +''===则g (1)等于[C] (A )ln 31- (B )ln 31--(C )ln 21--(D )ln 21- ∵ 1()()()g x h x g x e +''=,1(1)12g e+= g (1)= ln 21--(10)函数212x x x y c e c xe -=++满足的一个微分方程是[D] (A )23x y y y xe '''--= (B )23x y y y e '''--=(C )23xy y y xe '''+-=(D )23xy y y e '''+-=将函数212x x x y c e c xe -=++代入答案中验证即可.(11)设(,)f x y 为连续函数,则14(cos ,sin )d f r r rd πθθθγ⎰⎰等于[C](A )2212(,)x xdx f x y dy -⎰⎰(B )2212(,)x dx f x y dy -⎰⎰(C )2212(,)y ydy f x y dx -⎰⎰(D )2212(,)y dy f x y dx -⎰⎰(12)设(,)(,)f xyxy ϕ与均为可微函数,且(,)0,y x y ϕ'≠已知00(,)(,)x y f x y 是在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是[D](A )若0000(,)0,(,)0x y f x y f x y ''==则(B )若0000(,)0,(,)0x y f x y f x y ''=≠则 (C )若0000(,)0,(,)0x y f x y f x y ''≠=则 (D )若0000(,)0,(,)0x y f x y f x y ''≠≠则(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0x x xy y y F f x y x y F f x y x y F f x y x y F x y λλϕλϕλϕϕ=+'''=+=⎧⎪'''=+=⎨⎪'==⎩令今000000(,)(,)0,(,)y y y f x y x y x y ϕλϕ''≠∴=-'代入(1) 得 00000000(,)(,)(,)(,)y xx y f x y x y f x y x y ϕϕ'''='今 00000000(,)0,(,)(,)0(,)0x y xy f x y f x y x y f x y ϕ''''≠∴≠≠则 故选[D] (13)设α1,α2,…,αs 都是n 维向量,A 是m ⨯n 矩阵,则( )成立.(A) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性相关. (B) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性无关. (C) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性相关. (D) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性无关. 解: (A)本题考的是线性相关性的判断问题,可以用定义解.若α1,α2,…,αs 线性相关,则存在不全为0的数c 1,c 2,…,c s 使得c 1α1+c 2α2+…+c s αs =0,用A 左乘等式两边,得c 1A α1+c 2A α2+…+c s A αs =0,于是A α1,A α2,…,A αs 线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是: 1. α1,α2,…,αs 线性无关⇔ r(α1,α2,…,αs )=s. 2. r(AB )≤ r(B ).矩阵(A α1,A α2,…,A αs )=A ( α1, α2,…,αs ),因此r(A α1,A α2,…,A αs )≤ r(α1, α2,…,αs ).由此马上可判断答案应该为(A).(14)设A 是3阶矩阵,将A 的第2列加到第1列上得B ,将B 的第1列的-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则 0 0 1(A) C =P -1AP . (B) C =PAP -1. (C) C =P TAP . (D) C =PAP T. 解: (B)用初等矩阵在乘法中的作用得出B =PA , 1 -1 0C =B 0 1 0 =BP -1= PAP -1. 0 0 1三、解答题(15)试确定A ,B ,C 的常数值,使23(1)1()x e Bx Cx Ax o x ++=++其中3()o x 是当30x x →时比的高阶无穷小.解:泰勒公式2331()26xx x e x o x =++++代入已知等式得 23323[1()][1]1()26x x x o x Bx Cx Ax o x ++++++=++整理得233111(1)()()1()226BB xC B x C o x Ax o x ⎛⎫+++++++++=++ ⎪⎝⎭比较两边同次幂函数得B +1=A ①C +B +12=0 ② 1026B C ++= ③ 式②-③得120233B B +==-则 代入①得13A = 代入②得16C = (16)求arcsin xxe dx e ⎰.解:原式=22arcsin arcsin ()x x xx e t de e t dt e t =⎰⎰令21arcsin arcsin ()1t dttd t t t t =-=-+-⎰⎰2222arcsin arcsin 1(2)12(1)1t tdt t udu t u t t u u t t -=-+-==-+--⎰⎰令2arcsin 1t dut u =-+-⎰arcsin 11ln 21t u C t u -=-+++22arcsin arcsin 111ln 211x x x x x x e e e dx C e e e --∴=-++-+⎰. (17)设区域22{(,)||,0}D x y x y x =+≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰.解:用极坐标系2201D xydxdy x y ⎛⎫= ⎪++⎝⎭⎰⎰11222002ln(1)ln 2122r I d dr r r ππππθ-==+=+⎰⎰. (18)设数列{}n x 满足10x π<<,1sin (1,2,3,)n n x x n +==证明:(1)1lim n n x +→∞存在,并求极限;(2)计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. 证:(1)212sin ,01,2x x x n =∴<≤≥ 因此 1sin ,{}n n n n x x x x +=≤单调减少有下界()0n x ≥根据准则1,lim n n x A →∞=存在在1sin n n x x +=两边取极限得sin 0A A A =∴=因此1lim 0n n x +→∞=(2)原式21sin lim "1"n x n n n x x ∞→∞⎛⎫= ⎪⎝⎭为型 离散型不能直接用洛必达法则先考虑 22011s i n l i m l n 0s i n l i m t t t t t t t e t →⎡⎤⎢⎥⎣⎦→⎛⎫= ⎪⎝⎭用洛必达法则2011(cos sin )limsin 2t t t t t tt te→-=23233310()0()26cos sin limlim22t t t t t t t t t t tt t ee →→⎡⎤⎡⎤-+--+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦==3330110()261lim26t t t t ee →⎛⎫-++ ⎪⎝⎭-==.(19)证明:当0a b π<<<时,1sin 2cos sin 2cos b b b b a a a aππ++>++. 证:令()sin 2cos f x x x x x π=++ 只需证明0a x π<<<时,()f x 严格单调增加()sin cos 2sin f x x x x x π'=+-+cos sin x x x π=-+()cos sin cos sin 0f x x x x x x x ''=--=-< ()f x '∴严格单调减少又()cos 0f ππππ'=+=故0()0()a x f x f x π'<<<>时则单调增加(严格)()()b a f b f a >>由则得证(20)设函数()(0,)f u +∞在内具有二阶导数,且()22Z fx y=+满足等式22220z zx y∂∂+=∂∂.(I )验证()()0f u f u u'''+=; (II )若(1)0,(1)1f f '== 求函数()f u 的表达式.证:(I )()()22222222;zx zy f x y f x y xyx yx y∂∂''=+=+∂∂++()()()()22222223222222zx y f x yf x yx x y x y ∂'''=+++∂++()()()()22222223222222zy x f x yf x yy x y x y ∂'''=+++∂++()2222222222()0()()0f x y z zf x yx y x yf u f u u'+∂∂''+=++=∂∂+'''∴+=代入方程得成立(II )令(),;,dp p dp du c f u p c p du u p u u'==-=-+=⎰⎰则22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+==∴= 由(21)已知曲线L 的方程221(0)4x t t y t t⎧=+≥⎨=-⎩(I )讨论L 的凹凸性;(II )过点(1,0)-引L 的切线,求切点00(,)x y ,并写出切线的方程; (III )求此切线与L (对应0x x ≤部分)及x 轴所围的平面图形的面积.解:(I )4222,42,12dx dy dy t t t dt dt dx t t-==-==-222312110(0)2dy d d y dx t dx dx dt t t t dt ⎛⎫⎪⎛⎫⎝⎭=⋅=-⋅=-<> ⎪⎝⎭处(0L t ∴>曲线在处)是凸(II )切线方程为201(1)y x t ⎛⎫-=-+⎪⎝⎭,设2001x t =+,20004y t t =-,则2223200000000241(2),4(2)(2)t t t t t t t t ⎛⎫-=-+-=-+⎪⎝⎭得200000020,(1)(2)001t t t t t t +-=-+=>∴=点为(2,3),切线方程为1y x =+(III )设L 的方程()x g y =则()3()(1)S g y y dy =--⎡⎤⎣⎦⎰ ()224024241t t y y x y -+==±-=±-+解出t 得由于(2,3)在L 上,由()232241()y x x y g y ===--+=得可知()30944(1)S y y y dy ⎡⎤=-----⎣⎦⎰ 3300(102)44y dy ydy =---⎰⎰3333220002(10)44(4)214(4)3y y yd y y =-+--=+⨯⨯-⎰8642213333=+-=- (22)已知非齐次线性方程组 x 1+x 2+x 3+x 4=-1,4x 1+3x 2+5x 3-x 4=-1,a x 1+x 2+3x 3+bx 4=1有3个线性无关的解.① 证明此方程组的系数矩阵A 的秩为2.② 求a,b 的值和方程组的通解.解:① 设α1,α2,α3是方程组的3个线性无关的解,则α2-α1,α3-α1是AX =0的两个线性无关的解.于是AX =0的基础解系中解的个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A 的行向量是两两线性无关的,所以r(A )≥2.两个不等式说明r(A )=2.② 对方程组的增广矩阵作初等行变换:1 1 1 1 -1 1 1 1 1 -1(A |β)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换:1 02 -4 2→ 0 1 -1 5 -3 .0 0 0 0 0得同解方程组x 1=2-2x 3+4x 4,x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T 和AX =0的基础解系(-2,1,1,0)T ,(4,-5,0,1) T.得到方程组的通解: (2,-3,0,0)T +c 1(-2,1,1,0)T +c 2(4,-5,0,1)T , c 1,c 2任意.(23) 设3阶实对称矩阵A 的各行元素之和都为3,向量α1=(-1,2,-1)T , α2=(0,-1,1)T 都是齐次线性方程组AX =0的解.① 求A 的特征值和特征向量.② 求作正交矩阵Q 和对角矩阵Λ,使得 Q T AQ =Λ.解:① 条件说明A (1,1,1)T =(3,3,3)T ,即 α0=(1,1,1)T 是A 的特征向量,特征值为3.又α1,α2都是AX =0的解说明它们也都是A 的特征向量,特征值为0.由于α1,α2线性无关, 特征值0的重数大于1.于是A 的特征值为3,0,0.属于3的特征向量:c α0, c ≠0.属于0的特征向量:c 1α1+c 2α2, c 1,c 2不都为0.② 将α0单位化,得η0=(33,33,33)T . 对α1,α2作施密特正交化,的η1=(0,-22,22)T , η2=(-36,66,66)T . 作Q =(η0,η1,η2),则Q 是正交矩阵,并且 3 0 0Q T AQ =Q -1AQ = 0 0 0 .0 0 0。
南开大学数学分析
南开大学2000年硕士研究生入学考试1.设222222()sin 0(,)00x y xy x y x yf x y x y +⎧+≠⎪+=⎨⎪+=⎩,证明(,)f x y 在点(0,0)处连续但不可微2.设()f u 具有连续的导数,且{}2lim ()0,(,)|,,0(0)u f u A D x y x y R x y R →+∞=>=+≤≥>1) 证明lim ()u f u →+∞=+∞2) 求22()R DI f x y dxdy =+⎰⎰3) 求2limR R I R→+∞3.(1)叙述()f x 于区间I 一致连续的定义(2)设(),()f x g x 都于区间I 一致连续且有界,证明()()()F x f x g x =也于上I 一致连续 4.设函数列{}()f x 于区间I 上一致收敛于()f x ,且存在数列{}n a 使得x I ∈当是,总有 (),(1,2...)n f x a n ≤=,证明()f x 于I 上有界5,设10(1,2...),nn n kk a n S a=≥==∑,证明(1) 若1n n na S =∑收敛,则1n n a =∑也收敛(2) 如果 ?>1,1n n na S =∑收敛,问1n n a =∑是否必收敛?说明理由6.设(,)f x t 于[],;,a c d +∞连续,(,)af x t dx +∞⎰于(],c d 一致收敛,证明(,)af x d dx +∞⎰收敛南开大学2001年硕士研究生入学考试1. 计算三重积分22()x y dxdydz Ω+⎰⎰⎰,其中Ω为由曲面22x y z +=与平面4z =为界面的区域2. 计算220sin x xy dx xdy yπ⎰⎰3. 计算2222()yx I y dx dy xyx y=--++⎰,c 为椭圆22194xy+=,方向为正4. 设{}n a 为一数列,满足lim ,0n n na a a →∞=>(1) 证明1n n a ∞=∑收敛(2) 能否确定1n n a ∞=∑的敛散性?说明理由5.设()f x 于[),a +∞可导,且'()0f x c ≥>(c 为常数),证明 (1)lim ()n f x →∞=+∞(2)()f x 于[),a +∞必有最小值6.设()f x 于[)0,+∞有定义,对任意实数,()A a f x >于[]0,A 可积,且lim ()0n f x →∞=,证明01lim()0x f x dt x+∞→∞=⎰7.设0,0x y ≤≤+∞<<+∞时(,)f x y 连续且有界,证明 (1)对任意正数0,(,)xyxef x y dx δ+∞-⎰,于(),δ+∞一致收敛(2)0()(,)xyF y xef x y dx +∞-=⎰于()0,+∞连续(3)问0(,)xyxef x y dx +∞-⎰于()0,+∞是否必不一致收敛?说明理由南开大学2002年硕士研究生入学考试1.计算三重积分Ω⎰⎰⎰,其中Ω为由222x y z +=及2z =所围成2. 设s 为抛物面22x y z +=位于0,1z z ==之间的部分,取外侧,求222sxydydz y dzdx x dxdy --⎰⎰3. 设1n n a nα∞=∑收敛,βα>,证明1n n a nβ∞=∑收敛4. 设{}()n f x 于()00,,0x x δδδ-+>内一致收敛,且0lim ()(1,2,...)n n x x f x a n →==证明{}n a 收敛5. 设()f x 于区间I 一致连续,(1,2,...)n x I n ∈=且{}n x 收敛,证明{}()n f x 也收敛 问若将()f x 于区间I 一致连续改为()f x 于I 连续,上述结论是否仍成立?说明理由6. 设()f x 于[),a +∞(a 为实数)连续,且()0,lim ()0x f x f x →+∞≥=,证明()f x 于[),a +∞有最大值,问()f x 于[),a +∞是否比有最小值?说明理由7. 证明0()xyf y xedx ∞-=⎰于()0,+∞连续问()f x 于[),a +∞是否比有最小值?说明理由南开大学2003年硕士研究生入学考试1. 设(,,)w f x y x y x =+-,其中(,,)f x y z 有二阶连续偏导数,求xy u2. 设数列{}n a 非负单增且lim n n a a →∞=证明112lim ()nn n n nn a a a a →∞+++=3.设2ln(1)0()00x x x f x x α⎧->=⎨≤⎩试确定α的取值范围,使()f x 分别满足(1) 极限0lim ()x f x +→存在(2) ()f x 在0x =连续 (3) ()f x 在0x =可导3. 设()f x 在(),-∞+∞连续,证明积分22()()Lf x y xdx ydy ++⎰与积分路径无关5. 设()f x 在[],a b 上可导,()02a b f +=且'()f x M <,证明2()b zf x dx ≤⎰M(b-a )46. 设{}n a 单减而且收敛于0.1sin n n a n ∞=∑发散(1)证明级数1sin n n a n ∞=∑收敛(2)证明lim 1n n nu v →∞=其中11(sin sin ),(sin sin )nnn kk n kk k k u ak a k u ak a k ===+=-∑∑7. 设1sin ()txxF t edx x +∞-=⎰证明(1)1sin txx edx x+∞-⎰在[)0,+∞一致收敛(2) ()F t 在[)0,+∞连续8. 命{}()n f x 是[],a b 上定义的函数列,满足(1) 对[]{}00,,()n x a b f x ∈任意是一个有界数列(2) 对任意0ε>,存在一个0δ>,当[],,x y a b ∈且x y δ-<时,对一切自然数n,有()()n n f x f y ε-<求证存在一个子序列{}()n f x 在[],a b 上一致收敛南开大学2004年硕士研究生入学考试1. 设()f x 在点a 的一个邻域中有定义,'()0,()0f a f a ≠=,求1()lim ()x ax af x f a -→⎛⎫ ⎪⎝⎭2. 设(,)f u v 所有二阶偏导数都连续,(,)y z f xy x=,求2z x y∂∂∂3. 证明不等式 12l n (1)1(0)1xx x x x+<+>+ 4. 计算二重积分2222221ln()x y x y x y dxdy +≤+⎰⎰5. 计算第二型线积分22()2Lx y dx xydy --⎰其中L 是从(0,1)A 沿sin x y x=到(,0)B π的一段曲线6.证明级数11n nα∞=∑在0α>时收敛,在0α≤时发散7. 设()f x 在[),a +∞上可微且有界,证明存在一个数列{}[),n x a ⊂+∞,使得l i m n n x →∞=-∞且'lim ()0n n f x →∞=8. 设{}()n f x 是[],a b 上的连续函数序列,且存在常数0M >,使得对任何n N ∈和任何[],x a b ∈,有()n f x M <(1) 证明对任何n N ∈,{}12()min (),(),,()n n F x f x f x f x = 在[],a b 上连续 (2) 举一个例子使{}()inf ()n n NF x f x ∈=在[],a b 上不连续(3) 若{}()inf ()n n NF x f x ∈=在[],a b 上连续,则{}()n F x 在[],a b 上不一致收敛于()F x ,其中{}12()min (),(),,()n n F x f x f x f x =9. 设()f x 在(),a b 上有定义且对任何()12,,x x a b ∈和任何[]0,1λ∈,有1212((1))()(1)()f x x f x f x λλλλ+-<+-(1) 证明()f x 在(),a b 内处处有右导数'()()()lim x f x x f x f x x++∆→+∆-=∆且'()f x +是(),a b 上的单增函数(2)'()f x +在(),a b 内至多只有可数个间断点南开大学2005年硕士研究生入学考试1. 计算二重积分2DI xydxdy =⎰⎰ 其中{}2(,)|1D x y R x y =∈+≤2. 设()u u x =为由方程组(,,)(,,)0(,,)0u f x y z g x y z h x y z =⎧⎪=⎨⎪=⎩确定的隐函数,求du dx3.求极限lim n →∞+4. 求证0sin ()t f x dx x t+∞=+⎰在()0,+∞上连续5. 判断级数1111(1)1!2!!n e n ∞=⎡⎤-++++⎢⎥⎣⎦∑ 的敛散性 6. 设函数()f x 在[]1,1-上连续可导且(0)0f =(1) 求证11()n xf n n∞=∑在[]1,1-上一致收敛 (2) 设11()()n xS x f n n∞==∑,求证()S x 在[]1,1-上连续可导 7. 设(,),(,)P x y Q x y 在全平面2R 上有连续的偏导数,并且对任何一个圆周C ,有(,)(,)0CP x y d x Q x y d y +=⎰求证Q P xy∂∂=∂∂8. 设()f x 在[]0,a 上两次可导,''(0)(0)()0,()1f f f a f a ====,并且对任何[]0,x a ∈,有"()1f x ≤,设,02(),2a x x g x a a x x a⎧≤≤⎪⎪=⎨⎪-<≤⎪⎩(1) 求证'()()f x g x ≤(2) 求证()00,x a ∈存在,使得'00()()f x g x < (3) 求证0a > 9.设()f x 和()g x 在区间(),a b 内有定义,且对任何()0,,x x a b ∈,有00()()()()f x f xg x x x -≥-(1)求证()f x 在(),a b 内连续南开大学2006年硕士研究生入学考试.1.求极限24sin()limt t tx dx t→⎰2.设122221211112111n nn n n nx x x u xxxx x x ---=,试证1(1)2nii iu n n x u x =∂-=∂∑3.设()f x 在[]0,2上有界可积,20()0f x dx =⎰求证存在[]0,1a ∈使得1()0a af x dx +=⎰4.若幂级数nnn ax∞=∑在()1,1-内收敛于()f x ,设()01,1n x ≠∈-满足l i m 0()0,nn n x f x n →∞===和,则()0f x =对所有()1,1x ∈-5.设函数()f x 在(),-∞∞有任意阶导数,且导数函数列()()n f x 在(),-∞∞一致收敛于(),(0)1x ϕϕ=,求证()xx e ϕ= 6.设(,,)f x y z 在球{}222(,,)|1x y z x y z ++≤上连续令{}{}2222222()(,,)|,()(,,)|,0B r x y z x y z r S r x y z x y z rr =++≤=++=>求证()()(,,)(,,),(0,1)B r S r d f x y z dxdydz f x y z dS r dr=∈⎰⎰⎰⎰⎰7.设(,,)f x y z 在全空间上具有连续的偏导数,且关于x,y,,z 都是1周期的,即对任意点(x,y,,z )成立(1,,)(,1,)(,,1)(,,)f x y z f x y z f x y z f x y z +=+=+=则对任意实数,,αβγ,有f f f dxdydz xyz αβγΩ⎡⎤∂∂∂++=⎢⎥∂∂∂⎣⎦⎰⎰⎰ 这里[][][]0,10,10,1Ω=⨯⨯是单立方体8.设A 为三阶实对称方阵,定义函数(,,)(,,)x h x y z x y z A y z ⎛⎫ ⎪= ⎪ ⎪⎝⎭求证(,,)h x y z 在条件2221y z ++=下的最大值为矩阵A 的最大特征值9.(1)设0n a ≠数列满足0,n a n →→∞,定义集合{|,}i p ka k Z i N =∈∈,Z 为整数集,N 为自然数集,求证对任何实数b ,存在数列k b p ∈使得lim k k b b →∞=(2)试证一个非常数的周期连续函数必有最小正周期10.设()x ϕ是(),-∞∞定义的周期连续函数,周期为1,且1()0x dx ϕ=⎰,令10()xn a e x dx ϕ=⎰,对任意自然数n ,求证级数21nn a ∞=∑收敛南开大学2007年硕士研究生入学考试1.填空 (1)111lim ()122n n n n→∞+++++(2)1sin te tdt t+∞--⎰(3)函数22(,)212f x y x xy y =++在闭区域{}222(,)|425D x y R x y =∈+≤的最小值 (4)设{}222(,)|1,0,0D x y R x y x y =∈+≤≥≥,则二重积分D⎰⎰(5)设{}3222(,,)|1,n n n S x y z R x y z n N =∈++=∈,则下面曲面积分333()Sx y z dS ++⎰⎰的值(6)设L 为单位圆221x y +=的方向,则下曲线积分[]22(sin cos )(sin )yLex x y x dx y x xcox dy xy++-+⎰的值是2.设()f x 函数在[)0+∞,上连续,(0)0f <,并且'()2f x >对0x >成立,求证方程(0)0f =在区间(0)0,2f ⎛⎫ ⎪⎝⎭中有且仅有一根3.设()f x 在[]0,1上连续,求证121lim (()()(1)())nn n f f f n nn→+∞--++-4.若正项级数1n n a ∞=∑收敛,求证(1)1p n n a ∞=∑收敛,1p >(2)1n n∞=∑收敛,,2k N k ∈≥5.求证含参变量广义积分2txtedx +∞-⎰在关于[)0,t ∈+∞的任何有界闭子区间上一致收敛6.设()f x 在区间()0,+∞连续有界,且(1)()f x f x +≠对所有0x >成立,求证 ()l i m ()(1)0n f nf n →+∞--=7.设{}:1n x R x Ω=∈<,函数()u x 在Ω内二阶连续可微,在Ω上连续,且在Ω内满足0u bu ∆-=,其中221ni ix =∂∆=∂∑为Laplace 算子,0b >为常数,设对任意边界上的点x ∈∂Ω有()0u x >,证明:对任意x ∈Ω,有()0u x >南开大学2008年硕士研究生入学考试一.计算题1.()[]x x x +-∞→1ln lim 22.()()∑∞=-+-1121n n n n3.求()x f ,已知()()()1''+-=x fx x f4. 5.()[][]{}1,1,2,0,-∈∈=y x y x D ,求⎰⎰-DdS y x二.61+=+n n x x ,61-≥x ,求n x x ∞→lim三.()[]b a C x f ,∈,[]b a x ,∈∀,[]b a y ,∈∃,使()()x f y f 21≤,证明[]b a ,∈∃ξ,()0=ξf四.()x f 在[)+∞,a 一致连续且广义几分()⎰+∞adx x f 收敛,证()0lim=+∞→x f x五.()∑-=nxnex f ,证:(1)()x f 在()+∞,0收敛但不一致(2)()x f 在()+∞,0无穷次可导六.()1ln -=n n a f a ,()()x mf x f≤',10<<m ,证∑--1n n a a 收敛 七.x yu =,x v =,y xz +=ω,0222=+∂∂+∂∂y x zx zx ,求()v u ,ω八.求222a az y x =++分az z y x 2222=++成两部分体积之比。
2006年考研数学一试题与答案解析
2006年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)0ln(1)lim1cos x x x x→+=-. (2)微分方程(1)y x y x-'=の通解是 .(3)设∑是锥面z =(01z ≤≤)の下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰ .(4)点(2,1,0)到平面3450x y z ++=の距离z = . (5)设矩阵2112⎛⎫=⎪-⎝⎭A ,E 为2阶单位矩阵,矩阵B 满足2=+BA B E ,则B = .(6)设随机变量X 与Y 相互独立,且均服从区间[0,3]上の均匀分布,则{}max{,}1P X Y ≤= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处の增量,y ∆与dy 分别为()f x 在点0x 处对应の增量与微分,若0x ∆>,则(A)0dx y <<∆ (B)0y dy <∆< (C)0y dy ∆<<(D)0dy y <∆<(8)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A)(,)xf x y dy ⎰⎰(B)(,)f x y dy ⎰⎰(C)(,)yf x y dx ⎰⎰(C)(,)f x y dx ⎰⎰(9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛 (B)1(1)nn n a ∞=-∑收敛(C)11n n n a a ∞+=∑收敛(D)112n n n a a ∞+=+∑收敛 (10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠.已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下の一个极值点,下列选项正确の是(A)若00(,)0x f x y '=,则00(,)0y f x y '= (B)若00(,)0x f x y '=,则00(,)0y f x y '≠ (C)若00(,)0x f x y '≠,则00(,)0y f x y '=(D)若00(,)0x f x y '≠,则00(,)0y f x y '≠(11)设12,,,,s ααα均为n 维列向量,A 是m n ⨯矩阵,下列选项正确の是 (A)若12,,,,s ααα线性相关,则12,,,,s A αA αA α线性相关 (B)若12,,,,s ααα线性相关,则12,,,,s A αA αA α线性无关(C)若12,,,,s ααα线性无关,则12,,,,s A αA αA α线性相关 (D)若12,,,,s ααα线性无关,则12,,,,s A αA αA α线性无关.(12)设A 为3阶矩阵,将A の第2行加到第1行得B ,再将B の第1列の-1倍加到第2列得C ,记110010001⎛⎫ ⎪= ⎪ ⎪⎝⎭P ,则(A)1-=C P AP (B)1-=C PAP(C)T =C P AP(D)T =C PAP(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有(A)()()P A B P A > (B)()()P A B P B >(C)()()P AB P A =(D)()()P AB P B =(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ, 且12{||1}{||1},P X P Y μμ-<>-<则(A)12σσ< (B)12σσ>(C)12μμ<(D)12μμ>三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分10分)设区域D=(){}22,1,0x y x y x +≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰.(16)(本题满分12分)设数列{}n x 满足()110,sin 1,2,...n x x x n ππ+<<==. 求:(1)证明lim n x x →∞存在,并求之.(2)计算211lim n x n x n x x +→∞⎛⎫ ⎪⎝⎭. (17)(本题满分12分) 将函数()22xf x x x =+-展开成x の幂级数.(18)(本题满分12分)设函数()()0,,f u +∞在内具有二阶导数且z f=满足等式22220z zx y∂∂+=∂∂.(1)验证()()0f u f u u'''+=. (2)若()()10,11,f f '==求函数()f u の表达式. (19)(本题满分12分) 设在上半平面(){},0D x y y =>内,数(),f x y 是有连续偏导数,且对任意の0t >都有()()2,,f tx ty t f x y =.证明: 对L 内の任意分段光滑の有向简单闭曲线L ,都有(,)(,)0Lyf x y dx xf x y dy -=⎰.(20)(本题满分9分) 已知非齐次线性方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩ 有3个线性无关の解,(1)证明方程组系数矩阵A の秩()2r =A . (2)求,a b の值及方程组の通解. (21)(本题满分9分)设3阶实对称矩阵A の各行元素之和均为3,向量()()121,2,1,0,1,1TT=--=-αα是线性方程组0x =A の两个解.(1)求A の特征值与特征向量.(2)求正交矩阵Q 和对角矩阵A ,使得T=Q AQ A . (22)(本题满分9分)随机变量x の概率密度为()()21,1021,02,,40,令其它x x f x x y x F x y ⎧-<<⎪⎪⎪=≤<=⎨⎪⎪⎪⎩为二维随机变量(,)X Y の分布函数.(1)求Y の概率密度()Y f y . (2)1,42F ⎛⎫-⎪⎝⎭. (23)(本题满分9分)设总体X の概率密度为(,0)F X = 10θθ- 0112x x <<≤<其它,其中θ是未知参数(01)θ<<,12n,...,X X X 为来自总体X の简单随机样本,记N 为样本值12,...,n x x x 中小于1の个数,求θの最大似然估计.2006年全国硕士研究生入学考试数学一真题解析一、填空题(1)0ln(1)lim1cos x x x x→+-= 2 .221cos 1,)1ln(x x x x -+ (0x →当时)(2)微分方程(1)y x y x-'=の通解是(0)xy cxe x -=≠,这是变量可分离方程.(3)设∑是锥面1)Z ≤≤の下侧,则23(1)2xdydz ydzdx z dxdy π∑++-=⎰⎰补一个曲面221:1x y z ⎧+≤∑⎨=⎩1上侧,2,3(1)P x Q y R z ===-1236P Q R x y z∂∂∂++=++=∂∂∂ ∴16dxdydz ∑∑Ω+=⎰⎰⎰⎰⎰⎰⎰(Ω为锥面∑和平面1∑所围区域)6V =(V 为上述圆锥体体积)623ππ=⨯=而123(1)0dydz ydzdx z dxdy ∑⨯++-=⎰⎰(∵在1∑上:1,0z dz ==)(4),1,0,450x y z d ++==点(2)到平面3的距离d ====(5)设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4,计算出|A -E |=2,因此|B |=2. (6)91 二、选择题(7)设函数()y f x =具有二阶导数,且()0f x '>,()0f x ''>,x ∆为自变量x 在0x 处の增量,y ∆与dy 分别为()f x 在点0x 处对应の增量与微分.若0>∆x ,则[A] 0)(0)(0)(0)(<∆<<<∆<∆<∆<<y dy D dy y C dy y B y dy A()0,()f x f x '>因为则严格单调增加 ()0,()f x f x ''>则是凹的ydyx∆<<>∆0,0故又1000(8)(,)(cos,sin)[C](A)(,)(B)(,)xf x y d f r r rdrf x y dy f x y dyπθθθ⎰⎰⎰⎰⎰⎰4设为连续函数,则等于000(C)(,)(D)(,)yf x y dx f x y dx⎰⎰⎰111111111(9)[D]()()(1)()()()2nnnn nn nn nn n nn n naA aB aa aC a aD a∞=∞∞==∞∞∞+++===-+∑∑∑∑∑∑若级数收敛,则级数收敛收敛收敛收敛也收敛00000000000000000 (10)(,)(,)(,)0,(,)(,)0yx y x yx y x yf x y x y x y x y f x yx yf x y f x y f x y f x yf x y f x y f x y f xϕϕϕ'≠=''''≠''''≠≠设与均为可微函数,且已知(,)是在约束条件下的一个极值点,下列选项正确的是[D](A)若(,)=0,则(,)=0(B)若(,)=0,则(,)0(C)若(,)0,则(,)=0(D)若(,)0,则(,000000 00000000 00(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0(,)(,)(,) (,)0,(,)(,)(,) (,)0x x xy y yy y x y xy y xyf x y x yf x y x yf x y x yx yf x y f x y x yx y f x yx y x yf x yλλϕλϕλϕϕϕϕλϕϕ≠+'''⎧+=⎪'''+=⎨⎪'=⎩''' ''≠∴=-='' '≠)0构造格朗日乘子法函数F=F=F=F=今代入(1)得今00,(,)0[]yf x y D'≠则故选(11)设α1,α2,…,αs都是n维向量,A是m⨯n矩阵,则()成立.(A) 若α1,α2,…,αs线性相关,则Aα1,Aα2,…,Aαs线性相关.(B) 若α1,α2,…,αs线性相关,则Aα1,Aα2,…,Aαs线性无关.(C) 若α1,α2,…,αs线性无关,则Aα1,Aα2,…,Aαs线性相关.(D) 若α1,α2,…,αs线性无关,则Aα1,Aα2,…,Aαs线性无关.解: (A)本题考の是线性相关性の判断问题,可以用定义解.若α1,α2,…,αs线性相关,则存在不全为0の数c1,c2,…,c s使得c1α1+c2α2+…+c sαs=0,用A左乘等式两边,得c1Aα1+c2Aα2+…+c s Aαs=0,于是Aα1,Aα2,…,Aαs线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是:1. α1,α2,…,αs 线性无关⇔ r(α1,α2,…,αs )=s.2. r(AB)≤ r(B).矩阵(Aα1,Aα2,…,Aαs)=A( α1, α2,…,αs ),因此r(A α1,A α2,…,A αs )≤ r(α1, α2,…,αs ).由此马上可判断答案应该为(A).(12)设A 是3阶矩阵,将A の第2列加到第1列上得B ,将B の第1列の-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则 0 0 1(A) C =P -1AP . (B) C =PAP -1.(C) C =P T AP . (D) C =PAP T.解: (B)用初等矩阵在乘法中の作用得出B =PA ,1 -1 0C =B 0 1 0 =BP -1= PAP -1. 0 0 1(13)根据乘法公式与加法公式有: P(AB)=P(B)P(A/B)=P(B)P(A ⋃B)=P(A)+P(B)-P(AB)=P(A) 应选C (14)依题:).1,0(~),10(~2211N Y N x σμσμ--,,1}1{1111⎭⎬⎫<⎩⎨⎧-=<-σσμμX P X P .1}1{2222⎭⎬⎫⎩⎨⎧<-=<-σσμμY P Y P 因 },1{}1{21<-><-μμY P X P即 .11222111⎭⎬⎫⎩⎨⎧<->⎭⎬⎫⎩⎨⎧<-σσμσσμY P X p 所以.,112121σσσσ<>应选A三、解答题{}22222212120222021(15)(,)1,0,1:011ln(1)ln 21122DD DxyD x y x y x I dxdy x yxydxdy x y r I dxdy d dr r x yr ππππθ-+=+≤≥=++=++===+=+++⎰⎰⎰⎰⎰⎰⎰⎰设区域计算二重积分解{}{}{}211112121(16)0,sin (1,2,)(1)lim (2)lim():(1)sin ,01,2sin ,0,lim ,n n n n n n x n n nn n n n n n n n x x x x n x x x x x x n x x x x x x x A π+→∞+→∞+→∞<<===∴<≤≥=≤≥∴=设数列满足求证明存在,并求之计算解因此当时单调减少又有下界,根据准则1,存在递推公式两边取极限得sin ,0A A A =∴=21sin (2)lim(),n x n n n x x ∞→∞原式=为"1"型离散型不能直接用洛必达法则22011sin lim ln()0sin lim()t ttt tt t e t→→=先考虑2323203311(cos sin )1110()0()lim26cos sin sin 1262limlim2262t t t t t t t t t t t t t t tt t t ttteeeee →→→⎡⎤⎡⎤--+--+⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦-=====2(17)()2xf x x x x =+-将函数展开成的幂极数 ()(2)(1)21x A Bf x x x x x ==+-+-+解:2(1)(2)2,32,3A xB x xx A A ++-====令 11,31,3x B B =-=-=-令)](1[131)21(131)1(131)2(132)(x x x x x f --⨯--⨯=+⨯--⨯= 10001111()(1)(1),132332n n n n n n n n n x x x x ∞∞∞+===⎡⎤=--=+-<⎢⎥⎣⎦∑∑∑(18)设函数()(0,)f u +∞在内具有二阶导数,且Z f=满足等式22220z zx y ∂∂+=∂∂ (I )验证()()0f u f u u'''+= (II )若(1)0,(1)1f f '== 求函数()f u 的表达式证:(I)zzf f xy∂∂''==∂∂()22222zxf f xx y ∂'''=+∂+()()22322222x y f f x y x y '''=+++()()2223222222zy x f f yx y x y ∂'''=+∂++同理22220()()0z z f x y f u f u u∂∂''+=+=∂∂'''∴+=代入得成立(II )令(),;dp p dp du f u p c du u p u'==-=-+⎰⎰则ln ln ,()cp u c f u p u'=-+∴==22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+===由得于是(19)设在上半平面{}(,)|0D x y y =>内,函数(,)f x y 具有连续偏导数,且对任意0t >都有2(,)(,)f tx ty t f x y -=证明:对D 内任意分段光滑の有向简单闭曲线L ,都有0),(),(=-⎰dy y x xf dx y x yf L.证:把2(,)(,)f tx ty t f x y t -=两边对求导得:(,)(,)2(,)x y xf tx ty yf tx ty tf x y ''+=- 令 1t =,则(,)(,)2(,)x y xf x y yf x y f x y ''+=- 再令 (,),(,)P yf x y Q xf x y ==-所给曲线积分等于0の充分必要条件为Q Px y∂∂=∂∂ 今(,)(,)x Qf x y xf x y x∂'=--∂(,)(,)y Pf x y yf x y y∂'=+∂ 要求Q Px y∂∂=∂∂成立,只要(,)(,)2(,)x y xf x y yf x y f x y ''+=- 我们已经证明,Q Px y∂∂∴=∂∂,于是结论成立. (20)已知非齐次线性方程组 x 1+x 2+x 3+x 4=-1, 4x 1+3x 2+5x 3-x 4=-1,a x 1+x 2+3x 3+bx 4=1 有3个线性无关の解.① 证明此方程组の系数矩阵A の秩为2. ② 求a,b の值和方程组の通解.解:① 设α1,α2,α3是方程组の3个线性无关の解,则α2-α1,α3-α1是AX =0の两个线性无关の解.于是AX =0の基础解系中解の个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A の行向量是两两线性无关の,所以r(A )≥2.两个不等式说明r(A )=2.② 对方程组の增广矩阵作初等行变换:1 1 1 1 -1 1 1 1 1 -1(A |β)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a 由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换:1 02 -4 2 → 0 1 -1 5 -3 . 0 0 0 0 0 得同解方程组 x 1=2-2x 3+4x 4, x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T和AX =0の基础解系(-2,1,1,0)T,(4,-5,0,1) T.得到方程组の通解:(2,-3,0,0)T+c 1(-2,1,1,0)T+c 2(4,-5,0,1)T, c 1,c 2任意.(21) 设3阶实对称矩阵A の各行元素之和都为3,向量α1=(-1,2,-1)T, α2=(0,-1,1)T都是齐次线性方程组AX =0の解.① 求A の特征值和特征向量. ② 求作正交矩阵Q 和对角矩阵Λ,使得 Q TAQ =Λ.解:① 条件说明A (1,1,1)T=(3,3,3)T,即 α0=(1,1,1)T是A の特征向量,特征值为3.又α1,α2都是AX =0の解说明它们也都是A の特征向量,特征值为0.由于α1,α2线性无关, 特征值0の重数大于1.于是A の特征值为3,0,0.属于3の特征向量:c α0, c ≠0.属于0の特征向量:c 1α1+c 2α2, c 1,c 2不都为0. ② 将α0单位化,得η0=(33,33,33)T. 对α1,α2作施密特正交化,のη1=(0,-22,22)T , η2=(-36,66,66)T. 作Q =(η0,η1,η2),则Q 是正交矩阵,并且3 0 0Q T AQ =Q -1AQ = 0 0 0 . 0 0 0(22)随机变量X の概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-=其他,020,4101,21)(x x x f X ,令2X Y =,),(y x F 为二维随机变量)(Y X ,の分布函数.(Ⅰ)求Y の概率密度;(Ⅱ))4,21(-F 解:(Ⅰ)⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<=≤=≤=y y y y y X P y Y P y F Y 4,141,)2(10,)1(0,0)()()(2式式⎰⎰=+=≤≤-=-yyy dx dx y X y P 0434121)()1(式; ⎰⎰+=+=≤≤-=-yy dx dx y X y P 0141214121)()2(式. 所以:⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<==其他,041,8110,83)()('y yy y y F y f Y Y这个解法是从分布函数の最基本の概率定义入手,对y 进行适当の讨论即可,在新东方の辅导班里我也经常讲到,是基本题型. (Ⅱ))4,21(-F )212()22,21()4,21()4,21(2-≤≤-=≤≤--≤=≤-≤=≤-≤=X P X X P X X P Y X P 4121211==⎰--dx . (23)设总体X の概率密度为⎪⎩⎪⎨⎧≤≤-<<=其他,021,110,),(x x x f θθθ,其中θ是未知参数(0<θ<1).n X X X ,,21为来自总体の简单随机样本,记N 为样本值n x x x ,,21中小于1の个数.求θの最大似然估计.解:对样本n x x x ,,21按照<1或者≥1进行分类:pN p p x x x ,,21<1,pn pN pN x x x ,,21++≥1.似然函数⎩⎨⎧≥<-=++-其他,,01,,,1,,)1()(2121pn pN pN pN p p N n N x x x x x x L θθθ,在pN p p x x x ,,21<1,pn pN pN x x x ,,21++≥1时,)1ln()(ln )(ln θθθ--+=N n N L ,01)(ln =---=θθθθN n N d L d ,所以nN=最大θ.2005年考研数学一真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y の斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y の解为. ____________.(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(n u∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成の空间区域,∑是Ωの整个边界の外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B ..(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ](8)设F(x)是连续函数f(x)の一个原函数,""N M ⇔表示“M の充分必要条件是N ”,则必有 (A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂. (C) 222y uy x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂. [ ] (10)设有三元方程1ln =+-xzey z xy ,根据隐函数存在定理,存在点(0,1,1)の一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数の隐函数z=z(x,y).(B) 可确定两个具有连续偏导数の隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数の隐函数y=y(x,z)和z=z(x,y).(D) 可确定两个具有连续偏导数の隐函数x=x(y,z)和y=y(x,z). [ ](11)设21,λλ是矩阵A の两个不同の特征值,对应の特征向量分别为21,αα,则1α,)(21αα+A 线性无关の充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ](12)设A 为n (2≥n )阶可逆矩阵,交换A の第1行与第2行得矩阵B, **,B A 分别为A,B の伴随矩阵,则(A) 交换*A の第1列与第2列得*B . (B) 交换*A の第1行与第2行得*B . (C) 交换*A の第1列与第2列得*B -. (D) 交换*A の第1行与第2行得*B -.[ ](13)设二维随机变量(X,Y) の概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ ](14)设)2(,,,21≥n X X X n 为来自总体N(0,1)の简单随机样本,X 为样本均值,2S 为样本方差,则(A) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ ] 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分)设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++の最大整数. 计算二重积分⎰⎰++Ddxdy y xxy .]1[22(16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n の收敛区间与和函数f(x).(17)(本题满分11分)如图,曲线C の方程为y=f(x),点(3,2)是它の一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处の切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同の点)1,0(,∈ζη,使得.1)()(=''ζηf f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点の任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕの值恒为同一常数.(I )证明:对右半平面x>0内の任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕの表达式. (20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=の秩为2.(I ) 求a の值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III ) 求方程),,(321x x x f =0の解. (21)(本题满分9分)已知3阶矩阵A の第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0の通解..(22)(本题满分9分)设二维随机变量(X,Y)の概率密度为.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)の边缘概率密度)(),(y f x f Y X ; (II )Y X Z -=2の概率密度).(z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)の简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y の方差n i DY i ,,2,1, =; (II )1Y 与n Y の协方差).,(1n Y Y Cov。
2006考研数学二真题及答案解析
( ) 设函数 f (u)在(0, +∞) 内具有二阶导数,= 且 Z f
x2 + y2
满足等式
∂2z ∂x2
+
∂2z ∂y 2
= 0
(I)验证 f ′′(u) + f ′(u) = 0 ; (II)若= f (1) 0= , f ′(1) 1, 求函数 f (u)的表达式 . u
(21)(本题满分 12 分)
增量, y 与 dy 分别为 f (x) 在点 x0 处对应增量与微分,若 x > 0 ,则( )
(A) 0 < dy < y
(B) 0 < y < dy
(C) y < dy < 0
(D) dy < y < 0
x
∫ (8) 设 f (x) 是奇函数,除 x = 0 外处处连续, x = 0 是其第一类间断点,则 f (t)dt 是( ) 0
=1 3
注: 0 型未定式,可以采用洛必达法则;等价无穷小量的替换 sin x2 x2 0
❤
(3)【答案】1 2
【详解】
∫ ∫ +∞ xdx =1 +∞ dx2 =− 1 ⋅ 1 +∞ =1
0 (1+ x2 )2 2 0 (1+ x2 )2 2 1+ x2 0 2
(4) 【答案】 Cxe− x .
(A)连续的奇函数
(C)在 x = 0 间断的奇函数
(B)连续的偶函数
(D)在 x = 0 间断的偶函数
(9) 设函数 g(x) 可微,= h(x) e1+g(x)= , h′(1) 1,= g′(1) 2, 则 g(1) 等于( )
南开大学(已有09试题)
南开大学陈省身数学研究所数学分析2000——2023年年(2023年年有答案)高等代数2003——2023年年(2023年年有答案)空间解析几何与高等代数2000——2002抽象代数2002微分几何1999——2000实变函数1999——2000泛函分析1999——2000概率统计1999——2000拓扑学1999——2000实变函数与泛函分析1999——2000数理方程1999——2000概率论与数理统计1999——2000偏微分方程数值解法1999——2000计算主意1999——2000数理统计1999——2000概率统计信息1999——2000量子力学1999——2023年年量子力学(物理)1999——2000量子力学导论2002——2023年年数学物理主意2003——2023年年数学科学学院数学分析2000——2023年年(2023年年有答案)高等代数2003——2023年年(2023年年有答案)空间解析几何与高等代数2000——2002抽象代数2002第 1 页/共22 页微分几何1999——2000实变函数1999——2000泛函分析1999——2000概率统计1999——2000拓扑学1999——2000实变函数与泛函分析1999——2000数理方程1999——2000概率论与数理统计1999——2000偏微分方程数值解法1999——2000计算主意1999——2000数理统计1999——2000概率统计信息1999——2000数学物理主意2003——2023年年物理科学学院材料化学2023年年材料物理2004——2023年年热力学统计物理2003——2004统计物理1999——2000理论力学1999——2000,2003——2004固体物理(基础部分)2004——2023年年大学物理2000大学物理(物理科学学院)2023年年大学物理(信息技术科学学院)2003——2004普通物理1999——2000,2003——2004晶体物理2004激光物理2003——2004光学(信息技术科学学院)2000,2003——2023年年光物理学2023年年应用光学1999——2000,2003——2023年年电动光学1999晶体管原理1999——2000量子力学1999——2023年年量子力学(物理)1999——2000量子力学导论2002——2023年年量子物理概论2003——2004细胞生物学1999——2000高等数学1999——2000高等数学(信息技术科学学院)2003——2023年年电磁学2003——2023年年电力电子学基础2003——2004经典物理学2023年年普通生物化学2003——2023年年生物物理学2003——2023年年数学物理主意2003——2023年年泰达生物技术学院数学分析2000——2023年年(2023年年有答案)高等代数2003——2023年年(2023年年有答案)微生物学1999——2000细胞生物学1999——2000生物化学1999——2000动物学1999,2003——2023年年昆虫学2003——2023年年普通生物化学2003——2023年年信息技术科学学院高等数学1999——2000第 3 页/共22 页高等数学(信息技术科学学院)2003——2023年年光学(信息技术科学学院)2000,2003——2023年年应用光学1999——2000,2003——2023年年信号与系统1999——2023年年控制原理1999——2000自动控制2023年年自动控制原理2003——2004现代控制论基础1999——2000,2003——2004综合基础课(光学、电路与系统、通信与信息系统、信号与信息系统、物理电子学、微电子学与固体电子学、光学工程专业)1999——2000,2002——2023年年编译原理1998数据结构(含程序设计)2002数据结构与算法2003——2004数据结构1998——2000软件基础1999——2000计算机软硬件基础2023年年C语言与数据结构2004计算机原理1999——2000,2003综合基础课(模拟电路、数字电路、计算机原理)1999——2000大学物理2000大学物理(物理科学学院)2023年年大学物理(信息技术科学学院)2003——2004晶体管原理2003——2004普通物理1999——2000,2003——2004通信原理2003——2023年年物理学2023年年运筹学2003——2023年年高分子化学与高分子物理1999——2000高分子化学与物理2004,2023年年环境科学与工程学院水污染控制工程2004——2023年年安全学导论2004——2023年年环境监测1999——2000,2002——2023年年环境经济学2003——2023年年环境微生物学1999——2000环境生物学2003——2023年年环境学导论2004——2023年年环境管理1999——2000,2003——2023年年动物生理学1999——2000环境化学1999——2000,2002,2023年年环境化学与分析化学2003——2004(注:2004年试卷缺页,惟独“环境化学”内容)环境质量评价1999——2000环境工程1999——2000细胞生物学1999——2000生物化学1999——2000环境科学概论1999——2000,2002——2003化学学院综合化学2023年年——2023年年无机化学1999——2000,2003——2023年年分析化学1999——2000,2003——2023年年,2023年年高分子化学与高分子物理1999——2000高分子化学与物理2004,2023年年有机化学1999——2000,2003——2023年年,2023年年物理化学2000,2003,2023年年——2023年年第 5 页/共22 页药物化学2004——2023年年细胞生物学1999——2000生物化学1999——2000固体物理(基础部分)2004——2023年年普通生物化学2003——2023年年植物化学保护1999——2000,2004生命科学学院微生物学1999——2000,2003——2023年年细胞生物学1999——2000生物化学1999——2000数学分析2000——2023年年(2023年年有答案)高等代数2003——2023年年(2023年年有答案)遗传学1999——2000,2003,2023年年真菌学1999——2000普通植物生理学1999——2000,2003——2023年年植物学1999——2000,2003动物学1999,2003——2023年年昆虫学2003——2023年年分子遗传学1999——2000植物生理学2000,2003——2023年年植物化学保护1999——2000,2004植物解剖学2023年年普通生态学1999——2000,2003——2023年年普通生物化学2003——2023年年普通微生物学2003——2023年年普通物理1999——2000,2003——2004数据结构(含程序设计)2002数据结构与算法2003——2004数据结构1998——2000医学院病理学2004——2023年年人体解剖学2004——2023年年生理学2004——2023年年生物化学(医)2004——2023年年药理学2004——2023年年汉语言文化学院汉语2023年年古代汉语2002现代汉语(文学院)2001现代汉语(汉语言文化学院)2002——2004语言学理论基础(汉语言文化学院)2001——2004 语言学理论2023年年文学院文学基础2023年年中国古代文学2023年年人文社科基础2004——2023年年世界文学2023年年综合考试(文学)1999——2000文学综合1999——2000文艺理论1999——2000,2004——2023年年文艺评论2004——2023年年文艺写作2023年年文艺评论写作1999——2000中国文学史1998——2002第7 页/共22 页中国文学批评史1998——2001古代汉语2002现代汉语与古代汉语2003——2023年年古典文学文献学2004——2023年年语言学概论2023年年现代汉语(文学院)2001现代汉语(汉语言文化学院)2003——2004语言理论基础(文学院)2003——2004语言学理论基础(汉语言文化学院)2001——2004 汉语基础知识2004汉语知识2004中国文学史2003——2023年年人文地理学1999——2000传扬学2003传扬学原理2004——2023年年绘画基础与创作2004——2023年年美学原理2003——2023年年书法技法2003——2004书法史论2003——2004新闻学原理2004——2023年年艺术史论2004——2023年年艺术与设计史论2003——2023年年中外美术史论2003——2023年年专业设计(环境设计)2003专业设计(设计艺术学、环境设计专业)2004专业设计(设计艺术学、视觉设计)2023年年历史学院古代汉语2003——2023年年古代文献2003——2004古典文献学2004——2023年年拉丁美洲史2003——2004历史地理2004——2023年年历史文献学2004——2023年年历史学基础理论2023年年美国史2003——2004美国学综论2023年年明清史2003——2004史学史2023年年世界近现代史(历史学院)2003——2023年年世界近现代史(日研院)2023年年世界上古中古史2003——2023年年世界通史2003——2023年年文物博物馆学2003——2023年年中国古代史2003——2023年年中国近现代史2003——2023年年中国史学史与史学理论2003——2004中国思想史2003——2023年年中国通史1994——1997,2003——2023年年中国文献学基础2003——2004中国近代史(中共党史专业)2003——2023年年哲学系马克思主义哲学(哲学各专业)2004——2023年年马克思主义哲学(马克思主义教诲学院)2003——2023年年宗教学概论2004——2023年年伦理学原理2004——2023年年美学概论2023年年第9 页/共22 页欧美哲学通史2003——2023年年西方哲学通史2023年年形式逻辑2003——2023年年中国哲学史2023年年中外哲学史2003——2023年年外国语学院二外日语2001——2023年年二外德语2001——2023年年二外法语2001——2023年年二外俄语2003——2023年年专业英语2000——2003,2023年年——2023年年(2023年年——2023年年有答案)(注:2023年年答案惟独英美文学部分,2023年年答案有英美文学部分和语言学部分)基础英语1997,2000——2023年年(1997,2004——2023年年,2023年年有答案)语言学基础2023年年(2023年年有答案)翻译2004(2004有答案)双语翻译与文学2004英美文学2004(2004有答案)语言学2004——2023年年(2004——2023年年有答案)二外英语2001,2003——2023年年,2023年年基础日语2001,2003——2023年年专业日语2001,2003——2023年年基础俄语2004——2023年年法学院刑法学2023年年法学综合(含法理学、宪法、民法、刑法、刑诉、民诉)2000——2023年年(2023年年试题有答案)民法与商法2003——2023年年,2023年年民法(民商法专业)2002民法(经济法专业)2002民法2000——2001(法理学)法学理论2023年年法学理论2003法制史(含中国法制史、外国法制史)2003——2023年年,2023年年国际法学(含国际经济法、国际公法、国际私法)2003——2023年年,2023年年国际经济法概论2000经济法与商法2003——2023年年,2023年年经济法1999诉讼法学(含行政诉讼法、刑事诉讼法、民事诉讼法)2004——2023年年,2023年年宪法学、行政法与行政诉讼法2003——2023年年,2023年年(2004有答案)环境法2023年年周恩来政府管理学院行政管理学2003——2023年年政策原理与政策分析2003——2023年年(2004有答案)国际关系史1999——2000,2003——2023年年国际关系学2003——2023年年国际关系概论1999——2000外交学概论与当代中国外交2004——2023年年外国政治制度史1999——2000政治学原理1999——2023年年中国政治制度史1999——2000中国通史1994——1997第11 页/共22 页中外政治思想史2003——2023年年中国政治思想史1999——2000,2002西方政治思想史1999——2000中外经济地理1999——2000世界近现代历史2002社会保障学2004——2023年年社会学理论2023年年社会学概论1995——2001,2003——2004社会调查主意与社会统计1995——2023年年社会工作2001环境学与环境法2004——2023年年西方经济学流派2004——2023年年(2004——2023年年有答案)心理学主意2004——2023年年(2004有答案)心理学基础2004——2023年年(2004有答案)马克思主义教诲学院马克思主义哲学(哲学各专业)2004——2023年年马克思主义哲学(马克思主义教诲学院)2003——2023年年科学社会主义原理2004——2023年年专业综合基础理论(科学社会主义与国际共产主义运动理论专业)2004——2023年年思想政治教诲原理2003——2023年年中共党史2003——2023年年中国近代史(中共党史专业)2003——2023年年中外哲学史2003——2023年年经济学院微观、宏观经济学2002,2023年年(2023年年有答案)微观经济学1999——2001宏观经济学1999——2001(1999——2000有答案)专业基础(微观经济学、宏观经济学、保险学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、财政学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、产业经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、国际经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、金融工程学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、经济思想史)2003(2003有答案)专业基础(微观经济学、宏观经济学、劳动经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、区域经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、人口经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、台湾经济)2003(2003有答案)专业基础(微观经济学、宏观经济学、西方经济学流派)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、应用统计学)2003(2003有答案)专业基础(微观经济学、宏观经济学、政治经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、中国近代经济史)2003——2004(2003——2004有答案)专业基础(国际经济学)(世界经济、国际贸易专业)2003西方经济学1999——2003(1999——2000,2002有答案)政治经济学1999——2000,2002,2023年年(1999——2000,2002,2023年年第13 页/共22 页有答案)当代西方经济学1999——2001(2000——2001有答案)区域经济学2002——2003(2002——2003有答案)产业经济学2002——2003(2002——2003有答案)货币银行学1999——2001(1999——2001有答案)国际金融1999——2001(1999——2001有答案)中国近代经济史1999——2000社会经济统计学原理1999——2000中国近代经济史(经研所)1999——2000企业人力资源开辟与管理1999——2000保险学原理1999——2000劳动经济学1999——2000人口经济学1999——2000人口学理论2003——2023年年计量经济学1999——2000世界经济概论1999——2000房地产经济1999——2000财产学1999——2000世界经济概论与世界经济情况1999——2000市场学1999——2000信息系统技术1999——2000环境经济学1999——2000国际经济学1999——2002(2000——2002有答案)外国近现代经济史1999——2000综合基础课(保险)1999——2000金融学基础(联考)2002——2023年年(2002——2023年年有答案)商学院会计学综合2023年年——2023年年会计学综合考试1999——2000,2003——2023年年(2000,2003——2023年年有答案)财务管理1999——2000财务管理与管理会计1999——2000(1999——2000有答案)公司治理2023年年技术经济学2003——2023年年市场学1999——2000管理综合(含管理学、微观经济学)2003——2023年年(2003——2023年年有答案)(注:2023年年——2023年年的答案惟独管理学部分的答案,无微观经济学部分的答案)管理学概论2002信息系统技术1999——2000管理信息系统2003——2023年年旅游管理1999旅游学综合(旅游概论和旅游经济学)2001——2023年年旅游学概论1997企业人力资源开辟与管理1999——2000(1999——2000有答案)人文地理学1999——2000中外经济地理1999——2000计算机应用(设计程序、数据库系统)2004——2023年年编辑学2001出版学2001网络技术基础2001档案管理学2004——2023年年档案学概论2004——2023年年目录学(含目录学概论、中西文工具书)2003——2004文献目录学2023年年情报学(含情报学概论、科技文献检索、计算机情报检索)2003情报学(含情报学概论、信息检索)2004第15 页/共22 页情报学综合2023年年图书馆学理论2003——2023年年高等教诲研究所高等教诲原理2003——2023年年(2023年年有答案)经济学原理2023年年——2023年年(2023年年——2023年年有答案)高等教诲管理学2003——2023年年教诲社会学2004——2023年年教诲学原理2004——2023年年(2004有答案)普通心理学2003——2023年年(2004有答案)中国高等教诲史2003——2023年年经济与社会发展研究院专业综合(含微观经济学、区域经济学)2004——2023年年(2004——2023年年有答案)专业综合(宏观经济学、产业经济学)2004——2023年年(2004——2023年年有答案)微观、宏观经济学2002,2023年年(2023年年有答案)微观经济学1999——2001宏观经济学1999——2001(1999——2000有答案)专业基础(微观经济学、宏观经济学、保险学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、财政学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、产业经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、国际经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、金融工程学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、经济思想史)2003(2003有答案)专业基础(微观经济学、宏观经济学、劳动经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、区域经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、人口经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、台湾经济)2003(2003有答案)专业基础(微观经济学、宏观经济学、西方经济学流派)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、应用统计学)2003(2003有答案)专业基础(微观经济学、宏观经济学、政治经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、中国近代经济史)2003——2004(2003——2004有答案)专业基础(国际经济学)(世界经济、国际贸易专业)2003西方经济学1999——2003(1999——2000,2002有答案)政治经济学1999——2000,2002,2023年年(1999——2000,2002,2023年年有答案)当代西方经济学1999——2001(2000——2001有答案)区域经济学2002——2003(2002——2003有答案)产业经济学2002——2003(2002——2003有答案)货币银行学1999——2001(1999——2001有答案)国际金融1999——2001(1999——2001有答案)中国近代经济史1999——2000社会经济统计学原理1999——2000中国近代经济史(经研所)1999——2000企业人力资源开辟与管理1999——2000第17 页/共22 页保险学原理1999——2000劳动经济学1999——2000人口经济学1999——2000人口学理论2003——2023年年计量经济学1999——2000世界经济概论1999——2000房地产经济1999——2000财产学1999——2000世界经济概论与世界经济情况1999——2000市场学1999——2000信息系统技术1999——2000环境经济学1999——2000国际经济学1999——2002(2000——2002有答案)外国近现代经济史1999——2000深圳金融工程学院专业基础(金融学)2003——2023年年(2003——2023年年有答案)微观、宏观经济学2002,2023年年(2023年年有答案)微观经济学1999——2001宏观经济学1999——2001(1999——2000有答案)专业基础(微观经济学、宏观经济学、保险学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、财政学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、产业经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、国际经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、金融工程学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、经济思想史)2003(2003有答案)专业基础(微观经济学、宏观经济学、劳动经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、区域经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、人口经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、台湾经济)2003(2003有答案)专业基础(微观经济学、宏观经济学、西方经济学流派)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、应用统计学)2003(2003有答案)专业基础(微观经济学、宏观经济学、政治经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、中国近代经济史)2003——2004(2003——2004有答案)专业基础(国际经济学)(世界经济、国际贸易专业)2003西方经济学1999——2003(1999——2000,2002有答案)政治经济学1999——2000,2002,2023年年(1999——2000,2002,2023年年有答案)当代西方经济学1999——2001(2000——2001有答案)区域经济学2002——2003(2002——2003有答案)产业经济学2002——2003(2002——2003有答案)货币银行学1999——2001(1999——2001有答案)国际金融1999——2001(1999——2001有答案)中国近代经济史1999——2000社会经济统计学原理1999——2000中国近代经济史(经研所)1999——2000企业人力资源开辟与管理1999——2000第19 页/共22 页保险学原理1999——2000劳动经济学1999——2000人口经济学1999——2000人口学理论2003——2023年年计量经济学1999——2000世界经济概论1999——2000房地产经济1999——2000财产学1999——2000世界经济概论与世界经济情况1999——2000市场学1999——2000信息系统技术1999——2000环境经济学1999——2000国际经济学1999——2002(2000——2002有答案)外国近现代经济史1999——2000日本研究院日本经济2004日本史2003,2023年年日本通史2004世界近现代史(历史学院)2003——2023年年世界近现代史(日研院)2023年年微观、宏观经济学2002,2023年年(2023年年有答案)微观经济学1999——2001宏观经济学1999——2001(1999——2000有答案)专业基础(微观经济学、宏观经济学、保险学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、财政学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、产业经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、国际经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、金融工程学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、经济思想史)2003(2003有答案)专业基础(微观经济学、宏观经济学、劳动经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、区域经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、人口经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、台湾经济)2003(2003有答案)专业基础(微观经济学、宏观经济学、西方经济学流派)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、应用统计学)2003(2003有答案)专业基础(微观经济学、宏观经济学、政治经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、中国近代经济史)2003——2004(2003——2004有答案)专业基础(国际经济学)(世界经济、国际贸易专业)2003西方经济学1999——2003(1999——2000,2002有答案)政治经济学1999——2000,2002,2023年年(1999——2000,2002,2023年年有答案)当代西方经济学1999——2001(2000——2001有答案)区域经济学2002——2003(2002——2003有答案)产业经济学2002——2003(2002——2003有答案)货币银行学1999——2001(1999——2001有答案)国际金融1999——2001(1999——2001有答案)第21 页/共22 页中国近代经济史1999——2000社会经济统计学原理1999——2000中国近代经济史(经研所)1999——2000劳动经济学1999——2000人口经济学1999——2000人口学理论2003——2023年年计量经济学1999——2000世界经济概论1999——2000房地产经济1999——2000财产学1999——2000世界经济概论与世界经济情况1999——2000市场学1999——2000信息系统技术1999——2000环境经济学1999——2000国际经济学1999——2002(2000——2002有答案)外国近现代经济史1999——2000。
2006年考研数学一真题及解析
Aα 1 , Aα 2 ,⋯ , Aα s 也线性相关,故应选( A).
(12)设 A 为 3 阶矩阵,将 A 的第 2 行加到第 1 行得 B ,再将 B 的第 1 列的 −1 倍加到第 2
⎛ 1 1 0⎞ ⎜ ⎟ 列得 C ,记 P = 0 1 0 ,则 ⎜ ⎟ ⎜ 0 0 1⎟ ⎝ ⎠
(A) C = P 1 AP . (C) C = P T AP .
(1) lim
x→ 0
【分析】 本方程为可分离变量型,先分离变量,然后两边积分即可 【详解】 原方程等价为
dy ⎛ 1 ⎞ = ⎜ − 1⎟ dx , y ⎝x ⎠
两边积分得
ln y = ln x − x + C1 ,整理得
y = Cxe − x .( C = eC1 )
(3)设 Σ 是锥面 z =
消去 λ0 ,得
f x′ ( x 0 , y 0 )ϕ y′ ( x 0 , y 0 ) − f y′ ( x 0 , y 0 )ϕ x′ ( x0 , y0 ) = 0 ,
整理得
f x′ ( x0 , y0 ) =
1
ϕ y′ ( x0 , y0 )
, f y′ ( x0 , y0 )ϕx′ ( x0 , y0 ) .(因为 ϕ y ′ ( x, y) ≠ 0 )
若 f x′ ( x0 , y0 ) ≠ 0 ,则 f y ′ ( x0 , y 0 ) ≠ 0 .故选(D). (11)设 α1 , α 2 ,⋯ , α s 均为 n 维列向量, A 为 m × n 矩阵,下列选项正确的是 (A) (B) (C) 若 α1 ,α 2 ,⋯ ,α s 线性相关,则 Aα 1 , Aα 2 ,⋯ , Aα s 线性相关. 若 α1 ,α 2 ,⋯ ,α s 线性相关,则 Aα 1 , Aα 2 ,⋯ , Aα s 线性无关. 若 α1 ,α 2 ,⋯ ,α s 线性无关,则 Aα 1 , Aα 2 ,⋯ , Aα s 线性相关.
南开大学2000-2010年数学分析考研试题解答
.
a
6
南开大学 2001 年数学分析考研试题解答
( ) ∫∫∫ 1.计算三重积分 x2 + y2 dxdydz ,其中 Ω 为由曲面 x2 + y2 = z 与平面 z = 4 为界
Ω
面的区域.
∫ ∫ 2.计算
π
2 dx
π 2
x
sin
y
dy
.
0
x
y
∫ 3.计算 I
=
L
x2
y +
y2
−
y dx −
证明:
(1)当α > 1时,
∞ an
∑ 收敛; Sα
n=1 n
(2)
当α
≤
1
,
且
lim
n→∞
Sn
=
+∞
时,
∞ an
∑ 发 Sα
n=1 n
散。
(3)
当α
≤ 1 ,且 ∑∞ an
n =1
∞ an
收敛时, ∑ Sα n=1 n
收
敛。
证明 对任意正整数 n , an = Sn − Sn−1 ,
( S0 = 0 ), 因为 an > 0 ,所以 Sn−1 < Sn , ( 1 ) 当 α >1 时 , 利 用 不 等 式
∫ +∞
都收敛,但积分
∫ f (x, β )dx 发散,证明 +∞
f (x,u)dx 在[α , β ) 上非一致收敛
.
a
a
证明 用反证法
∫ 假若 +∞ f (x,u)dx 在[α , β ) 上一致收敛, a
所以 ∀ε
南开大学2000-2016数学分析考研试题汇总
取
07
83
且
4
当α
∞ an = S n = +∞ 时, ∑ α ∑ an 发散; = 0 ,且 nlim →∞ n =1 S n n =1
0
n 所以 ∑ α 发散; n =1 S n
(
w
w
∞
a
w
N an an S N ≥ = α ∑ 因为 ∑ α α S1 n =1 S n n =1 S1
.
,
k
N
A'
收集整理:我欲封天
07
A"
0
83
4
Q
由条件得 f ( x, u ) 在 [ A' , A' ' ] × [α , β ] 上一致连续,从而 lim f ( x, u ) = f ( x, β ) ,
u →β
且关于 x ∈ [ A′, A′′] 是一致收敛的;或者说 在
∫
A'
A′′
A′
f ( x, u )dx 在 [α , β ] 上连续,
f ( x, u )dx 在 [α , β ) 上一致收敛,
所以 ∀ε > 0, ∃A0 (ε ) > 0 ,当 A' , A" > A0 (ε ) 时, ∀u ∈ [α , β ) ,有 又由 f ( x, u ) 在 [ a, +∞ ) × [α , β ] 中连续,
5
∫ f (x, u )dx < ε ,
发
w然
n
= +∞ 时,
comÐO›
方法一
n+ p
研
式成立,于是 {∑ 方法二 因为
N
k =2
南开大学数学分析考研真题
天津考研网()南开大学数学分析考研真题南开大学数学分析考研复习都是有依据可循的,考研学子关注事项流程为:考研报录比-大纲-参考书-资料-真题-复习经验-辅导-复试-导师,缺一不可。
对于专业课是南开大学数学分析科目的考生而言,在这一考试中取得一个不错的成绩对于我们进入复试而言影响还是蛮大的。
鉴于前段时间有学妹像我询问这一科目的复习经验和方法,我决定把自己的一点想法写下来,下面就给大家说一说南开大学数学分析的复习和一些心得体会。
第一轮的复习当然是看课本,做书上的课后习题。
基础知识要扎实,相关的定理、概念一定要清楚,不要脑子里一团浆糊。
一些难度比较大的题目自己尽量做,做到哪一步都没有关系,但是记得一定要做好标记。
第二轮的时候复习核心知识点,并且需要配套练习大量的习题,笔者在这一阶段用到的资料是《南开大学数学专业(数学分析+高等代数)考研红宝书-全程版》,天津考研网主编的。
资料中包含的真题内容如下:南开大学数学分析2000-2012、2014、2015、2016年考研真题;南开大学数学分析2000-2012、2014、2016年考研试题参考答案;南开大学数学分析2010-2012年考研真题解析(单买30元/年);南开大学高等代数2000-2012、2014、2015、2016年考研真题;南开大学高等代数2000-2012、2014、2016年考研试题参考答案;南开大学数学分析2010-2012年考研真题解析。
此外,数学分析这个科目在复习的时候还需要注意的一点就是对解题方法的归纳和总结。
要学会整理自己的学习笔记,比如说对级数收敛问题的证明方法的总结等等。
另外一点就是我个人比较喜欢的练习方法:分题型分知识点做题。
这种方法对于知识点的掌握比较快而且弄的懂。
最后,再次提醒要参加南开大学数学分析研究生考试的同学,千万要抓真题试题这部分的学习,公式什么的可以在做题当中自己总结出来,通过大量的真题扩充自己的知识储备。
2006年考研数学一真题与的答案
2006年考研数学一真题一、填空题(1~6小题,每小题4分,共24分。
)(1)limx→0xln(1+x)1−cosx= 。
【答案】2。
【解析】等价无穷小代换:当x→0时,l n(1+x)~x,1−cosx~12x2所以limx→0xln(1+x)1−cosx=limx→0x212x2=2综上所述,本题正确答案是2。
【考点】高等数学—函数、极限、连续—无穷小量的性质及无穷小量的比较(2)微分方程y′=y(1−x)x的通解为__________。
【答案】y=Cxe−x(x≠0),C为任意常数。
【解析】原式等价于dyy =1−xxdxdy y =1−xxdx⇒ln|y|=ln|x|−lne x+ln|C|(两边积分)即y=Cxe−x(x≠0),C为任意常数综上所述,本题正确答案是y=Cxe−x(x≠0)。
【考点】高等数学—常微分方程—一阶线性微分方程(3)设Σ是锥面z=√x2+y2(0≤z≤1)的下侧,则∬xdydz+Σ2ydzdx+3(z−1)dxdy= 。
【答案】2π。
【解析】设Σ1:z =1(x 2+y 2≤1),取上侧,则∬xdydz +2ydzdx +3(z −1)dxdy =Σ∬xdydz +2ydzdx +3(z −1)dxdyΣ+Σ1−∬xdydz +2ydzdx +Σ13(z −1)dxdy而∬xdydz +2ydzdx +3(z −1)dxdy Σ+Σ1=∭6dvV=6∫dθ2π0∫rdr 10∫dz 1r=2π∬xdydz +2ydzdx +3(z −1)dxdy =Σ1所以∬xdydz +2ydzdx +3(z −1)dxdy = Σ2π综上所述,本题正确答案是2π。
【考点】高等数学—多元函数积分学—两类曲面积分的概念、性质及计算(4)点(2,1,0)到平面3x +4y +5z =0的距离d = 。
【答案】√2。
【解析】点到平面的距离公式:d =|Ax +By +Cz +D|√A 2+B 2+C2其中(x 0,y 0,z 0)为点的坐标,Ax +By +Cz +D =0为平面方程 所以d =|3×2+4×1+5×0+0|√32+42+52=√2综上所述,本题正确答案是√2。
2006年全国硕士研究生入学统一考试数学一答案
2006年全国硕士研究生入学统一考试数学一答案一、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(1)2解:由等价无穷小,0x →时21ln(1),1cos 2x x x x +-::2002ln(1)lim lim 11cos 2x x x x x x x →→+=-=2 (2)x cxe -解:分离变量,积分,得 1ln ln y x x c =-+去掉对数及绝对值记号,改写任意常数,得 (0)x y cxe x -=≠ (3)2π解:补一个曲面221:1x y z ⎧+≤∑⎨=⎩1上侧设,2,3(1)P x Q y R z ===-1236P Q R x y z∂∂∂++=++=∂∂∂ ∴1∑∑+⎰⎰⎰⎰=6dxdydz Ω⎰⎰⎰(Ω为锥面∑和平面1∑所围区域)6V =(V 为上述圆锥体体积)623ππ=⨯= 而123(1)0dydz ydzdx z dxdy ∑⨯++-=⎰⎰(Q 在1∑上:1,0z dz ==) (4解:d====(5) 2解:由2BA B E=+化得()2B A E E-=,两边取行列式,得()24B A E E-==计算出()2A E-=,因此2B=.(6)19解:{}{}{}{}max(,)11,111p x y p x Y p x p Y≤=≤≤=≤≤=1133⋅=19二、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)A解:方法1:因为()0,f x'>则()f x严格单调增加()0,f x''>则()f x是凹的0x>V又,故0dy y<<V.方法2:用两次拉格朗日中值定理000()()()y dy f x x f x f x x'-=+--V V V()()f x f x xξ''=-V V()()f x xηξ''=-V其中000,x x x xξηξ<<+<<V由于()0f x''>,从而0y dy->V又由于()0dy f x x'=>V,故选[]A(8)C解:画出极坐标下二次积分所对应积分区域D,改成用直角坐标便知应选[C](9)D解:题设1nna∞=∑收敛,所以11nna∞+=∑也收敛,所以11()n nna a∞+=+∑收敛,从而112n nna a∞+=+∑也收敛.[]D选(10) D解:引入函数(,,)(,)(,)F x y f x y x y λλϕ=+,有000000000000000000(,)(,)0(1)(,)(,)0(2)(,)0(,)(,)(,)(,)0,(,)(,)(,)(,)0,(,)0[]x x xy y y y y xy x y y x y f x y x y f x y x y x y f x y f x y x y x y f x y x y x y f x y f x y D λλϕλϕϕϕϕλϕϕ'''⎧+=⎪'''+=⎨⎪'=⎩'''''≠∴=-=''''≠≠Q F =F =F =代入(1)得今则故选 (11) A【考点】本题考的是线性相关性的判断问题,可以用定义解.解:方法1:若12,,,s αααL 线性相关,则存在不全为0的数12s ,,,k k k L 使得11220s s k k k ααα+++=L用A 左乘等式两边,得11220s s k A k A k A ααα+++=L于是12,,,s A A A αααL 线性相关.方法2:如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是:1. 12,,,s αααL 线性相关⇔ 12(,,,)s r s ααα<L .2.()()r AB r B <.矩阵1212(,,,)(,,,)s s A A A A αααααα=L L ,因此1212(,,,)(,,,)s s r A A A r s αααααα≤<L L由此马上可判断答案应该为[A ].(12) B解:用初等矩阵在乘法中的作用得出将A 的第2行加到第1行得B ,即 110010001B A ⎛⎫ ⎪= ⎪⎪⎝⎭=PA 将B 的第1列的-1倍加到第2列得C ,即110010001C B -⎛⎫⎪= ⎪ ⎪⎝⎭ 记 BQ 因PQ =110010001⎛⎫ ⎪ ⎪ ⎪⎝⎭110010001-⎛⎫⎪ ⎪ ⎪⎝⎭E =,故1Q P -=从而 11C BP PAP --== ,故选[B ]. (13)C【考点】本题考条件概率的概念和概率的一般加法公式 解:由{}{}{}1P AB P A B P B ==得,{}{}P AB P B = 根据加法公式有{}{}{}{}{}P A B P A P B P AB P A ⋃=+-=,故选[C ]. (14)A【考点】正态分布的基本性质和正态分布的标准化技巧 解:11111(1)(),X P X P μμσσ--<=<随机变量11-X μσ~(0,1)N ,且其概率密度函数是偶函数.故111111*********[()(0)]2()1X X P P μμφφφσσσσσσ⎧⎫⎧⎫--⎪⎪<=<<=-=-⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭. 同理221(1)2()1P Y μφσ-<=-因为()x φ是单调函数,当12{||1}{||1}P X P Y μμ-<>-<时,112()1φσ->212()1φσ-,即1211σσ>,即12σσ>,故选[A ].一、 解答题(15)解:积分区域对称于x 轴,221xyy x y++为y 的奇函数,从而知 2201Dxydxdy x y =++⎰⎰ 12120222021ln(1)ln 21122Dr I dxdy d dr r x yr ππππθ-==+=+++⎰⎰⎰⎰极坐标(16)解:(1)由于0x π<<时,0sin x x <<,于是10sin n n n x x x +<=≤说明数列{}n x 单调减少且0n x >.由单调有界准则知lim n n x →∞存在.记为A递推公式两边取极限得sin ,0A A A =∴=21sin (2)lim(),n x n n nx x ∞→∞原式=为"1"型Q 离散型不能直接用洛必达法则22011sin lim ln()0sin lim()t ttt tt t e t→→=先考虑用洛比达法则232320330011(cos sin )1110()0()lim 26cos sin sin 1262limlim 2262t t t t t t t t t t t t t t tt t t tt te ee e e →→→⎡⎤⎡⎤--+--+⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦-=====g g(17)解:2()2(2)(1)21x x A Bf x x x x x x x===++--+-+ 由2(1)(2)2,32,3A xB x xx A A ++-====令 11,31,3x B B =-=-=-令21111111()3(2)3(1)33[1()](1)2f x x x x x =-=--+---g g g g10001111()(1)(1),132332n n nn n n n n n x x x x ∞∞∞+===⎡⎤=--=+-<⎢⎥⎣⎦∑∑∑(18)解:(I)zzf f xy∂∂''==∂∂()22222zxf f xx y ∂'''=+∂+()()22322222x y f f x y x y '''=+++()()2223222222zy x f f yx y x y ∂'''=+∂++同理22220()()0z z f x y f u f u u∂∂''+==∂∂'''∴+=代入得成立(II )令(),f u p '=于是上述方程成为dp pdu u=-,则dp du c p u =-+⎰⎰ ln ln ,()cp u c f u p u'=-+∴==22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+===Q由得于是(19)证:把2(,)(,)f tx ty t f x y t -=两边对求导 得:3(,)(,)2(,)x y xf tx ty yf tx ty t f x y -''+=- 令 1t =,则(,)(,)2(,)x y xf x y yf x y f x y ''+=- 再令 (,),(,)P yf x y Q xf x y ==- 所给曲线积分等于0的充分必要条件为Q Px y∂∂=∂∂ 今(,)(,)x Qf x y xf x y x∂'=--∂(,)(,)y Pf x y yf x y y∂'=+∂ 要求Q Px y∂∂=∂∂成立,只要(,)(,)2(,)x y xf x y yf x y f x y ''+=- 我们已经证明,Q Px y∂∂∴=∂∂,于是结论成立。