线性规划

合集下载

第二章线性规划

第二章线性规划



线性规划要研究的两类问题中都包含有约束条件和目 标函数。用数学的方式描述,规划的目的就是在给定 的限制条件(或称约束条件)下,求目标函数的极值 问题(包括极小值和极大值)。
2
线性规划的数学模型
3
解: 设产品 的产量为:1 , 产品 的产量为:x2 x
4
5
6
7

配料问题:由若干种不同价格、不同成分含量的原料,用 不同的配比混合调配出一些不同规格的产品,在原料的供 应量限制和保证产品成分含量的前提下,如何进行配料来 获取最大利润或使总成本最低。
15
2.2.3 线性规划求解的可能结局
1、有唯一的最优解
2、有无穷多个最优解 (将目标函数改为 z=4x1+3x2 )
x2
max z 4 x1 3 x2 x1 2 x2 5 2 x x 4 1 2 s.t. 4 x1 3 x2 9 x1 , x2 0
3x1 2 x2 4 x3 3
3x1 2 x2 4 x3 xs 3
剩余变量
变量xs实际上是原式左端减去右端的差,即 :
xs 3x1 2 x2 4 x3 3
当约束条件是“ ”型的不等式时,只要将该约 束条件左端减去一个非负的剩余变量即可化为等式。 无论是松弛变量还是剩余变量在决策中都不产生实际价 值,因此它们在目标函数中的系数都应该为零。有时也将松 29 弛变量和剩余变量统称为松弛变量。
2x1+x2=4 D C
x1+2x2=5 B 4x1+3x2=9 O A x1
16
3、无界解
指线性规划问题有可行解,但是 在可行域,目标函数值是无界的, 因而达不到有限最优值。因此线 性规划问题不存在最优解。

线性规划知识点总结

线性规划知识点总结

线性规划知识点总结标题:线性规划知识点总结引言概述:线性规划是运筹学中的一种最基本的数学规划方法,广泛应用于生产、运输、金融等领域。

通过线性规划,可以优化资源分配,最大化利润或者最小化成本。

本文将对线性规划的基本概念、线性规划模型、解决方法、应用领域和优缺点进行总结。

一、基本概念1.1 线性规划的定义:线性规划是一种数学优化方法,其目标是在一组线性约束条件下,找到使目标函数取得最大值或者最小值的决策变量的取值。

1.2 决策变量和目标函数:线性规划中,决策变量是需要确定的未知数,而目标函数则是需要优化的目标,通常是最大化利润或者最小化成本。

1.3 约束条件:线性规划模型中的约束条件是对决策变量的限制,可以是等式约束或者不等式约束,用来限制决策变量的取值范围。

二、线性规划模型2.1 标准形式和非标准形式:线性规划模型可以分为标准形式和非标准形式,标准形式要求目标函数是最小化形式,约束条件是等式约束;非标准形式则没有这些限制。

2.2 线性规划的矩阵形式:线性规划可以用矩阵形式表示,目标函数和约束条件可以用矩阵的乘法来表示,这样可以简化问题的求解过程。

2.3 整数规划和混合整数规划:在实际应用中,有时需要考虑变量的取值只能是整数的情况,这时就需要用到整数规划或者混合整数规划。

三、解决方法3.1 单纯形法:单纯形法是解决线性规划问题的经典方法,通过不断挪移顶点来找到最优解,是一种高效的求解方法。

3.2 对偶理论:对偶理论是线性规划的重要理论基础,通过对原问题的对偶问题进行求解,可以得到原问题的最优解。

3.3 整数规划的分支定界法:对于整数规划问题,可以采用分支定界法来求解,通过不断分支和剪枝来逐步逼近最优解。

四、应用领域4.1 生产计划优化:线性规划可以用来优化生产计划,确定最佳生产量和资源分配,以最大化利润或者最小化成本。

4.2 运输网络优化:在物流领域,线性规划可以用来优化运输网络,确定最佳的运输路径和运输量,以提高运输效率。

线性规划知识点

线性规划知识点

线性规划知识点一、概述线性规划是一种数学优化方法,用于求解线性约束条件下的最优解。

它在经济、管理、工程等领域有着广泛的应用。

线性规划的基本思想是在一组线性约束条件下,寻找使目标函数达到最大或最小的变量取值。

二、线性规划模型线性规划模型由三部分组成:决策变量、目标函数和约束条件。

1. 决策变量决策变量是问题中需要决策的量,通常用符号x表示。

决策变量的取值会影响目标函数的值。

2. 目标函数目标函数是需要优化的函数,通常用符号f(x)表示。

线性规划中的目标函数是线性的,可以是最大化或最小化。

3. 约束条件约束条件是对决策变量的限制条件,通常用不等式或等式表示。

线性规划中的约束条件也是线性的。

三、线性规划的解法线性规划可以使用不同的解法求解,常见的有图形法、单纯形法和内点法。

1. 图形法图形法适用于二维线性规划问题,通过绘制约束条件的直线和目标函数的等值线,找到最优解的图形位置。

2. 单纯形法单纯形法适用于多维线性规划问题,通过迭代计算,从初始可行解出发,逐步靠近最优解。

3. 内点法内点法是一种近年来发展起来的线性规划求解方法,通过在可行域内不断搜索,逐步趋近最优解。

四、线性规划的应用线性规划在实际问题中有着广泛的应用,以下是一些常见的应用领域:1. 生产计划线性规划可以用于确定生产计划中各种资源的最优分配,以满足生产需求并最大化利润。

2. 运输问题线性规划可以用于解决运输问题,确定各个供应点到需求点的最优运输方案,以最小化总运输成本。

3. 金融投资线性规划可以用于优化投资组合,确定不同资产的投资比例,以最大化投资收益或最小化风险。

4. 人力资源管理线性规划可以用于人力资源管理,确定员工的最优分配方案,以满足工作需求并最小化成本。

五、线性规划的局限性线性规划虽然在很多问题中有着广泛的应用,但也存在一些局限性:1. 线性假设线性规划要求目标函数和约束条件都是线性的,这在某些实际问题中可能不符合实际情况。

2. 单一最优解线性规划只能得到一个最优解,而在某些问题中可能存在多个最优解。

线性规划

线性规划
饲料 蛋白质(g) A1 0.3 A2 2 A3 1 A4 0.6 A5 1.8
矿物质(g)
维生素(mg)
0.1
0.05
0.05
0.1
0.02
0.02
0.2
0.2
0.05
0.08
希望建立数学模型,既能满足动物需要,又使总成 本最低的饲料配方
模型
饲料 符号 A1 x1 A2 x2 A3 x3 A4 x4 A5 x5
约 l2 : 12x1 8x2 480 束 12x1 8x2 480 l4 条 3x1 100 l3 : 3x1 100 件 c l4 : x1 0, l5 : x2 0 x1 , x2 0 目标 函数
l1 : x1 x2 50
x2 A
l1 B l2 C Z=3600 l3
线性规划问题的数学模型的一般形式
( 1)列出约束条件及目标函数 (2)画出约束条件所表示的可行域 (3)在可行域内求目标函数的最优解及最优值
线性规划问题的标准形式
{
max y=cTx s.t. Ax=b x≥0
求解方法: (1)单纯形法 (2)软件求解:Lindo, Lingo, matlab,sas
RANGES IN WHICH THE BASIS IS UNCHANGED: OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLE COEF INCREASE DECREASE X1 X2 ROW 72.000000 24.000000 8.000000
Max z 72x1 64x2
z=c (常数) ~等值线
0
l5
Z=0
x1 D Z=2400

运筹学基础-线性规划(方法)

运筹学基础-线性规划(方法)
问题描述
线性规划问题通常由三个基本部分组成,即决策变量、约束条件 和目标函数。决策变量是问题中需要求解的未知数,约束条件是 限制决策变量取值的条件,目标函数是要求最大或最小的函数。
线性规划的应用领域
01
02
03
04
生产计划
在制造业中,线性规划可以用 于制定最优的生产计划,以最 大化利润或最小化成本。
02
线性规划的基本概念
线性方程组
线性方程组是由多个线性方程组成的数学模型,描 述了多个变量之间的线性关系。
线性方程组可以用矩阵和向量表示,通过矩阵运算 和代数方法求解。
线性方程组有多种解法,如高斯消元法、LU分解、 迭代法等。
约束条件与目标函数
02
01
03
约束条件是限制变量取值的条件,通常表示为变量的 上界、下界或等式约束。
目标函数是描述问题目标的数学表达式,通常是最小 化或最大化的线性或非线性函数。
约束条件和目标函数共同构成了线性规划问题的数学 模型。
线性规划的解
线性规划的解是指满足 所有约束条件并使目标 函数取得最优值的变量 取值。
线性规划问题可能有多 个解,也可能无解或无 界解。
最优解的性质包括最优 性、可行性和唯一性。
最优解可以通过求解线 性方程组或使用专门的 优化软件获得。
03
线性规划的求解方法
单纯形法
01
基本概念
单纯形法是一种求解线性规划问题的迭代算法,通过 不断迭代寻找最优解。
02 1. 初始化 选择一个初始可行解,并确定初始基可行解。
03
2. 迭代
根据目标函数系数和约束条件系数,计算出单纯形表 格,然后进行迭代更新。
运筹学基础-线性规划(方法)

线性规划基本模型

线性规划基本模型
单纯形法是一种求解线性规划问题的经 典算法,其基本思想是通过不断迭代来 寻找最优解。
在每次迭代中,单纯形法会根据目标函数的 系数和约束条件,通过一系列的数学运算, 将问题转化为更简单的形式,直到找到最优 解或确定无解。
单纯形法具有简单易懂、易于实现 的特点,是解决线性规划问题最常 用的方法之一。
对偶问题
等式约束
等式约束优化是指在优化问题中包含等式约束的线性规划问题。等式约束通常 表示决策变量之间的关系,满足等式约束是找到最优解的必要条件。
求解算法
对于包含等式约束的线性规划问题,可以采用一些特殊的算法进行求解,如消 元法或拉格朗日乘子法。这些算法能够更高效地处理等式约束,并找到最优解。
05
线性规划的扩展模型
线性规划基本模型
• 线性规划概述 • 线性规划的基本概念 • 线性规划的求解方法 • 线性规划的优化方法 • 线性规划的扩展模型 • 线性规划的实际应用案例
01
线性规划概述
定义与特点
定义
线性规划是一种数学优化方法,通过 在一定的约束条件下最大化或最小化 一个线性目标函数,来找到一组变量 的最优解。
现状
目前,线性规划已经发展成为一 个成熟的学科分支,有许多成熟 的算法和软件工具可用于解决各 种实际问题。
02
线性规划的基本概念
线性方程组
线性方程组
01
线性规划问题通常由一组线性方程组成,这些方程描述了决策
变量之间的关系。
线性方程的解
02
线性方程组可能有多个解,但在线性规划中,我们通常只关心
满足特定约束条件的解。
资源利用
线性规划可以确定最佳的资源利用方案,包括原材料、设备、劳动力等,以最小化生产成本或最大化 利润。

线性规划的定义及解题方法

线性规划的定义及解题方法

线性规划的定义及解题方法线性规划是一种数学建模技术,旨在解决在约束条件下,寻求最优解的问题。

它的实际应用十分广泛,例如管理学、经济学、物流学等领域。

线性规划可以分为单目标和多目标两种,但其中比较常见的是单目标线性规划。

本文将从线性规划的定义、模型建立、求解方法等方面阐述其原理与应用。

一、线性规划的定义线性规划的定义是:在有限约束条件下,目标函数为线性的最优化问题。

它通过数学模型的建立,将涉及到的变量、约束条件与目标函数转化为线性等式或不等式的形式,从而寻找最优解。

通常,线性规划的目标是最大化或最小化某个变量,可以用以下的形式去表示:$$Z=C_1X_1+C_2X_2+……+C_nX_n $$其中,$Z$为目标函数值,$X_1, X_2,……,X_n$为待求变量,$C_1, C_2,……,C_n$为相应的系数。

在线性规划中,会涉及到许多变量,这些变量需要受到一些限制。

这些限制可以用不等式或等式来表示,这些方程式被称为约束条件。

例如:$$A_1X_1+A_2X_2+……+A_nX_n≤B$$$$X_i≥0, i=1,2,……, n $$这两个方程就代表了一些约束条件,例如目标函数系数的和不能超过某个值,若$X_i$为生产的产品数量,则需保证产量不能小于零等。

这些约束条件用于限制变量的取值范围,而目标函数则用于求解最优解。

二、线性规划的模型建立在建立线性规划模型时,需要考虑几个要素:1. 决策变量:它是模型求解的关键。

决策变量是指在模型中未知的数量,也就是需要我们寻找最优解的那些变量。

2. 目标函数:确定目标函数,既要知道最大化还是最小化,还要知道哪些变量是影响目标函数的。

3. 约束条件:约束条件通常是一组等式或不等式,代表问题的限制。

例如在一个工厂中最大的生产量、原材料的数量限制、人工的数量等等,这些都是约束条件。

4. 模型的参数:模型参数是指约束条件的系数和模型中的常数。

它们是从现实问题中提取出来的,由于模型的解法通常是数学的,因此需要具体的数值。

最优化方法:第2章 线性规划

最优化方法:第2章 线性规划

Z=CBB-1b+(σm+1,
σm+k ,
xm+1
σn
)
CB B-1b+σ m+k
xn
因为 m+k 0,故当λ→+∞时,Z→+∞。
用初等变换求改进了的基本可行解
假设B是线性规划 maxZ=CX,AX=b,X 0的可行基,则
AX=b
(BN)
XB XN
b
(I,B-1 N)
➢ 若在化标准形式前,m个约束方程都是“≤”的形式, 那么在化标准形时只需在一个约束不等式左端都加上一个松弛变 量xn+i (i=12…m)。
➢ 若在化标准形式前,约束方程中有“≥”不等式, 那么在化标准形时除了在方程式左端减去剩余变量使不等式变 成等式以外,还必须在左端再加上一个非负新变量,称为 人工变量.
单纯形法简介
考虑到如下线性规划问题 maxZ=CX AX=b X 0
其中A一个m×n矩阵,且秩为m,b总可以被调整为一 个m维非负列向量,C为n维行向量,X为n维列向量。
根据线性规划基本定理: 如果可行域D={ X∈Rn / AX=b,X≥0}非空有界, 则D上的最优目标函数值Z=CX一定可以在D的一个顶 点上达到。 这个重要的定理启发了Dantzig的单纯形法, 即将寻优的目标集中在D的各个顶点上。
非基变量所对应的价值系数子向量。
要判定 Z=CBB-1b 是否已经达到最大值,只需将
XB =B-1b-B-1NX N 代入目标函数,使目标函数用非基变量
表示,即:
Z=CX=(CBCN
)
XB XN
=CBXB +CNXN =CB (B-1b-B-1NXN )+CNXN

线性规划

线性规划
线性规划
线性规划是一类最简单的优化问题,同时也是 具有普遍实际意义的一类优化问题。
线性规划模型的一般形式为:
max(min) z c1 x1 c2 x2 cn xn
s.t.
a11 x1 a12 x2 a1n xn b1 a x a x a x b 21 1 22 2 2n n 2 a x a x a x b mn n m m1 1 m 2 2 x1 , x2 , , xn 0
约束条件 每套钢架所需的三种长度的元钢数目是相 同的,而100套钢架需要三种长度的元钢都是 100根,因此有
长度为2.9m的元钢数: x1 2 x2 x4 x6 100 长度为2.1m的元钢数:2 x3 2 x4 x5 x6 3 x7 100 长度为1.5m的元钢数:3 x1 x2 2 x3 3 x5 x6 4 x8 100
车床B上的加工台时限制: x1 2 x2 8
车床C上的加工台时限制: 4 x1
车床D上的加工台时限制:
16
4 x2 12
非负条件:x1 , x2 0
第三步——明确目标函数 利润最大: max : z 2 x1 3 x2 该问题的数学模型为:
返回
结束
线性规划
目标函数:
max z 2 x2 3 x2
该问题所涉及的因素以及之间的数量关系可 以用表1-1表示
返回 结束
线性规划
产品 单位产品所需资源 资源
A1 A2 An
可供应的资源量
B1 B2 Bm
单位产品所得利润
a11 a12 a1n a 21 a 22 a 2 n a m 1 a m 2j 1

线性规划知识点归纳总结

线性规划知识点归纳总结

线性规划知识点归纳总结一、知识梳理1 目标函数:P=2x+y是一个含有两个变量x和y的函数,称为目标函数。

2 可行域:约束条件表示的平面区域称为可行域。

3 整点:坐标为整数的点叫做整点。

4 线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题。

只含有两个变量的简单线性规划问题可用图解法来解决。

5 整数线性规划:要求量整数的线性规划称为整数线性规划。

二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科,主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定和条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务。

1 对于不含边界的区域,要将边界画成虚线。

2 确定二元一次不等式所表示的平面区域有种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一端为所求的平面区域。

若直线不过原点,通常选择原点代入检验。

3 平移直线y=-kx+P时,直线必须经过可行域。

4 对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点。

5 简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等于表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解。

积储知识:一、1.占P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+ y0+C=02.点P(x0,y0)在直线Ax+By+C=0上方(左上或右下),则当B>0时,Ax0+ y0+C >0;当B<0时,Ax0+ y0+C<0 3.点P(x0+,y0)D在直线Ax0+ y0+C=0下方(左下或右下),当B>0时,Ax0+ y0+C<0;当B>0时,Ax0+ y0+C>0 注意:(1)在直线Ax+ By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+ By+C=0,所得实数的符号都相同。

第4章线性规划

第4章线性规划

f ( X ) 5 x1 4 x 2 4 x1 x 2 60 x1 x 2 24 x1 0 x2 0
(1) ( 2) ( 3) ( 4) ( 5)
例题21: • 首先由(4),(5)二式(x1≥ 0、x2 ≥ 0)知, 其解
在第一象限所在的范围,所以在画图时将第二、
产品Ⅰ 产品Ⅱ 资源总量
设 备(台时)
原料A(公斤) 原料B(公斤)
1
4 0
2
0 4
8
16 12
利 润(百元)
2
3
线性规划范例
• 例B. 任务分配问题
表2
产品
1 23
2 21
3 19
4 17
某公司拟生产4种产品, 可分配给下属的3个工厂 生产,由于工厂的地理位 置和设备不同,每个工厂 生产每种产品的成本不相 同,加工能力也不相同。 有关数据分别由表2和表3 给出。公司应如何给下属 各工厂分配任务,才能在 保证完成每种产品的任务 的条件下,使得公司所花 费的成本最少?
例 : x2 0 y 0, y x2
对于无限制变量的处理:同时引进两个非负变量, 然后用它们的差代替无限制变量。
例 : x2无限制 x2 y1 y2 y1 , y2 0
例题20: 将下述线性规划问题化为标准形
m i n s .t . f ( X ) x1 2 x 2 3 x 3 2 x1 x 2 x 3 9 3 x1 x 2 2 x 3 4 3 x1 2 x 2 3 x 3 6 x1 0, x 2 0, x 3无限制
含量限制 原 A B C 加工费(元/kg) 料 纱线1 ≥60% 无 ≤20% 1.5 纱线2 ≥15% ≥10% ≤60% 1.2 纱线3 无 无 50% 0.9 (元/kg) 6 4.5 3 (kg/月) 2000 2500 1200 原料成本 原料限量

第一章 线性规划

第一章 线性规划
第四节 线性规划的典型案例
线性规划
【开篇案例】
一、人力资源分配的问题
某旅行社为了迎接旅 游黄金周的到来,对一日 游导游人员的需求经过统 计分析如表所示。为了保 证导游充分休息,导游每 周工作 5天,休息两天, 并要求休息的两天是连续 的。问应该如何安排导游 人员的作息,既满足工作 需要,又使配备的导游人
下午5时14分
什么是规划?
• 以上问题无一例外都属于规划问题,涉及到求解最大值 和最小值
• 人们经常谈规划,比如国家有5年规划、10年规划、城市 有城市规划,个人有自己的人生规划.
• 规划是在现有的人力、物力水平下,使得目标达到最优 的全面、理性的计划
下午5时14分
线性规划
• 线性规划简介: • 运筹学中最成熟的一个分支 • 静态规划:单周期决策
第一节 下午5时14分 线性规划的一般模型
三、线性规划模型的特征
1. 模型隐含假定
作为严密的数学模型,线性规划蕴含着以下假定: (1)线性化假定
函数关系式f(x)= c1x1+c2x2+… +cnxn,称线性函数。 经济学中大多数函数都是非线性,通过偏导求最优。但在企业
运营决策中,经常考虑比较短时间内的计划安排,通过线性化 更便于应用。
乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?



资源限制
铸造工时(小时/件)
5
10
7
8000
机加工工时(小时/件)
6
4
8
12000
装配工时(小时/件)
3
2
2
10000
自产铸件成本(元/件)
3
5
4
外协铸件成本(元/件)

线性规划

线性规划
xij 0
x12 x13
线性规划的典型实例
运输问题
数学模型
10x11 min f s.t. x11 x12 x 21 x 22 x11 x 21 x12 x13 x ij x 22 x 23 0 (i 1, 2; j 12x12 9x13 x13 35 x 23 55 26 38 26 1, 2, 3) 8x 21 11x 22 13x 23
基本解不是线性规划问题的解,而是仅满足约束方程组的解
线性规划问题中解的概念
可行解、可行域
上面的分析仅考虑了约束方程组Ax=b,下面进一步考虑线性规划问题的非负 约束。我们称既满足约束方程组Ax=b,又满足非负约束x≥0的解为线性规划 问题的可行解,即可行解满足线性规划问题的所有约束。可行解的集合称为可 行域,记作:
下面将分步骤详细分析如何获得这个线性规划问题的解,同时介绍在这类问题 中的几个概念
线性规划问题中解的概念
基本解
如果线性规划问题的解存在,则它必定是满足Ax=b的有限多个“基本解”中 选出的,那么我们的第一个任务就是找出满足方程Ax=b的基本解 假设独立方程的个数为m个,故Ax=b的系数矩阵A的秩为m,于是A中必有m 个列向量是线性无关的,不妨假设A中的前m个列向量线性无关,则这m个列 向量可以构成矩阵A的m阶非奇异子矩阵,用矩阵B表示:
D x | Ax b, x 0
基本可行解
特别的,若线性规划问题的基本解能够满足线性规划问题中的非负约束,即:
xB B 1b 0
则称该解xB为基本可行解,简称基可行解,称B为可行基。基可行解的数量不 m 会超过 C n 个。显然,基本可行解一定是可行解,基可行解是可行域中一种特 殊的解
最优解

线性规划知识点

线性规划知识点

线性规划知识点一、什么是线性规划线性规划是一种数学优化方法,用于解决在给定约束条件下的线性目标函数的最优化问题。

线性规划的目标函数和约束条件都是线性的,因此可以通过线性代数的方法进行求解。

线性规划在实际问题中有广泛的应用,如生产计划、资源分配、运输问题等。

二、线性规划的基本要素1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,通常表示为Z = c₁x₁ + c₂x₂ + ... + cₙxₙ,其中 Z 为目标函数值,c₁, c₂, ..., cₙ 为系数,x₁,x₂, ..., xₙ 为决策变量。

2. 决策变量:决策变量是问题中需要决策的变量,通常表示为x₁, x₂, ..., xₙ。

决策变量的取值决定了目标函数的值。

3. 约束条件:约束条件限制了决策变量的取值范围。

约束条件可以是等式约束或不等式约束,通常表示为 a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁,a₂₁x₁ +a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂,...,aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ,其中 a₁₁, a₁₂, ..., aₙₙ 为系数,b₁, b₂, ..., bₙ 为常数。

4. 非负约束:线性规划中通常要求决策变量的取值非负,即 x₁ ≥ 0, x₂ ≥ 0, ...,xₙ ≥ 0。

三、线性规划的解法线性规划可以通过不同的方法进行求解,常见的方法包括图形法、单纯形法和内点法。

1. 图形法:图形法适用于二维或三维的线性规划问题。

首先将目标函数和约束条件转化为几何形式,然后在坐标系中绘制约束条件的图形,最后通过图形的分析找到最优解点。

2. 单纯形法:单纯形法是一种通过迭代寻找最优解的方法。

该方法从一个可行解开始,通过不断移动到相邻的可行解来逐步接近最优解。

单纯形法的核心是单纯形表,通过表格的变换和计算来确定下一个迭代点,直到找到最优解。

3. 内点法:内点法是一种通过迭代寻找最优解的方法。

线性规划知识点

线性规划知识点

线性规划知识点一、引言线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。

它在各个领域中都有广泛的应用,如经济学、工程学、管理学等。

本文将介绍线性规划的基本概念、模型建立、求解方法以及应用领域等知识点。

二、基本概念1. 决策变量:线性规划中需要决策的变量,通常用x1、x2、...、xn表示。

2. 目标函数:线性规划的目标,通常是最大化或最小化某个线性函数。

3. 约束条件:对决策变量的限制条件,通常是一组线性不等式或等式。

4. 可行解:满足所有约束条件的解。

5. 最优解:在所有可行解中使目标函数达到最大或最小值的解。

三、模型建立1. 目标函数的建立:根据实际问题确定最大化或最小化的目标函数。

2. 约束条件的建立:根据实际问题确定决策变量的限制条件。

3. 可行域的确定:将约束条件表示为几何图形,确定可行域的范围。

四、求解方法1. 图形法:通过画出可行域的几何图形,找到目标函数的最优解。

2. 单纯形法:通过迭代计算,逐步接近最优解。

3. 整数规划法:对决策变量引入整数要求,求解整数线性规划问题。

4. 网络流方法:将线性规划问题转化为网络流问题,利用网络流算法求解。

五、应用领域1. 生产计划:线性规划可以用于确定最佳的生产计划,使得生产成本最小化或产量最大化。

2. 运输问题:线性规划可以用于解决物流运输中的最优路径问题,使得运输成本最小化。

3. 资源分配:线性规划可以用于确定资源的最佳分配方案,使得资源利用率最高。

4. 投资组合:线性规划可以用于确定最佳的投资组合,使得收益最大化或风险最小化。

5. 供应链管理:线性规划可以用于优化供应链中的各个环节,实现供应链的高效运作。

六、总结线性规划是一种重要的数学优化方法,广泛应用于各个领域中。

掌握线性规划的基本概念、模型建立、求解方法以及应用领域,对于解决实际问题具有重要意义。

希望本文所介绍的知识点能够对您有所帮助。

如有任何疑问,请随时向我们提问。

线性规划的定义解析

线性规划的定义解析

线性规划的定义解析线性规划是数学和计算机科学领域中的一种优化方法,用于解决线性约束条件下的最大化或最小化问题。

它的应用非常广泛,包括生产计划、物流管理、金融投资、资源分配等多个领域。

本文将对线性规划进行详细解析,介绍其基本概念、数学模型和求解方法。

一、基本概念线性规划是在一定的约束条件下,寻找目标函数的最大值或最小值的过程。

为了方便分析,我们首先引入以下几个基本概念:1.决策变量:线性规划中需要决策的量,通常用$x_1, x_2, ...,x_n$表示,它们代表了问题的不同方面或要求。

2.目标函数:线性规划的目标函数是一个线性表达式,用于衡量问题的目标,可以是最大化或最小化一个指标。

常用的形式为$Z =c_1x_1 + c_2x_2 + ... + c_nx_n$。

3.约束条件:线性规划中的约束条件是一组限制性条件,限制了决策变量的取值范围。

常见的约束条件形式为$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \leq b_1$,$a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \leq b_2$,...,$a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \leq b_m$。

二、数学模型线性规划问题可以通过建立数学模型来描述。

其标准形式可以表示为:最大化:$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$约束条件:$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \leq b_1$$a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \leq b_2$...$a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \leq b_m$$x_1, x_2, ..., x_n \geq 0$其中,$Z$表示目标函数的值,$c_1, c_2, ..., c_n$为目标函数的系数,$a_{ij}$为约束条件的系数,$b_1, b_2, ..., b_m$为约束条件的常数项。

线性规划知识点

线性规划知识点

线性规划知识点引言概述:线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。

它在工程、经济学、管理学等领域有着广泛的应用。

本文将详细介绍线性规划的相关知识点。

一、线性规划的定义与基本概念1.1 目标函数:线性规划的目标是通过最大化或最小化目标函数来达到最优解。

目标函数是一条线性方程,表示需要优化的目标。

1.2 约束条件:线性规划问题还需要满足一组线性约束条件,这些条件对决策变量的取值范围进行了限制。

1.3 决策变量:决策变量是指在线性规划问题中需要进行决策的变量,其取值将影响目标函数的值。

二、线性规划的基本模型2.1 标准型线性规划:标准型线性规划是指目标函数为最小化问题,约束条件为等式形式的线性规划问题。

2.2 松弛变量与人工变量:为了将约束条件转化为等式形式,我们引入松弛变量和人工变量。

2.3 基变量与非基变量:在标准型线性规划中,基变量和非基变量是用来描述决策变量的状态的。

三、线性规划的解法3.1 单纯形法:单纯形法是一种常用的线性规划解法,通过迭代计算基变量和非基变量的取值,直到找到最优解。

3.2 对偶性理论:线性规划问题与其对偶问题之间存在着对偶关系。

对偶性理论可以帮助我们求解原始问题的最优解。

3.3 整数线性规划:当决策变量需要取整数值时,我们可以使用整数线性规划方法来求解。

整数线性规划问题更加复杂,通常需要使用分支定界等方法求解。

四、线性规划的应用领域4.1 生产计划:线性规划可以用于优化生产计划,通过合理安排生产资源和生产量,实现最大化利润或最小化成本。

4.2 运输问题:线性规划可以用于解决运输问题,通过合理分配运输量和运输路径,实现最优的物流方案。

4.3 资源分配:线性规划可以用于资源分配问题,如人力资源、资金分配等,通过最优化决策,实现资源的合理利用。

五、线性规划的局限性与拓展5.1 非线性规划:线性规划只适用于目标函数和约束条件为线性关系的问题。

对于非线性问题,我们需要使用非线性规划方法进行求解。

线性规划

线性规划
Байду номын сангаас步骤
线性规划在 实际生活中 的应用案例
投资决策
投资目标:最大化收益或最小化风险 投资策略:选择投资项目、分配投资资金、设定投资期限等
投资风险:市场风险、利率风险、汇率风险等 投资评估:使用线性规划模型评估投资方案,比较不同方案的优劣
B
题转化为几何问题,从而找到最
优解。
C
图解法的基本步骤包括:确定可 行域、找出最优解、验证最优解。
图解法适用于求解线性规划问题
D
的特殊情况,如线性规划问题的
约束条件为线性等式或不等式。
单纯形法
基本思想: 通过迭代求 解线性规划 问题的最优

步骤:确定初 始基,计算目 标函数值,更 新基,重复以 上步骤直到找
线性规划的优缺点
优点: 缺点:
适用于解决线性 问题
计算速度快,易 于实现
结果精确,易于 解释
只能解决线性问 题,不适用于非
线性问题
计算复杂度高, 对于大规模问题
可能难以求解
结果可能不唯一, 需要进一步分析 才能得到最优解
图解法
A
图解法是一种直观、形象的求解 线性规划问题的方法。
图解法通过画图,将线性规划问
划问题
迭代求解:通过 迭代公式,更新
当前点
重复步骤b-d, 直到找到最优解
生产计划
线性规划在生产计划中 的应用
线性规划可以帮助确定 最优的生产方案
线性规划可以优化生产 成本和生产效率
线性规划可以帮助解决 生产过程中的约束问题
资源分配
线性规划在 资源分配中
的应用
线性规划的 目标函数和
约束条件
线性规划的 求解方法和

线性规划知识点

线性规划知识点

线性规划知识点一、概述线性规划是数学规划的一种重要方法,用于解决线性约束条件下的最优化问题。

它的基本思想是在一组线性约束条件下,找到使目标函数达到最大或者最小值的变量取值。

二、基本概念1. 目标函数:线性规划的目标是最大化或者最小化一个线性函数,称为目标函数。

通常用字母 Z 表示。

2. 约束条件:线性规划的变量需要满足一组线性不等式或者等式,称为约束条件。

通常用字母 Ai 表示。

3. 变量:线性规划的问题中,需要确定的变量称为决策变量。

通常用字母 Xi表示。

三、标准形式线性规划问题通常可以转化为标准形式,以便于求解。

标准形式的线性规划问题包括以下要素:1. 目标函数:目标函数是一个线性函数,需要最大化或者最小化。

2. 约束条件:约束条件是一组线性不等式或者等式。

3. 变量的非负性:变量需要满足非负性约束,即变量的取值不能为负数。

四、线性规划求解方法线性规划问题可以通过以下方法求解:1. 图形法:对于二维线性规划问题,可以通过绘制约束条件的直线和目标函数的等高线,找到最优解的位置。

2. 单纯形法:单纯形法是一种常用的求解线性规划问题的算法。

它通过迭代计算,逐步接近最优解。

3. 整数规划法:当决策变量需要取整数值时,可以使用整数规划方法求解。

整数规划问题相对于线性规划问题更加复杂,通常需要使用分支定界等方法求解。

五、线性规划的应用线性规划在实际问题中有广泛的应用,包括但不限于以下领域:1. 生产计划:线性规划可以匡助确定最优的生产计划,使得生产成本最低或者产量最高。

2. 运输问题:线性规划可以用于解决货物运输的最优路径问题,以降低运输成本。

3. 金融投资:线性规划可以用于确定最优的投资组合,以最大化收益或者最小化风险。

4. 资源分配:线性规划可以匡助确定资源的最优分配方案,以满足需求并最大化效益。

5. 排产问题:线性规划可以用于解决生产设备的排产问题,以最大化生产效率。

六、线性规划的局限性尽管线性规划具有广泛的应用领域,但它也有一些局限性:1. 线性假设:线性规划假设目标函数和约束条件都是线性的,但实际问题中往往存在非线性关系。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单的线性规划(三)
生产实际中有许多问题都可以归结为线 性规划问题,其中有两类重要实际问题: 第一种类型是给定一定数量的人力、物力 资源,问怎样安排运用这些资源,能使完 成的任务量最大,收到的效益最大;第二 种类型是给定一项任务,问怎样统筹安排, 能使完成这项任务的人力、物力资源量最 小。
例1:某工厂生产甲、乙两种产品.已知生产甲种 产品1t需耗A种矿石10t、B种矿石5t、煤4t;生产 乙种产品1t需耗A种矿石4t、B种矿石4t、煤9t.每 1t甲种产品利润是600元,每1t乙种产品的利润 是1000元.工厂在生产这两种产品的计划中要求 消耗A种矿石不超过300t、B种矿石不超过200t、 煤不超过360t.甲、乙两种产品应各生产多少(精 确 到0.1t),能使利润总额达到最大?
例2.题见课本P63 分析与解答:
1.建立目标函数 设需第一种钢板x张,第二种钢板y张,那么: z=x+y
2.确定线形约束条件
2 x y 15, x 2 y 18, x 3 y 27, x 0, y 0.
3.求出可行域上的最优解
y
zmax 41840 (元)
答:甲产品为 12.4t,乙产品为 34.4t时,zmax 41840 元
例2.要将两种大小不同的钢板截成A 、B、 C三种规格,每张钢板可以同时截得三种规 格的小钢板的块数如下表所示:
A规格 第一种钢板 第二种钢板 B规格 C规格
2 1
ห้องสมุดไป่ตู้
1 2
1 3
今需要A 、B、C三种规格的成品分别为 15、18、27块,问各截这两种钢板多少 张可得所需三种规格成品,且使得所用 钢板张数最少?
道:“这些家仆们是哪里来的?”“是京城壹户人家,得知宝光寺遭难,怕顾不上今年的施粥,就自行做好带来,帮了寺里的大忙了。”“做好 了自行带来的?”“是的,王爷。”闻听此言,王爷更是懊悔不已。这些日子太忙,居然忘记了宝光寺的事情,太惭愧了!忙问:“真是有心人, 本王自愧不如。请问这是哪户人家?本王要好好感谢壹番才是。”“王爷真是客气了,您是做大事的贵人。不过,老纳也是要说感谢,可是那户 人家死活不肯留名,老纳也不好强求,勉为其难不是出家人的本分。不过,那家的丫鬟也来了,现在还在后院歇息。王爷要是„„”王爷壹听喜 出望外,立即派秦顺儿去打探。秦顺儿回复得跟主持壹样,对方死活不肯留下府名。王府的人出马都被拒绝,他的脸上壹阵红壹阵白的,很是觉 得面子上挂不住,秦顺儿这奴才干什么吃的,这么点儿小事儿还办不利落?这让爷的脸往哪儿搁?正待责问之际,忽见壹个丫鬟打扮的女子从眼 前走过,这人怎么这么眼熟呢?好像在哪儿见过似的?噢,想起来了,这个人不就是,不就是„„情急之下,话到嘴边,可就是说不出来个子丑 寅卯!第壹卷 第十壹章 缘分唉,这不就是上次在寺院救火的时候见过的那个年家的丫头!王爷不知道她叫什么,又急着想拦住她,急得直哎哎。 秦顺儿也看到了,自是明白主子的意思,赶快冲上前去。因为他也不知道怎么称呼这个丫环,又着急完成爷的吩咐,只好壹边口中称呼着:“姑 娘,这边请,我家爷有话相问。”壹边不由分说,将含烟强行领到了王爷的面前。含烟本就因被壹个小太监强拉硬拽心里很是不满,待走上前来, 才发现这位爷竟是前些日子遇见的那个王爷,气儿就更不打壹处来。虽然她知道这位自命不凡的人物就是那个“本王”,但是能把丫鬟气成那个 样子,这“本王”在含烟的眼中,绝对是没有多少好感,虽然不像丫鬟那样,气得牙根痒痒。当然了,如果含烟知道这“本王”就是当今圣上的 皇四子,和硕雍亲王的话,肯定不至于这么壹脸爱搭不理了。倒不是因为含烟势利,而是不想给丫鬟找麻烦而已。“请问这位王爷大人,这么急 急火火地找来小女子有何贵干?”“本王只是想问壹下,今天这个施粥,是你们府上置备的?”“回大人,确实如此。”“为什么?”“什么为 什么?”“本王是想知道,你们府上怎么想起来施粥的事情。”“这当然是我们丫鬟菩萨心肠,大慈大悲,看不得谁家有难,也见不得旁人受 苦。”这些话,哪里是含烟壹个小丫环能说得出来的,完全是因为她天天跟冰凝在壹起,耳濡目染的结果。结果却是这番话说下来,简直让王爷 听呆了:果然是大户人家,连丫环说出来的话都这么头头是道,在情在理,很是佩服。而且他急于知道事情的原
P61例3:
解:设生产甲,乙两种产品分别为x( t), y (t ),利润总额为z元,则
1 0x 4 y 3 0 0 5x 4 y 2 0 0 4 x 9 y 3 6 0 x 0 y 0
P61例3:
解:设生产甲,乙两种产品分别为x( t), y (t ),利润总额为z元,则
4.求出满足条件的整数解 1.作出可行域 2.作直线l:x+y=0 18 39 3.平移直线l至可行域上的点A( 5 , 5 ).
· A · ·
o
2x+y=15
x+3y=27 X+2y=18
x
P64 练习: 1 ,2
解决线性规划问题的图解法的一般步骤:
1.根据题意列表; 2.找出x,y满足的不等式组; 3.由线性约束条件画出可行域; 4.令z=0,再利用平移法找到最优解所对应的点;
10x 4 y 300 5x 4 y 200 4 x 9 y 360 x 0 y 0
z=600x+1000y
y
10
O 10
x 4x 9 y 360 5x 4 y 200 10x 4 y 300
P61例3:
解:设生产甲,乙两种产品分别为x( t), y (t ),利润总额为z元,则
10x 4 y 300 5x 4 y 200 4 x 9 y 360 x 0 y 0
z=600x+1000y
y
A(12.4,34.4)
10
4 x 9 y 360
x
O 10
当x 12.4, y 34.4时
5x 4 y 200 10 x 4 y 300
5.求出最优解所对应点的坐标,代入z中,即得 目标函数的最大值和最小值.
线性规划的可行域一定是凸形,其最优解一定 在顶点处出现,因此,在找最优解或检验时, 可将顶点的坐标代入目标函数计算
P65 作业: 2,3
地暖是地板辐射采暖的简称,英文为Radiant Floor Heating,是以整个地面为散热器,通过地板辐射层中的热媒,均匀加热整个地面,利用地面 自身的蓄热和热量向上辐射的规律由下至上进行传导,来达到取暖的目的。 水地暖是指把水加热到一定温度,输送到地板下的水管散热网络,通过地板发热而实现采暖目的的一种取暖方式。 低温地面热媒在室内形成脚底至头部逐渐递减的温度梯度,从而给人以脚暖头凉的舒适感。地面辐射供暖符合中医“温足顶凉”的健身理论,是 目前最舒适的采暖方式,也是现代生活品质的象征。 ; / 郑州地暖 jfh95mdg 从热媒介质上分为水地暖和电地暖两大类,从铺装结构上分为湿式地暖和干式地暖两种,干式地暖不需要豆石回填(属于超薄型);从表面饰材 上分为地板型地暖和地板砖型地暖;从功能上分为普通地暖和远红外地暖。
相关文档
最新文档