整数指数幂ppt

合集下载

整数指数幂优秀课件

整数指数幂优秀课件
第十五章 分 式 15.2.3 整数指数幂
情景导入
看谁算的又对又快
1a3 • a2 2a0 3a7 a5 4a3 • a3
a 思考
m 中指数 m 可以是负整数吗?如果可以,那么负整数指数幂 
表示什么?
am
探究负指数幂的意义
注中意指数ann的取值范围推广到全体整数 .
例 a 1
a 5
例1 计算:
(1) a2 a5; (3) (a1b2 )3 ;
(2)
b3
a2
2
;
(4) a2b2 (a2b2 )3.
例2 计算:
(1) 2
1 1
3
π 3.14 0
9 12 ;
(2)
0
2016 π
9 3 27 21
2
2 2
2.
课后思考
1.若 a a1 3 ,试求 a2 a2 的值.
2、科学计数法绝对值大于10的数记成a×10n的形式,其中1≤a<10,n是正 整数,那n可以为负正数吗?如果n为负整数又表示什么呢?
课堂小结
整数指数幂


1.零指数幂:当a≠0时,a0=1.
2.负整数指数幂:当n是正整数
时,a-n= 1
an
(a≠0),
整数指数幂的运算性质:
(1)am·an=am+n(m,n为整数,a≠0) (2)(ab)m=ambm(m为整数,a≠0,b≠0) (3)(am)n=amn(m,n为整数,a≠0)
这就是说,a-n (a≠0)是an的倒数.
整数指数幂的运算法则
a3 • a 5
a0 a 5
a 3 • a 5
典例精析

《整数指数幂》_优秀课件

《整数指数幂》_优秀课件
【获奖课件ppt】《整数指数幂》_优 秀课件1 -课件 分析下 载
【获奖课件ppt】《整数指数幂》_优 秀课件1 -课件 分析下 载 【获奖课件ppt】《整数指数幂》_优 秀课件1 -课件 分析下 载
8.将(13)-1,(-3)0,(-3)-2 这三个数按从小到大的顺序排列为( C ) A.(-3)0<(13)-1<(-3)-2 B.(13)-1<(-3)0<(-3)-2 C.(-3)-2<(-3)0<(13)-1 D.(-3)0<(-3)-2<(13)-1
【获奖课件ppt】《整数指数幂》_优 秀课件1 -课件 分析下 载
【获奖课件ppt】《整数指数幂》_优 秀课件1 -课件 分析下 载 【获奖课件ppt】《整数指数幂》_优 秀课件1 -课件 分析下 载
9.计算 x3y(x-1y)-2 的结果为( A )
x5
y
y5
x5
A. y B.x5 C.x2 D.y2
10.计算: (1)(a-3b)2·(a-2b)-3;
解:原式=1b (2)(2m2n-3)-2·(-mn2)3÷(m-3n)2.
【获奖课件ppt】《整数指数幂》_优 秀课件1 -课件 分析下 载 【获奖课件ppt】《整数指数幂》_优 秀课件1 -课件 分析下 载
第十五章 分 式
15.2 分式的运算
15.2.3 整数指数幂 第1课时 负整数指数幂
【获奖课件ppt】《整数指数幂》_优 秀课件1 -课件 分析下 载 【获奖课件ppt】《整数指数幂》_优 秀课件1 -课件 分析下 载
D.1a
【获奖课件ppt】《整数指数幂》_优 秀课件1 -课件 分析下 载 【获奖课件ppt】《整数指数幂》_优 秀课件1 -课件 分析下 载

《整数指数幂》优秀课件1

《整数指数幂》优秀课件1
《整数指数幂》优秀课件1
《整数指数幂》优秀课件1
5.计算:(2 3-1)0+|-6|-8×4-1+ 16. 解:原式=1+6-8×14+4=9
《整数指数幂》优秀课件1
《整数指数幂》优秀课件1
知识点 2:整数指数幂的运算
6.计算(a-1b2)3 的结果是( D )
A.a3b6
B.a-3b8
C.-a3b6
11.已知式子(x2-x-1)3 -1+(x-2)0 有意义,求 x 的取值范围.
解:由题意得2xxx- --213≠ ≠≠000, ,,解得xxx≠ ≠ ≠3221, , ,∴x≠32且 x≠2 且 x≠1
《整数指数幂》优秀课件1
《整数指数幂》优秀课件1 《整数指数幂》优秀课件1
《整数指数幂》优秀课件1
8.将(13)-1,(-3)0,(-3)-2 这三个数按从小到大的顺序排列为( C ) A.(-3)0<(13)-1<(-3)-2 B.(13)-1<(-3)0<(-3)-2 C.(-3)-2<(-3)0<(13)-1 D.(-3)0<(-3)-2<(13)-1
《整数指数幂》优秀课件1
《整数指数幂》优秀课件1
9.计算 x3y(x-1y)-2 的结果为( A )
x5
y
y5
x5
A. y B.x5 C.x2 D.y2
10.计算: (1)(a-3b)2·(a-2b)-3;
解:原式=1b (2)(2m2n-3)-2·(-mn2)3÷(m-3n)2.
解:原式=-14m5n10
《整数指数幂》优秀课件1
《整数指数幂》优秀课件1
12.已知x+x-1=3,求x2+x-2的值. 解:∵x+x-1=3, ∴(x+x-1)2=9, ∴x2+2x·x-1+x-2=9, ∴x2+x-2=7

整数指数幂的运算法则PPT教学课件

整数指数幂的运算法则PPT教学课件

1 由于对于 a 0 m,n都是整数,有
am an
am
an
am(n)
amn
因此同底数幂相除的运算法则被包含在公式
am an amn (a 0, m, n都是正整数) 中
2 由于对于a≠0,b≠0,n是整数,有
a b
n
a b1 n an
b1
n
an
bn
an bn
因此分式的乘方的运算法则被包含在公式.
三、实验方案的设计和仪器的连接
2、检查装置的气密性
方法二、注水法: 答案(1)关闭弹簧夹时,反应产生的气体使试管内 液面上的压力增加,所以液面下降。 (2)塞紧橡皮塞,夹紧弹簧夹后,从漏斗注入一定 量的水,使漏斗内的水面高于试管内的水面,停止加 水后,漏斗中与试管中的液面差保持不再变化,说明 装置不漏气。
abn anbn (a 0, b 0, n都是正整数) 中
设a≠0,b≠0,计算下列各式:
1 a7 a3 2 a3 2 3 a3b a1b 2
解 1 a7 a3 a7(3) a4
4
2a b
3
2
a3 2 a(3)(2) a6
3 a3b a1b 2 a3b a2b2 a b 32 1(2) a5b1 a5 b






































三、实验方案的设计和仪器的连接 注意导管在装置连接中的使用方法

《整数指数幂》PPT课件 人教版八年级数学上册

《整数指数幂》PPT课件 人教版八年级数学上册

同底数幂的除法 am÷an=am-n(a≠0,m,n是整数)
n
分式的乘方
a
an
b b n ( n是整数)

问题7 能否将整数指数幂的5条性质进行适当合并?
根据整数指数幂的运算性质,当m,n为整数时,
a m a n a m n , a m a - n a m (-n)=a m -n ,因此,
(3) (ab)n a nb n
(n 是整数);
(4) a m a n a m n (m,n 是整数);
a n
an
(5) ( ) n
b
b
(n 是整数).
例9
计算:
(1)a 2 a 5;
解:(1)a 2 a 5 a 2 5
b 3 2
(2)( 2 );
a
1
7
1
a2
(1)
问题4 如果把正整数指数幂的运算性质 a m a n a m n
(a≠0,m,n 是正整数,m >n)中的条件m >n 去掉,
即假设这个性质对于像 a 3 a 5 的情形也能使用,如何计算?Biblioteka a3÷a5=a3-5=a-2
(2)
a
2
1
2
a
若规定a-2=
1
a2
(a≠0),就能使am÷an=am-n 这条性质也
1
1
(2)原式 1 3 3 2
2
4
13

2
4
2
2
2 .
5.若 a a 1 3 ,试求 a 2 a 2 的值.
解: a a 1 3,

《整数指数幂》.ppt

《整数指数幂》.ppt
(6×10-3)×(1.8×10-4)
本课时我们学习了 一、整数指数幂
1.零指数幂:当a≠0时,a0=1. 2.负整数指数幂:当n是正整数时a1n,(a≠a0-)n,= 3.整数指数幂的运算性质: (1)am·an=am+n(m,n为整数,a≠0) (2)(ab)m=ambm(m为整数,a≠0,b≠0) (3)(am)n=amn(m,n为整数,a≠0)
-4-2=
1 16
.
(4)
1 1
_2
_
,-
3
-2=
16 _9_
, b
-1=
a _b_
2
4
a
例2、把下列各式转化为只含有正 整数指数幂的形式
1、a-3
1 a3
4、
1 3
x2
1 3x 2
2、x3y-2
x3 y2
5、 1 3x2
x2 3
3、2(m+n)-2 2 6、(3x)2 1
mn
9x 2
例1 计算:
类似:
类似地,我们可以利用10的负整数次幂, 用科学记数法表示一些绝对值较小的数,
即将它们表示成a×10-n的形式,其中n 是正整数,1≤∣a∣<10.
例4 用科学记数法表示下列各数:
(1)0.005
小数点最后的位置
0.005
小数点原本的位置
小数点向右移了3位
0.005 = 5 ×10-3
(2)0.020 4
am (m是正整数)
am= 1 (m=0) a1m(m是负整数)
例1 填空:
1
1
1
(1) 2-1=__2 _, 3-1=__3 _, x-1=__x_.
(2) (-2) -1=__12_, (-3) -1=__13_, (-x) -1=__1x_.

整数指数幂(第1课时)人教版数学八年级上册PPT课件

整数指数幂(第1课时)人教版数学八年级上册PPT课件

提高练习题
稍复杂的乘法与 除法
针对稍复杂的同底数幂乘 除法 练习解决多步骤的乘除问 题 提升解题逻辑和运算能力
多步骤乘方运算
学习多步骤乘方运算的技 巧 练习相关的多步骤乘方题 目 加深对乘方运算规则的理 解
实际问题应用
将整数指数幂应用于实际 问题 分析并解决生活中的数学 问题 培养解决问题的能力
思考与挑战
错误纠正方法
说明纠正错误的方法和步骤 指导学生如何自我纠正和复习 鼓励学生从错误中学习和进步
谢谢大家
整数指数幂(第1课时)人 教版数学八年级上册PPT课 件
主讲人:xxx 时间:20XX.XX
CONTENTS
目录
整数指数幂概念导 01 入
整数指数幂的计算 02 方法
03
整数指数幂的练习 与巩固
整数指数幂概念导入
整数指数幂的定义
幂的概念
幂是乘方的结果 它表示一个数自乘若干次的结果 例如(2^3 = 8),8就是2的三次幂
指数在科学领域表示增长率、衰减率等 例如细菌的繁殖可以用指数来表示 指数函数在物理、化学和生物等科学领域广泛应用
整数指数幂与其他数学概念的联系
整数指数幂与对数函数互为逆运算 指数函数是函数学习中的重要部分 掌握整数指数幂有助于学习更高级的数学概念
整数指数幂的计算方法
同底数幂的乘法
基本概念
同底数幂的乘法是指当底数相同时,指数 相加的规则
整数指数幂的应用
简化数学表达式
利用指数法则合并同类项 例如将(a^2 \cdot a^3)简化为(a^5) 简化表达式有助于解决更复杂的问题
解决实际问题
在科学和工程计算中,指数用于表示非常大或非常小的数 例如(10^{- 6})用于表示微小的量 利用指数可以精确地表示和计算这些量

整数指数幂PPT课件

整数指数幂PPT课件
10-8= ___________.
10-4= ____0_._0_0_0_1__;
议一议:指数与运算结果的0的个数有什么关系?
通过上面的探索,你发现了什么?:
一般地,10的-n次幂,在1前面有__n__个0.
想一想:10-21的小数点后的位数是几位?1前面有几个零?
科学记数法
用科学记数法表示一些绝对值较大的数的方法: 即利用10的正整数次幂,把一个绝对值大于10的数表示成 a×10n的形式,其中n是正整数,1 ≤ ︴a ︴<10. n等于原
1 100
1
0.001 1000 10-3
10-2 ;
所以, 0.0000864=8.64 ×0.00001=8.64 ×10-5.
类似地,我们可以,即将它们表示成a×10- n的形式,其中n是正整数, 1≤∣a∣<10.
算一算:
10-2= ___0_._0_1_____; 0.00000001
(3)(ab)n=anbn ( n是整数).
科学记数法
忆一忆: 科学记数法:绝对值大于10的数记成a×10n的形式, 其中1≤a<10,n是正整数.
例如,864000可以写成 8.64×105. 思考:
怎样把0.0000864用科学记数法表示?
合作探究
因为
0.1 1 101; 10
0.01
用科学记数法 表示绝对值小 于1的数
绝对值小于1的数用科学记数法表示为a×10-n 的形式,1≤│a│ <10,n为原数第1个不为0的数 字前面所有0的个数(包括小数点前面那个0).
知识模块二 整数指数幂运算法则的综合运用
思考
你现在能说出m分别是正整数,0,负整数时,am各表示什

整数指数幂PPT人教版1

整数指数幂PPT人教版1
第十五章 分式
第9课 整数指数幂
新课学习
知识点1.负指数幂的计算
我们知道:a5÷a2=a5-2=a3, 推广 a2÷a5=a2-5=a-3,
一般地:
(a≠0,n 为正整数).
1. (例 1)计算:
(1)5-2=

(2)2-3=

(3)(-5)-2=

(4)(-2)-3=

1. (例 1)计算:
C. -2÷ =-1
D. 2-1- =0
整数指数幂PPT人教版1(精品课件)
整数指数幂PPT人教版1(精品课件)
10. 计算:
整数指数幂PPT人教版1(精品课件)
8 -8ቤተ መጻሕፍቲ ባይዱa2
整数指数幂PPT人教版1(精品课件)
10. 计算:
5 -2
整数指数幂PPT人教版1(精品课件)
整数指数幂PPT人教版1(精品课件)
的结果是( C ) B. D.
整数指数幂PPT人教版1(精品课件)
整数指数幂PPT人教版1(精品课件)
8. (-2)-1=( C )
A. 2
B.
C. -
D. -2
整数指数幂PPT人教版1(精品课件)
整数指数幂PPT人教版1(精品课件)
9. 下列计算正确的是( D )
A. -1-1=0
B. 32=6
25 25
整数指数幂PPT人教版1(精品课件)
2. 计算:
解:原式=-27-2+1×(-4) =-27-2-4 =-33.
整数指数幂PPT人教版1(精品课件)
整数指数幂PPT人教版1(精品课件)
知识点2.整数指数幂的运算
整数指数幂的运算性质:(m,n 为整数)

整数指数幂课件

整数指数幂课件

性质
任何非零数的0次幂都等于1,即a^0=1 (a≠0)。
整数指数幂的运算规则
运算±a^n=a^(m±n)
(a≠0,m,n为正整数
)。
幂的乘法:
02
(a^m)^n=a^(m×n)(
a≠0,m,n为正整数)

幂的除法:
04
a^m/a^n=a^(m-n)(
a≠0,m,n为正整数)。
在计算整数指数幂时,应遵循先 乘除后加减、先指数后根号的运
算顺序规则。
运算优先级
当指数幂运算与其他数学运算混合 时,应遵循数学运算的优先级规则 ,先进行指数幂运算,再进行其他 运算。
括号的作用
在运算过程中,括号可以改变运算 的优先级,将括号内的表达式优先 计算。
负整数指数幂的意义
定义
负整数指数幂表示倒数,即 $a^{-n} = frac{1}{a^n}$,其中 $a$是正实数且$n$是正整数。
意义
负整数指数幂的意义在于表示一 个数的倒数的正整数次幂,是数
学中一种常见的表示方法。
应用
负整数指数幂在数学、物理和工 程等领域中有着广泛的应用,如 概率论、复变函数、电路分析等

无穷大与无穷小的关系
01
无穷大的定义
无穷大表示一个数随着某变量的增大而无限增大,即对于任意正实数
$M$,总存在某个正实数$N$,使得当$x > N$时,$f(x) > M$。
01 同底数幂的乘法性质
同底数幂的乘法性质是指$a^m times a^n = a^{m+n}$,这个性质在解决数学问题时非常有 用。
02 同底数幂的除法性质
同底数幂的除法性质是指$a^m / a^n = a^{mn}$,这个性质在解决数学问题时也非常有用。

整数指数幂 PPT课件

整数指数幂  PPT课件
人教版八上《第15章 分式 》
知识回顾
关于整数指数幂运算, 我们已经研究了什么内容?
知识回顾
am an amn (m, n是正整数)
知识回顾
(am )n amn (m, n是正整数)
知识回顾
(ab)n anbn (n是正整数)
知识回顾
am an amn (a 0, m, n是正整数,m n)
(5)

a b
n


an bn
(n是正整数)
想一想
对于am,当m=7,0,-7时,你能分别说 出它们的意义吗?
课堂练习
1. 填空:
(1)30= 1 , (-3)0= 1 , b0= 1 ;
1
1
1
(2)3-2= 9 ,(-3)-2= 9 ; b-2= b2 (b≠0)
2.
1 a 2

a 2 (a≠0)
a 2

1 a2
1
1
(3)2Байду номын сангаас32
知识回顾
(1)am an amn (m, n是正整数)
(2)(am )n amn (m, n是正整数)
(3)(ab)n anbn (n是正整数)
(4)am an amn (a 0, m, n是正整数,m n)
(5)

a b
n


an bn
(n是正整数)
(2)(a1b2 )3
例9.计算:
(1)a2 a5
(2)(a1b2 )3
(3)

b3 a2
2

(4)a2b2 (a2b2 )3
畅所欲言!

初中数学《整数指数幂》_公开课PPT1

初中数学《整数指数幂》_公开课PPT1

利am用÷a分n=式am的-n约(m分,n可是知整,数当,aa≠≠00) 时,
.
∴ . (3)

(23) ;;
62n
6-2
1 62
1 36
(2)( a )-n ( b )n ; ba
(3)ba--mn
bm an
.
(1)若a为分数,则可以利用 a-n 正整数)进行转化,特别地,a-1 1
a1n(a≠0,n为 .
a
(2)负整数指数幂运算结果的符号的确定:在a-n
中,当a<0时,若n为偶数,则a-n >0,若n为奇数,
则a-n <0.
八年级上册 RJ
分式的运算
整数指数幂
初中数学
知识回顾
同底数幂的乘法性质: 同底数幂相乘,底数不变,指数相加. 符号表示:am an a(mn)(m,n都是正整数).
幂的乘方的性质: 幂的乘方,底数不变,指数相乘. 符号表示:(am )n amn(m,n都是正整数).
积的乘方的性质: 积的乘方,等于把积的每一个因式分别乘方,再把所 得的幂相乘. 符号表示:(ab)n anbn(n是正整数).
1 b 解:(3)
符号表示:
(a≠0)-. 2 2
2 ;-2 -3
-2 2 -6 6
-8 8
8 8
(4) a b (a b ) a b a b a b b . ∴ -n+3=4,解得n=-1.
8
8
a a (4)
.
随堂练习
1.计算:
(1) x-3 x2; (2)a-4
a3;
(3)
(
x2 y3
3
2
解:-(- 1)-1 -5 (-1)0 -(1)-2
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(a-3)2=
(ab)-3= a-3÷a-5=
(4)am÷an=am-n (a≠0)
a a (5)( b ) b
n
n
n
(b≠0)
当a≠0时,a0=1。 (6)
a ( ) b
2
例题: (1) (a-1b2)3;
(2) a-2b2 (a2b-2)-3 跟踪练习: (1) x2y-3(x-1y)3;

a3 a-5 = a-2
● ●

am an=am+n,这条性质对
于m,n是任意整数的情形 仍然适用。
a-3 a-5 = a-8

a0 a-5 = a-5

整数指数幂有以下运算性质: (1)am·n=am+n (a≠0) a a-3·-9= a (2)(am)n=amn (a≠0) (3)(ab)n=anbn (a,b≠0)
科学计数法
光速约为3×108米/秒 太阳半径约为6.96×105千米 目前我国人口约为6.1×109 小于1的数也可以用科学计数法表示。 1 0.00001=105 = 10-5 a×10-n 0.0000257=
a 是整数位只有一位的正数,n是正整数。
2.57 105
= 2.57×10-5


正整数指数幂有以下运算性质: (1)am·n=am+n (a≠0 m、n为正整数) a (2)(am)n=amn (a≠0 m、n为正整数)


(3)(ab)n=anbn (a,b≠0 m、n为正整数)
(4)am÷an=am-n (a≠0 m、n为正整数且m>n)
a a (5)( b ) b
n
a n 1 (a≠0) an
a 5 1 a5
1 例如: a1 a
引入负整数指数幂后,指数的取值范围就扩大到全体整数。
am am=
(m是正整数)
(m=0) 1 (m是负整数) am
1


(1)32=_____, 30=___, 3-2=_____; (2)(-3)2=____,(-3)0=___,(-3)-2=_____; (3)b2=_____, b0=____, b-2=____(b≠0).

(2) (2ab2c-3)-2÷(a-2b)3
基础题:
课堂达标测试
(2) (-a2b)2· 2b3)3÷(-ab4)5 (-a
1.计算: (1)(a+b)m+1· (a+b)n-1; (3) (x3)2÷(x2)4·0 x
提高题:
(4) (-1.8x4y2z3) ÷(-0.2x2y4z) ÷(-1/3xyz)
n
n
( b≠0 ,n是正整数)
当a≠0时,a0=1。(0指数幂的运算) (6)

a5÷a3=a2
a3÷a5=a3-5=a-2 a3÷a5=
a3 a5

a3÷a5=?
am÷an=am-n (a≠0 m、n为正整数且m>n)
1 a3 = 3 2 2 a a a
2 1 a a2
n是正整数时, a-n属于分式。并且
课堂练习
基 础 题
1.用科学计数法表示下列数: 0.000 000 001, 0.001 2,
0.000 000 345 ,
0.000 000 010 8
-0.000 03,
3780 000
1纳=10-9
1亿=108
2.计算: (1)(2×10-6) ×(3.2×103); (2) (2×10-6)2÷(10-4)3
3.(提高题)用科学计数法把0.000009405 表示成9.405×10n,那么n=___.
课后练习(轻松练习30分25页)

n 1 a an

(a≠0)
(1)n是正整数时, a-n属于分式。并且
(2)科学计数法表示小于1的小数: a×10-n
(a 是整数位只有一位的正数,n是正整数。)
2
2.已知 b 2
(a b 1) 0,求a51÷a8的值
3.计算:xn+2·n-2÷(x2)3n-3; x 4.已知:10m=5,10n=4,求102m-3n.
兴趣探索
5.探索规律:31=3,个位数字是3;32=9,个位 数字式9;33=27,个位数字是7;34=81,个位 数字是1;35=243,个位数字是3;36=729,个 位数字是9;……那么,37的个位数字是 ______,320的个位数字是______。
对于一个小于1的正小数,如果小数 点后至第一个非0数字前有8个0,用科学 计数法表示这个数时,10的指数是多少? 如果有m个0呢?
2.7×10-9 0.000 000 0027=________,
3.2×10-7 0.000 000 32=________, 10 -(m+1) 0.000 000……001=________, m个0
相关文档
最新文档