答案 期末练习卷(数列)2-等差、等比
等差等比数列综合习题
等差、等比数列综合习题一、选择题1、数列1614,813,412,211…前n 项的和为( ) A 、2212n n n ++ B 、12122+-+n n n C 、n n n 2122-+ D 、1212)1(+--n n n 2、三个不同实数c b a ,,成等差数列,b c a ,,又成等比数列,则=ba ( ) A 、47 B 、4 C 、-4 D 、2 3、在等差数列}{n a 中,已知30201561=+++a a a a ,则数列的前20项和S 20=( )A 、100B 、120C 、140D 、1504、已知数列}{n a 的601-=a ,31-=-n n a a ,那么++||||21a a …||30a +=( )A 、-495B 、765C 、1080D 、31055、某企业的生产总值月平均增长率为p%,则年平均增长率为( )A 、12p%B 、12%)1(p +C 、1%)1(11-+p D 、1%)1(12-+p6、设n S 是等差数列}{n a 的前n 项和,已知331S 与441S 的等比中项为3531,51S S 与441S 的等差中项为1,求通项n a 。
7、设有数列,,21a a …n a …又若23121,,a a a a a --…1--n n a a 是首项为1,公比为31的等比数列。
(1)求n a (2)求++21a a …n a +8、在等比数列}{n a 中,已知2721154321=++++a a a a a ,482111111154321=++++a a a a a ,求3a 。
9、已知两个数列}{n a ,}{n b 满足关系式)(3212121*∈+⋯++++⋯++=N n n na a a b n n ,若}{n b 是等差数列,求证}{n a 也是等差数列。
10、已知数列}{n c 其中n n n c 32+=且数列}{1n n pc c -+为等比数列。
等差等比数列练习题(含答案)
一、选择题1、如果一个数列既是等差数列,又是等比数列,则此数列( )(A )为常数数列 (B )为非零的常数数列(C )存在且唯一 (D )不存在2.、在等差数列{}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为( )(A )13+=n a n (B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则yc x a+的值为( )(A )21(B )2-(C )2(D ) 不确定4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项,y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( )(A )成等差数列不成等比数列 (B )成等比数列不成等差数列 (C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列5、已知数列{}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为( )(A )22-=n a n (B )28-=n a n (C )12-=n n a (D )n n a n -=2 6、已知))((4)(2z y y x x z --=-,则( )(A )z y x ,,成等差数列 (B )z y x ,,成等比数列(C )z y x 1,1,1成等差数列 (D )zy x 1,1,1成等比数列7、数列{}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有( )①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列(A )4 (B )3 (C )2 (D )18、数列1⋯,1617,815,413,21,前n 项和为( )(A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212112+--+n n n 9、若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足5524-+=n n B A n n ,则135135b b aa ++的值为( )(A )97(B )78(C )2019(D )8710、已知数列{}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为( )(A )56 (B )58 (C )62 (D )6011、已知数列{}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n , …项,按原来的顺序排成一个新的数列,则此数列的前n 项和为( )(A )2)133(+n n (B )53+n(C )23103-+n n (D )231031-++n n12、下列命题中是真命题的是( )A .数列{}n a 是等差数列的充要条件是q pn a n +=(0≠p )B .已知一个数列{}n a 的前n 项和为a bn an S n ++=2,如果此数列是等差数列,那么此数列也是等比数列C .数列{}n a 是等比数列的充要条件1-=n n ab aD .如果一个数列{}n a 的前n 项和c ab S n n +=)1,0,0(≠≠≠b b a ,则此数列是等比数列的充要条件是0=+c a 二、填空题13、各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q = 14、已知等差数列{}n a ,公差0≠d ,1751,,a a a 成等比数列,则18621751a a a a a a ++++=15、已知数列{}n a 满足n n a S 411+=,则n a =16、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为 三、解答题17、已知数列{}n a 是公差d 不为零的等差数列,数列{}nb a 是公比为q 的等比数列,46,10,1321===b b b ,求公比q 及n b 。
高二数学数列专题练习题(含答案)
高二数学数列专题练习题(含答案)高中数学《数列》专题练1.数列基本概念已知数列的前n项和S_n和第n项a_n之间的关系为:a_n=S_n-S_{n-1} (n>1),当n=1时,a_1=S_1.通过这个关系式可以求出任意一项的值。
2.等差数列和等比数列等差数列和等比数列是两种常见的数列类型。
对于等差数列,有通项公式a_n=a_1+(n-1)d,其中d为公差。
对于等比数列,有通项公式a_n=a_1*q^{n-1},其中q为公比。
如果a、G、b成等比数列,那么G叫做a与b的等比中项。
如果a、A、b、B成等差数列,那么A、B叫做a、b的等差中项。
3.求和公式对于等差数列,前n项和S_n=n(a_1+a_n)/2.对于等比数列,前n项和S_n=a_1(1-q^n)/(1-q),其中q不等于1.另外,对于等差数列,S_n、S_{2n}-S_n、S_{3n}-S_{2n}构成等差数列;对于等比数列,S_n、S_{2n}/S_n、S_{3n}/S_{2n}构成等比数列。
4.数列的函数看法数列可以看作是一个函数,通常有以下几种形式:a_n=dn+(a_1-d),a_n=An^2+Bn+C,a_n=a_1q^n,a_n=k*n+b。
5.判定方法对于数列的常数项,可以使用定义法证明;对于等差中项,可以证明2a_n=a_{n-1}+a_{n+1};对于等比中项,可以证明2a_n=a_{n-1}*a_{n+1}。
最后,对于数列的通项公式,可以使用数学归纳法证明。
1.数列基本概念和通项公式数列是按照一定规律排列的一列数,通常用{ }表示。
其中,第n项表示为an,公差为d,公比为q。
常用的数列有等差数列和等比数列。
等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。
等比数列的通项公式为an = a1q^(n-1),其中a1为首项,q为公比。
2.数列求和公式数列求和是指将数列中的所有项加起来的操作。
(完整版)高二等差、等比数列基础练习题及答案.doc
等差、等比数列基础练习题及答案一、选择题1. 数列 { a n } 满足 a 1=a 2=1,,若数列 { a n }的前 n 项和为 S n 2013),则 S 的值为(A. 2013B. 671C. -671D.2.已知数列 { a n } 满足递推关系: a n+1=,a 1= ,则 a 2017=( )A.B.C.D.3.数列 { a n } 的前 n 项和为 S n ,若 S n =2n-1(n ∈N +),则 a 2017 的值为()A. 2B. 3C. 2017D. 30334. 已知正项数列 { a n } 满足,若 a 1=1,则 a 10=()A. 27B. 28C. 26D. 295. 若数列{a n } 满足: a 1=2 ,a n+1= ,则 a 7 等于()A. 2B.C. -1D. 20186. 已知等差数列 { a n n 6 37 )} 的前 n 项和为 S ,若 2a =a +6,则 S =(A. 49B. 42C. 35D. 287. 等差数列 { a n } 中,若 a 1,a 2013 为方程 x 2-10x+16=0 两根,则a 2+a 1007+a 2012=() A. 10B. 15C. 20D. 408. 已知数列 { a n } 的前 n 项和 ,若它的第 k 项满足 2<a k <5,则 k=()A.2B.3C.4D.59.在等差数列 { a n} 中,首项 a1=0,公差 d≠0,若 a k=a1+a2+a3+ +a10,则 k=()A. 45B. 46C. 47D. 4810.已知 S n是等差数列 { a n} 的前 n 项和,则 2(a1+a3+a5)+3(a8+a10)=36,则 S11=()A. 66B. 55C. 44D. 33二、填空题1.已知数列 { a n} 的前 n 项和 S n=n2+n,则该数列的通项公式a n=______.2.正项数列 { a n} 中,满足 a1=1,a2= , = (n∈N*),那么a n=______.3.若数列 {a n} 满足 a1=-2,且对于任意的 m,n∈N*,都有 a m+n=a m+a n,则 a3=______;数列 { a n} 前 10 项的和 S10=______.4. 数列 { a n} 中,已知 a1=1,若,则 a n=______,若,则 a n=______.5.已知数列{ a n 1 n+1 n *,则通项公式a n= } 满足 a =-1 ,a =a + ,n∈N______ .6. 数列 { a n} 满足 a1=5,- =5(n∈N+),则 a n= ______ .7. 等差数列 { a n} 中, a1+a4+a7=33,a3+a6+a9=21,则数列 { a n} 前 9 项的和 S9等于 ______.三、解答题1.已知数列 { a n} 的前 n 项和为 S n,且=1(n∈N+).(1)求数列 { a n} 的通项公式;(2)设(n∈N+),求的值.2.数列 { a n} 是首项为 23,第 6 项为 3 的等差数列,请回答下列各题:(Ⅰ)求此等差数列的公差 d;(Ⅱ)设此等差数列的前 n 项和为 S n,求 S n的最大值;(Ⅲ)当 S n是正数时,求 n 的最大值.3.已知数列 { a n} 的前 n 项和为 S n,且 S n=2a n-2(n∈N*).(Ⅰ)求数列 { a n} 的通项公式;(Ⅱ)求数列 { S n} 的前 n 项和 T n.4.已知数列 { a n} 具有性质:① a1为整数;②对于任意的正整数 n,当 a n为偶数时,;当a n为奇数时,.(1)若 a1=64,求数列 { a n} 的通项公式;(2)若 a1,a2,a3成等差数列,求 a1的值;(3)设(m≥3且 m∈N),数列 { a n n} 的前 n 项和为 S ,求证:.等差、等比数列基础练习题答案【答案】 ( 选择题解析在后面 )1. D2. C3. A4. B5. A6. B7. B8. C 9. B 10. D12. 2n 13. 14. -6;-110 15. 2n-1;2n-116. - 17. 18. 8119.解:( 1)当 n=1,a1= ,当 n>1,S n+ a n=1,S n-1+ a n-1=1,∴a n- a n-1 =0,即 a n= a n-1,数列 { a n} 为等比数列,公比为,首项为,∴a n= .(2)S n=1- a n=1-()n,∴bn=n,∴==-,∴=1-+-+ +- =1- = .20. 解:(Ⅰ)由 a1=23,a6=3,所以等差数列的公差 d= ;(Ⅱ)= ,因为 n∈N*,所以当n=6 时 S n有最大值为78;(Ⅲ)由,解得 0<n<.因为 n∈N*,所以 n 的最大值为 12.21.解:(Ⅰ)列 { a n} 的前 n 项和为 S n,且 S n=2a n-2①.则: S n+1=2a n+1-2②,②-①得: a n+1=2a n,即:(常数),当 n=1 时, a1=S1=2a1-2,解得: a1=2,所以数列的通项公式为:,(Ⅱ)由于:,则:,=,=2n+1-2.-2-2- -2,=2n+2-4-2n.22. 解:(1)由,可得,,,,,,a9=0,,即{ a n} 的前 7 项成等比数列,从第8 起数列的项均为 0.(2 分)故数列 { a n} 的通项公式为.( 4 分)(2)若 a1=4k(k∈Z)时,,,由 a1,a2,a3成等差数列,可知即 2 (2k )=k+4k,解得 k=0,故a1=0;若 a1=4k+1(k∈Z)时,,,由 a1,a2,a3成等差数列,可知 2(2k)=(4k+1)+k,解得 k=-1,故 a1=-3;( 7 分)若 a1=4k+2(k∈Z)时,,,由 a1,a2,a3成等差数列,可知 2(2k+1)=(4k+2)+k,解得 k=0,故 a1=2;若 a1=4k+3(k∈Z)时,,,由 a1,a2,a3成等差数列,可知 2(2k+1)=(4k+3)+k,解得 k=-1,故 a1=-1;∴a1的值为 -3 ,-1,0,2.( 10 分)(3)由(m≥3),可得,,,若,则 a k是奇数,从而,可得当 3≤n≤m+1 时,成立.( 13 分)又,a m+2=0,故当 n≤m 时, an>0;当≥( 15 分)n m+1 时, a n=0.故对于给定的m,S n的最大值为 a1+a2++a m=(2m-3)+(2m-1-2)+(2m-2-1)+(2m-3 -1)+ +(21-1)=(2m+2m-1+2m-2++21)-m-3=2m+1-m-5,故.(18分)1. 解:∵数列 { a n} 满足 a1=a2=1,,∴从第一项开始, 3 个一组,则第 n 组的第一个数为a3n-2a3n-2 +a3n-1+a3n=cos =cos(2nπ- )=cos(- )=cos =-cos =- ,∵2013 ÷3=671,即 S2013正好是前 671 组的和,∴S2013=- ×671=-.故选 D.由数列 { a n 12} 满足 a =a=1,,知从第一项开始, 3 个一组,则第 n 组的第一个数为 a3n-2,由a3n-2 +a3n-1+a3n=cos =- ,能求出 S2013.本题考查数列的递推公式和数列的前n 项和的应用,解题时要认真审题,注意三角函数的性质的合理运用.2. 解:∵a n+1=,a1=,∴- =1.∴数列是等差数列,首项为2,公差为 1.∴=2+2016=2018.则 a2017= .故选: C.a n+1=,a1=,可得- =1.再利用等差数列的通项公式即可得出.本题考查了数列递推关系、等差数列的通项公式,考查了推理能力与计算能力,属于中档题.3. 解:∵S n=2n-1(n∈N+),∴a2017=S2017-S2016=2×2017-1-2 ×2016+1=2由 a2017=S2017-S2016,代值计算即可.本题考查了数列的递推公式,属于基础题.4. 解:∵2 2,∴a n+1 -2a n a n+1 +a n =9,∴(a n+1-a n)2=9,∴a n+1-a n=3,或 a n+1-a n=-3,∵{ a n} 是正项数列, a1=1,∴a n+1-a n=3,即 { a n} 是以 1 为首项,以 3 为公差的等差数列,∴a10=1+9×3=28.故选 B.由递推式化简即可得出{ a n} 是公差为 3 的等差数列,从而得出 a10.本题考查了等差数列的判断,属于中档题.5. 解:数列 { a n} 满足: a1=2,a n+1=,则a2== ,a3= =-1a4==2a5= = ,a6= =-1.a7==2.故选: A.利用数列的递推关系式,逐步求解即可.本题考查数列的递推关系式的应用,考查计算能力.6.解:∵等差数列 { a n} 的前 n 项和为 S n,2a6=a3+6,∴2(a1+5d)=a1+7d+6,∴a1+3d=6,∴a4=6,∴=42.故选: B.由已知条件利用等差数列的通项公式能求出a4,由此利用等差数列的前 n 项和公式能求出S7.本题考查等差数列的前7 项和的求法,是基础题,解题时要认真审题,注意等差数列的通项公式和前n 项和公式的合理运用.7. 解:∵a1,a2013为方程 x2-10x+16=0 的两根∴a1+a2013=10由等差数列的性质知:a1+a2013=a2+a2012=2a1007∴a2+a1007+a2012=15故选: B由方程的韦达定理求得a1+a2013,再由等差数列的性质求解.本题主要考查韦达定理和等差数列的性质,确定a1+a2013=10 是关键.8. 解:已知数列 { a n} 的前 n 项和,n=1可得S1=a1=1-3=-2,∴a n=S n-S n-1=n2-3n-[(n-1)2-3(n-1)]=2n-4,n=1 满足 a n,∴a n=2n-4,∵它的第 k 项满足 2<a k<5,即 2<2k-4<5,解得 3<k<4.5,因为 n∈N,∴k=4,故选 C;先利用公式 a n=求出 a n=,再由第k项满足4<a k<7,建立不等式,求出k 的值.本题考查数列的通项公式的求法,解题时要注意公式a n=的合理运用,属于基础题.9.解:∵a k=a1+a2+a3+ +a10,∴a1+(k-1)d=10a1+45d∵a1=0,公差 d≠0,∴(k-1)d=45d∴k=46故选 B由已知 a k=a1+a2+a3++a10,结合等差数列的通项公式及求和公式即可求解本题主要考查了等差数列的通项公式及求和公式的简单应用,属于基础试题10.解:由等差数列的性质可得: 2(a1+a3+a5)+3(a8+a10)=36,∴6a3+6a9=36,即 a1+a11=6.则 S11=×=11 3=33.故选: D.利用等差数列的通项公式与性质与求和公式即可得出.本题考查了等差数列的通项公式与性质与求和公式,考查了推理能力与计算能力,属于中档题.12.解:由 S n=n2+n,得a1=S1=2,当 n≥2时,a n=S n-S n-1=(n2+n)-[ (n-1)2+(n-1)]=2n.当 n=1 时上式成立,∴a n=2n.故答案为: 2n.由数列的前 n 项和求得首项,再由a n=S n-S n-1(n≥2)求得 a n,验证首项后得答案.本题考查了由数列的前n 项和求数列的通项公式,是基础题.13.解:由 = (n∈N*),可得 a2n+1=a n?a n+2,∴数列{ a n} 为等比数列,∵a1=1,a2= ,∴q= ,∴a n= ,故答案为:由=(n∈N*),可得a2n+1=a n?a n+2,即可得到数列{ a n}为等比数列,求出公比,即可得到通项公式本题考查了等比数列的定义以及通项公式,属于基础题.14.解:∵对于任意的 m,n∈N*,都有 a m+n=a m+a n,∴取 m=1,则 a n+1-a n=a1=-2,∴数列 { a n} 是等差数列,首项为 -2,公差为 -2,∴a n=-2-2(n-1)=-2n.∴a3=-6,∴数列 { a n} 前 10 项的和 S10= =-110.故答案分别为: -6;-110.对于任意的 m,n∈N*,都有 a m+n=a m+a n,取 m=1,则 a n+1-a n=a1=-2,可得数列 {a n} 是等差数列,首项为 -2,公差为 -2,利用等差数列的通项公式及其前n 项和公式即可得出.本题考查了递推式的应用、等差数列的通项公式及其前n 项和公式,考查了推理能力与计算能力,属于中档题.15. 解:在数列 { a n}中,由,可知数列是公差为 2 的等差数列,又a1=1,∴a n=1+2(n-1) =2n-1;由,可知数列是公比为 2 的等比数列,又a1=1,∴.故答案为: 2n-1;2n-1.由已知递推式a n-a n-1=2,可得数列是公差为 2 的等差数列,由,可知数列是公比为 2 的等比数列,然后分别由等差数列和等比数列的通项公式得答案.本题考查数列递推式,考查了等差数列和等比数列的通项公式,是基础题.16.解:由题意, a n+1-a n= - ,利用叠加法可得 a n-a1=1- = ,∵a1=-1,∴a n=- ,故答案为 - .由题意, a n+1-a n= - ,利用叠加法可得结论.本题考查数列的通项,考查叠加法的运用,属于基础题.17. 解:数列 { a n} 满足 a1=5,- =5(n∈N+),可知数列 { } 是等差数列,首项为,公差为:5.可得 = +5(n-1),解得 a n═.故答案为:.判断数列 { } 是等差数列,然后求解即可.本题考查数列的递推关系式的应用,通项公式的求法,考查计算能力.18.解:等差数列 { a n} 中,a1+a4+a7=33,a3+a6+a9=21,∴3a4=33,3a6=21;∴a4=11,a6=7;数列 { a n} 前 9 项的和:.故答案为: 81.根据等差数列项的性质与前n 项和公式,进行解答即可.本题考查了等差数列项的性质与前n 项和公式的应用问题,是基础题目.19.(1)根据数列的递推公式可得数列 { a n} 为等比数列,公比为,首项为,即可求出通项公式,(2)根据对数的运算性质可得 b n=n,再根据裂项求和即可求出答案本题考查了数列的递推公式和裂项求和,考查了运算能力和转化能力,属于中档题.20.(1)直接利用等差数列的通项公式求公差;(2)写出等差数列的前 n 项和,利用二次函数的知识求最值;(3)由 S n>0,且 n∈N*列不等式求解 n 的值.本题考查了等差数列的通项公式和前 n 项和公式,考查了数列的函数特性,是基础的运算题.21.(Ⅰ)直接利用递推关系式求出数列的通项公式.(Ⅱ)利用数列的通项公式,直接利用等比数列的前n 项和公式求出结果.本题考查的知识要点:数列的通项公式的求法,等比数列前n 项和的公式的应用.22. (1)由,可得{ a n}的前7项成等比数列,从第8 起数列的项均为0,从而利用分段函数的形式写出数列{a n} 的通项公式即可;(2)对 a1进行分类讨论:若 a1=4k(k∈Z)时;若 a1=4k+1(k∈Z)时;若 a1=4k+2(k∈Z)时;若 a1=4k+3(k∈Z)时,结合等差数列的性质即可求出 a1的值;(3)由(m≥3),可得 a2,a3,a4.若,则a k是奇数,可得当 3≤n≤m+1 时,成立,又当 n≤m 时,a n>0;当 n≥m+1 时,a n=0.故对于给定的 m,S n的最大值为 2m+1-m-5,即可证出结论.本小题主要考查等差数列的性质、等比数列的性质、数列与函数的综合等基本知识,考查分析问题、解决问题的能力.。
等差等比数列练习题(含答案)以及基础知识点
一、等差等比数列基础知识点(一)知识归纳: 1.概念与公式:①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;2°.通项公式:;)()1(1d k n a d n a a k n -+=-+= 3°.前n 项和公式:公式:.2)1(2)(11d n n na a a n S n n -+=+=②等比数列:1°.定义若数列q a a a nn n =+1}{满足(常数),则}{n a 称等比数列;2°.通项公式:;11kn k n n qa qa a --==3°.前n 项和公式:),1(1)1(111≠--=--=q qq a q q a a S n n n 当q=1时.1na S n = 2.简单性质:①首尾项性质:设数列,,,,,:}{321n n a a a a a1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =⋅=⋅=⋅--n n n a a a a a a ②中项及性质:1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2ba A +=2°.设a ,G,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±= ③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ⋅=⋅ ④顺次n 项和性质:1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=n k n n k nn k kkkaa a 121312,,则组成公差为n 2d 的等差数列;2°. 若}{n a 是公差为q 的等比数列,∑∑∑=+=+=nk nn k nn k kkkaa a 121312,,则组成公差为q n 的等比数列.(注意:当q =-1,n 为偶数时这个结论不成立)⑤若}{n a 是等比数列,则顺次n 项的乘积:n n n n n n n a a a a a a a a a 3221222121,, ++++组成公比这2n q 的等比数列.⑥若}{n a 是公差为d 的等差数列,1°.若n 为奇数,则,,:(21+==-=n n a a a a S S na S 中中中偶奇中即指中项注且而S 奇、S 偶指所有奇数项、所有偶数项的和);2°.若n 为偶数,则.2ndS S =-奇偶 (二)学习要点:1.学习等差、等比数列,首先要正确理解与运用基本公式,注意①公差d ≠0的等差数列的通项公式是项n 的一次函数a n =an +b ;②公差d ≠0的等差数列的前n 项和公式项数n 的没有常数项的二次函数S n =an 2+bn ;③公比q ≠1的等比数列的前n 项公式可以写成“S n =a (1-q n )的形式;诸如上述这些理解对学习是很有帮助的.2.解决等差、等比数列问题要灵活运用一些简单性质,但所用的性质必须简单、明确,绝对不能用课外的需要证明的性质解题.3.巧设“公差、公比”是解决问题的一种重要方法,例如:①三数成等差数列,可设三数为“a,a+m,a+2m (或a-m,a,a+m )”②三数成等比数列,可设三数为“a,aq,aq 2(或qa,a,aq )”③四数成等差数列,可设四数为“);3,,,3(3,2,,m a m a m a m a m a m a m a a ++--+++或”④四数成等比数列,可设四数为“),,,,(,,,3332aq aq q a qa aq aq aq a ±±或”等等;类似的经验还很多,应在学习中总结经验. [例1]解答下述问题:(Ⅰ)已知cb a 1,1,1成等差数列,求证: (1)c b a b a c a c b +++,,成等差数列; (2)2,2,2bc b b a ---成等比数列.[解析]该问题应该选择“中项”的知识解决,.2,2,2,)2(4)(2)2)(2)(2(;,,.)(2)()(2)()1(),(222112222222成等比数列成等差数列bc b b a bb c a b ac b c b a c b a b a c a c b b c a c a b c a ac c a c a b ac ab a c bc c b a a c b c a b ac bac c a b c a ---∴-=++-=--+++∴+=++=+++=+++=++++=⇒=+⇒=+(Ⅱ)设数列),1(2,1,}{2-==n n n n a n S a S n a 且满足项和为的前 (1)求证:}{n a 是等差数列;(2)若数列:}{满足n b62)12(531321+=-+++++n n n a b n b b b求证:{n b }是等比数列. [解析](1)⎩⎨⎧-+=-=++)1)(1(2)1(211n n n n a n S a n S ②-①得,1)1(1)1(211+=-⇒--+=++n n n n n na a n na a n a:,32,32,1,11321用数学归纳法证明猜想得令得令-===∴=-==n a a n a a n n1)当;,3221,3121,121结论正确时-⨯==-⨯=-==a a n 2),32,)2(-=≥=k a k k n k 即时结论正确假设)1)(12(1321)32(1)1(,121--=+-=+-=+=-+=∴+k k k k k k ka a k k n k k 时当.,3)1(212,21结论正确-+=-=∴≥+k k a k k由1)、2)知,,32,-=∈*n a N n n 时当.2}{,2,2,,26)1(4),2(2,2)12()52(2)32(2)12(2,6)32(262)2(;2}{,2)32()12(1111111的等比数列是公比为即时当也适合而时当设的等差数列是公差为即n nn n n n n n n n n n n n n n n n n n b b b b N n b n b n n n T T b n n n a T a n n a a =∴=∈∴=+-⨯=≥=∴⨯-=---=-=-≥∴+-=+==---=-∴+*+-+++[评析]判断(或证明)一个数列成等差、等比数列主要方法有:根据“中项”性质、根据“定义”判断,或通过“归 纳猜想”并证明.[例2]解答下述问题:(Ⅰ)等差数列的前n 项和为),(,,Q P QPS P Q S S Q P n ≠==若 求).,(表示用Q P S Q P +[解析]选择公式""2bn an S n +=做比较好,但也可以考虑用性质完成.① ②[解法一]设⎪⎪⎩⎪⎪⎨⎧+=+=∴+=bQ aQ QP bP aP PQ bn an S n 222, ①-②得:,],)()[(22Q P b Q P a Q P PQP Q ≠++-=- .)(])()[(,)(,2PQQ P b Q P a Q P S PQQP b Q P a Q P Q P +-=+++=∴+-=++∴≠+[解法二]不妨设P Q Q Q P a a a S S QPP Q Q P +++=-=-∴>++ 21, .)(,2))((2))((211PQQ P S S QP QP a a Q P Q P Q P a a Q P Q P Q P Q P P Q +-=∴+-=++⋅+-=+-=++++(Ⅱ)等比数列的项数n 为奇数,且所有奇数项的乘积为1024,所有偶数项的乘积为2128,求项数n.[解析]设公比为2421281024,142531==-n n a a a a a a a q)1(24211=⋅⇒-n qa.7,23525,2)2()1(,2)(2)1(221281024235252352112353211235321==∴==⋅⇒=-+⋅⇒=⨯=-++n n q a n qa a a a a nn n n 得代入得将而(Ⅲ)等差数列{a n }中,公差d ≠0,在此数列中依次取出部分项组成的数列:,17,5,1,,,,32121===k k k a a a n k k k 其中恰为等比数列求数列.}{项和的前n k n[解析],,,,171251751a a a a a a ⋅=∴成等比数列①②.1313132}{,132)1(2)1(323,34}{,2,00)2()16()4(111111115111121--=---⨯=-⋅=-+=-+=⋅=⋅=∴=+==∴=∴≠=-⇒+⋅=+⇒---n n S n k k d k d d k a a d a a a d a a a q a d a d d a d d a a d a n n n n n n n n k n n k k n n n 项和的前得由而的公比数列[评析]例2是一组等差、等比数列的基本问题,熟练运用概念、公式及性质是解决问题的基本功. [例3]解答下述问题:(Ⅰ)三数成等比数列,若将第三项减去32,则成等差数列;再将此等差数列的第二项减去4,又成等比数列,求原来的三数.[解析]设等差数列的三项,要比设等比数列的三项更简单, 设等差数列的三项分别为a -d , a , a +d ,则有.9338,926,9250,10,2,92610,388,06432316803232))(()4()32)((22222或原三数为或得或∴===∴=+-⇒⎪⎩⎪⎨⎧+==-+⇒⎪⎩⎪⎨⎧+-=-=++-a d d d d da a d d d a d a a a d a d a(Ⅱ)有四个正整数成等差数列,公差为10,这四个数的平方和等于一个偶数的平方,求此四数. [解析]设此四数为)15(15,5,5,15>++--a a a a a ,⎩⎨⎧=+=-⇒⎩⎨⎧=+=-∴+<-+-⨯=⨯==+-⇒=+⇒∈=++++-+-∴*2521251,,,2551251125,125))((45004)()2()15()5()5()15(2222222a m a m a m a m a m a m a m a m a m a m m a N m m a a a a 且均为正整数与解得∴==),(1262不合或a a 所求四数为47,57,67,77[评析]巧设公差、公比是解决等差、等比数列问题的重要方法,特别是求若干个数成等差、等比数列的问题中是主要方法.二、等差等比数列复习题一、 选择题1、如果一个数列既是等差数列,又是等比数列,则此数列 ( )(A )为常数数列 (B )为非零的常数数列 (C )存在且唯一 (D )不存在 2.、在等差数列{}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为 ( )①②①,②(A )13+=n a n (B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则ycx a +的值为 ( ) (A )21(B )2- (C )2 (D ) 不确定 4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项,y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( )(A )成等差数列不成等比数列 (B )成等比数列不成等差数列 (C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列 5、已知数列{}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( )(A )22-=n a n(B )28-=n a n (C )12-=n n a (D )n n a n -=26、已知))((4)(2z y y x x z--=-,则 ( )(A )z y x ,,成等差数列 (B )z y x ,,成等比数列 (C )z y x 1,1,1成等差数列 (D )zy x 1,1,1成等比数列 7、数列{}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有 ( )①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列(A )4 (B )3 (C )2 (D )18、数列1⋯,1617,815,413,21,前n 项和为 ( ) (A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212112+--+n n n9、若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足5524-+=n n B A n n ,则135135b b a a ++的值为 ( )(A )97 (B )78(C )2019 (D )8710、已知数列{}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为 ( )(A )56 (B )58 (C )62 (D )6011、已知数列{}n a 的通项公式5+=n a n为, 从{}n a 中依次取出第3,9,27,…3n , …项,按原来的顺序排成一个新的数列,则此数列的前n 项和为 ( )(A )2)133(+n n (B )53+n(C )23103-+n n (D )231031-++n n12、下列命题中是真命题的是 ( )A .数列{}n a 是等差数列的充要条件是q pn a n+=(0≠p )B .已知一个数列{}n a 的前n 项和为a bn an S n++=2,如果此数列是等差数列,那么此数列也是等比数列C .数列{}n a 是等比数列的充要条件1-=n nab aD .如果一个数列{}n a 的前n 项和c ab S n n+=)1,0,0(≠≠≠b b a ,则此数列是等比数列的充要条件是0=+c a二、填空题13、各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q =14、已知等差数列{}n a ,公差0≠d ,1751,,a a a 成等比数列,则18621751a a a a a a ++++=15、已知数列{}n a 满足n na S 411+=,则n a =16、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为 二、 解答题 17、已知数列{}n a 是公差d 不为零的等差数列,数列{}nb a 是公比为q 的等比数列,46,10,1321===b b b ,求公比q 及n b 。
高二数学数列专题练习题(含答案)
高中数学《数列》专题练习1.n S 与n a 的关系:11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩ ,已知n S 求n a ,应分1=n 时1a = ;2≥n 时,n a = 两步,最后考虑1a 是否满足后面的n a .2.等差等比数列数列通项公式求法。
()定义法(利用等差、等比数列的定义);()累加法(3)累乘法(n n n c a a =+1型);(4)利用公式11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩;(5)构造法(b ka a n n +=+1型)(6) 倒数法 等4.数列求和(1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。
5. n S 的最值问题:在等差数列{}n a 中,有关n S 的最值问题——常用邻项变号法求解:(1)当0,01<>d a 时,满足⎩⎨⎧≤≥+001m ma a的项数m 使得m S 取最大值. (2)当 0,01><d a 时,满足⎩⎨⎧≥≤+001m m a a 的项数m 使得m S 取最小值。
也可以直接表示n S ,利用二次函数配方求最值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
6.数列的实际应用现实生活中涉及到银行利率、企业股金、产品利润、人口增长、工作效率、图形面积、等实际问题,常考虑用数列的知识来解决.训练题一、选择题1.已知等差数列{}n a 的前三项依次为1a -、1a +、23a +,则2011是这个数列的 (B )A.第1006项B.第1007项C. 第1008项D. 第1009项2.在等比数列}{n a 中,485756=-=+a a a a ,则10S 等于 (A ) A .1023 B .1024 C .511 D .5123.若{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d =( )A .-2B .-12 C.12 D .2答案 B解析 由等差中项的定义结合已知条件可知2a 4=a 5+a 3,∴2d =a 7-a 5=-1,即d =-12.故选B.4.已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为( A )A.180B.-180C.90D.-905.已知{}n a 为等差数列,若π=++951a a a ,则28cos()a a +的值为( A ) A .21-B .23-C .21D .236.在等比数列{a n }中,若a 3a 5a 7a 9a 11=243,则a 29a 11的值为( )A .9B .1C .2D .3答案 D解析 由等比数列性质可知a 3a 5a 7a 9a 11=a 57=243,所以得a 7=3,又a 29a 11=a 7a 11a 11=a 7,故选D.7.已知等差数列{a n }的前n 项和为S n ,a 1+a 5=12S 5,且a 9=20,则S 11=( )A .260B .220C .130D .110答案 D解析 ∵S 5=a 1+a 52×5,又∵12S 5=a 1+a 5,∴a 1+a 5=0.∴a 3=0,∴S 11=a 1+a 112×11=a 3+a 92×11=0+202×11=110,故选D. 8.各项均不为零的等差数列{a n }中,若a 2n -a n -1-a n +1=0(n ∈N *,n ≥2),则S 2 009等于A .0B .2C .2 009D .4 018答案 D解析 各项均不为零的等差数列{a n },由于a 2n -a n -1-a n +1=0(n ∈N *,n ≥2),则a 2n -2a n =0,a n =2,S 2 009=4 018,故选D.9.数列{a n }是等比数列且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5的值等于A .5B .10C .15D .20答案 A解析 由于a 2a 4=a 23,a 4a 6=a 25,所以a 2·a 4+2a 3·a 5+a 4·a 6=a 23+2a 3a 5+a 25=(a 3+a 5)2=25.所以a 3+a 5=±5.又a n >0,所以a 3+a 5=5.所以选A. 10.首项为1,公差不为0的等差数列{a n }中,a 3,a 4,a 6是一个等比数列的前三项,则这个等比数列的第四项是( )A .8B .-8C .-6D .不确定答案 B解析 a 24=a 3·a 6⇒(1+3d )2=(1+2d )·(1+5d ) ⇒d (d +1)=0⇒d =-1,∴a 3=-1,a 4=-2,∴q =2. ∴a 6=a 4·q =-4,第四项为a 6·q =-8.11.在△ABC 中,tan A 是以-4为第三项,4为第七项的等差数列的公差,tan B 是以31为第三项,9为第六项的等比数列的公比,则这个三角形是(B )A.钝角三角形B.锐角三角形C.等腰三角形D.非等腰的直角三角形12.记等差数列{}n a 的前项和为n s ,若103s s =,且公差不为0,则当n s 取最大值时,=n ( )CA .4或5B .5或6C .6或7D .7或813.在等差数列{a n }中,前n 项和为S n ,且S 2 011=-2 011,a 1 007=3,则S 2 012的值为A .1 006B .-2 012C .2 012D .-1 006答案 C解析 方法一 设等差数列的首项为a 1,公差为d ,根据题意可得, ⎩⎪⎨⎪⎧S 2 011=2 011a 1+2 011× 2 011-1 2d =-2 011,a 1 007=a 1+1 006d =3,即⎩⎨⎧ a 1+1 005d =-1,a 1+1 006d =3,解得⎩⎨⎧a 1=-4 021,d =4.所以,S 2 012=2 012a 1+2 012× 2 012-1 2d =2 012×(-4 021)+2 012×2 011×2 =2 012×(4 022-4 021)=2012. 方法二 由S 2 011=2 011 a 1+a 2 011 2 =2 011a 1 006=-2 011, 解得a 1 006=-1,则S 2 012=2 012 a 1+a 2 012 2=2 012 a 1 006+a 1 0072=2 012× -1+3 2=2 012. 14.设函数f (x )满足f (n +1)=2f n +n 2(n ∈N *),且f (1)=2,则f (20)=( ) A .95 B .97 C .105 D .192答案 B解析 f (n +1)=f (n )+n 2,∴⎩⎪⎨⎪⎧f 20 =f 19 +192,f 19 =f 18 +182,……f 2 =f 1 +12.累加,得f (20)=f (1)+(12+22+…+192)=f (1)+19×204=97.15.已知数列{}n a 的前n 项和n S 满足1)1log 2+=+n S n (,则通项公式为(B ) A.)(2*N n a n n ∈= B. ⎩⎨⎧≥==)2(2)1(3n n a nn C. )(2*1N n a n n ∈=+ D. 以上都不正确16.一种细胞每3分钟分裂一次,一个分裂成两个,如果把一个这种细胞放入某个容器内,恰好一小时充满该容器,如果开始把2个这种细胞放入该容器内,则细胞充满该容器的时间为 ( D )A .15分钟B .30分钟C .45分钟D .57分钟 二、填空题17.等差数列{a n }的前n 项和为S n ,若a 2=1,a 3=3,则S 4= 8. 18.记等差数列{a n }的前n 项和为S n ,若a 1=21,S 4=20,则S 6= . 48 19.在等比数列{}n a 中,11a =,公比2q =,若64n a =,则n 的值为 .7 20.设等比数列{a n }的公比q=2,前n 项和为S n ,则24a S = .21512.数列{a n },{b n }的前n 项和分别为S n 和T n ,若S n T n =2n 3n +1,则a 100b 100=________. 答案 199299解析 a 100b 100=a 1+a 1992b 1+b 1992=S 199T 199=199299.21.数列{}n a 的前n 项和记为()11,1,211n n n S a a S n +==+≥则{}n a 的通项公式 解:(Ⅰ)由121n n a S +=+可得()1212n n a S n -=+≥,两式相减得()112,32n n n n n a a a a a n ++-==≥又21213a S =+= ∴213a a = 故{}n a 是首项为1,公比为3得等比数列 ∴13n n a -=22.已知各项都为正数的等比数列{a n }中,a 2·a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n +2>19的最大正整数n 的值为________.答案 4解析 设等比数列{a n }的公比为q ,其中q >0,依题意得a 23=a 2·a 4=4.又a 3>0,因此a 3=a 1q 2=2,a 1+a 2=a 1+a 1q =12,由此解得q =12,a 1=8,a n =8×(12)n -1=24-n ,a n ·a n +1·a n +2=29-3n.由于2-3=18>19,因此要使29-3n>19,只要9-3n ≥-3,即n ≤4,于是满足a n ·a n +1·a n +2>19的最大正整数n 的值为4. 23.等比数列{a n }的首项为a 1=1,前n 项和为S n ,若S 10S 5=3132,则公比q 等于________.答案 -12解析 因为S 10S 5=3132,所以S 10-S 5S 5=31-3232=-132,即q 5=(-12)5,所以q =-12.三、解答题24.(本小题满分12分)已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令b n =211n a -(n ∈N *),求数列{}n b 的前n 项和n T . 1【解析】(Ⅰ)设等差数列{}n a 的公差为d ,因为37a =,5726a a +=,所以有112721026a d a d +=⎧⎨+=⎩,解得13,2a d ==, 所以321)=2n+1n a n =+-(;n S =n(n-1)3n+22⨯=2n +2n 。
等差、等比数列复习试题+答案解析
等差数列、等比数列1.(2014·山东青岛二模)数列{a n }为等差数列,a 1,a 2,a 3成等比数列,a 5=1,则a 10=________2. (2014·河北邯郸二模)在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列前13项的和是________3.(2014·河北唐山一模)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n=________4. (2014·福建福州一模)记等比数列{a n }的前n 项积为Ⅱn ,若a 4·a 5=2,则Ⅱ8=________5.(2014·辽宁卷)设等差数列{a n }的公差为d ,若数列{2a 1a n }为递减数列,则________A .d <0B .d >0C .a 1d <0D .a 1d >06.(2014·四川七中二模)正项等比数列{a n }满足:a 3=a 2+2a 1,若存在a m ,a n ,使得a m a n =16a 21,则1m +4n的最小值为________ 7.(2014·安徽卷)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________.8.(2014·河北衡水中学二模)在等比数列{a n }中,若a 7+a 8+a 9+a 10=158,a 8·a 9=-98,则1a 7+1a 8+1a 9+1a 10=________. 9. 已知{a n }是等比数列,a 2=2,a 5=14,则S n =a 1+a 2+…+a n的取值范围是________.10.(2014·课标全国卷Ⅰ)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.11.(2014·山东菏泽一模)已知数列{a n},a1=-5,a2=-2,记A(n)=a1+a2+…+a n,B(n)=a2+a3+…+a n+1,C(n)=a3+a4+…+a n+2(n∈N*),若对于任意n∈N*,A(n),B(n),C(n)成等差数列.(1)求数列{a n}的通项公式;(2)求数列{|a n|}的前n项和.1.(2014·九江市七校联考)已知数阵⎣⎢⎢⎡⎦⎥⎥⎤a11a 12 a 13a21 a 22 a 23a31a 32a 33中,每行的3个数依次成等差数列,每列的3个数也依次成等差数列,若a 22=2,则这9个数的和为________2.(2014·江苏南京一模)已知等比数列{a n }的首项为43,公比为-13,其前n 项和为S n ,若A ≤S n -1S n ≤B 对n ∈N *恒成立,则B -A 的最小值为________.3.(2014·山东淄博一模)若数列{A n }满足A n +1=A 2n ,则称数列{A n }为“平方递推数列”.已知数列{a n }中,a 1=9,点(a n ,a n +1)在函数f (x )=x 2+2x 的图象上,其中n 为正整数.(1)证明数列{a n +1}是“平方递推数列”,且数列{lg(a n +1)}为等比数列;(2)设(1)中“平方递推数列”的前n 项积为T n ,即T n =(a 1+1)(a 2+1)…(a n +1),求lg T n ;(3)在(2)的条件下,记b n =lg T nlg a n +1,求数列{b n }的前n 项和S n ,并求使S n >4 026的n 的最小值.高考专题训练(九) 等差数列、等比数列A 级——基础巩固组一、选择题1.(2014·山东青岛二模)数列{a n }为等差数列,a 1,a 2,a 3成等比数列,a 5=1,则a 10=( )A .5B .-1C .0D .1解析 设公差为d ,由已知得⎩⎪⎨⎪⎧a 1+d 2=a 1a 1+2d ,a 1+4d =1,解得⎩⎪⎨⎪⎧a 1=1,d =0,所以a 10=a 1+9d =1,故选D答案 D2.(2014·河北邯郸二模)在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列前13项的和是( )A .13B .26C .52D .156解析 ∵a 3+a 5=2a 4,a 7+a 10+a 13=3a 10, ∴6a 4+6a 10=24,即a 4+a 10=4,∴S 13=13a 1+a 132=13a 4+a 102=26.答案 B3.(2014·河北唐山一模)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n=( )A .4n -1B .4n -1C .2n -1D .2n -1解析 ∵⎩⎪⎨⎪⎧ a 1+a 3=52,a 2+a 4=54,∴⎩⎪⎨⎪⎧a 1+a 1q 2=52,①a 1q +a 1q 3=54,②由①除以②可得1+q 2q +q 3=2,解得q =12,代入①得a 1=2,∴a n =2×⎝ ⎛⎭⎪⎫12n -1=42n ,∴S n =2×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=4⎝⎛⎭⎪⎫1-12n ,∴S na n=4⎝⎛⎭⎪⎫1-12n 42n=2n -1,选D.答案 D4.(2014·福建福州一模)记等比数列{a n }的前n 项积为Ⅱn ,若a 4·a 5=2,则Ⅱ8=( )A .256B .81C .16D .1解析 由题意可知a 4a 5=a 1a 8=a 2a 7=a 3a 6=2, 则Ⅱ8=a 1a 2a 3a 4a 5a 6a 7a 8=(a 4a 5)4=24=16. 答案 C5.(2014·辽宁卷)设等差数列{a n }的公差为d ,若数列{2a 1a n }为递减数列,则( )A .d <0B .d >0C .a 1d <0D .a 1d >0解析 依题意得2a 1a n >2a 1a n +1,即(2a 1)a n +1-a n <1,从而2a 1d <1,所以a 1d <0,故选C.答案 C6.(2014·四川七中二模)正项等比数列{a n }满足:a 3=a 2+2a 1,若存在a m ,a n ,使得a m a n =16a 21,则1m +4n的最小值为( )A.256B.134C.73D.32解析 由a 3=a 2+2a 1,得q 2=q +2,∴q =2(q =-1舍去),由a m a n =16a 21得2m -12n -1=16,∵m +n -2=4,m +n =6, 所以1m +4n =m +n 6⎝ ⎛⎭⎪⎫1m +4n =16⎝⎛⎭⎪⎫1+4+n m +4m n≥16⎝ ⎛⎭⎪⎪⎫5+2 n m ·4m n =32. 答案 D 二、填空题7.(2014·安徽卷)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________.解析 设等差数列的公差为d ,则a 3=a 1+2d ,a 5=a 1+4d , ∴(a 1+2d +3)2=(a 1+1)(a 1+4d +5),解得d =-1.∴q =a 3+3a 1+1=a 1-2+3a 1+1=1.答案 18.(2014·河北衡水中学二模)在等比数列{a n }中,若a 7+a 8+a 9+a 10=158,a 8·a 9=-98,则1a 7+1a 8+1a 9+1a 10=________.解析 ∵1a 7+1a 10=a 7+a 10a 7a 10,1a 8+1a 9=a 8+a 9a 8a 9,而a 8a 9=a 7a 10,∴1a 7+1a 8+1a 9+1a 10=a 7+a 8+a 9+a 10a 7a 10=158-98=-53. 答案 -539.已知{a n }是等比数列,a 2=2,a 5=14,则S n =a 1+a 2+…+a n的取值范围是________.解析 因为{a n }是等比数列, 所以可设a n =a 1q n -1.因为a 2=2,a 5=14,所以⎩⎪⎨⎪⎧a 1q =2,a 1q 4=14,解得⎩⎪⎨⎪⎧a 1=4,q =12.所以S n =a 1+a 2+…+a n =4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=8-8×⎝ ⎛⎭⎪⎫12n.因为0<⎝ ⎛⎭⎪⎫12n ≤12,所以4≤S n <8.答案 [4,8) 三、解答题10.(2014·课标全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. 解 (1)由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1. 两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4. 故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3; {a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.11.(2014·山东菏泽一模)已知数列{a n },a 1=-5,a 2=-2,记A (n )=a 1+a 2+…+a n ,B (n )=a 2+a 3+…+a n +1,C (n )=a 3+a 4+…+a n +2(n ∈N *),若对于任意n ∈N *,A (n ),B (n ),C (n )成等差数列.(1)求数列{a n }的通项公式; (2)求数列{|a n |}的前n 项和.解 (1)根据题意A (n ),B (n ),C (n )成等差数列, ∴A (n )+C (n )=2B (n ),整理得a n +2-a n +1=a 2-a 1=-2+5=3.∴数列{a n }是首项为-5,公差为3的等差数列, ∴a n =-5+3(n -1)=3n -8.(2)|a n |=⎩⎪⎨⎪⎧-3n +8,n ≤2,3n -8,n ≥3,记数列{|a n |}的前n 项和为S n . 当n ≤2时,S n =n 5+8-3n2=-3n 22+132n ;当n ≥3时,S n =7+n -21+3n -82=3n 22-132n +14;综上,S n=⎩⎪⎨⎪⎧-32n 2+132n ,n ≤2,32n 2-132n +14,n ≥3.B 级——能力提高组1.(2014·九江市七校联考)已知数阵⎣⎢⎢⎡⎦⎥⎥⎤a11a 12 a 13a21 a 22 a 23a31a 32a 33中,每行的3个数依次成等差数列,每列的3个数也依次成等差数列,若a 22=2,则这9个数的和为( )A .16B .18C .9D .8解析已知数阵⎣⎢⎢⎡⎦⎥⎥⎤a11 a 12 a 13a21a 22 a 23a31a 32a 33中,每行的3个数依次成等差数列,每列的3个数也依次成等差数列,若a 22=2,由等差数列的性质得:a 11+a 12+a 13+a 21+a 22+a 23+a 31+a 32+a 33=9a 22=18.答案 B2.(2014·江苏南京一模)已知等比数列{a n }的首项为43,公比为-13,其前n 项和为S n ,若A ≤S n -1S n ≤B 对n ∈N *恒成立,则B -A 的最小值为________.解析 易得S n =1-⎝ ⎛⎭⎪⎫-13n ∈⎣⎢⎡⎭⎪⎫89,1∪⎝ ⎛⎦⎥⎤1,43,而y =S n -1S n 在⎣⎢⎡⎦⎥⎤89,43上单调递增,所以y ∈⎣⎢⎡⎦⎥⎤-1772,712⊆[A ,B ],因此B -A 的最小值为712-⎝ ⎛⎭⎪⎫-1772=5972. 答案 59723.(2014·山东淄博一模)若数列{A n }满足A n +1=A 2n ,则称数列{A n }为“平方递推数列”.已知数列{a n }中,a 1=9,点(a n ,a n +1)在函数f (x )=x 2+2x 的图象上,其中n 为正整数.(1)证明数列{a n +1}是“平方递推数列”,且数列{lg(a n +1)}为等比数列;(2)设(1)中“平方递推数列”的前n 项积为T n ,即T n =(a 1+1)(a 2……………………………………………………………最新资料推荐…………………………………………………11 / 1111 / 1111 / 11 WORD 格式整理 +1)…(a n +1),求lg T n ;(3)在(2)的条件下,记b n =lg T n lg a n +1,求数列{b n }的前n 项和S n ,并求使S n >4 026的n 的最小值.解 (1)由题意得:a n +1=a 2n +2a n ,即a n +1+1=(a n +1)2,则{a n +1}是“平方递推数列”.对a n +1+1=(a n +1)2两边取对数得lg(a n +1+1)=2lg(a n +1),w 所以数列{lg(a n +1)}是以lg(a 1+1)为首项,2为公比的等比数列.(2)由(1)知lg(a n +1)=lg(a 1+1)·2n -1=2n -1lg T n =lg(a 1+1)(a 2+1)…(a n +1)=lg(a 1+1)+lg(a 2+1)+…+lg(a n +1)=1·1-2n1-2=2n -1 (3)b n =lg T n lg a n +1=2n -12n -1=2-⎝ ⎛⎭⎪⎫12n -1 S n =2n -1-12n 1-12=2n -2+12n -1 又S n >4 026,即2n -2+12n -1>4 026,n +12n >2 014 又0<12n <1,所以n min =2 014.。
等差数列与等比数列练习题
等差数列与等比数列练习题一、选择题1.对任意等比数列{}n a ,下列说法一定正确的是 A.139,,a a a 成等比数列 B.236,,a a a 成等比数列 C.248,,a a a 成等比数列 D.369,,a a a 成等比数列2.设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( )A .0d <B .0d >C .10a d <D .10a d >3.各项不为零的等差数列{n a }中,2a 3-27a +2a 11=0,数列{n b }是等比数列,且b 7=a 7, 则b 6b 8=( ).A .2B .4C .8D .164.设等差数列{}n a 的前n 项和为n S ,若7662a a +=,则9S 的值是( )A .18B .36C .54D .725.设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,236n n S S +-=,则n =( )A . 5B . 6C . 7D .86.等差数列{}n a 的前n 项和为n S ,311a =,14217S =,则12a =( )A .18B .20C .21D .227.设n S 为公差不为零的等差数列{}n a 的前n 项和,若983S a =,则) A .15 B .17 C .19 D .218.已知等差数列{n a },62a =,则此数列的前11项的和11S =A .44B .33C .22D .119.等差数列{}n a 的公差0d ≠,120a =,且3a ,7a ,9a 成等比数列.n S 为{}n a 的前n 项和,则10S 的值为( )A .110-B .90-C .90D .11010.由3,11==d a 确定的等差数列{}n a ,当268=n a 时,序号n 等于( )A .80B .100C .90D .8811.设}{n a 是等差数列,}{n b 为等比数列,其公比q≠1, 且0>i b (i=1、2、3 …n)若11b a =,1111b a =则A .66b a =B .66b a >C .66b a <D .66b a >或 66b a <12.已知等差数列{a n }的公差d≠0,若a 5、a 9、a 15成等比数列,那么它的公比为A13.在等差数列{}n a 中,0>n a ,且408321=++++a a a a ,则54a a ⋅的最大值是( )A .5B .10C .25D .5014.已知数列}{n a 为等差数列,且21=a ,1332=+a a ,则=++654a a a ( )(A )45 (B )43 (C )42 (D )4015.已知等差数列{}n a 中,前10项的和等于前5项的和.若06=+a a m 则=m ( )A.10B.9C.8D.216.设等差数列{}n a 的前n 项和为n S ,若493=+a a ,则11S 等于(A )12 (B )18 (C )22 (D )4417.在等差数列}{n a 中,1352,10a a a =+=,则7a =( )A.5B.8C.10D.1418.设n S 为等差数列{}n a 的前n 项的和,20141-=a ,则2014S 的值为( )A 、-2013B 、-2014C 、2013D 、2014 19.已知等差数列{}n a 满足32=a ,171=-n a ,)2(≥n ,100=n S ,则n 的值为( ) A .10 B .9 C .8 D .1120.等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,A21.等差数列}{n a 的前n 项和为2811,30n S a a a ++=若,那么13S 值的是 ( )A .130B .65C .70D .以上都不对22.设数列{}n a 是等差数列,26,a =- 86a =,n s 是数列{}n a 的前n 项和,则( )A .54s s <B .54s s =C .56s s <D .56s s =23.已知递减的等差数列{}n a 满足2921a a =,则数列{}n a 的前n 项和n S 取最大值时,n =( )A .3B .4或5C .4D .5或624.等差数列{}n a 中,19,793==a a ,则5a 为( )A .13B .12C .11D .1025.等差数列{a n }中,a 2+a 6=8,a 3+a 4=3,那么它的公差是( ).A .4B .5C .6D .726.已知等差数列}{n a 的前n 项和S n 满足1021S S =,则下列结论正确的是( )A .数列{}n S 有最大值B .数列{}n S 有最小值C .150a =D .160a =27.设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和,若,,,421S S S 成等比数列,则1a =( )28.在数列{}n a 中,1a =1,12n n a a +-=,则51a 的值为( )A.99B.49C.102D. 10129.已知等差数列}{n a 的前n 项和为n S ,若5418a a -=,则=8S ( ) A.18 B.36 C.30.已知数列{}n a 中,,则101a 的值为 A .50 B .51 C .52 D .5331.若{a n }为等差数列,S n 为其前n 项和,若首项17a =,公差2d =-,则使S n 最大的序号n 为( )A .2B .3C .4D .532.等差数列{}n a 中,a 1=1,d=3,a n =298,则n 的值等于( ).A .98B . 100C .99D .101 33,)(1)1(*N n f ∈=,猜想()f n 的表达式为( )A C 34.等差数列}{n a 中, 384362=+=+a a a a ,, 那么它的公差是( )A.4B.5C.6D.735.已知等差数列{}n a 中,26a =,前7项和784S =,则6a 等于( )A.18B.20C.24D.3236.等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+ +log 3a 10=( )A .12B .8C .10D .2+log 3537.已知等比数列{}n a ,且482,a a +=则62610(2)a a a a ++的值为( )A .4B .6C .8D .1038.已知{}n a 是等比数列,21,441==a a ,则公比q =( ) A 、21- B 、2- C 、2 D 、21 39.若正数a,b,c 成公差不为零的等差数列,则 ( )(A )lga lgb lgc ,, 成等差数列(B )lga lgb lgc ,, 成等比数列(C )2,2,2a b c 成等差数列(D )2,2,2a b c 成等比数列40.已知等比数列{}n a 中,1633a a +=,2532a a =,公比1q >,则38a a +=( )A .66B .132C .64D .12841.等比数列{}n a 中,37a =,前3项之和321S =,则公比q 的值为( )(A )1 (B (C )1或(D )1或42.在ABC ∆中,,,a b c 分别为,,A B C 的对边,若sin A 、sin B 、sin C 依次成等比数列,则( )A .,,a b c 依次成等差数列B .,,a b c 依次成等比数列C .,,a c b 依次成等差数列D .,,a c b 依次成等比数列43.若等比数列{}n a 的各项均为正数,且510119122a a a a e +=,则122l n l n l n a a a ++⋅⋅⋅+等于( ) A .50 B .25 C .75 D .10044.正项等比数列{}n a 的公比为2,若21016a a =,则9a 的值是A.8B.16C.32D.6445.设等比数列{}n a 中,前n 项和为n S ,已知7863==S S ,,则 =++987a a a ( )A 46.正项等比数列{}n a 的公比为2,若21016a a =,则9a 的值是A.8B.16C.32D.6447.已知等比数列{}n a 的前n 项和为S n ,( ) A .4n -1 B .4n-1 C .2n -1 D .2n-148.已知等比数列{}n a 中,各项都是正数,成等差数列,( )A49.已知{}n a 是首项为1的等比数列,n s 是{}n a 的前n 项和,且639s s =,的前5项和为( )A5 B5 C50.在等比数列}{n a 中, ,8,1641=-=a a 则=7a ( ) A.4- B.4± C .2- D .2±51.若等比数列{}n a 的前n 项和为n S ,且314S =,12a =,则4a =( )A .16B .16或-16C .-54D .16或-5452.公比为2的等比数列{n a } 的各项都是正数,且 3a 11a =16,则5a =( ) A .1 B .2 C .4 D .853.数列{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 6=b 7,则有A .a 3+a 9<b 4+b 10B .a 3+a 9≥b 4+b 10C .a 3+a 9≠b 4+b 10D .a 3+a 9与b 4+b 10的大小不确定 54.设等比数列{}n a 的公比2=q , 前n 项和为n S ,则) A .2 B .4 CD 55.等比数列{}n a 的首项11a =-,前n 项和为,n S则公比q 等于 ( )A.2 D .-2 56.各项不为零的等差数列{}n a 中,02211273=+-a a a ,数列{}n b 是等比数列,且77a b =,则=86b b ( )A 、2B 、4C 、8D 、16 57.若等比数列{}n a 满足153a a a =,则3a =( )(A )1 (B )1- (C )0或1 (D )1-或158.已知数列{}n a 是公比为2的等比数列,若416a =,则1a = ( )A .1B .2C .3D .459.在等比数列{}n a 中,若2n n a =,则7a 与9a 的等比中项为( )A .8aB .8a -C .8a ±D .前3个选项都不对60n 为( ) A .3 B .4 C .5 D .661.已知等比数列{n a }.等,则5cos a =( )A62.在等比数列{}n a 中,若,则=⋅82a a ( )A .-3B . 3C .-9D .963.已知{}n a 是等比数列,,则公比q =( ) A.2- C .2 D64.等比数列{}n a 的前n 项和为n S ,若1233a a a ++=,4566a a a ++=,则12S =( )A .15B .30C .45D .6065.数列{}n a 的首项为1,数列{}n b 为等比数列且,若10112b b ⋅=,则21a =( )A.20B.512C.1013D.102466.已知等比数列{}n a 中,74=a ,216=a ,则8a 的值 ( )A.35B.63C.321D. 321±67.在ABC ∆中的内角,,A B C 所对的边分别为,,a b c ,若60B ∠=,,a b c 且成等比数列,则ABC ∆的形状为A. 直角三角形B. 等腰三角形C. 等边三角形D. 不确定68.如果-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B .b =-3,ac =9C .b =3,ac =-9D .b =-3,ac =-969.设首项为l 的等比数列{}n a 的前n 项和为n S ,则 ( ) A.21n n S a =- B.32n n S a =-C.43n n S a =-D.32n n S a =-70.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2·a 4=1,S 3=7,则S 5=( )71.在等比数列{}n a 中,418a a =,则公比q 的值为(A )2 (B )3 (C )4 (D )872.等比数列}{n a 中,如果585,25a a ==则2a 等于( )C.5D.173.[2014·北京西城区期末]设f(n)=2+24+27+210+…+23n +10(n ∈N *),则f(n)等于( )n -n +1-1) n +3-n +4-1)二、双选题(题型注释)三、综合题(题型注释)四、填空题 74.数列{}n a 是等差数列,若1351,3,5a a a +++构成公比为q 的等比数列,则q =________.75.(2013•重庆)已知{a n }是等差数列,a 1=1,公差d≠0,S n 为其前n 项和,若a 1,a 2,a 5成等比数列,则S 8= _________ .等差数列与等比数列练习题参考答案1.D【解析】试题分析:因为数列{}n a 为等比数列,设其公比为q ,则()22852391116a a a q a q a q a⋅=⋅⋅⋅=⋅= 所以,369,,a a a 一定成等比数列,故选D.考点:1、等比数列的概念与通项公式;2、等比中项.2.C【解析】 试题分析:因为{}n a 是等差数列,则2(1)1111(1)22a a a a n d n n a a n d +-=+-∴=,又由于1{2}n a a 为递减数列,所以 C.考点:1.等差数列的概念;2.递减数列.3.D【解析】试题分析:由等差数列的性质可知,,27113a a a =+由2a 3-27a +2a 11=0,可得,47=a 又b 7=a 7,47=b ,由等比数列的性质,可得.162786==b b b 故选D. 考点:等差数列、等比数列的性质.4.C .【解析】试题分析:设等差数列{}n a 的首项为1a ,公差为d ,则由7662a a +=,得d a d a 66)5(211++=+, 即641=+d a ,即65=a ;则. 考点:等差数列.5.D .【解析】试题分析:由题意得:12-=n a n ,∴22136362321368n n n n S S a a n n n +++-=⇒+=⇒+++=⇒=. 考点:等差数列的通项公式.6.B【解析】 选B . 考点:1.等差数列的求和公式;2.等差数列的性质.7.A【解析】 试题分析:由等差数列的性质知959S a =,15815S a =,所以选A . 考点:等差数列的性质,等差数列的前n 项和.8.C【解析】 试题分析:由等差数列的前n 项和公式,得 C. 考点:1、等差数列的前n 项和公式;2、等差数列的性质.9.D【解析】试题分析:d d a a 220213+=+=,d d a a 620617+=+=,d d a a 820819+=+=,由9327a a a ⋅=,()()()d d d 8202206202+⋅+=+∴,整理得022=+d d ,2-=∴d 或0=d(舍去), D. 考点:等差数列的通项公式和前n 项和公式.10.C【解析】试题分析:根据题意可知,32n a n =-,令32268n -=,解得90n =,故选C. 考点:等差数列.11.B 【解析】试题分析:由题可知,61111112a b b a a =+=+,因为公比q≠1, 且0>i b (i=1、2、3 …n),,即666622b a b a >⇒>。
等差、等比数列习题(含答案)
等差数列、等比数列同步练习题等差数列一、选择题1、等差数列-6,-1,4,9,……中的第20项为()A、89B、 -101C、101D、-892.等差数列{an }中,a15=33, a45=153,则217是这个数列的()A、第60项B、第61项C、第62项D、不在这个数列中3、在-9与3之间插入n个数,使这n+2个数组成和为-21的等差数列,则n为A、 4B、 5C、 6D、不存在4、等差数列{an }中,a1+a7=42, a10-a3=21,则前10项的S10等于()A、 720B、257C、255D、不确定5、等差数列中连续四项为a,x,b,2x,那么 a :b 等于()A、B、 C、或 1 D、6、已知数列{an }的前n项和Sn=2n2-3n,而a1,a3,a5,a7,……组成一新数列{Cn},其通项公式为()A、 Cn =4n-3 B、 Cn=8n-1 C、Cn=4n-5 D、Cn=8n-97、一个项数为偶数的等差数列,它的奇数项的和与偶数项的和分别是24与30 若此数列的最后一项比第-10项为10,则这个数列共有()A、 6项B、8项C、10项D、12项8、设数列{an }和{bn}都是等差数列,其中a1=25, b1=75,且a100+b100=100,则数列{an +bn}的前100项和为()A、 0B、 100C、10000D、505000二、填空题9、在等差数列{an }中,an=m,an+m=0,则am= ______。
10、在等差数列{an }中,a4+a7+a10+a13=20,则S16= ______ 。
11.在等差数列{an }中,a1+a2+a3+a4=68,a6+a7+a8+a9+a10=30,则从a15到a30的和是 ______ 。
12.已知等差数列 110, 116, 122,……,则大于450而不大于602的各项之和为 ______ 。
三、解答题13.已知等差数列{an }的公差d=,前100项的和S100=145求: a1+a3+a5+……+a99的值14.已知等差数列{an}的首项为a,记(1)求证:{bn}是等差数列(2)已知{an }的前13项的和与{bn}的前13的和之比为 3 :2,求{bn}的公差。
数列等差数列与等比数列练习题
数列等差数列与等比数列练习题数列是数学中基础而重要的概念之一,同时也是数学的应用领域中常见的数学模型之一。
其中,等差数列和等比数列是数列中最基础的两种常见类型。
本文将为大家提供一些关于等差数列和等比数列的练习题,以巩固和提高大家对数列的理解和运用能力。
【练习题一】1. 若等差数列的首项是3,公差是4,求第n项的表达式。
解析:由题意,首项是3,公差是4。
所以等差数列的通项公式可以表示为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。
代入已知条件,可得an = 3 + (n-1)4。
2. 若等差数列的第7项是18,公差是2,求首项和第n项的和。
解析:由题意,第7项是18,公差是2。
所以等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。
代入已知条件,可得18 = a1 + (7-1)2。
解方程得a1 = 5。
首项和第n项的和可以表示为Sn = (n/2) * (a1 + an),其中n为项数,a1为首项,an为第n项。
代入已知条件,得Sn = (n/2) * (5 + 5 + (n-1)*2)。
【练习题二】1. 若等比数列的首项是2,公比是3,求第n项的表达式。
解析:由题意,首项是2,公比是3。
所以等比数列的通项公式可以表示为an = a1 * r^(n-1),其中a1为首项,r为公比,n为项数。
代入已知条件,可得an = 2 * 3^(n-1)。
2. 若等比数列的第4项是16,公比是2,求首项和第n项的和。
解析:由题意,第4项是16,公比是2。
所以等比数列的通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比,n为项数。
代入已知条件,可得16 = a1 * 2^(4-1)。
解方程得a1 = 2。
首项和第n项的和可以表示为Sn = a1 * (1 - r^n) / (1 - r),其中n为项数,a1为首项,r为公比。
代入已知条件,得Sn = 2 * (1 - 2^n) / (1 - 2)。
(完整版)等差等比数列综合练习题
等差数列等比数列综合练习题一.选择题1. 已知031=--+n n a a ,则数列{}n a 是 ( )A. 递增数列B. 递减数列C. 常数列D. 摆动数列 2.等比数列}{n a 中,首项81=a ,公比21=q ,那么它的前5项的和5S 的值是( ) A .231 B .233 C .235 D .2373. 设n S 是等差数列}{n a 的前n 项和,若S 7=35,则a 4=( ) A. 8 B.7C.6D.54. 等差数列}{n a 中,=-=++10915812,1203a a a a a 则( ) A .24B .22C .20D .-85. 数列{}n a 的通项公式为n n a n 2832-=,则数列{}n a 各项中最小项是 ( ) A. 第4项 B.第5项 C. 第6项 D. 第7项6.已知a ,b ,c ,d 是公比为2的等比数列,则dc ba ++22等于( ) A .1 B .21 C .41D .817.在等比数列{}n a 中,7114146,5,a a a a •=+=则2010a a =( ) A.23B.32C.23或32 D.23-或 32- 8.已知等比数列{}n a 中,n a >0,243546225a a a a a a ++=,那么35a a +=( ) A.5 B .10 C.15 D .209.各项不为零的等差数列{}n a 中,有23711220a a a -+=,数列{}n b 是等比数列,且7768,b a b b ==则( )A.2B. 4C.8 D .16 10.已知等差数列{}n a 中, 211210,10,38,n m m m m a m a a a S -+-≠>+-==若且则m 等于 A. 38 B. 20 C.10D. 911.已知n s 是等差数列{}n a *()n N ∈的前n 项和,且675s s s >>,下列结论中不正确的是( )A. d<0B. 110s >C.120s <D. 130s < 12.等差数列}{n a 中,1a ,2a ,4a 恰好成等比数列,则14a a 的值是( ) A .1 B .2 C .3 D .4二.填空题13.已知{a n }为等差数列,a 15=8,a 60=20,则a 75=________ 14. 在等比数列}{n a 中,1682=•a a ,则5a =__________15.在等差数列{a n }中,若a 7=m ,a 14=n ,则a 21=__________ 16. 若数列{}n x 满足1lg 1lg n n x x +=+()n N *∈,且12100100x x x +++=,则()101102200lg x x x +++=________17.等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值_________ 18.已知等比数列{a n }中,a 1+a 2+a 3=40,a 4+a 5+a 6=20,则前9项之和等于_________三.解答题19. 设三个数a ,b ,c 成等差数列,其和为6,又a ,b ,1+c 成等比数列,求此三个数.20. 已知数列{}n a 中,111,23n n a a a -==+,求此数列的通项公式.21. 设等差数列{}na的前n项和公式是253ns n n=+,求它的前3项,并求它的通项公式.22. 已知等比数列{}n a的前n项和记为S n,,S10=10,S30=70,求S40。
等差数列和等比数列习题及答案
等差数列和等比数列习题1.等差数列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8=( )A .18B .12C .9D .62.设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( )A .31B .32C .63D .643.若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( )A .6B .7C .8D .94.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8=( ) A .1+ 2B .1-2C .3+2 2D .3-225.正项等比数列{a n }满足:a 3=a 2+2a 1,若存在a m ,a n ,使得a m ·a n =16a 21,m ,n ∈N *,则1m +9n的最小值为( ) A .2B .16C .114D .326.已知{a n }是等差数列,公差d 不为零,若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=23,d =________. 7.已知数列{a n }中,a 1=1,a 2=2,设S n 为数列{a n }的前n 项和,对于任意的n >1,n ∈N ,S n +1+S n -1=2(S n +1)都成立,则S 10=___________8.设等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列,且a 2+a 5=4,则a 8的值为_______.9.设数列{a n }的前n 项和为S n ,且S n =4a n -p (n ∈N *),其中p 是不为零的常数.(1)证明:数列{a n }是等比数列;(2)当p =3时,若数列{b n }满足b n +1=a n +b n (n ∈N *),b 1=2,求数列{b n }的通项公式.10.(文)(2017·蚌埠质检)已知数列{a n }是等比数列,S n 为数列{a n }的前n 项和,且a 3=3,S 3=9.(1)求数列{a n }的通项公式;(2)设b n =log 23a 2n +3,且{b n }为递增数列,若c n =4b n ·b n +1,求证:c 1+c 2+c 3+…+c n <1.【参考答案】1. D[解析] 本题主要考查等差数列的通项公式及前n 项和公式.由题意得S 11=11(a 1+a 11)2=11(2a 1+10d )2=22,即a 1+5d =2,所以a 3+a 7+a 8=a 1+2d +a 1+6d +a 1+7d =3(a 1+5d )=6,故选D .2. C[解析] 解法一:由条件知:a n >0,且⎩⎪⎨⎪⎧ a 1+a 2=3,a 1+a 2+a 3+a 4=15,∴⎩⎪⎨⎪⎧a 1(1+q )=3,a 1(1+q +q 2+q 3)=15, ∴q =2.∴a 1=1,∴S 6=1-261-2=63. 解法二:由题意知,S 2,S 4-S 2,S 6-S 4成等比数列,即(S 4-S 2)2=S 2(S 6-S 4),即122=3(S 6-15),∴S 6=63.3. D[解析] 由题可得⎩⎪⎨⎪⎧a +b =p >0,ab =q >0,所以a >0,b >0,不妨设a >b ,所以等比数列为a ,-2,b 或b ,-2,a 从而得到ab =4=q ,等差数列为a ,b ,-2或-2,b ,a 从而得到2b =a -2,两式联立解出a =4,b =1,所以p =a +b =5,所以p +q =4+5=9.4. C[解析] 本题主要考查等差数列、等比数列.∵a 1,12a 3,2a 2成等差数列,∴12a 3×2=a 1+2a 2, 即a 1q 2=a 1+2a 1q ,∴q 2=1+2q ,解得q =1+2或q =1-2(舍),∴a 9+a 10a 7+a 8=a 1q 8(1+q )a 1q 6(1+q )=q 2=(1+2)2=3+2 2. 5. C[解析] 设数列{a n }的公比为q ,a 3=a 2+2a 1⇒q 2=q +2⇒q =-1(舍)或q =2,∴a n =a 1·2n -1,a m ·a n =16a 21⇒a 21·2m +n -2=16a 21⇒m +n =6,∵m ,n ∈N *,∴(m ,n )可取的数值组合为(1,5),(2,4),(3,3),(4,2),(5,1),计算可得,当m =2,n =4时,1m +9n 取最小值114. 6.-1[解析] 由题可得(a 1+2d )2=(a 1+d )(a 1+6d ),故有3a 1+2d =0,又因为2a 1+a 2=1,即3a 1+d =1,联立可得d =-1,a 1=23.7.91.[解析] 因为任意的n >1,n ∈N ,S n +1+S n -1=2(S n +1)都成立,所以S n +1-S n =S n -S n -1+2,所以a n +1=a n +2,因为a 3=a 2+2=4,所以a n =a 2+(n -2)×2=2+(n -2)×2=2n -2,n ≥2,所以S 10=a 1+a 2+a 3…+a 10=1+2+4+…+18=1+2×9+9×82×2=91. 8.2.[解析] ∵等比数列{a n }的前n 项和为S n ,S 3,S 9,S 6成等差数列,且a 2+a 5=4,∴⎩⎪⎨⎪⎧2×a 1(1-q 9)1-q =a 1(1-q 3)1-q +a 1(1-q 6)1-q a 1q +a 1q 4=4,解得a 1q =8,q 3=-12, ∴a 8=a 1q 7=(a 1q )(q 3)2=8×14=2. 9.[解析] (1)证明:因为S n =4a n -p (n ∈N *), 则S n -1=4a n -1-p (n ∈N *,n ≥2),所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1,整理得a n =43a n -1. 由S n =4a n -p ,令n =1,得a 1=4a 1-p ,解得a 1=p 3. 所以{a n }是首项为p 3,公比为43的等比数列. (2)因为a 1=1,则a n =(43)n -1, 由b n +1=a n +b n (n =1,2,…),得b n +1-b n =(43)n -1, 当n ≥2时,由累加法得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=2+1-(43)n -11-43=3·(43)n -1-1, 当n =1时,上式也成立.∴b n =3·(43)n -1-1. 10.[解析] (1)设该等比数列的公比为q ,则根据题意有3·(1+1q +1q 2)=9, 从而2q 2-q -1=0,解得q =1或q =-12. 当q =1时,a n =3;当q =-12时,a n =3·(-12)n -3. (2)证明:若a n =3,则b n =0,与题意不符,故a n =3(-12)n -3, 此时a 2n +3=3·(-12)2n , ∴b n =2n ,符合题意.∴c n =42n ·(2n +2)=1n ·(n +1)=1n -1n +1, 从而c 1+c 2+c 3+…+c n =1-1n +1<1.。
《数列》练习卷
1《数列》练习一. 选择题:1.在数列22,,81,98,0,1nn -⋅⋅⋅⋅⋅⋅-中,080⋅是它的第( )项。
A.100B.12C.10D.82.已知数列,,11,22,5,2⋅⋅⋅⋅则52是它的第( )项。
A.10B.8C.7D.6 3.数列{}n a 为等差数列,d a ,231=为整数,从第七项起为负值,则公差为( )。
A.-5 B.-4 C.-3 D.-2 4.设{}n a 的通项公式,11nn a n ++=若,9=n s 则=n ( )A.9B.100C.99D.10 5.在项数为12+n 的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n 等于( )A.9B.10C.11D.126.数列{}n a 为等比数列,公比为2,则432122a a a a ++的值为( )A.41 B.21 C.81D.1 7.在2,162,,,z y x 成等比数列的5个正数中,则z 的值等于( )A.54B.27C.9D.3 8.数列9,99,999,9999,…的前n 项和等于( )A.110-nB.n n --)110(910C.)110(910-nD.n n +-)110(910二.填空题:9.1,⋅⋅⋅⋅--,4,3,2通项公式是 ,7,77,777,7777,…的通项是 。
10.数列{}n a 通项公式),(,)1(1*N n n n a n ∈+=则1321是这个数列的第 项,前100项和是 。
11.数列{}n a 为等比数列,,6,996==a a 则=3a 。
12.求和=+⋅⋅⋅+++1021198******** 。
三.解答题:13.三个数成等差数列,它们的和为18,它们的平方和等于116,求这个三个数。
14.若c b a ,,成等比数列,公比为3,又c b a ,8,+成等差数列,求此三个数。
等差等比练习题(有答案)
等差 等比数列选择题:1. 已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是()A 、5B 、4C 、 3D 、22. 在圆225x y x +=内,过点53,22⎛⎫⎪⎝⎭有n 条弦的长度成等差数列,最短弦长为数列的首项1a ,最长的弦长为n a ,若公差11,63d ⎛⎤∈ ⎥⎝⎦,那么 n 的取值集合为 ( )A 、4,5,6B 、6,7,8,9C 、3,4,5D 、3,4,5,6 3.已知实数c b a 、、满足1226232===cba,,,那么实数c b a 、、是() A 、等差非等比数列 B 、等比非等差数列 C 、既是等比又是等差数列 D 、既非等差又非等比数列4.在等差数列{}n a 中,已知1232,13,a a a =+=则456a a a ++等于()A 、40B 、42C 、43D 、455.若c b a 、、成等比数列,则关于x 的方程02=++c bx ax ()A 、必有两个不等实根B 、必有两个相等实根C 、必无实根D 、以上三种情况均有可能6.已知等差数列{}n a 的公差为2,若1a 、3a 、4a 成等比数列,则2a 等于() A 、-4 B 、-6 C 、-8 D 、-10 7.由1a =1,131nn n a a a +=+给出的数列{}n a 的第34项为()A 、10334 B 、100 C 、1001 D 、1041 二.填空题8.在等差数列{}n a 中,已知2054321=++++a a a a a ,那么3a 等于___________。
9. 等差数列{}n a 的第3,7,10项成等比数列,则这个等比数列的公比q=。
10.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等 于11.关于数列有下面四个判断:①若a 、b 、c 、d 成等比数列,则a+b 、b+c 、c+d 也成等比数列; ②若数列{}n a 既是等差数列,也是等比数列,则{}n a 为常数列;③若数列{}n a 的前n 次和为S n ,且S n = a n -1,(a R ∈),则{}n a 为等差或等比数列; ④数列{}n a 为等差数列,且公差不为零,则数列{}n a 中不含有a m =a n (m ≠n )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列4.2
一.例题分析:
例1. 已知等差数列{}n a 中,1533a =,45153a =,试问217是否是此数列的项?
若是,是第几项;若不是,请说明理由。
解:依题意可得11143344153{a d a d +=+= 解得1
234{a d =-= 234(1)427n n n a -+-=-=∴
令427217n -= 得61n
= 217∴是这个数列的第61项 例2. 成等差数列的三个正数之和为15,若这三个数分别加上1,3,9后又成等比数
列,求这三个数。
解:设这三个数分别为,,a d a a d -+
()()15a d a a d -+++= 解得5a = ∴这三个数为5,5,5d d -+
故由题意又可得2(53)(51)(59)d d +=-+++ 解得210()d d ==-舍去或 ∴这三个数为3,5,7
例3. 数列{}n a 满足11a =,121n n a a +=+。
①求证{1}n a +是等比数列;②求数列{}n a 的通项公式。
①证明:121n n a a +=+ 11222(1)n n n a a a ++=+=+∴
又1 1 10n a a =+≠∴ 故1121
n n a a ++=+ {1}n a +∴是等比数列 ②解:{1}n a + 是等比数列,
且112,2a q +==11222n n n a -+=⨯=∴ 故21n n a =- 二.练习。
1.数列,,,,()a a a a a R ∈ 必为 ( D )
A .等差数列但不是等比数列
B .等比数列但不是等差数列
C .既是等差数列,又是等比数列
D .以上都不正确
2.等差数列{}n a 中,若2491132a a a a +++=,则67a a += ( D )
A .9
B .12
C .15
D .16
3.等比数列{}n a 中, 1230a a +=,3460a a +=,则 78a a += ( B )
A .120
B .240
C .180
D .300
4.等差数列{}n a 中,1a =1,0d ≠,346,,a a a 是一个等比数列的前3项,则这一等比数列的第4项为 ( C )
A .8
B .-6
C .-8
D .不能确定
5.在等比数列{}n a 中,0n a >,且243546225a a a a a a ++=,则35a a +=( A )
A .5
B .10
C .15
D .20
6.设等比数列{}n a 中,10,2a q >=,且30
12302a a a = ,则36930a a a a = ( D )
A .102
B .152
C .162
D .202
7.下列说法:①数列5,3,1,-1,-3是公差为2的等差数列;②若0ac ≠,则2
b a
c = ⇔,,a b c 成等比数列;③等差数列的通项公式一定能写成n a an b =+(a 、b 是常数)的形式;④若,,a b c 成等差数列,则lg ,lg ,lg a b c 成等比数列;正确的有( A )个
A .1
B .2
C .3
D .4
8.若6,a ,b ,48成等差数列;而6,c ,
d ,48成等比数列,则a b c d +++=__90____。
9.等差数列{}n a 中,若1351a a a ++=-,则12345a a a a a ++++=53- 10.若数列{}n a 是公比为2的等比数列,且10a >,数列{}n b 是公差为2的等差数列,
且11log log x n n x a b a b -=-,则x
11.若,a b 的等差中项是9
a b >,则a = 11 ,b = 7 。
12.在等比数列{}n a 中,0n a >,且1964a a =,3720a a +=,求11a 。
解:依题意可得73736420
{a a a a =+= 解得 37416{a a == 或 37164{a a == 当37
416{a a ==时4,4q = 411764a a q ==∴ 当37164{a a ==时41,4q = 41171a a q ==∴ 13.已知等比数列{}n a 中,0n a >,数列{}n b 满足2log n n b a =,且1233b b b ++=,1233b b b =-,求数列{}n a 的通项公式。
解:1232123log 3b b b a a a ++== 1238a a a =∴,故22a = 21b =∴
131323
{b
b b b -+==∴ 解得1331{b b ==-或1313{b b =-= 当13b =时,18a =, 2114a q a =
=∴ 故15218()24n n n a --== 同理 当11b =-时,11
2a =, 214a q a =
=∴ 故1231422n n n a --== 14.数列{}n a 中,若123,,a a a 成等差数列, 234,,a a a 成等比数列, 345,,a a a 的倒数又
成等差数列,证明135,,a a a 成等比数列。
证明:依题意可得2132a a a =+ ① , 2324a a a = ② , 543211a a a =+ ③ 由①可得1322a a a +=,由③可得35435
2a a a a a =+,将这两式代入②,得 1335352322a a a a a a a +⋅+= 整理得51335
3()a a a a a a ++= 化简可得2315a a a = 又30a ≠ ∴135,,a a a 成等比数列。