选修4-4 坐标系与参数方程 解析版
选修4-4 第五节几种常见的参数方程
x=1+2cos t, (0≤t≤π),把它化为普通 y=-2+2sin t
方程,并判断该曲线表示什么图形.
所求的曲线的参数方程为 (x-1)2+(y+2)2=4(-2≤y≤0). 这是一个半圆,其圆心为(1,-2),半径为 2.
例2
已知圆的普通方程为
x2+y2+2x-6y+9=0, 将它化为参
轴上,所以椭圆的标准方程为 + =1, 25 16 x=4cos θ , 故参数方程为 (θ 为参数). y=5sin θ
y2
x2
(x-1)2 (y+2)2 1. 写出圆锥曲线 + =1 的 3 5
例1
x=5+3t, 设直线的参数方程为 y=10-4t.
(1)求直线的普通方程; (2)化参数方程为标准形式.
解析:(1) 4x+3y-50=0.
3 4 4 k tan (2) 3 cos α =- ,sin α = . 5 5 3 x=5- u, 5 则参数方程的标准形式为: 4 y=10+ u. 5
例 3 已知直线 l 的方程为 3x-4y+1=0,点 P(1,1)在 直线 l 上,写出直线 l 的参数方程,并求点 P 到点 M(5,4)和 点 N(-2,6)的距离.
3 解析:由直线方程 3x-4y+1=0 可知,直线的斜率为 ,设直线的 4 3 3 4 则 tan α = ,sin α = ,cos α = . 4 5 5
制作人:葛海泉
课前预习
1.பைடு நூலகம்线的参数方程
x=x0+tcosα , 1. 经过点 M0(x0, y0), 倾斜角为 α 的直线 l 的参数方程为 y=y0+tsinα
(t 为参数).
t0
(完整版)高中数学选修4—4(坐标系与参数方程)知识点总结
e 44
th
(
,
2
)或(或 (,-
2 ))
44
44
, 5
等多种形式,其中,只有
(
,
)
的极坐标满足方程
.
44
44
in 二、参数方程
gs 1.参数方程的概念
thin x f (t)
ll 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标
x,
y
都是某个变数
t
的函数
y
g
(t
)
①,并且对于
t
a 的曲线的参数方程的形式也不同。
ing 3.圆的参数
ir be 如图所示,设圆O 的半径为 r
,点 M
从初始位置
M0
出发,按逆时针方向在圆 O 上作匀速圆周运动,设
M
(x,
y)
x ,则
y
r cos r sin
(为参数)
。
the 这就是圆心在原点 O ,半径为 r 的圆的参数方程,其中 的几何意义是 OM0 转过的角度。
bein (1)极坐标系如图所示,在平面内取一个定点 O ,叫做极点,自极点 O 引一条射线 Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正 eir 方向(通常取逆时针方向),这样就建立了一个极坐标系. th 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系, in 而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. ings (2)极坐标:设 M 是平面内一点,极点 O 与点 M 的距离|OM|叫做点 M 的极径,记为 ;以极轴 Ox 为始边,射线 OM 为终边的角 xOM 叫做点 M 的极角,记 th 为 .有序数对 (, ) 叫做点 M 的极坐标,记作 M (, ) .
第十二章 坐标系与参数方程[选修4-4]第二节 参数方程
距离是________.
解析:直线方程可化为 x-y+1=0,圆的方程可化为(x -1)2+y2=1.由点到直线的距离公式可得,圆心 C(1,0)到 |2| 直线 l 的距离为 2 2= 2. 1 +-1
答案: 2
x=1+3t, 5.(2012· 湖南十二校联考)若直线的参数方程为 y=2- 3t
解析:由 y=t-1,得 t=y+1,代入 x=3t+2,得 x =3y+5, 即 x-3y-5=0.
答案:x-3y-5=0
x=5cos θ, 2.(教材习题改编)曲线 y=3sin θ
(θ 为参数)的左焦点
的坐标是________.
x2 y2 解析:化为普通方程为 + =1,故左焦点为(-4,0). 25 9
x=2t+2a, y=-t
(t 为参数),曲线
x=2cos θ, C2: y=2+2sin θ
(θ 为
参数).若曲线 C1,C2 有公共点,则实数 a 的取值范围 是________.
解析:将曲线 C1,C2 的参数方程化为普通方程, 得 C1:x+2y-2a=0,C2:x2+(y-2)2=4. 因为曲线 C1 与 C2 有公共点, |4-2a| 所以圆心到直线的距离 ≤2, 5 解得 2- 5≤a≤2+ 5.
[自主解答] =16.
由圆C的参数方程可得其标准方程为x2+y2
π 因为直线l过点P(2,2),倾斜角α= ,所以直线l的参数 3 π x=2+tcos3, 方程为 y=2+tsinπ, 3 1 x=2+2t, 即 y=2+ 3t 2
(t为参数).
1 x=2+2t, 把直线l的参数方程 y=2+ 3t 2
去参数;
(2)利用三角恒等式消去参数; (3)根据参数方程本身的结构特征,选用一些灵活的方 法从整体上消去参数. 2.将参数方程化为普通方程时,要注意防止变量x和y
选修4-4极坐标与参数方程教材分析与教学建议
选修4-4“极坐标与参数方程”教材分析与教学建议房山教师进修学校中学数学教研室张吉一、地位与作用选修专题4-4的《坐标系与参数方程》作为选修系列的二个可选专题安排在高三上学习,这是平面解析几何初步、平面向量、三角函数等内容的综合应用和进一步深化,要求学生通过本专题的学习,掌握极坐标和参数方程的基本概念,了解曲线的多种表现形式,体会从实际问题中抽象出数学问题的过程,对培养学生探究数学问题的兴趣和能力,体会数学在实际中的应用价值,提高应用意识和实践能力具有重要的意义。
这两个专题是解析几何内容的延续。
从上述安排可见,“课标”构建的解析几何课程体系,是以坐标法为核心,依“直线与方程——圆与方程——圆锥曲线与方程——极坐标系与参数方程”为顺序,螺旋上升、循序渐进地展开内容。
二、“课标”对参数方程、极坐标内容的安排选修4-4的《坐标系与参数方程》:1.第一讲坐标系(1)回顾在平面直角坐标系中刻画点的位置的方法,体会坐标系的作用。
(2)通过具体例子,了解在平面直角坐标系伸缩变换下平面图形的变化情况。
(3)能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化。
(4)能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程。
2.第二讲参数方程(1)通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
(2)分析直线、圆和圆锥曲线的几何性质,选择适当的参数写出它们的参数方程。
(3)举例说明某些曲线用参数方程表示比用普通方程表示更方便,感受参数方程的优越性。
(4)完成一个学习总结报告。
报告应包括三方面内容:1)知识的总结。
对本专题整体结构和内容的理解,进一步认识数形结合思想,思考本专题与高中其他内容之间的关系。
2)拓展。
通过查阅资料、调查研究、访问求教、独立思考,进一步探讨参数方程、摆线的应用。
3)学习本专题的感受、体会。
高中数学一轮总复习文科基础复习题及解析(二)
高中数学一轮总复习文科基础复习题及解析第二部分 选考部分第十二讲 选考内容第一节 选修4-4 坐标系与参数方程1.在直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示);(2)求圆C 1与C 2的公共弦的参数方程. 解析:(1)圆C 1的极坐标方程为ρ=2, 圆C 2的极坐标方程为ρ=4cos θ.解⎩⎪⎨⎪⎧ρ=2,ρ=4cos θ得ρ=2,θ=±π3,故圆C 1与圆C 2交点的坐标为⎝⎛⎭⎫2,π3,⎝⎛⎭⎫2,-π3. 注:极坐标系下点的表示不唯一,(2)由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ得圆C 1与C 2交点的直角坐标分别为(1,3),(1,-3).故圆C 1与C 2的公共弦的参数方程为⎩⎪⎨⎪⎧x =1,y =t ,-3≤t ≤ 3.2.已知直线l 经过点P (1,1),倾斜角α=π6,(1)写出直线l 的参数方程.(2)设l 与圆x 2+y 2=4相交于两点A ,B ,求点P 到A ,B 两点的距离之积.解析:(1)直线的参数方程为⎩⎨⎧x =1+t cos π6,y =1+t sin π6(t 为参数),即⎩⎨⎧x =1+32t ,y =1+12t (t 为参数).(2)把直线的参数方程⎩⎨⎧x =1+32t ,y =1+12t (t 为参数)代入x 2+y 2=4得(1+32t )2+(1+12t )2=4,t 2+(3+1)t -2=0, ∴t 1t 2=-2,则点P 到A ,B 两点的距离之积为2.3.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=1,M ,N 分别为C 与x 轴、y 轴的交点. (1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解析:(1)由ρcos ⎝⎛⎭⎫θ-π3=1 得ρ⎝⎛⎭⎫12cos θ+32sin θ=1.从而C 的直角坐标方程为12x +32y =1,即x +3y =2.当θ=0时,ρ=2,所以M (2,0). 当θ=π2时,ρ=233,所以N ⎝⎛⎭⎫233,π2.(2)因为M 点的直角坐标为(2,0), N 点的直角坐标为⎝⎛⎭⎫0,233.所以P 点的直角坐标为⎝⎛⎭⎫1,33, 则P 点的极坐标为⎝⎛⎭⎫233,π6,所以直线OP 的极坐标方程为θ=π6(ρ∈R ).4.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =sin α,y =cos 2 α,α∈[0,2π),曲线D 的极坐标方程为ρsin(θ+π4)=- 2. (1)将曲线C 的参数方程化为普通方程;(2)曲线C 与曲线D 有无公共点?试说明理由.解析:(1)由⎩⎪⎨⎪⎧x =sin α,y =cos 2α,α∈[0,2π)得x 2+y =1,x ∈[-1,1].(2)由ρsin(θ+π4)=-2得曲线D 的普通方程为x +y +2=0.⎩⎪⎨⎪⎧x +y +2=0,x 2+y =1得x 2-x -3=0.解得x =1±132∉[-1,1],故曲线C 与曲线D 无公共点.5.以平面直角坐标系的原点为极点,以x 轴的正半轴为极轴建立极坐标系,设曲线C的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α是参数),直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ+π6=2 3. (1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设点P 为曲线C 上任意一点,求点P 到直线l 的距离的最大值. 解析:(1)∵直线l 的极坐标方程为 ρcos ⎝⎛⎭⎫θ+π6=23, ∴ρ⎝⎛⎭⎫cos θcos π6-sin θsin π6=23, ∴32x -12y =2 3. 即直线l 的直角坐标方程为3x -y -43=0.由⎩⎪⎨⎪⎧x =2cos α,y =3sin α 得x 24+y 23=1. 即曲线C 的普通方程为x 24+y 23=1.(2)设点P (2cos α,3sin α), 则点P 到直线l 的距离 d =|23cos α-3sin α-43|2=|15cos (α+φ-43)|2,其中tan φ=12.当cos(α+φ)=-1时,d max =15+432,即点P 到直线l 的距离的最大值为15+432. 6.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos(θ-π4)=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解析:(1)由ρ=2知ρ2=4,所以x 2+y 2=4; 因为ρ2-22ρcos(θ-π4)=2,所以ρ2-22ρ(cos θcos π4+sin θ·sin π4)=2.所以x 2+y 2-2x -2y -2=0. (2)将两圆的直角坐标方程相减, 得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin(θ+π4)=22.7.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝⎛⎭⎫θ-π4=2 2. (1) 求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R 为参数),求a ,b 的值. 解析:(1)圆C 1的直角坐标方程为x 2+(y -2)2=4,直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧ x 2+(y -2)2=4,x +y -4=0,得⎩⎪⎨⎪⎧x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=2,y 2=2.所以C 1与C 2交点的极坐标为⎝⎛⎭⎫4,π2,⎝⎛⎭⎫22,π4, 注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3).故直线PQ 的直角坐标方程为x -y +2=0,由参数方程可得y =b 2x -ab2+1,所以⎩⎨⎧b2=1,-ab2+1=2,解得a =-1,b =2.8.在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 上两点M ,N 的极坐标分别为(2,0),⎝⎛⎭⎫233,π2,圆C 的参数方程为⎩⎨⎧x =2+2cos θ,y =-3+2sin θ(θ为参数).(1)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程; (2)判断直线l 与圆C 的位置关系.解析:(1)由题意知,M ,N 的平面直角坐标分别为(2,0)⎝⎛⎭⎫0,233.又P 为线段MN 的中点,从而点P 的平面直角坐标为⎝⎛⎭⎫1,33,故直线OP 的平面直角坐标方程为y =33x .(2)因为直线l 上两点M ,N 的平面直角坐标分别为(2,0)⎝⎛⎭⎫0,233,所以直线l 的平面直角坐标方程为3x +3y -23=0.(2)又圆C 的圆心坐标为(2,-3),半径r =2, 圆心到直线l 的距离d =|23-33-23|3+9=32<r ,故直线l 与圆C 相交.第二节 选修4-5 不等式选讲1.已知函数f (x )=|2x -a |+a ,a ∈R ,g (x )=|2x -1|.(1)若当g (x )≤5时,恒有f (x )≤6,求a 的最大值; (2)若当x ∈R 时,恒有f (x )+g (x )≥3,求a 的取值范围. 解析:(1)g (x )≤5⇔|2x -1|≤-5⇔2x -1≤5⇔-2≤x ≤3;f (x )≤6⇔|2x -a |≤6-a ⇔a -6≤2x -a ≤6-a ⇔a -3≤x ≤3. 依题意有,a -3≤-2,a ≤1. 故a 的最大值为1.(2)f (x )+g (x )=|2x -a |+|2x -1|+a ≥|2x -a -2x +1|+a =|a -1|+a , 当且仅当(2x -a )(2x -1)≤0时符号成立.解不等式|a -1|+a ≥3,得a 的取值范围是[2,+∞).2.已知f (x )=|ax +1|(a ∈R ),不等式f (x )≤3的解集为{x |-2≤x ≤1}. (1)求a 的值;(2)若⎪⎪⎪⎪f (x )-2f ⎝⎛⎭⎫x 2≤k 恒成立,求k 的取值范围. 解析:(1)由|ax +1|≤3得-4≤ax ≤2.又f (x )≤3的解集为{x |-2≤x ≤1},所以当a ≤0时,不合题意.当a >0时,-4a ≤x ≤2a ,得a =2.(2)记h (x )=f (x )-2f (x2),则h (x )=⎩⎨⎧1(x ≤-1),-4x -3⎝⎛⎭⎫-1<x <-12,-1(x ≥-12)所以|h (x )|≤1,因此k ≥1.3.已知函数f (x )=|2x +2|+|2x -3|.(1)若∃x 0∈R ,使得不等式f (x 0)<m 成立,求m 的取值范围; (2)求使得不等式f (x )≤|4x -1|成立的x 的取值范围. 解析:(1)∵f (x )=|2x +2|+|2x -3|≥|(2x +2)-(2x -3)|=5,∴∃x 0∈R ,使得不等式f (x 0)<m 成立的m 的取值范围是(5,+∞). (2)∵f (x )=|2x +2|+|2x -3|≥|2x +2+2x -3|=|4x -1|, ∴|2x +2|+|2x -3|≥|4x -1|,当且仅当(2x +2)(2x -3)≥0时取等号, ∴x 的取值范围是(-∞,-1]∪⎣⎡⎭⎫32,+∞. 4.已知函数f (x )=|x -a |.(1)若f (x )≤m 的解集为{x |-1≤x ≤5},求实数a ,m 的值; (2)当a =2且t ≥0时,解关于x 的不等式f (x )+t ≥f (x +2t ).解析:(1)由|x -a |≤m ,得a -m ≤x ≤a +m ,所以⎩⎪⎨⎪⎧ a -m =-1,a +m =5,解得⎩⎪⎨⎪⎧a =2,m =3.(2)当a =2时,f (x )=|x -2|,f (x )+t ≥f (x +2t ),即 |x -2+2t |-|x -2|≤t .①当t =0时,不等式①恒成立,即x ∈R ;当t >0时,不等式等价于⎩⎪⎨⎪⎧x <2-2t ,2-2t -x -(2-x )≤t或⎩⎪⎨⎪⎧2-2t ≤x <2,x -2+2t -(2-x )≤t 或⎩⎪⎨⎪⎧x ≥2,x -2+2t -(x -2)≤t ,解得x <2-2t 或2-2t ≤x ≤2-t 2或x ∈∅,即x =2-t 2.综上,当t =0时,原不等式的解集为R ; 当t >0时,原不等式的解集为{x |x ≤2-t2}.5.已知a ,b ,c 为实数,且a +b +c =2m -2,a 2+14b 2+19c 2=1-m .(1)求证:a 2+b 24+19c 2≥(a +b +c )214; (2)求实数m 的取值范围.解析:(1)由柯西不等式得:⎣⎡⎦⎤a 2+⎝⎛⎭⎫12b 2+⎝⎛⎭⎫13c 2·(12+22+32)≥(a +b +c )2, 即⎝⎛⎭⎫a 2+14b 2+19c 2·14≥(a +b +c )2,所以a 2+14b 2+19c 2≥(a +b +c )214,当且仅当|a |=14|b |=19|c |时,取等号. (2)由已知得(a +b +c )2=(2m -2)2,结合(1)的结论可得:14(1-m )≥(2m -2)2,即2m 2+3m -5≤0,所以-52≤m≤1,又a2+14b2+19c2=1-m≥0,所以m≤1,故m的取值范围为-52≤m≤1.6.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则a+b>c+d;(2)a+b>c+d是|a-b|<|c-d|的充要条件.证明:(1)因为(a+b)2=a+b+2ab,(c+d)2=c+d+2cd,由题设a+b=c+d,ab>cd得(a+b)2>(c+d)2.因为a+b>c+d.(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1)得a+b+c+d,②若a+b>c+d则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.7.设f(x)=|x-1|-2|x+1|的最大值为m.(1)求m;(2)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.解析:(1)当x≤-1时,f(x)=3+x≤2;当-1<x<1时,f(x)=-1-3x<2;当x ≥1时,f (x )=-x -3≤-4. 故当x =-1时,f (x )取得最大值m =2.(2)a 2+2b 2+c 2=(a 2+b 2)+(b 2+c 2)≥2ab +2bc =2(ab +bc ), 当且仅当a =b =c =22时,等号成立. 此时,ab +bc 取得最大值1.8.已知函数f (x )=|x -2|+|x -4|的最小值为m ,实数a ,b ,c ,n ,p ,q 满足a 2+b 2+c 2=n 2+p 2+q 2=m .(1)求m 的值;(2)求证:n 4a 2+p 4b 2+q 4c2≥2.解析:(1)f (x )=|x -2|+|x -4|≥|(x -2)-(x -4)|=2,当且仅当2≤x ≤4时,等号成立,故m =2.(2)因为[(n 2a )2+(p 2b )2+(q 2c )2]·(a 2+b 2+c 2)≥(n 2a ·a +p 2b ·b +q 2c ·c )2,即(n 4a 2+p 4b 2+q 4c 2)×2≥(n 2+p 2+q 2)2=4, 所以n 4a 2+p 4b 2+q 4c2≥2.9.已知f (x )=|x +1|+|x -1|,不等式f (x )<4的解集为M . (1)求M ;(2)当a ,b ∈M 时,证明:2|a +b |<|4+ab |. 解析:(1)f (x )=|x +1|+|x -1| =⎩⎪⎨⎪⎧-2x ,x <-1,2,-1≤x ≤1.2x ,x >1,当x <-1时,由-2x <4,得-2<x <-1; 当-1≤x ≤1时,f (x )=2<4,∴-1≤x ≤1; 当x >1时,由2x <4,得1<x <2. ∴M =(-2,2).(2)证明:a ,b ∈M 即-2<a <2,-2<b <2.∵4(a +b )2-(4+ab )2=4(a 2+2ab +b 2)-(16+8ab +a 2b 2)=(a 2-4)·(4-b 2)<0, ∴4(a +b )2<(4+ab )2, ∴2|a +b |<|4+ab |.10.已知二次函数f (x )=x 2+ax +b (a ,b ∈R )的定义域为[-1,1],且|f (x )|的最大值为M . (1)试证明|1+b |≤M ; (2)试证明M ≥12;(3)当M =12时,试求出f (x )的解析式.解析:(1)∵M ≥|f (-1)|=|1-a +b |,M ≥|f (1)|=|1+a +b |,∴2M ≥|1-a +b |+|1+a +b |≥|(1-a +b )+(1+a +b )|=2|1+b |,∴M ≥|1+b |.(2)依题意,M ≥|f (-1)|,M ≥|f (0)|,M ≥|f (1)|,又|f (-1)|=|1-a +b |,|f (1)|=|1+a +b |,|f (0)|=|b |,∴4M ≥|f (-1)|+2|f (0)|+|f (1)|=|1-a +b |+2|b |+|1+a +b |≥|(1-a +b )-2b +(1+a +b )|=2.∴M ≥12.(3)当M =12时,|f (0)|=|b |≤12,-12≤b ≤12.①同理-12≤1+a +b ≤12.②-12≤1-a +b ≤12.③ ②+③得-32≤b ≤-12.④由①④得b =-12,当b =-12时,分别代入②③得⎩⎨⎧-1≤a ≤0,0≤a ≤1⇒a =0,因此f (x )=x 2-12. 11.已知函数f (x )=|2x +1|+|2x -3|.(1)若关于x 的不等式f (x )<|1-2a |的解集不是空集,求实数a 的取值范围; (2)若关于t 的一元二次方程t 2+26t +f (m )=0有实根,求实数m 的取值范围. 解析:(1)∵f (x )=|2x +1|+|2x -3|≥|(2x +1)-(2x -3)|=4,∴|1-2a |>4, ∴a <-32或a >52,∴实数a 的取值范围为⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫52,+∞. (2)Δ=24-4(|2m +1|+|2m -3|)≥0.即|2m +1|+|2m -3|≤6,∴不等式等价于⎩⎪⎨⎪⎧ m >32,(2m +1)+(2m -3)≤6或 ⎩⎪⎨⎪⎧ -12≤m ≤32,(2m +1)-(2m -3)≤6或 ⎩⎪⎨⎪⎧m <-12,-(2m +1)-(2m -3)≤6.∴32<m ≤2或-12≤m ≤32或-1≤m <-12, ∴实数m 的取值范围是[-1,2].12.已知函数f (x )=|3x +2|.(1)解不等式f (x )<4-|x -1|;(2)已知m +n =1(m ,n >0),若|x -a |-f (x )≤1m +1n(a >0)恒成立,求实数a 的取值范围. 解析:(1)不等式f (x )<4-|x -1|.即|3x +2|+|x -1|<4.当x <-23时,即-3x -2-x +1<4, 解得-54<x <-23: 当-23≤x ≤1时,即3x +2-x +1<4, 解得-23≤x ≤12; 当x >1时,即3x +1+x -1<4,无解.综上所述,x ∈⎝⎛⎭⎫-54,12.(2)1m +1n =⎝⎛⎭⎫1m +1n (m +n )=1+1+n m +m n≥4, 令g (x )=|x -a |-f (x )=|x -a |-|3x +2|=⎩⎨⎧2x +2+a ,x <-23,-4x -2+a ,-23≤x ≤a ,-2x -2-a ,x >a .∴x =-23时,g (x )max =23+a ,要使不等式恒成立,只需g (x )max =23+a ≤4,即0<a ≤103.。
2020高考文数选修4-4坐标系与参数方程
第1讲 选修4-4坐标系与参数方程解答题1.(2019河北石家庄模拟)在平面直角坐标系中,直线l 的参数方程是{x =t,y =2t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρ2+2ρsin θ-3=0.(1)求直线l 的极坐标方程;(2)若直线l 与曲线C 相交于A,B 两点,求|AB|.解析 (1)由{x =t,y =2t 消去t 得y=2x,把{x =ρcosθ,y =ρsinθ代入y=2x,得ρsin θ=2ρcos θ, ∴直线l 的极坐标方程为sin θ=2cos θ.(2)∵ρ2=x 2+y 2,y=ρsin θ,∴曲线C 的方程可化为x 2+y 2+2y-3=0,即x 2+(y+1)2=4,则曲线C 是以(0,-1)为圆心,2为半径的圆.又圆C 的圆心C(0,-1)到直线l 的距离d=√55,∴|AB|=22=2√955. 2.(2019江西南昌一模)在平面直角坐标系xOy 中,曲线C 的参数方程为{x =2cosφ,y =√3sinφ(φ为参数).以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin θ-kρcos θ+k=0(k ∈R).(1)请写出曲线C 的普通方程与直线l 的一个参数方程;(2)若直线l 与曲线C 交于A,B 两点,且点M(1,0)为线段AB 上的一个三等分点,求|AB|. 解析 (1)由已知得,曲线C 的普通方程为x 24+y 23=1.易知直线l 的直角坐标方程为y=k(x-1),则其一个参数方程为{x =1+tcosα,y =tsinα(t 为参数). (2)联立(1)中直线l 的参数方程与曲线C 的普通方程,并化简得(3+sin 2α)t 2+6tcos α-9=0, 设点A,B 对应的参数分别为t 1,t 2,∴{t 1+t 2=-6cosα3+sin 2α,t 1·t 2=-93+sin 2α<0.① 不妨设t 1>0,t 2<0,t 1=-2t 2,代入①中得cos 2α=49, sin 2α=59,所以|AB|=|t 1-t 2|=√(t 1+t 2)2-4t 1t 2=123+sin 2α=278.3.(2019广西桂林联考)在平面直角坐标系xOy 中,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的参数方程为{x =tcosα,y =y 0+tsinα(t 为参数,α为l 的倾斜角),曲线E 的极坐标方程为ρ=4sin θ,射线θ=β,θ=β+π6,θ=β-π6与曲线E 分别交于不同于极点的A,B,C 三点.(1)求证:|OB|+|OC|=√3|OA|;(2)当β=π3时,直线l 过B,C 两点,求y 0与α的值.解析 (1)证明:依题意知,|OA|=4sin β,|OB|=4sin (β+π6),|OC|=4sin (β-π6),则|OB|+|OC|=4sin (β+π6)+4sin (β-π6)=4√3sin β=√3|OA|.(2)当β=π3时,点B 的极坐标为(4sin π2,π2)=(4,π2),点C 的极坐标为(4sin π6,π6)=(2,π6),故B,C 化为直角坐标为B(0,4),C(√3,1),因为直线l 过B,C 两点,所以直线l 的普通方程为y=-√3x+4,所以y 0=4,α=2π3.4.(2019广西南宁模拟)已知曲线C 1的参数方程为{x =cosθ,y =1+sinθ(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4sin (θ+π3),直线l 的直角坐标方程为y=√33x.(1)求曲线C 1和直线l 的极坐标方程;(2)已知直线l 分别与曲线C 1、曲线C 2的图象相交于异于极点的A,B 两点,若A,B 的极径分别为ρ1,ρ2,求|ρ1-ρ2|的值.解析 (1)由曲线C 1的参数方程{x =cosθ,y =1+sinθ(θ为参数),得C 1的普通方程为x 2+(y-1)2=1,则曲线C 1的极坐标方程为ρ=2sin θ.易知直线l 过原点,且倾斜角为π6,所以直线l 的极坐标方程为θ=π6(ρ∈R).(2)将θ=π6代入C 1的极坐标方程得ρ1=1,将θ=π6代入C 2的极坐标方程得ρ2=4,所以|ρ1-ρ2|=3.5.(2019广东广州联考)已知曲线C 的参数方程为{x =2+√5cosα,y =1+√5sinα(α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)设l 1:θ=π6,l 2:θ=π3,若l 1,l 2与曲线C 相交于异于原点的A,B 两点,求△AOB 的面积. 解析 (1)∵曲线C 的参数方程为{x =2+√5cosα,y =1+√5sinα(α为参数),∴曲线C 的普通方程为(x-2)2+(y-1)2=5.将{x =ρcosθ,y =ρsinθ代入并化简得ρ=4cos θ+2sin θ, ∴曲线C 的极坐标方程为ρ=4cos θ+2sin θ. (2)由{θ=π6,ρ=4cosθ+2sinθ,得|OA|=2√3+1. 同理|OB|=2+√3,又∠AOB=π6,∴S △AOB =12|OA|·|OB|sin ∠AOB=8+5√34, ∴△AOB 的面积为8+5√34. 6.(2019江西南昌模拟)在平面直角坐标系xOy 中,曲线C 1的参数方程为{x =-3+t,y =-1-t(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 2的极坐标方程为ρ=4√2sin (3π4-θ).(1)求C 1的普通方程和C 2的直角坐标方程;(2)过曲线C 2上任意一点P 作与C 1夹角为π4的直线,交C 1于点A,求|PA|的最大值与最小值.解析 (1)由{x =-3+t,y =-1-t得C 1的普通方程为x+y+4=0, 由ρ=4√2sin (3π4-θ),得ρ=4cos θ+4sin θ,∴ρ2=4ρcos θ+4ρsin θ,x 2+y 2=4x+4y,即(x-2)2+(y-2)2=8,∴C 2的直角坐标方程为(x-2)2+(y-2)2=8.(2)在曲线C 2上任意取一点P(2+2√2cos θ,2+2√2sin θ),则P 到C 1的距离d=√2(cosθ+sinθ)|√2=|8+4sin(θ+π4)|√2, |PA|=√22=|8+4sin (θ+π4)|,∴当sin (θ+π4)=1时,|PA|取最大值,为12;当sin (θ+π4)=-1时,|PA|取最小值,为4.7.(2019山东淄博模拟)在平面直角坐标系xOy 中,直线l 的方程是x=4.曲线C 的参数方程是{x =1+√2cosφ,y =1+√2sinφ(φ为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求直线l 和曲线C 的极坐标方程;(2)若射线θ=α(ρ≥0,0<α<π4)与曲线C 交于O,A 两点,与直线l 交于点B,求|OA||OB|的取值范围. 解析 (1)由ρcos θ=x 及直线l 的方程为x=4,得直线l 的极坐标方程为ρcos θ=4. 又曲线C 的参数方程是{x =1+√2cosφ,y =1+√2sinφ(φ为参数), 消去参数φ得曲线C 的普通方程为(x-1)2+(y-1)2=2,即x 2+y 2-2x-2y=0,将x 2+y 2=ρ2,x=ρcos θ,y=ρsin θ代入上式得ρ2=2ρcos θ+2ρsin θ,所以曲线C 的极坐标方程为ρ=2cos θ+2sin θ.(2)设A(ρ1,α),B(ρ2,α),则ρ1=2cos α+2sin α,ρ2=4cosα, 所以|OA||OB|=ρ1ρ2=(2cosα+2sinα)cosα4= cos 2α+sinαcosα2 =14(sin 2α+cos 2α)+14=√24sin (2α+π4)+14,因为0<α<π4,所以π4<2α+π4<3π4,所以√22<sin (2α+π4)≤1,故12<√24sin (2α+π4)+14≤1+√24, 所以|OA||OB|的取值范围是(12,1+√24]. 8.(2019河南郑州测试)在平角直角坐标系xOy 中,直线l 的参数方程为{x =tcosα,y =1+tsinα(t 为参数,α∈[0,π)).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.设曲线C 的极坐标方程为ρcos 2θ=4sin θ.(1)设M(x,y)为曲线C 上任意一点,求x+y 的取值范围;(2)若直线l 与曲线C 交于不同的两点A,B,求|AB|的最小值.解析 (1)将曲线C 的极坐标方程ρcos 2θ=4sin θ化为直角坐标方程,得x 2=4y.∵M(x,y)为曲线C 上任意一点,∴x+y=x+14x 2=14(x+2)2-1≥-1,∴x+y 的取值范围是[-1,+∞).(2)将{x =tcosα,y =1+tsinα代入x 2=4y,得t 2cos 2α-4tsin α-4=0.∴Δ=16sin 2α+16cos 2α=16>0,设方程t 2cos 2α-4tsin α-4=0的两个根分别为t 1,t 2,则t 1+t 2=4sinαcos 2α,t 1t 2=-4cos 2α,∴|AB|=|t 1-t 2|=√(t 1+t 2)2-4t 1t 2=4cos 2α≥4,当且仅当α=0时,取等号.故当α=0时,|AB|取得最小值4.。
选修4-4 第2讲 参数方程
例1
(1)求直线xy= =2-+1t-,t
(t
为参数)与曲线xy= =33csions
α, α
(α 为
参数)的交点个数.
[解] 将xy= =- 2+1-t,t 消去参数 t 得直线 x+y-1=0;
将xy= =33csions
α, α
消去参数 α,得圆 x2+y2=9.
又圆心(0,0)到直线 x+y-1=0 的距离 d= 22<3. 因此直线与圆相交,故直线与曲线有 2 个交点.
[解] (1)消去参数 t 得 l1 的普通方程 l1:y=k(x-2);消去参数 m 得 l2 的普通方程 l2:y=1k(x+2).
y=kx-2 设 P(x,y),由题设得y=1kx+2 ,
消去 k 得 x2-y2=4(y≠0). 所以 C 的普通方程为 x2-y2=4(y≠0).
(2)C 的极坐标方程为 ρ2(cos2θ-sin2θ) =4(0<θ<2π,θ≠π). 联立ρρ2ccoossθ2θ+-sisninθ2θ-=42,=0 得 cos θ-sin θ=2(cos θ+sin θ). 故 tan θ=-13,从而 cos2θ=190,sin2θ=110. 代入 ρ2(cos2θ-sin2θ)=4 得 ρ2=5,所以交点 M 的极径为 5.
(t 为参数)
圆
x2+y2=r2
x=rcos θ, y=rsin θ
(θ 为参数)
椭圆
ax22+by22=1(a>b>0)
x=acos φ, y=bsin φ
(φ 为参数)
抛物线 y2=2px(p>0)
x=2pt2, y=2pt
(t 为参数)
[知识感悟] 1.在参数方程与普通方程的互化中,必须使 x,y 的取值范围保 持一致.否则不等价. 2.直线的参数方程中,参数 t 的系数的平方和为 1 时,t 才有几 何意义且其几何意义为:|t|是直线上任一点 M(x,y)到 M0(x0,y0)的距 离,即|M0M|=|t|.
2023届高考二轮总复习试题适用于老高考旧教材数学(理) 坐标系与参数方程(选修4—4)(含解析)
考点突破练22 坐标系与参数方程(选修4—4)1.(2020·全国Ⅱ·理22)已知曲线C 1,C 2的参数方程分别为C 1:{x =4cos 2θ,y =4sin 2θ(θ为参数),C 2:{x =t +1t,y =t -1t(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.2.(2022·陕西榆林三模)在直角坐标系xOy 中,曲线C 的参数方程为{x =4cosθ,y =3sinθ(θ为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos θ+ρsin θ-12=0. (1)求C 的普通方程与直线l 的直角坐标方程.(2)若P 为C 上任意一点,A 为l 上任意一点,求|PA|的最小值.3.(2022·安徽怀南一模)在直角坐标系xOy 中,曲线C 的参数方程为{x =t 2,y =2t (t 为参数),以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为2cos α-sin α=4ρ. (1)求曲线C 的普通方程;(2)若直线l 与曲线C 交于A ,B 两点,求以AB 为直径的圆的极坐标方程.4.(2022·陕西榆林二模)在数学中,有许多方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线.如图,在直角坐标系中,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,图中的曲线就是笛卡尔心型曲线,其极坐标方程为ρ=1-sin θ(0≤θ<2π,ρ≥0),M 为该曲线上一动点. (1)当|OM|=12时,求M 的直角坐标;(2)若射线OM 逆时针旋转π2后与该曲线交于点N ,求△OMN 面积的最大值.5.(2022·安徽合肥二模)在直角坐标系xOy 中,直线l 的参数方程为{x =1+√2t ,y =1-√2t(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2=acos2θ(a>0,ρ∈R ). (1)求直线l 的极坐标方程和曲线C 的直角坐标方程;(2)若直线θ=π4(ρ∈R )与直线l 交于点M ,直线θ=π6(ρ∈R )与曲线C 交于点A ,B ,且AM ⊥BM ,求实数a 的值.6.(2022·安徽马鞍山一模)在平面直角坐标系xOy 中,曲线C 的参数方程为{x =2sinα,y =2cosα+1(α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的直角坐标方程为x+√3y-2√3=0. (1)写出曲线C 的普通方程和直线l 的极坐标方程;(2)若直线θ=π6(ρ∈R )与曲线C 交于A ,B 两点,与直线l 交于点M ,求|MA|·|MB|的值.7.(2022·河南郑州二模)在直角坐标系xOy 中,曲线C 1的参数方程为{x =1+cosα,y =sinα(α为参数).已知M是曲线C 1上的动点,将OM 绕点O 逆时针旋转90°得到ON ,设点N 的轨迹为曲线C 2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求曲线C 1,C 2的极坐标方程;(2)设点Q (1,0),若射线l :θ=π3与曲线C 1,C 2分别相交于异于极点O 的A ,B 两点,求△ABQ 的面积.8.(2022·山西太原一模)在平面直角坐标系中,直线l 的参数方程为{x =-2+35t ,y =2+45t (t 为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ+4ρsin θ-3=0,点P 的极坐标为2√2,3π4.(1)求点P 的直角坐标和曲线C 的直角坐标方程;(2)若直线l 和曲线C 交于A ,B 两点,求点P 到线段AB 的中点M 的距离.考点突破练22 坐标系与参数方程(选修4—4)1.解 (1)C 1的普通方程为x+y=4(0≤x ≤4). 由C 2的参数方程得x 2=t 2+1t2+2,y 2=t 2+1t2-2, 所以x 2-y 2=4.故C 2的普通方程为x 2-y 2=4. (2)由{x +y =4,x 2-y 2=4得 {x =52,y =32,所以P 的直角坐标为(52,32). 设所求圆的圆心的直角坐标为(x 0,0),由题意得x 02=(x 0-52)2+94,解得x 0=1710.因此,所求圆的极坐标方程为ρ=175cos θ.2.解 (1)因为曲线C 的参数方程为{x =4cosθ,y =3sinθ(θ为参数),所以C 的普通方程为x 216+y 29=1.又因为直线l 的极坐标方程为ρcos θ+ρsin θ-12=0,所以直线l 的直角坐标方程为x+y-12=0. (2)设P (4cos θ,3sin θ),|PA|的最小值即点P 到直线l 的距离的最小值,由√2=√2≥7√22,其中tan φ=43.当且仅当θ+φ=π2+2k π,k ∈Z 时取等号,故|PA|的最小值为7√22. 3.解 (1)由{x =t 2,y =2t (t 为参数),得{x =t 2,y 2=t (t 为参数),消去参数t ,得y 2=4x ,即曲线C 的普通方程为y 2=4x.(2)由2cos α-sin α=4ρ,得2x-y=4, 联立{y 2=4x ,2x -y =4得A (1,-2),B (4,4),所以AB 的中点坐标为52,1,|AB|=√45=3√5,故以AB 为直径的圆的极坐标方程为(x -52)2+(y-1)2=454,即x 2+y 2-5x-2y-4=0,将{x =ρcosθ,y =ρsinθ代入,得ρ2-5ρcos θ-2ρsin θ-4=0.4.解 (1)令ρ=12,可得sin θ=12,所以θ=π6或θ=5π6,M 的直角坐标为±√34,14.(2)△OMN 的面积S=12ρ1ρ2=12(1-sin θ)1-sin θ+π2=12(1-sin θ)(1-cos θ)=12[1-(sin θ+cos θ)+sinθcos θ],令t=sin θ+cos θ=√2sin θ+π4∈[-√2,√2], S=121-t+t 2-12=14(t-1)2,当t=-√2时,S 取得最大值3+2√24. 5.解 (1)由{x =1+√2t ,y =1-√2t(t 为参数)得x+y=2,∴直线l 的极坐标方程为ρcos θ+ρsin θ=2.由ρ2=acos2θ,得ρ2cos 2θ=a ,∴ρ2(cos 2θ-sin 2θ)=a ,ρ2cos 2θ-ρ2sin 2θ=a , ∴x 2-y 2=a ,∴曲线C 的直角坐标方程为x 2-y 2=a.(2)直线l 的极坐标方程为ρcos θ+ρsin θ=2,将θ=π4代入直线l 的极坐标方程得ρ=√2,∴点M 的极坐标为√2,π4.将θ=π6代入曲线C 的极坐标方程ρ2=acos2θ,得ρ1=√2a ,ρ2=-√2a ,∴|AB|=|ρ1-ρ2|=2√2a . ∵AM ⊥BM ,且O 为线段AB 的中点, ∴|OM|=12|AB|=√2a ,即√2a =√2,得a=1.6.解 (1)由{x =2sinα,y -1=2cosα(α为参数),得曲线C 的普通方程为x 2+(y -1)2=4.由x+√3y-2√3=0,得直线l 的极坐标方程为ρcos θ+√3ρsin θ-2√3=0,即ρsin θ+π6=√3.(2)(方法1)曲线C :x 2+(y-1)2=4的极坐标方程为ρ2-2ρsin θ-3=0,将θ=π6代入曲线C 的极坐标方程,得ρ2-ρ-3=0,∴ρ1+ρ2=1,ρ1·ρ2=-3. 将θ=π6代入直线l 的极坐标方程,得ρ=2.|MA|·|MB|=|ρ-ρ1|·|ρ-ρ2|=|(2-ρ1)·(2-ρ2)|=|4-2(ρ1+ρ2)+ρ1·ρ2|=1.(方法2)直线θ=π6的普通方程为y=√33x ,与直线l :x+√3y-2√3=0的交点为M (√3,1),直线θ=π6的参数方程为{x =√3+√32t ,y =1+12t(t 为参数),代入曲线C :x 2+(y-1)2=4,得t 2+3t-1=0,则|MA|·|MB|=|t 1·t 2|=1.7.解 (1)C 1的普通方程为(x-1)2+y 2=1,则x 2+y 2-2x=0,由ρ2=x 2+y 2,x=ρcos θ,得ρ2=2ρcos θ,故C 1的极坐标方程为ρ=2cos θ.设N (ρ,θ),则M ρ,θ-π2,将M ρ,θ-π2代入ρ=2cos θ,得ρ=2cos θ-π2=2sin θ,即C 2的极坐标方程为ρ=2sin θ.(2)将θ=π3分别代入曲线C 1,C 2的极坐标方程,得|OA|=ρA =2cos π3=1,|OB|=ρB =2sin π3=√3, 所以|AB|=||OB|-|OA||=√3-1. 又Q 到射线l 的距离d=|OQ|sin π3=√32,故△ABQ 的面积为S=12×(√3-1)×√32=3-√34. 8.解 (1)点P 的极坐标为2√2,3π4,由{x =ρcosθ,y =ρsinθ可得点P 的直角坐标为(-2,2),曲线C :ρ2cos2θ+4ρsin θ-3=0,即ρ2cos 2θ-ρ2sin 2θ+4ρsin θ-3=0, 于是得曲线C 的直角坐标方程为x 2-y 2+4y-3=0. (2)显然点P (-2,2)在直线l 上,将直线l 的参数方程{x =-2+35t ,y =2+45t代入方程x 2-y 2+4y-3=0,得-2+35t 2-2+45t 2+42+45t -3=0,整理得725t 2+125t-5=0,。
选修4-4数学坐标系与参数方程
选修4-4数学坐标系与参数方程一、基础知识与考点梳理坐标系是解决几何问题的工具之一,包括平面直角坐标系和极坐标系。
参数方程是通过参数的变化来描述图形的方程,常用于描述曲线的运动或变化。
考点:1. 平面直角坐标系:了解坐标系的定义、坐标轴的性质、平面点的坐标表示方法以及表示直线和曲线的方程的求解方法。
2. 极坐标系:了解极坐标系的定义、坐标轴的性质、平面点的极坐标表示方法以及表示曲线的方程的求解方法。
3. 参数方程:了解参数方程的定义和解题步骤,熟练掌握参数方程求交点和极值点的方法。
二、典型例题解析例1、已知函数y=x²-2x+3,求其图像与x轴、y轴、直线x=1、y=3所围成的面积。
【解析】:1. 求该函数的根,即当y=0时x满足的条件:x=1±√2。
2. 绘制函数图像。
由于该函数为二次函数,故开口向上,图像开口向上,存在顶点,而顶点的横坐标为x=-b/2a,即x=1。
当x=0时,y=3,即函数在y轴上截距为3,因此y轴上的一点为(0,3)。
3. 按要求计算所求面积=△x=1△x=-∫1√2(y-3)dx+∫√2^3(y-x²+2x)dx=2-2√2/3例2、考虑曲线x=2cost+cos2t,y=2sint-sin2t的形状和特征,求其极坐标方程,指出极点和极轴,找出曲线上各点的对称点。
【解析】:1. 观察曲线方程,发现x的系数为2,y的系数为-1。
而2cos2t+1=2cos²t-2sin²t+1,故有x=4cos²t-1-y。
2. 代入x²+y²=r²,消去t,即得其极坐标方程r=4cos2θ-3。
3. 极点为(θ=r=0),为对称中心,且曲线轨迹在极轴之上。
4. 若要求曲线上一点的对称点,可先求该点的极坐标系(r,θ),则其对称点的极坐标系为(r,-θ),再用x=rcosθ,y=rsinθ回代直角坐标系。
选修4-4坐标系与参数方程(2012-2021)高考数学真题分项详解(全国通用)(解析版)
x = 4 cos2 ,
2.(2020
年全国统一高考数学试卷(文科)(新课标Ⅱ))已知曲线
C1,C2
的参数方程分别为
C1:
y
=
4
sin
2
(θ
为参数),C2:
x y
= =
t t
+ −
1, t 1
(t
为参数).
t
(1)将 C1,C2 的参数方程化为普通方程;
(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设 C1,C2 的交点为 P,求圆心在极轴上,且经过
(2)设 C 上点的坐标为: (cos , 2sin )
则C
上的点到直线 l
的距离
d
=
2 cos + 2
3 sin
+11
=
4
sin
+
6
+ 11
7
7
当 sin
+
6
=
−1 时,
d
取最小值
则 dmin = 7
5.(2019 年全国统一高考数学试卷(理科)(新课标Ⅱ))在极坐标系中,O 为极点,点 M (0 ,0 )(0 0) 在
C1
表示以坐标原点为圆心,半径为
1
的圆;(2)
(
1 4
,
1 4
)
.
x = cos t
【分析】(1)当
k
= 1 时,曲线 C1
的参数方程为
y
=
sin
t
(t
为参数),
两式平方相加得 x2 + y2 = 1 ,
所以曲线 C1 表示以坐标原点为圆心,半径为 1 的圆;
人教A版高中数学选修4—4《坐标系与参数方程》简析
烧 全鱼” ,是 解 析 几 何 教 学 中 必须 予 以 充 分 重 视 的 问 题。 教科 书在 这 方 面 作 出 了 努 力 , 如 , 出 问题 背 景 例 给
球 坐 标 系 简 介 , 中 以极 坐 标 系 为 重 点 ; 二讲 《 数 其 第 参
方程 》 内容 包 括 : , 曲线 的 参 数 方程 、 圆锥 曲线 的参 数 方 程 、 线 的参 数 方程 和 渐 开 线 与摆 线 , 中 以参 数 方程 直 其
_ — ■一 ■■ — ● 锹 千
—隧卿——●■●
人教A 高中数学选修4 4 版 —
《 坐标系与参数方程》 简析
人 民教 育 出版社 中学数 学室 章建跃 郭慧清
一பைடு நூலகம்
、
内容安排与说明
二、 编写时 考虑的几个主要问题
1突 出 坐 标 法 的 核 心 概 念 地 位 , 调 数 形 结 合 。 . 强
坐 标 法 是 解 析 几 何 的 核 心 , 本 专 题 的 主 要 目 的 是
通 过 认 识 不 同 的坐 标 系的 特 点和 在 刻 画 几何 图形 或 描 述 自然 现 象 中 的 作 用 , 促 使 学 生 学 习 如 何 根 据 问 题 的
需要 建 立 适 当 的坐 标 系、 引 入适 当的 参 变量 来 表 示 曲 线 上点 的坐 标 及 其 方程 , 从而 更 深 入地 体 会 坐 标 法 。 因
为 重 点 。 专 题 中 , 形 结合 、 动 变化 、 对 与 绝 对 、 本 数 运 相
程 的 对 应 关 系 , 一 步 体 会 数 形 结 合 的 思 想 。 3) 为 解 进 ( 做
析 几 何 初 步 、 面 向量 、 角 函 数 等 内 容 的 综 合 与 深 化 , 平 三
高中数学选修4-4-极坐标与参数方程-知识点与题型
选做题部分 极坐标系与参数方程一、极坐标系1.极坐标系与点的极坐标(1)极坐标系:如图4-4-1所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角. 2.极坐标与直角坐标的互化点M 直角坐标(x ,y ) 极坐标(ρ,θ)互化公式题型一 极坐标与直角坐标的互化1、已知点P 的极坐标为)4,2(π,则点P 的直角坐标为 ( )A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)2、设点P 的直角坐标为(3,3)-,以原点为极点,实轴正半轴为极轴建立极坐标系(02)θπ≤<,则点P 的极坐标为( )A .3)4πB .5()4π-C .5(3,)4πD .3(3,)4π-3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________.4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( ) A .ρ=cos θ B .ρ=sin θ C .ρcos θ=1 D .ρsin θ=15.曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.6. 在极坐标系中,求圆ρ=2cos θ与直线θ=π4(ρ>0)所表示的图形的交点的极坐标.题型二 极坐标方程的应用由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.1.在极坐标系中,已知圆C 经过点P(2,π4),圆心为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32与极轴的交点,求圆C 的直角坐标方程.2.圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为⎝ ⎛⎭⎪⎫4,π3,则|CP|=________.3.在极坐标系中,已知直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=1,圆C 的圆心的极坐标是C ⎝ ⎛⎭⎪⎫1,π4,圆的半径为1.(i)则圆C 的极坐标方程是________; (ii)直线l 被圆C 所截得的弦长等于________.4.在极坐标系中,已知圆C :ρ=4cos θ被直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π6=a 截得的弦长为23,则实数a 的值是________.二、参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么,⎩⎪⎨⎪⎧x =f t ,y =gt就是曲线的参数方程.2.常见曲线的参数方程和普通方程 点的轨迹普通方程参数方程直线y -y 0=tan α(x -x 0)⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α (t 为参数)题型一 参数方程与普通方程的互化 【例1】把下列参数方程化为普通方程: (1)⎩⎪⎨⎪⎧x =3+cos θ,y =2-sin θ;(2)⎩⎪⎨⎪⎧x =1+12t ,y =5+32t .题型二 直线与圆的参数方程的应用1、已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t ,y =4-2t (参数t ∈R ),圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ+2,y =2sin θ(参数θ∈[0,2π]),求直线l 被圆C所截得的弦长.2、曲线C的极坐标方程为:ρ=acosθ(a>0),直线l的参数方程为:(1)求曲线C与直线l的普通方程;(2)若直线l与曲线C相切,求a值.3、在直角坐标系xoy中,曲线C1的参数方程为,(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为.(Ⅰ)求曲线C1的普通方程与曲线C2的直角坐标方程;(Ⅱ)设P为曲线C1上的动点,求点P到C2上点的距离最小值.综合应用 1、曲线25()12x tt y t=-+⎧⎨=-⎩为参数与坐标轴的交点是( )A 21(0,)(,0)52、 B 11(0,)(,0)52、 C (0,4)(8,0)-、 D 5(0,)(8,0)9、3、参数方程222sin sin x y θθ⎧=+⎪⎨=⎪⎩(θ为参数)化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤ 3.判断下列结论的正误.(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系( )(2)若点P 的直角坐标为(1,-3),则点P 的一个极坐标是(2,-π3)( )(3)在极坐标系中,曲线的极坐标方程不是唯一的( ) (4)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线( )4.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( )A .一条直线B .两条直线C .一条射线D .两条射线5.与参数方程为)x t y ⎧=⎪⎨=⎪⎩为参数等价的普通方程为( ) A .214y +=2x B .21(01)4y x +=≤≤2xC .21(02)4y y +=≤≤2x D .21(01,02)4y x y +=≤≤≤≤2x15.参数方程()为参数θθθ⎩⎨⎧+==cot tan 2y x 所表示的曲线是( )A .直线B .两条射线C .线段D .圆16.下列参数方程(t 是参数)与普通方程y x 2=表示同一曲线的方程是: ( )A .x t y t ==⎧⎨⎩2B .x t y t ==⎧⎨⎩sin sin 2C .x t y t ==⎧⎨⎪⎩⎪D .⎪⎩⎪⎨⎧=+-=t y t t x tan 2cos 12cos 13.由参数方程()⎪⎭⎫⎝⎛<<-⎩⎨⎧=-=202tan 21sec 22ππθθθ为参数,y x 给出曲线在直角坐标系下的方程是 。
选修4-4坐标系与参数方程
建立联系.
Y=byb>0
(2)已知变换后的曲线方程 f(x,y)=0,一般都要改写为方程 f(X,Y)=0,再利用换元法确定伸缩变换公式.
能力练通
抓应用体验的“得”与“失”
x′=3x,
1,-2
1.在同一平面直角坐标系中,已知伸缩变换φ:
求点 A 3
经过φ变换所得的点 A′的坐标.
2y′=y.
第 1 页 共 22 页
解析:设曲线 C′上任意一点 P′(x′,y′),
x=1x′, 由题意,将 3
y=2y′
代入 x2- y2 =1 64
得x′2-4y′2=1,化简得x′2-y′2=1,
9 64
9 16
即x2- y2 =1 为曲线 C′的方程,可见经变换后的曲线仍是双曲线, 9 16
则所求焦点坐标为 F1(-5,0),F2(5,0).
选修 4-4 坐标系与参数方程
第一节 坐 标 系
本节主要包括 2 个知识点: 1.平面直角坐标系下图形的伸缩变换; 2.极坐标系.
突破点(一) 平面直角坐标系下图形的伸缩变换
基础联通
抓主干知识的“源”与“流”
x′=λ·xλ>0,
设点 P(x,y)是平面直角坐标系中的任意一点,在变换φ:
的作用下,点 P(x,y)对应到点
4.将圆 x2+y2=1 变换为椭圆x2+y2=1 的一个伸缩变换公式为φ: X=axa>0, 求 a,b 的值.
94
Y=byb>0,
X=ax, 解y=1Y, b
代入 x2+y2=1 中得Xa22+Yb22=1,所以 a2=9,b2=4,即 a=3,b=2.
突破点(二) 极坐标系
(2)直线 C3 的极坐标方程为θ=α0,其中α0 满足 tan α0=2,若曲线 C1 与 C2 的公共点都在 C3 上,求 a. 解析:(1)消去参数 t 得到 C1 的普通方程为 x2+(y-1)2=a2,
选修4-4坐标系和参数方程
数学选修4-4坐标系与参数方程2016-7第一讲 坐标系一、平面直角坐标系1.平面直角坐标系在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。
它使平面上任一点P 都可以由惟一的实数对(x,y )确定.例1 某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比其他两个观测点晚4s ,已知各观测点到中心的距离都是1020m ,试确定该巨响的位置。
(假定当时声音传播的速度为340m/s ,各相关点均在同一平面上)以接报中心为原点O ,以BA 方向为x 轴,建立直角坐标系.设A 、B 、C 分别是西、东、北观测点,则 A(1020,0), B(-1020,0), C(0,1020) 设P (x,y )为巨响为生点,由B 、C 同时听到巨响声,得|PC|=|PB|,故P 在BC 的垂直平分线PO 上,PO 的方程为y=-x ,因A 点比B 点晚4s 听到爆炸声,故|PA|- |PB|=340×4=1360,由双曲线定义知P 点在以A 、B 为焦点的双曲线22221x y a b-=上,2222222222680,1020102068053401(0)6805340a c b c a x y x ∴==∴=-=-=⨯-=<⨯故双曲线方程为用y=-x代入上式,得x =± , ∵|PA|>|PB|,(x y P PO ∴=-=-=即故答:巨响发生在接报中心的西偏北450距中心处.上述问题的解决体现了坐标法的思想. 建系时,根据几何特点选择适当的直角坐标系:(1)如果图形有对称中心,可以选对称中心为坐标原点; (2)如果图形有对称轴,可以选择对称轴为坐标轴; (3)使图形上的特殊点尽可能多的在坐标轴上。
变式训练1.一炮弹在某处爆炸,在A 处听到爆炸的时间比在B 处晚2s,已知A 、B 两地相距800米,并且此时的声速为340m/s,求曲线的方程.2.在面积为1的PMN ∆中,2tan ,21tan -=∠=∠MNP PMN ,建立适当的坐标系,求以M ,N 为焦点并过点P 的椭圆方程.课后作业1.若P 是以F 1,F 2为焦点的椭圆x 2a 2+y 2b2=1(a >b >0)上的一点,且PF 1→·PF 2→=0,tan ∠PF 1F 2=12,则此椭圆的离心率为( ). A.53 B.23 C.13 D.122.设F 1、F 2是双曲线x23-y 2=1的两个焦点,P 在双曲线上,当△F 1PF 2的面积为2时,1PF ·2PF 的值为( )A .2B .3C .4D .6 3.若抛物线y 2=2px (p >0)的焦点在圆x 2+y 2+2x -3=0上,则p =( )A.12B .1C .2D .3 4.已知两定点A (1,1),B (-1,-1),动点P 满足P A →·PB →=x22,则点P 的轨迹方程是_________.5.△ABC 的顶点A (-5,0)、B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是___________.6. 已知动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为________.7.已知:圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且AB =22时,求直线l 的方程.8. 已知长方形ABCD ,22=AB ,BC=1。
第二讲 坐标系与参数方程(选修4-4)
2.圆的极坐标方程 若圆心为M(ρ0,θ0),半径为r的圆方程为:
2 ρ2-2ρ0ρcos(θ-θ0)+ρ2 0-r =0.
几个特殊位置的圆的极坐标方程 (1)当圆心位于极点,半径为r:ρ=r; (2)当圆心位于M(r,0),半径为r:ρ=2rcosθ;
【标准解答】
(1)设(x1,y1)为圆上的点,在已知变换
x=x1 下变为C上点(x,y),依题意,得 y=2y1
2 y y 2 2 2 2 由x 1 +y 2 1 =1得x +( ) =1,即曲线C的方程为x + = 2 4
1.
x=cost 故C的参数方程为 y=2sint
π π 3 3 故D的直角坐标为(1+cos3,sin3),即(2, 2 ).
类题通法
对于同时含有极坐标方程和参数方程的题可考虑同时 化为普通方程再求解.
x=-2t-1, 5.已知直线l: y=t-1
(t为参数)与曲线C:ρ= )
π 4 2sin(θ+ ),则直线l和曲线C的位置关系为( 4 A.相交 C.相离 B.相切 D.相交或相切
ห้องสมุดไป่ตู้例3】
(2014· 新课标卷Ⅱ)在直角坐标系xOy中,以
坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C π 的极坐标方程为ρ=2cosθ,θ∈[0, ]. 2 (1)求C的参数方程; (2)设点D在C上,C在D处的切线与直线l:y= 3 x+2
垂直,根据(1)中你得到的参数方程,确定D的坐标.
解:将曲线C1的参数方程化为普通方程,曲线C2的极 坐标方程化为参数方程后求解. (1)由曲线C1的参数方程可得曲线C1的普通方程为y= x2(x≠0),由曲线C2的极坐标方程可得曲线C2的直角坐标方 程为x+y-1=0,则曲线C2的参数方程为 x=-1- 2t, 2 2 y=2+ 2 t 得t2+ 2t-2=0,
2020年高考理科数学通用版3维专题复习专题检测:(19)选修4-4坐标系与参数方程版含解析
本资源的初衷 ,是希望通过网络分享 ,能够为广阔读者提供更好的效劳 ,为您水平的提高提供坚强的动力和保证 .内容由一线名师原创 ,立意新 ,图片精 ,是非常强的一手资料 .专题检测 (十九 ) 选修4 -4 坐标系与参数方程1.(2021·合肥一检)直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12ty =3+3t (t 为参数).在以坐标原点为极点 ,x 轴非负半轴为极轴的极坐标系中 ,曲线C 的方程为sin θ-3ρcos 2θ=0.(1)求曲线C 的直角坐标方程;(2)写出直线l 与曲线C 交点的一个极坐标.解:(1)∵sin θ-3ρcos 2θ=0 ,∴ρsin θ-3ρ2cos 2θ=0 , 即y -3x 2=0.故曲线C 的直角坐标方程为y -3x 2=0.(2)将⎩⎨⎧x =1+12ty =3+3t代入y -3x 2=0得 ,3+3t -3⎝⎛⎭⎫1+12t 2=0 , 解得t =0 ,从而交点坐标为(1 ,3) ,∴交点的一个极坐标为⎝ ⎛⎭⎪⎪⎫2 π3.2.在直角坐标系xOy 中 ,以坐标原点为极点 ,x 轴正半轴为极轴建立极坐标系 ,半圆C的极坐标方程为ρ=4cos θ ,θ∈⎣⎢⎢⎡⎦⎥⎥⎤0 π2.(1)求半圆C 的参数方程;(2)假设半圆C 与圆D :(x -5)2+(y -3)2=m (m 是常数 ,m >0)相切 ,试求切点的直角坐标.解:(1)半圆C 的普通方程为(x -2)2+y 2=4(0≤y ≤2) ,那么半圆C 的参数方程为⎩⎨⎧x =2+2cos ty =2sin t (t 为参数 ,0≤t ≤π).(2)C ,D 的圆心坐标分别为(2,0) ,(5 ,3) , 于是直线CD 的斜率k =3-05-2=33. 由于切点必在两个圆心的连线上 , 故切点对应的参数t 满足tan t =33 ,t =π6 , 所以切点的直角坐标为⎝ ⎛⎭⎪⎫2+2cos π6 2sin π6 , 即(2+ 3 ,1).3.(2021·宝鸡质检)在直角坐标系xOy 中 ,以坐标原点为极点 ,x 轴正半轴为极轴建立极坐标系 ,曲线C 的极坐标方程为ρ=2(cos θ+sin θ).(1)求C 的直角坐标方程;(2)直线l :⎩⎪⎨⎪⎧x =12t y =1+32t (t 为参数)与曲线C 交于A ,B 两点 ,与y 轴交于点E ,求|EA |+|EB |.解:(1)由ρ=2(cos θ+sin θ)得ρ2=2ρ(cos θ+sin θ) , 得曲线C 的直角坐标方程为x 2+y 2=2x +2y , 即(x -1)2+(y -1)2=2.(2)将l 的参数方程代入曲线C 的直角坐标方程 , 化简得t 2-t -1=0 , 点E 对应的参数t =0 ,设点A ,B 对应的参数分别为t 1 ,t 2 , 那么t 1+t 2=1 ,t 1t 2=-1 , 所以|EA |+|EB |=|t 1|+|t 2|=|t 1-t 2| =(t 1+t 2)2-4t 1t 2= 5.4.(2021·张掖一诊)在直角坐标系xOy 中 ,曲线C 1:⎩⎨⎧x =cos αy =sin 2α(α为参数) ,在以坐标原点O 为极点 ,x 轴正半轴为极轴的极坐标系中 ,曲线C 2:ρcos ⎝⎛⎭⎫θ-π4=-22 ,曲线C 3:ρ=2sin θ.(1)求曲线C 1与C 2的交点M 的直角坐标;(2)设点A ,B 分别为曲线C 2 ,C 3上的动点 ,求|AB |的最||小值.解:(1)曲线C 1:⎩⎨⎧x =cos αy =sin 2α消去参数α ,得y +x 2=1 ,x ∈[-1,1].①曲线C 2:ρcos ⎝⎛⎭⎫θ-π4=-22⇒x +y +1=0 ,②联立①② ,消去y 可得:x 2-x -2=0 , 解得x =-1或x =2(舍去) ,所以M (-1,0).(2)曲线C 3:ρ=2sin θ的直角坐标方程为x 2+(y -1)2=1 ,是以(0,1)为圆心 ,半径r =1的圆.设圆心为C ,那么点C 到直线x +y +1=0的距离d =|0+1+1|2= 2 ,所以|AB |的最||小值为2-1.5.(2021·成都一诊)在平面直角坐标系xOy 中 ,倾斜角为α⎝⎛⎭⎫α≠π2的直线l 的参数方程为⎩⎨⎧x =1+t cos α y =t sin α(t 为参数).以坐标原点为极点 ,x 轴的正半轴为极轴 ,建立极坐标系 ,曲线C 的极坐标方程是ρcos 2θ-4sin θ=0.(1)写出直线l 的普通方程和曲线C 的直角坐标方程;(2)点P (1,0).假设点M 的极坐标为⎝ ⎛⎭⎪⎪⎫1 π2 ,直线l 经过点M 且与曲线C 相交于A ,B 两点 ,设线段AB 的中点为Q ,求|PQ |的值.解:(1)∵直线l 的参数方程为⎩⎨⎧x =1+t cos αy =t sin α(t 为参数) ,∴直线l 的普通方程为y =tanα·(x -1).由ρcos 2θ-4sin θ=0 ,得ρ2cos 2θ-4ρsin θ=0 , 即x 2-4y =0.∴曲线C 的直角坐标方程为x 2=4y .(2)∵点M 的极坐标为⎝ ⎛⎭⎪⎪⎫1 π2 ,∴点M 的直角坐标为(0,1). ∴tan α=-1 ,直线l 的倾斜角α=3π4. ∴直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t y =22t (t 为参数).代入x 2=4y ,得t 2-62t +2=0.设A ,B 两点对应的参数分别为t 1 ,t 2. ∵Q 为线段AB 的中点 ,∴点Q 对应的参数值为t 1+t 22=622=3 2.又点P (1,0) ,那么|PQ |=⎪⎪⎪⎪t 1+t 22=3 2.6.(2021·全国卷Ⅱ)在直角坐标系xOy 中 ,以坐标原点为极点 ,x 轴正半轴为极轴建立极坐标系 ,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点 ,点P 在线段OM 上 ,且满足|OM |·|OP |=16 ,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝ ⎛⎭⎪⎪⎫2 π3 ,点B 在曲线C 2上 ,求△OAB 面积的最||大值.解:(1)设P 的极坐标为(ρ ,θ)(ρ>0) ,M 的极坐标为(ρ1 ,θ)(ρ1>0). 由题设知|OP |=ρ ,|OM |=ρ1=4cos θ. 由|OM |·|OP |=16 ,得C 2的极坐标方程ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0) ,由题设知|OA |=2 ,ρB =4cos α ,于是△OAB 的面积 S =12|OA |·ρB ·sin ∠AOB =4cos α·⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3 =2⎪⎪⎪⎪sin ⎝⎛⎭⎫2α-π3-32≤2+ 3.当α=-π12时 ,S 取得最||大值2+ 3.所以△OAB 面积的最||大值为2+ 3.7.(2021·成都二诊)在直角坐标系xOy 中 ,曲线C 的参数方程为⎩⎨⎧x =2cos αy =2+2sin α(α为参数) ,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-32t y =3+12t (t 为参数).在以坐标原点O 为极点 ,x 轴的正半轴为极轴的极坐标系中 ,过极点O 的射线与曲线C 相交于不同于极点的点A ,且点A 的极坐标为(2 3 ,θ) ,其中θ∈⎝ ⎛⎭⎪⎪⎫π2 π.(1)求θ的值;(2)假设射线OA 与直线l 相交于点B ,求|AB |的值. 解:(1)由题意知 ,曲线C 的普通方程为x 2+(y -2)2=4 , ∵x =ρcos θ ,y =ρsin θ ,∴曲线C 的极坐标方程为(ρcos θ)2+(ρsin θ-2)2=4 , 即ρ=4sin θ. 由ρ=2 3 ,得sin θ=32, ∵θ∈⎝ ⎛⎭⎪⎪⎫π2 π ,∴θ=2π3.(2)由题易知直线l 的普通方程为x +3y -43=0 , ∴直线l 的极坐标方程为ρcos θ+3ρsin θ-43=0. 又射线OA 的极坐标方程为θ=2π3(ρ≥0) , 联立⎩⎨⎧θ=2π3(ρ≥0)ρcos θ+3ρsin θ-43=0解得ρ=4 3.∴点B 的极坐标为⎝ ⎛⎭⎪⎪⎫4 3 2π3 ,∴|AB |=|ρB -ρA |=43-23=2 3.8.在极坐标系中 ,曲线C 1:ρ=2cos θ和曲线C 2:ρcos θ=3 ,以极点O 为坐标原点 ,极轴为x 轴非负半轴建立平面直角坐标系.(1)求曲线C 1和曲线C 2的直角坐标方程;(2)假设点P 是曲线C 1上一动点 ,过点P 作线段OP 的垂线交曲线C 2于点Q ,求线段PQ 长度的最||小值.解:(1)C 1的直角坐标方程为(x -1)2+y 2=1 ,C 2的直角坐标方程为x =3.(2)设曲线C 1与x 轴异于原点的交点为A , ∵PQ ⊥OP , ∴PQ 过点A (2,0). 设直线PQ 的参数方程为⎩⎨⎧x =2+t cos θ y =t sin θ(t 为参数) , 代入C 1可得t 2+2t cos θ=0 , 解得t 1=0 ,t 2=-2cos θ , 可知|AP |=|t 2|=|2cos θ|. 代入C 2可得2+t cos θ=3 , 解得t ′=1cos θ, 可知|AQ |=|t ′|=⎪⎪⎪⎪1cos θ ,∴|PQ |=|AP |+|AQ |=|2cos θ|+⎪⎪⎪⎪1cos θ≥2 2 ,当且仅当|2cos θ|=⎪⎪⎪⎪1cos θ时取等号 , ∴线段PQ 长度的最||小值为2 2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【知识要点】
1. 极坐标的概念 2. 极坐标与直角坐标的互化 3. 参数方程的概念 4. 常见参数方程: 圆 ( x a) ( y b) r 的参数方程可表示为
2 2 2
2 x2 y2 ,
y sin ,
x cos , y tan ( x 0) x
第 1 页 /共 11 页
A
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
x2 y 2 0或y 1
B
新疆 源头学子小屋
特级教师 王新敞
wxckt@
y x 2 ( 0 y 1 )
转化为普通方程: y x 2 ,但是 x [2,3], y [0,1] )
例4. 化极坐标方程 cos 0 为直角坐标方程为(
2
联邦,因为专注所以专业
田贝分校:25772285
华丽分校:25003030
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
一条射线和一个圆
B
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
x 1
C
新疆 源头学子小屋
/wxc/
特级教师 王新敞
3
)k , ( Z
C
) 2 ), (k Z ) 都是极坐标 3
(2, 2k
例6. 极坐标方程 cos 2sin 2 表示的曲线为( A C
新疆 源头学子小屋
/wxc/
) 一条直线和一个圆 D
新疆 源头学子小屋
/wxc/
/wxc/
特级教师 王新敞
wxckt@
y 1
( cos 1) 0, x 2 y 2 0, 或 cos x 1
)
例5. 点 M 的直角坐标是 (1, 3) ,则点 M 的极坐标为( A
新疆 源头学子小屋
特级教师 王新敞
wxckt@
3 2
D
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
3 2
D
k
y 2 3t 3 x 1 2t 2
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
y x2
C
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
新疆 源头学子小屋
2
经过点 M O ( xo , y o ) ,倾斜角为 的直线 l 的参数方程可表示为
x xo tcos , ( t 为参数). y y o tsin .
【典型例题】
例1. 若直线的参数方程为
x 1 2t (t为参数) ,则直线的斜率为( y 2 3t
x a rcos , (为参数) . y b rsin .
x acos , x2 y2 (为参数) . 椭圆 2 2 1 (a b 0) 的参数方程可表示为 a b y bsin .
x 2pt 2 , (t为参数) . 抛物线 y 2 px 的参数方程可表示为 y 2pt.
4
例9. 已知直线 l1 :
x 1 3t (t为参数) 与直线 l2 : 2 x 4 y 5 相交于点 B ,又点 A(1, 2) , y 2 4t
新疆 源头学子小屋
/wxc/
则 AB _______________
特级教师 王新敞
2 x 2 sin ( 为参数) 化为普通方程为( 2 y sin
)
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
y x2
B
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
( 1, 3 )
2
转化为普通方程: y 1 x ,当 x
3 1 时, y 4 2
例3. 将参数方程 A
新疆 源头学子小屋
/wxc/
/wxc/
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
(2, ) B 3
新疆 源头学子小屋
/wxc/
特级教师 王新敞
/wxc/
特级教师 王新敞
wxckt@
两条直线
C
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
/wxc/
特级教师 王新敞
wxckt@
例8. 参数方程
t t x e e (t为参数) 的普通方程为__________________ t t y 2( e e )
5 4
k
y4 5 t 5 x 3 4 t 4
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
( 2 ,
3
) C
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
)
A
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
2 3
B
新疆 源头学子小屋
http://wwwຫໍສະໝຸດ /wxc/
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
x2 y 2 0或x 1
C
D
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
新疆 源头学子小屋
x 3 4t (t为参数) 的斜率为______________________ y 4 5t
2
, 或 x2 y 2 4 y
例7. 直线
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
新疆 源头学子小屋
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
2 3
C
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
特级教师 王新敞
wxckt@
一个圆
cos 4sin cos , cos 0, 或 4sin , 即 2 4 sin 则 k
1 x 2 t 2 (t为参数) 被圆 x 2 y 2 4 截得的弦长为______________ 例10. 直线 y 1 1 t 2
C
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
(2, 3 ) D
B
新疆 源头学子小屋
/wxc/
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
x2 y 2 1,( x 2) 4 16
y x et e t x 2et y y 2 ( x ) x ( ) y t t y 2 2 e e t x 2e 2 2
/wxc/
特级教师 王新敞
wxckt@
y x 2 ( 2 x 3 ) D
C
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
2 (2, ) D 3
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
(2,k 2
特级教师 王新敞
wxckt@
1 ( , 2
2) B
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
3 1 ( , ) 4 2
例2. 下列在曲线
x sin 2 ( 为参数) 上的点是( y cos sin
)
A
新疆 源头学子小屋
/wxc/