MAX6317HUK35AZ-T中文资料
AZ EXP 5nXt-15nXT Data Package, Suss & I-line-compact
3
AZ, the AZ logo, BARLi, Aquatar, nLOF, Kwik Strip, Klebosol, and Spinfil are registered trademarks and AX, DX, HERB, HiR, MiR, NCD, PLP, Signiflow, SWG, and TARP are trademarks of AZ Electronic Materials.
Develop
Unexposed resist remains in via due to insufficient exposure; Overdevelopment does not clean via
Develop
Clean via for seed layer or plating
4
AZ, the AZ logo, BARLi, Aquatar, nLOF, Kwik Strip, Klebosol, and Spinfil are registered trademarks and AX, DX, HERB, HiR, MiR, NCD, PLP, Signiflow, SWG, and TARP are trademarks of AZ Electronic Materials.
Soluble resist fills via
Expose
Expose
Insufficiently exposed resist remains in via; Large overexposure may solubilize resist
No exposure needed to solubilize resist in via
2
MAX6317HUK32DZ-T中文资料
___________________________________________________________________Selector Guide________________General DescriptionThe MAX6316–MAX6322 family of microprocessor (µP)supervisory circuits monitors power supplies and microprocessor activity in digital systems. It offers sev-eral combinations of push/pull, open-drain, and bidirec-tional (such as Motorola 68HC11) reset outputs, along with watchdog and manual reset features. The Selector Guide below lists the specific functions available from each device. These devices are specifically designed to ignore fast negative transients on V CC . Resets are guaranteed valid for V CC down to 1V.These devices are available in 26 factory-trimmed reset threshold voltages (from 2.5V to 5V, in 100mV incre-ments), featuring four minimum power-on reset timeout periods (from 1ms to 1.12s), and four watchdog timeout periods (from 6.3ms to 25.6s). Thirteen standard ver-sions are available with an order increment requirement of 2500 pieces (see Standard Versions table); contact the factory for availability of other versions, which have an order increment requirement of 10,000 pieces.The MAX6316–MAX6322 are offered in a miniature 5-pin SOT23 package.________________________ApplicationsPortable Computers Computers ControllersIntelligent InstrumentsPortable/Battery-Powered Equipment Embedded Control Systems____________________________Features♦Small 5-Pin SOT23 Package♦Available in 26 Reset Threshold Voltages2.5V to 5V, in 100mV Increments ♦Four Reset Timeout Periods1ms, 20ms, 140ms, or 1.12s (min)♦Four Watchdog Timeout Periods6.3ms, 102ms, 1.6s, or 25.6s (typ) ♦Four Reset Output StagesActive-High, Push/Pull Active-Low, Push/Pull Active-Low, Open-Drain Active-Low, Bidirectional♦Guaranteed Reset Valid to V CC = 1V♦Immune to Short Negative V CC Transients ♦Low Cost♦No External ComponentsMAX6316–MAX63225-Pin µP Supervisory Circuits withWatchdog and Manual Reset________________________________________________________________Maxim Integrated Products 119-0496; Rev 7; 11/07_______________Ordering InformationOrdering Information continued at end of data sheet.*The MAX6318/MAX6319/MAX6321/MAX6322 feature two types of reset output on each device.Typical Operating Circuit and Pin Configurations appear at end of data sheet.For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,or visit Maxim’s website at .Specify lead-free by replacing “-T” with “+T” when ordering.ELECTRICAL CHARACTERISTICS(V CC = 2.5V to 5.5V, T A = -40°C to +125°C, unless otherwise noted. Typical values are at T A = +25°C.) (Note 1)M A X 6316–M A X 63225-Pin µP Supervisory Circuits with Watchdog and Manual Reset 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Voltage (with respect to GND)V CC ......................................................................-0.3V to +6V RESET (MAX6320/MAX6321/MAX6322 only)...... -0.3V to +6V All Other Pins.........................................-0.3V to (V CC + 0.3V)Input/Output Current, All Pins.............................................20mAContinuous Power Dissipation (T A = +70°C)SOT23-5 (derate 7.1mW/°C above +70°C)...............571mW Operating Temperature Range..........................-40°C to +125°C Junction Temperature......................................................+150°C Storage Temperature Range..............................-65°C to +160°C Lead Temperature (soldering, 10s).................................+300°CTH available in 100mV increments from 2.5V to 5V (see Table 1 at end of data sheet).Note 3:Guaranteed by design.MAX6316–MAX63225-Pin µP Supervisory Circuits withWatchdog and Manual Reset_______________________________________________________________________________________3Note 5:Measured from RESET V OL to (0.8 x V CC ), R LOAD = ∞.Note 6:WDI is internally serviced within the watchdog period if WDI is left unconnected.Note 7:The WDI input current is specified as the average input current when the WDI input is driven high or low. The WDI input is designed for a three-stated-output device with a 10µA maximum leakage current and capable of driving a maximum capac-itive load of 200pF. The three-state device must be able to source and sink at least 200µA when active.ELECTRICAL CHARACTERISTICS (continued)M A X 6316–M A X 63225-Pin µP Supervisory Circuits with Watchdog and Manual Reset 4_________________________________________________________________________________________________________________________________Typical Operating Characteristics(T A = +25°C, unless otherwise noted.)021*********-4020-20406080100MAX6316/MAX6317/MAX6318/MAX6320/MAX6321SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (μA )302010504090807060100-40-20020406080100V CC FALLING TO RESET PROPAGATIONDELAY vs. TEMPERATURETEMPERATURE (°C)R E S E T P R O P A G A T I O N D E L A Y (μs )140180160240220200300280260320-40020-20406080100MAX6316/MAX6317/MAX6319/MAX6320/MAX6322MANUAL RESET TO RESETPROPAGATION DELAY vs. TEMPERATURETEMPERATURE (°C)P R O P A G A T I O N D E L A Y (n s )0.950.980.970.961.000.991.041.031.021.011.05-40-2020406080100NORMALIZED RESET TIMEOUT PERIOD vs. TEMPERATUREM A X 6316t o c 04TEMPERATURE (°C)N O R M A L I Z E D R E S E T T I M E O U T P E R I O D0.950.980.970.961.000.991.041.031.021.011.05-40-2020406080100MAX6316/MAX6317/MAX6318/MAX6320/MAX6321NORMALIZED WATCHDOG TIMEOUTPERIOD vs. TEMPERATUREM A X 6316t o c 05TEMPERATURE (°C)N O R M A L I Z E D W A T C H D O G T I M E O U T P E R I O D800101001000MAXIMUM V CC TRANSIENT DURATION vs. RESET THRESHOLD OVERDRIVE2010RESET THRESHOLD OVERDRIVE (mV) V RST - V CCT RA N S I E N T D U R A T I O N (μs )3050604070200ns/divMAX6316M/6318MH/6319MHBIDIRECTIONALPULLUP CHARACTERISTICSMAX6316–MAX63225-Pin µP Supervisory Circuits withWatchdog and Manual Reset_______________________________________________________________________________________5______________________________________________________________Pin DescriptionM A X 6316–M A X 63225-Pin µP Supervisory Circuits with Watchdog and Manual Reset 6______________________________________________________________________________________________________Detailed DescriptionA microprocessor’s (µP) reset input starts or restarts the µP in a known state. The reset output of the MAX6316–MAX6322 µP supervisory circuits interfaces with the reset input of the µP, preventing code-execution errors during power-up, power-down, and brownout condi-tions (see the Typical Operating Circuit ). The MAX6316/MAX6317/MAX6318/MAX6320/MAX6321 are also capa-ble of asserting a reset should the µP become stuck in an infinite loop.Reset OutputThe MAX6316L/MAX6318LH/MAX6319LH feature an active-low reset output, while the MAX6317H/MAX6318_H/MAX6319_H/MAX6321HP/MAX6322HP feature an active-high reset output. RESET is guaran-teed to be a logic low and RESET is guaranteed to be a logic high for V CC down to 1V.The MAX6316–MAX6322 assert reset when V CC is below the reset threshold (V RST ), when MR is pulled low (MAX6316_/MAX6317H/MAX6319_H/MAX6320P/MAX6322HP only), or if the WDI pin is not serviced withinthe watchdog timeout period (t WD ). Reset remains assert-ed for the specified reset active timeout period (t RP ) after V CC rises above the reset threshold, after MR transitions low to high, or after the watchdog timer asserts the reset (MAX6316_/MAX6317H/MAX6318_H/MAX6320P/MAX6321HP). After the reset active timeout period (t RP )expires, the reset output deasserts, and the watchdog timer restarts from zero (Figure 2).Figure 1. Functional DiagramFigure 2. Reset Timing DiagramMAX6316–MAX63225-Pin µP Supervisory Circuits withWatchdog and Manual Reset_______________________________________________________________________________________7Bidirectional R E S E T OutputThe MAX6316M/MAX6318MH/MAX6319MH are designed to interface with µPs that have bidirectional reset pins,such as the Motorola 68HC11. Like an open-drain output,these devices allow the µP or other devices to pull the bidirectional reset (RESET ) low and assert a reset condi-tion. However, unlike a standard open-drain output, it includes the commonly specified 4.7k Ωpullup resistor with a P-channel active pullup in parallel.This configuration allows the MAX6316M/MAX6318MH/MAX6319MH to solve a problem associated with µPs that have bidirectional reset pins in systems where sev-eral devices connect to RESET (F igure 3). These µPs can often determine if a reset was asserted by an exter-nal device (i.e., the supervisor IC) or by the µP itself (due to a watchdog fault, clock error, or other source),and then jump to a vector appropriate for the source of the reset. However, if the µP does assert reset, it does not retain the information, but must determine the cause after the reset has occurred.The following procedure describes how this is done in the Motorola 68HC11. In all cases of reset, the µP pulls RESET low for about four external-clock cycles. It then releases RESET , waits for two external-clock cycles,then checks RESET ’s state. If RESET is still low, the µP concludes that the source of the reset was external and, when RESET eventually reaches the high state, it jumps to the normal reset vector. In this case, stored-state information is erased and processing begins fromscratch. If, on the other hand, RESET is high after a delay of two external-clock cycles, the processor knows that it caused the reset itself and can jump to a different vector and use stored-state information to determine what caused the reset.A problem occurs with faster µPs; two external-clock cycles are only 500ns at 4MHz. When there are several devices on the reset line, and only a passive pullup resis-tor is used, the input capacitance and stray capacitance can prevent RESET from reaching the logic high state (0.8✕V CC ) in the time allowed. If this happens, all resets will be interpreted as external. The µP output stage is guaran-teed to sink 1.6mA, so the rise time can not be reduced considerably by decreasing the 4.7k Ωinternal pullup resistance. See Bidirectional Pullup Characteristics in the Typical Operating Characteristics .The MAX6316M/MAX6318MH/MAX6319MH overcome this problem with an active pullup FET in parallel with the 4.7k Ωresistor (F igures 4 and 5). The pullup transistor holds RESET high until the µP reset I/O or the supervisory circuit itself forces the line low. Once RESET goes below V PTH , a comparator sets the transition edge flip-flop, indi-cating that the next transition for RESET will be low to high. When RESET is released, the 4.7k Ωresistor pulls RESET up toward V CC . Once RESET rises above V PTH but is below (0.85 x V CC ), the active P-channel pullup turns on. Once RESET rises above (0.85 x V CC ) or the 2µs one-shot times out, the active pullup turns off. The parallel combination of the 4.7k Ωpullup and theFigure 3. MAX6316M/MAX6318MH/MAX6319MH Supports Additional Devices on the Reset BusM A X 6316–M A X 63225-Pin µP Supervisory Circuits with Watchdog and Manual Reset 8_______________________________________________________________________________________Figure 4. MAX6316/MAX6318MH/MAX6319MH Bidirectional Reset Output Functional DiagramMAX6316–MAX63225-Pin µP Supervisory Circuits withWatchdog and Manual Reset_______________________________________________________________________________________9P-channel transistor on-resistance quickly charges stray capacitance on the reset line, allowing RESET to transition from low to high within the required two elec-tronic-clock cycles, even with several devices on the reset line. This process occurs regardless of whether the reset was caused by V CC dipping below the reset threshold, the watchdog timing out, MR being asserted,or the µP or other device asserting RESET . The parts do not require an external pullup. To minimize supply cur-rent consumption, the internal 4.7k Ωpullup resistor dis-connects from the supply whenever the MAX6316M/MAX6318MH/MAX6319MH assert reset.Open-Drain R E S E T OutputThe MAX6320P/MAX6321HP/MAX6322HP have an active-low, open-drain reset output. This output struc-ture will sink current when RESET is asserted. Connect a pullup resistor from RESET to any supply voltage up to 6V (Figure 6). Select a resistor value large enough toregister a logic low (see Electrical Characteristics ), and small enough to register a logic high while supplying all input current and leakage paths connected to the RESET line. A 10k Ωpullup is sufficient in most applications.Manual-Reset InputThe MAX6316_/MAX6317H/MAX6319_H/MAX6320P/MAX6322HP feature a manual reset input. A logic low on MR asserts a reset. After MR transitions low to high, reset remains asserted for the duration of the reset timeout peri-od (t RP ). The MR input is connected to V CC through an internal 52k Ωpullup resistor and therefore can be left unconnected when not in use. MR can be driven with TTL-logic levels in 5V systems, with CMOS-logic levels in 3V systems, or with open-drain or open-collector output devices. A normally-open momentary switch from MR to ground can also be used; it requires no external debouncing circuitry. MR is designed to reject fast, negative-going transients (typically 100ns pulses). A 0.1µF capacitor from MR to ground provides additional noise immunity.The MR input pin is equipped with internal ESD-protection circuitry that may become forward biased. Should MR be driven by voltages higher than V CC , excessive current would be drawn, which would damage the part. F or example, assume that MR is driven by a +5V supply other than V CC . If V CC drops lower than +4.7V, MR ’s absolute maximum rating is violated [-0.3V to (V CC + 0.3V)], and undesirable current flows through the ESD structure from MR to V CC . To avoid this, use the same supply for MR as the supply monitored by V CC . This guarantees that the voltage at MR will never exceed V CC .Watchdog InputThe MAX6316_/MAX6317H/MAX6318_H/MAX6320P/MAX6321HP feature a watchdog circuit that monitors the µP’s activity. If the µP does not toggle the watchdog input (WDI) within the watchdog timeout period (t WD ),reset asserts. The internal watchdog timer is cleared by reset or by a transition at WDI (which can detect pulses as short as 50ns). The watchdog timer remains cleared while reset is asserted. Once reset is released, the timer begins counting again (Figure 7).The WDI input is designed for a three-stated output device with a 10µA maximum leakage current and the capability of driving a maximum capacitive load of 200pF.The three-state device must be able to source and sink at least 200µA when active. Disable the watchdog function by leaving WDI unconnected or by three-stating the driver connected to WDI. When the watchdog timer is left open circuited, the timer is cleared internally at intervals equal to 7/8 of the watchdog period.Figure 6. MAX6320P/MAX6321HP/MAX6322HP Open-Drain RESET Output Allows Use with Multiple SuppliesFigure 5. Bidirectional RESET Timing DiagramM A X 6316–M A X 63225-Pin µP Supervisory Circuits with Watchdog and Manual Reset 10______________________________________________________________________________________Applications InformationWatchdog Input CurrentThe WDI input is internally driven through a buffer and series resistor from the watchdog counter. For minimum watchdog input current (minimum overall power con-sumption), leave WDI low for the majority of the watch-dog timeout period. When high, WDI can draw as much as 160µA. Pulsing WDI high at a low duty cycle will reduce the effect of the large input current. When WDI is left unconnected, the watchdog timer is serviced within the watchdog timeout period by a low-high-low pulse from the counter chain.Negative-Going V CC TransientsThese supervisors are immune to short-duration, nega-tive-going V CC transients (glitches), which usually do not require the entire system to shut down. Typically,200ns large-amplitude pulses (from ground to V CC ) on the supply will not cause a reset. Lower amplitude puls-es result in greater immunity. Typically, a V CC transient that goes 100mV under the reset threshold and lasts less than 4µs will not trigger a reset. An optional 0.1µF bypass capacitor mounted close to V CC provides addi-tional transient immunity.Ensuring Valid Reset OutputsDown to V CC = 0The MAX6316_/MAX6317H/MAX6318_H/MAX6319_H/MAX6321HP/MAX6322HP are guaranteed to operate properly down to V CC = 1V. In applications that require valid reset levels down to V CC = 0, a pulldown resistor to active-low outputs (push/pull and bidirectional only,F igure 8) and a pullup resistor to active-high outputs(push/pull only, Figure 9) will ensure that the reset line is valid while the reset output can no longer sink orsource current. This scheme does not work with the open-drain outputs of the MAX6320/MAX6321/MAX6322.The resistor value used is not critical, but it must be large enough not to load the reset output when V CC is above the reset threshold. F or most applications,100k Ωis adequate.Watchdog Software Considerations(MAX6316/MAX6317/MAX6318/MAX6320/MAX6321)One way to help the watchdog timer monitor software execution more closely is to set and reset the watchdog input at different points in the program, rather than pulsing the watchdog input high-low-high or low-high-low. This technique avoids a stuck loop, in which the watchdog timer would continue to be reset inside the loop, keeping the watchdog from timing out.Figure 7. Watchdog Timing RelationshipFigure 9. Ensuring RESET Valid to V CC = 0 on Active-High Push/Pull OutputsFigure 8. Ensuring RESET Valid to V CC = 0 on Active-Low Push/Pull and Bidirectional OutputsMAX6316–MAX6322Watchdog and Manual Reset______________________________________________________________________________________11F igure 10 shows an example of a flow diagram where the I/O driving the watchdog input is set high at the beginning of the program, set low at the end of every subroutine or loop, then set high again when the pro-gram returns to the beginning. If the program should hang in any subroutine, the problem would be quickly corrected, since the I/O is continually set low and the watchdog timer is allowed to time out, causing a reset or interrupt to be issued. As described in the Watchdog Input Current section, this scheme results in higher time average WDI current than does leaving WDI low for the majority of the timeout period and periodically pulsing it low-high-low.Figure 10. Watchdog Flow Diagram__________________Pin ConfigurationsTypical Operating CircuitTable 2. Standard VersionsTable 1. Factory-Trimmed Reset ThresholdsM A X 6316–M A X 6322Watchdog and Manual ResetTable 3. Reset/Watchdog Timeout PeriodsMAX6316–MAX6322Watchdog and Manual Reset______________________________________________________________________________________13__Ordering Information (continued)a watchdog feature (see Selector Guide) are factory-trimmed to one of four watchdog timeout periods. Insert the letter corre-sponding to the desired watchdog timeout period (W, X, Y, or Z from Table 3) into the blank following the reset timeout suffix.TRANSISTOR COUNT: 191SUBSTRATE IS INTERNALLY CONNECTED TO V+Chip Informationdard versions only. The required order increment for nonstandard versions is 10,000 pieces. Contact factory for availability.M A X 6316–M A X 6322Watchdog and Manual Reset 14______________________________________________________________________________________Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)M axim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a M axim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________15©2007 Maxim Integrated Productsis a registered trademark of Maxim Integrated Products, Inc.MAX6316–MAX6322 Watchdog and Manual ResetRevision History。
MAX4173TEUT-T中文资料
Notebook Computers
Portable/Battery-Powered Systems
Smart Battery Packs/Chargers
Cell Phones
Power-Management Systems
General System/Board-Level Current Monitoring
The combination of three gain versions and a userselectable external sense resistor sets the full-scale current reading. This feature offers a high level of integration, resulting in a simple and compact currentsense solution.
+20V/V (MAX4173T) +50V/V (MAX4173F) +100V/V (MAX4173H) ♦ ±0.5% Full-Scale Accuracy ♦ ±0.3mV Input Offset Voltage (MAX4173T) ♦ 420µA Supply Current ♦ Wide 1.7MHz Bandwidth (MAX4173T) ♦ +3V to +28V Operating Supply ♦ Available in Space-Saving SOT23-6 Package
Typical Operating Circuit
0 TO +28V
VSENSE
+3V TO +28V 0.1µF
MAX1722EZK-T中文资料
MAX1722
FB 3
4
OUT
THIN SOT23-5
Pin Configurations are continued at end of data sheet.
________________________________________________________________ Maxim Integrated Products
元器件交易网
19-1735; Rev 0; 7/01
1.5µA IQ, Step-Up DC-DC Converters in Thin SOT23-5
General Description
The MAX1722/MAX1723/MAX1724 compact, high-efficiency, step-up DC-DC converters are available in tiny, 5pin thin SOT23 packages. They feature an extremely low 1.5µA quiescent supply current to ensure the highest possible light-load efficiency. Optimized for operation from one to two alkaline or nickel-metal-hydride (NiMH) cells, or a single Li+ cell, these devices are ideal for applications where extremely low quiescent current and ultra-small size are critical. Built-in synchronous rectification significantly improves efficiency and reduces size and cost by eliminating the need for an external Schottky diode. All three devices feature a 0.5Ω N-channel power switch. The MAX1722/ MAX1724 also feature proprietary noise-reduction circuitry, which suppresses electromagnetic interference (EMI) caused by the inductor in many step-up applications. The family offers different combinations of fixed or adjustable outputs, shutdown, and EMI reduction (see Selector Guide). o o o o o o o o o o o
MICROMEGA 高精度过程控制器说明书
CN77000 R300和R500控制器,图片中含RHS-43孔锯, 易于钻圆孔。
有关订购信息, 请参见最后一页。
CN77333-A2 NEMA 12款方形开孔。
CN77533 NEMA 4方形开孔。
图片为实际尺寸。
1⁄16 DIN MICROMEGA ®自动调谐PID温度/过程控制器U 高精度:±0.5°C (0.9°F), 读数的0.03% U品质优秀, 还有5年保修支持 U 通用输入—过程电压/电流、热电偶、RTD U 双4位数字LED 显示屏和指示器, 用于显示输出和报警状态 U 可选RS232或RS485, OMEGA ® 协议U 继电器、SSR 、DC 脉冲、0 ~ 10 V, 以及 0 ~ 20 mA 输出类型 U 斜坡到设定值功能 U 通用电源, 90 ~ 250 Vac 或Vdc U 双输出和双报警功能U 隔离模拟输出或远程设定值可选将方形控制器放置于圆孔中!高精度、高品质MICROMEGA ®控制器在过程控制中提供无与伦比的灵活性。
每台设备均允许用户从10个热电偶类型(J 、K 、T 、E 、R 、S 、B 、C 、N 和JDIN )、Pt RTD (100、500或1000 Ω, 385或392曲线)或者模拟电压或电流输入中选择输入类型。
电压/电流输入可完全扩展到各工程单位,可选择小数点,是压力、流量或其他过程输入的理想之选。
MICROMEGA ®控制器具有大型双LED 显示屏,采用前面板配置,可选温度/过程输入,并接受90 ~ 250 Vac 或Vdc 通用电源。
提供单和双输入配置,CN77000系列适用于继电器、SSR 、DC 脉冲或模拟电压或电流输出。
单报警是标准配置。
可选项包括第二报警、 RS232、RS485、模拟输出以及远程设定值可选。
“300”系列控制器有许多特色,更大,紧凑型1⁄4 DIN 控制器,1⁄16 DIN 尺寸。
电力克泰国有限公司产品说明书:电力EME3500SA顶部冰箱-空调
Item PNC ELC Brand Model MarketSPARE PARTS LISTFreestanding fridge-freezers, top freezers3713A 925053050 00 Electrolux EME3500SA VNE Electrolux Thailand Co.,Ltd. 1910 Electrolux Building New Petchburi Rd. Bangkapi HuaykwangBangkok , 10310 Tel : +662 725 9000Publication-No. 130709Freestanding fridge-freezers,top freezersSAFETY WARNINGAlways turn off and unplug the machine before detaching any parts.When servicing machines, do not removeANY detachable parts while the machine is powered. The reason is internal faults may cause shorts to components that are normally at low voltage presenting a shock hazard.A 925053051 00 Electrolux EME3500SA PHH A 925053052 00 Electrolux EME3500SA SGE A 925053053 00 Electrolux EME3500SA MYH A 925053054 00 Electrolux EME3500SA THE A 925053086 00 Electrolux EME3500SA IDHModel : PNC :Ex. View DrawingEME3500SACabinet Assembly49Pos.Part No. DescriptionE M E 3500P N C 9250 E M E 3500P N C 9250E M E 3500P N C 9250E M E 3500P N C 9250 E M E 3500P N C 9250 E M E 3500P N C 92501 811924701CABINET FOAMED MD350 GRVN 1 1 811924601 CABINET FOAMED MD350 GRPH 1 811924501 CABINET FOAMED MD350 GRSG 1 811924401 CABINET FOAMED MD350 GRMY 1 811991901 CABINET FOAMED MD350 GR1 2 811999101 HINGE BOTTOM BASE RIGHT 1 1 1 1 1 1 3 811996201 FEET BASE HINGE 1 1 1 1 1 1 4 811998901 FEET LEVER2 2 2 2 2 2 5 811949503 SCREW TRUSS 4.2x13 6 6 6 6 6 6 6 811999001 FEET BASE1 1 1 1 1 1 7 811943001 SWITCH DOOR TF DOUBLE 1 1 1 1 1 1 8 811943601 SWITCH DOOR2 2 2 2 2 2 9 811981301SUPPORT HEATER MD1 1 1 1 1 811981402 SUPPORT HEATER TF R600a1 10 811981801HEATER DEFROST R134A 240V 1 1 1 1 1 811981701 HEATER DEFROST R600A 240V1 11 811981201COVER HEATER R134A 1 1 1 1 1 811981101 COVER HEATER R600a 1 12 811980401 CLAMP NTC EVAPORATOR 1 1 1 1 1 1 13 811944701 HARNESS THERMO FUSE 1 1 1 1 1 1 14 811948501 CABLE TIES 2.5x1204 4 4 4 4 4 15 811982002 EVAPORATOR 7 PASSES 6.5 1 1 1 1 1 1 16 811981501 RETAINER THERMAL FUSE 1 1 1 1 1 1 17 811974401 SHROUD FAN1 1 1 1 1 1 18 811974301 BRACKET SHROUD FAN 1 1 1 1 1 1 19 811972801 GROMMET FAN SIDE2 2 2 2 2 2 20 1446048 GROMMET , FAN MOUNTING 2 2 2 2 2 2 21 1451299 BLADE ASSY FAN1 1 1 1 1 1 22 811973301MOTOR FAN 240V/50HZ 1 1 1 1 1 811973302 MOTOR FAN 240V/60HZ 1 23 242585005 PCBA MAIN ERF2002 1 1 1 1 1 1 24 811968401 HOUSING BOX PCB 1 1 1 1 1 1 25 811968301 COVER BOX PCB1 1 1 1 1 1 26 811974701COVER EVAPORATOR FRONT TF1 1 1 1 1 1 811971901 COVER EVAPORATOR MD 1 1 1 1 1 1 28 811972601COVER MID CONNECTOR HOUSIN1 1 1 1 1 1 29 811930402 COVER DEODORIZER BLUE3 3 3 3 3 3 30 811972201 DUCT EVAPORATOR REAR MD111111Pos.Part No. DescriptionE M E 3500P N C 9250 E M E 3500P N C 9250E M E 3500P N C 9250E M E 3500P N C 9250 E M E 3500P N C 9250 E M E 3500P N C 925031 811972901 DUCT MID EPS REAR MD 1 1 1 1 1 1 32 811973101 DUCT MID EPS FRONT MD 1 1 1 1 1 1 33 811969301 BAFFLE DOUBLE MD1 1 1 1 1 1 34 811951901 TAPE ALUMINUM EVC REAR MD1 1 1 1 1 1 35 811971601 COVER SCREW5 5 5 5 5 5 36811974201COVER MULTIFLOW FRONT LUX MD S1 1 1 1 1 1 37 811973401 COVER MULTIFLOW SLIDE 1 1 1 1 1 1 38 811973201 COVER MID FRONT MD1 1 1 1 1 1 39 811944801 HARNESS MULTIFLOW TF LUXUR 1 1 1 1 1 1 40 811974001 DUCT MULTIFLOW TF SMALL 1 1 1 1 1 1 41 811930301 DEODORIZER NANO COPPER 1 1 1 1 1 1 42 811943801 PCBA LIGHTING LED HSLB3 3 3 3 3 3 43 811971501 LENS MULTIFLOW TF 1 1 1 1 1 1 44 811971201 LENS FREEZER MD 350 2 2 2 2 2 2 45 811999201 HINGE CENTRE RIGHT 2 2 2 2 2 2 46 811999401 HINGE TOP RIGHT1 1 1 1 1 1 47 811998801 HINGE TOP COVER RIGHT GR 1 1 1 1 1 1 48 811949401 SCREW TRILOB M5x16 8 8 8 8 8 8 49 811942601 HARNESS SENSOR111111Model : PNC :Ex. View DrawingEME3500SACabinet InteriorParts Assembly25Pos.Part No. DescriptionE M E 3500S A P N C 925053050 E M E 3500S A P N C 925053051E M E 3500S A P N C 925053052E M E 3500S A P N C 925053053 E M E 3500S A P N C 925053054 E M E 3500S A P N C 9250530861 811956701 T&S ASSY WHITE 1 1 1 1 1 12 811956801 FRAME ICE T&S 1 1 1 1 1 13 243262600 T&S ICE CUBE TRAY 2 2 2 2 2 24 811957001 SUPPORT ICE T&S 1 1 1 1 1 15 243262903 KNOB ICE T&S WHITE 2 2 2 2 2 26 811956601 BIN ICE1 1 1 1 1 1 7 1451543 SPRING TWIST&SERVE2 2 2 2 2 2 8 811957201 LID FREEZER SHELF 60W LUX 1 1 1 1 1 1 9 811957701 SHELF FZR FOLDABLE FRONT 60W1 1 1 1 1 1 10 811957501 SHELF FZR FOLDABLE REAR60W1 1 1 1 1 1 11 811957901 SHELF FZR ASSY 60W1 1 1 1 1 1 12 811956201 DRAWER MIDDLE BODY MD350 1 1 1 1 1 1 13 811958101 TRAY CHILL ROOM 60W L 1 1 1 1 1 1 14 811955401 SHELF SPLIT ASSY 60W LUX 1 1 1 1 1 1 15 811958701 SHELF FC ASSY 60W1 1 1 1 1 1 16 811959001 COVER CRISPER ASSY 60W 1 1 1 1 1 1 17 807323001 CRISPER BODY 60W LUX 1 1 1 1 1 1 18 811960201 CRISPER FRONT TF 60W 1 1 1 1 1 1 19 811959801 CRISPER HANDLE TF 60W 1 1 1 1 1 1 20 811959601 DIVIDER CRISPER TF 60W 1 1 1 1 1 1 21 811967901 HOUSING PCBA VLIGHT1 1 1 1 1 1 22 807238301 LIGHT GUIDE N-LIGHT 4LED 1 1 1 1 1 1 23 807114501 LENS N LIGHT 4LED 1 1 1 1 1 1 24 807114301 PCB N LIGHT 60W 4LED 1 1 1 1 1 1 25 811956401 SHELF MID ASSY MD350 1 1 1 1 1 1 26 811967801 COVER PCBA VLIGHT 1 1 1 1 1 1 27 811949501 SCREW TRUSS 4.2x35 1 1 1 1 1 1 28 811958501 LID CHILL ROOM 60W1 1 1 1 1 1 29 811956001 DRAWER MIDDLE FRONT MD350 1 1 1 1 1 1 30 811960801 DRAWER HANDLE MID MD350 1 1 1 1 1 1 31 811959201 KNOB HUMIDIFIER111111Model : PNC :Ex. View DrawingEME3500SASystemcompartment Assembly2.1Pos.Part No. DescriptionE M E 3500S A P N C 925053050 E M E 3500S A P N C 925053051E M E 3500S A P N C 925053052E M E 3500S A P N C 925053053 E M E 3500S A P N C 925053054 E M E 3500S A P N C 9250530861 811998401 BASE COMPRESSOR 60W1 1 1 1 1 12 811979402 COMPRESSOR ACC GVY57AG1 811979301 COMPRESSOR ACC HXK95AA 1 811979003 COMPRESSOR WANBAO ASF 1 1 1 1 2.1 807305701 TERMINAL BLOCK ACC1 1 807306201 TERMINAL BLOCK HXK 1 807280401 BLOCK TERMINAL WANBAO 1 1 1 1 3 811978901 GROMMET COMPRESSOR 4 4 4 4 4 4 4 811998601 CLAMP COMPRESSOR2 2 2 2 2 2 5 811978201 CLAMP DRYER 1 1 1 1 1 1 6 811945601 CAPACITOR 4UF1 1 1 1 811945602 CAPACITOR 4UF 4.8mm1 1 7 811943301 POWERCORD REFRIGERATOR VN1 811943401 POWERCORD REFRIGERATOR PH 1 1 811943201 POWERCORD REFRIGERATOR SG 1 1 811943101 POWERCORD REFRIGERATOR TH 1 8 811942901 HARNESS EARTH1 1 1 1 1 1 9 811949301 SCREW TRILOB M3x102 2 2 2 2 2 10 1441189 DRYER1 1 1 1 1 1 11 1401884 TUBE PROCESS2 2 2 2 2 2 12 811983601 TUBE DISCHARG EXTENSION ACC11 1 1 811983501 TUBE DISCHARG EXTENSION ACC2 1 811983301 TUBE DISCHARG EXTENSION WANB 1 1 13 811982501 TUBE SUCTION EXTENSION ACC11 1 1 811982401 TUBE SUCTION EXTENSION ACC2 1 811982201 TUBE SUCTION EXTENSION WANBA 1 1 14 811978101 PAN DRAIN WATER ACC1 1 1 811977901 PAN DRAIN WATER HXK 1 896113194 PAN DRAIN WATER WANBAO 1 1 15 811949401 SCREW TRILOB M5x162 2 22 2 2Model : PNC : Ex. View DrawingEME3500SA Door Assembly5.15.25.36.16.3 6.2Pos.Part No. DescriptionE M E 3500S A P N C 925053050 E M E 3500S A P N C 925053051E M E 3500S A P N C 925053052E M E 3500S A P N C 925053053 E M E 3500S A P N C 925053054 E M E 3500S A P N C 9250530861 811933901 DOOR FOAMED FC MD350 SS 1 1 1 1 1 12 811933701 DOOR FOAMED MID MD350 SS 1 1 1 1 1 13 811934801 DOOR FOAMED FZR MD350 SS 1 1 1 1 1 14 811986804 RAIL DOOR SUPPORT 60W SILV 1 1 1 1 1 1 5.1 811988515 GASKET FC MD350 1 1 1 1 1 1 5.2 811988514 GASKET MID MD350L 1 1 1 1 1 1 5.3 811988502 GASKET FZR TF60W1 1 1 1 1 1 6.1 807439106 HANDLE FC MD ASSEMBLY 1 1 1 1 1 1 6.2 807439105 HANDLE FC MID ASSEMBLY 1 1 1 1 1 1 6.3 807439104 HANDLE FC FZR ASSEMBLY 1 1 1 1 1 1 7 811962002 BIN DOOR BOTTLE ASSY 60W 1 1 1 1 1 1 8 811961501 BIN DOOR FLEX 1/2 ASSY 1 1 1 1 1 1 811961401 BIN DOOR FLEX 2/3 ASSY 2 2 2 2 2 2 9 807489801 TRAY EGG 10 1 1 1 1 1 1 10 811960701 BIN DAIRY ASSY 1 1 1 1 1 1 12 811960601 CLIP BAG DOOR2 2 2 2 2 2 13 811962102 BIN DOOR SHALLOW ASSY 60W 1 1 1 1 1 1 14 811967401 DOOR COMPLETE UI ASSY TF 1 1 1 1 1 1 15 811969601 PCBA UI1 1 1 1 1 1 16 811988701 BEARING AUTO CLOSER R 3 3 3 3 3 3 17 811948801 SCREW COUNTERSUNK M4.8x19 3 3 33 3 3Model : PNC : - 11 -EME3500SA SAFETY WARNINGAlways turn off and unplug the machine before detaching any parts. When servicing machines, do not remove ANY detachable parts while the machine is powered. The reason is internal faults may cause shorts to components that are normally at low voltage presenting a shock hazard.。
TK压缩机用电机
6、外壳防护等级:IP00,IP20 IP21, IP23,也可以生产IP44 IP54等其他防护等级。
7、励磁方式:静止可控硅,也可以采用其他励磁方式。
8、集电环可分为普通结构或集电环正压通风方式。
9、座式滑动轴承一般采用油环式自润滑结构或复合润滑(外带稀油站)结构,视具体结构和负荷而定。
本系列同步电动机符合国家标准GB755《旋转电机基本技术要求》、GB14711《旋转电机安全通用要求》、JB/T8667.1《大型三相同步电动机技术条件 TK系列》等,同时也遵循相应的IEC标准。
TK系列压缩机用同步电机技术参数:
1、本系列同步电动机可分为卧式带转轴和轴承(IM7311)和不带转轴和轴承(IM5710)两种结构,具体根据空气压缩机结构而定。
2、冷却方式一般为空气自冷(IC01)、也可根据用户要求生产其他形式的电机,如管道通风和空水,空空冷却等。
3、功率范围:200~5000KW,转速范围:200~1000r/min;
4、电压等级:380V 6000V 10000V 或其他电压等级。
5、绝缘等级:F级,也可以按B级考核,定子采用真空压力浸漆(VPI)。
TK压缩机用电机 TK系列三相同步电动机主要是为空气压缩机配套的同步电动机,一般用于化肥、制冷等行业,也可以驱动风机、水泵等机械设备。特别是转速低于600r/min时,其性能明显优于同转速的异步电动机,它具有超前的功率因数(可改善电网功率因数)、高效率、高稳定性和高过载能力,并具有转速不随负载改变的性能。
631-632说明书
19>。绝缘电阻符合IEC255-5标准100MΩ/500V
20>。耐压测试IEC255-5标准2.0KV/50Hz/1min
21>。脉冲电压测试IEC-255-5标准5KV/1.2/50μS/0.5J
22>。抗干扰
【1】共模干扰IEC255-22-1标准2.5KV/1MHz/2S
df/dt频率的变化率,df滑差整定值
U母线电压,DYD低电压闭锁定值,软件定义50V,无需整定
DL断路器状态
单相接地跳闸或选线
当中性点经电阻接地或零序电流较大时应直接作用于跳闸
I0I0D
TI0S
I0实测零序电流值,I0D零序电流动作整定值
T延时时间,I0S零序延时整定值
当中性点不接地或经消弧线圈接地,若零序电流较小不需跳闸时,装置自动识别线路零序电流5次谐波的功率方向为正且经CAN通讯网确认本线路零序电流值最大时发单相接地予报信号。(CAN总线为无主站系统,可实现任意装置间的通讯)
控制部分由遥控跳合闸、手动跳合闸及防跳回路组成。
测量部分由电流测量、电压测量、频率测量、功率测量、功率因数测量、电度测量组成。
监视部分配有装置故障报警、保护定值不合理报警、控制回路断线报警、PT断线报警及每种保护动作的独立信号空接点输出。
CAN总线网络控制部分实现装置同网络上其它设备间进行实时的数据交换。完成遥测、遥信、遥控、遥调及远方修改保护定值、远方信号复归等功能,直接构成发电厂、变电站综合自动化系统。
【2】电气测量
三相电流、电压、有功及无功功率、功率因数、频率、有功电度及无功电度。
开关事件记录
直接记录外部8个开关状态事件的时间及顺序并对脉冲计数,对不同的应用8个开关状态定义可以不同。
4.正泰控制产品介绍知识讲稿
接触器
三、交流接触器介绍 NC1系列
1、概述 NC1交流接触器主要用于交流交流50Hz/60Hz,额定电压至660V,在AC-3
使用类别下额定电流至95A的电路中,供远距离接通和分断线路之用,并可于 适当的热继电器组成电磁起动器,控制电动机的起动、停止等。
接触器
2.型号含义
N C 1 -□ □ □ □
NC7 9~620A
替代LC1-E
NC8 06M~500A、06M~38/Z
NC1
9~95A、 9~95Z
NC2
115~800A、115~400Z 500、800A无4极
NC6 6~9
接触器
CKJ5 125~630
CJ12 100~600A
CJ12Z
CZ0 40~600A 40C、40CA瞬时操作
3TB40 3TB41 3TB42 3TB43 3TB44
—
3TB46 3TB47 3TB48
—
3TB50
CJX1-9
CJX1-12
Hale Waihona Puke CJX1-16CJX1-22
CJX1-32
(CJX145)
CJX1-45
CJX1-63
CJX1-75
CJX1-85
CJX1110
3TF51 3TF52 3TF53 3TF54 3TF55 3TF56 3TF57 3TF68 3TF69
接触器
空气延时头
机械联锁机构
延时接触器 可逆接触器
接触器
热继电器 限流触头组
空气延时头 辅助触头组
磁力起动器 切换电容接触器
星三角起动器
接触器
1)额定工作电压至660V。 2)产品标称电流指380V额定工作电压下AC-3工作制的额定工作电流,
MAX9813HEKA-T中文资料
Applications
Notebook Computers PDAs Smart Phones Car Kit Adapters Digital Cameras Video Tape Recorders
Pin Configurations, Selector Guide, and Typical Operating Circuits appear at end of data sheet. Rail-to-Rail is a trademark of Nippon Motorola Ltd.
元器件交易网
Tiny, Low-Cost, Single/Dual-Input, Fixed-Gain Microphone Amplifiers with Integrated Bias MAX9812/MAX9813
ABSOLUTE MAXIMUM RATINGS
(All voltages referenced to GND) VCC ........................................................................-0.3V to +6.0V All Other Pins..............................................-0.3V to (VCC + 0.3V) Continuous Current (IN, SHDN, IN1, IN2, IN1/IN2)...........±20mA OUT, BIAS Short-Circuit Duration (to GND or VCC) ...Continuous Continuous Power Dissipation (TA = +70°C) 6-Pin SC70 (derate 3.1mW/°C above +70°C) ..............245mW 8-Pin SOT23 (derate 8.9mw/°C above +70°C) ............714mW Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range .............................-65°C to +150°C Junction Temperature ......................................................+150°C Lead Temperature (soldering, 10s) .................................+300°C
MAX1963AETT中文资料
General DescriptionThe MAX1963A/MAX1976A low-dropout linear regula-tors operate from a +1.62V to +3.6V supply and deliver a guaranteed 300mA continuous load current with a low 100mV dropout. The high-accuracy (±0.5%) output voltage is preset to an internally trimmed voltage in the +0.75V to +3.0V range. An active-low, open-drain reset output remains asserted for at least 2.2ms (MAX1963A)or 70ms (MAX1976A) after the output voltage reaches regulation. These devices are offered in thin SOT23 and thin DF N packages. An internal pMOS pass transistor allows the low supply current to remain independent of load and dropout voltage, making these devices ideal for portable battery-powered equipment.ApplicationsNotebook/Handheld Computers Cellular/Smart/PDA Phones DSC, CD/MP3 Players PCMCIA CardsFeatures♦Low 1.62V Minimum Input Voltage ♦Guaranteed 300mA Output Current ♦±2.5% Accuracy Over Load/Line/Temp ♦Low 100mV Dropout at 300mA Load ♦2.2ms (MAX1963A) or 70ms (MAX1976A) RESET Output Flag ♦Supply Current Independent of Load and Dropout Voltage ♦Logic-Controlled Shutdown♦Thermal-Overload and Short-Circuit Protection ♦Preset Output Voltages (0.75V to 3.0V)♦Tiny 6-Pin Thin SOT23 Package (<1.1mm High)♦TDFN Package (<0.8mm High)MAX1963A/MAX1976ALow-Input-Voltage, 300mA LDO Regulatorswith RESET in SOT and TDFN________________________________________________________________Maxim Integrated Products1Ordering Information19-3684; Rev 0; 5/05For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Pin Configurations*Insert the desired three-digit suffix (see the Selector Guide) into the blanks to complete the part number. Contact the factory for other output voltages.Selector Guide appears at end of data sheet.Typical Operating CircuitM A X 1963A /M A X 1976ALow-Input-Voltage, 300mA LDO Regulators with RESET in SOT and TDFN 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.IN, SHDN , RESET to GND.....................................-0.3V to +4.0V OUT to GND ................................................-0.3V to (V IN + 0.3V)Output Short-Circuit Duration.....................................Continuous Continuous Power Dissipation (T A = +70°C)6-Pin SOT23 (derate 9.1mW/°C above +70°C)............727mW 6-Pin TDFN (derate 24.4mW/°C above +70°C).........1951mW 8-Pin TDFN (derate 11.9mW/°C above +70°C)........953.5mWOperating Temperature Range ...........................-40°C to +85°C Junction Temperature.....................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX1963A/MAX1976ALow-Input-Voltage, 300mA LDO Regulatorswith RESET in SOT and TDFN_______________________________________________________________________________________3Note 2:The dropout voltage is defined as V IN - V OUT , when V OUT is 4% lower than the value of V OUT when V IN = V OUT + 0.5V.Typical Operating Characteristics(V IN = (V OUT + 0.5V) or 1.8V, whichever is greater; SHDN = IN, C IN = 1µF, C OUT = 4.7µF, T A = +25°C, unless otherwise noted.)OUTPUT VOLTAGE ACCURACYvs. LOAD CURRENTLOAD CURRENT (mA)O U T P U T V O L T A G E A C C U R A C Y (%)25020015010050-0.10.10.2-0.2300OUTPUT VOLTAGE ACCURACYvs. INPUT VOLTAGEINPUT VOLTAGE (V)O U T P U T V O L T A G E A C C U R A C Y (%)3.02.62.21.8-0.250.250.50-0.501.43.4OUTPUT VOLTAGE ACCURACYvs. TEMPERATURETEMPERATURE (°C)O U T P U T V O L T A G E A C C U R A C Y (%)603510-15-1.0-0.500.51.01.5-1.5-4085ELECTRICAL CHARACTERISTICS (continued)(V IN = (V OUT + 0.5V) or 1.8V, whichever is greater; SHDN = IN, C IN = 1µF, C OUT = 4.7µF, T A = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)M A X 1963A /M A X 1976ALow-Input-Voltage, 300mA LDO Regulators with RESET in SOT and TDFN 4_______________________________________________________________________________________GROUND-PIN CURRENT vs. LOAD CURRENTLOAD CURRENT (mA)G R O U N D -P I N C U R R E N T (µA )1001100.1708090100110120600.011000GROUND-PIN CURRENT vs. INPUT VOLTAGEINPUT VOLTAGE (V)G R O U N D -P I N C U RR E N T (µA )3.22.82.42.01.62040608010012001.23.6GROUND-PIN CURRENT vs. TEMPERATURETEMPERATURE (°C)G R O U N D -P I N C U R R E N T (µA )604020-206070809010011012050-4080DROPOUT VOLTAGE vs. LOAD CURRENTLOAD CURRENT (mA)V D R O P O U T (m V )250200150100504020608010012000300POWER-SUPPLY REJECTION RATIOvs. FREQUENCYFREQUENCY (kHz)P S R R (d B )10010110203040506070800.11000LINE-TRANSIENT RESPONSEMAX1963/76 toc0940µs/divV IN 500mV/div1.5V 10mV/div AC-COUPLEDV OUT3.5VTypical Operating Characteristics (continued)(V IN = (V OUT + 0.5V) or 1.8V, whichever is greater; SHDN = IN, C IN = 1µF, C OUT = 4.7µF, T A = +25°C, unless otherwise noted.)LINE-TRANSIENT RESPONSENEAR DROPOUTMAX1963/76 toc1040µs/divV IN 500mV/div1.5V 10mV/div AC-COUPLEDV OUT1.8VMAX1963A/MAX1976ALow-Input-Voltage, 300mA LDO Regulatorswith RESET in SOT and TDFN_______________________________________________________________________________________5LOAD-TRANSIENT RESPONSEMAX1963/76 toc1120µs/div200mA/div20mV/divAC-COUPLED200mA V OUTI OUT 20mAV IN = 3.6V V OUT = 1.5VLOAD-TRANSIENT RESPONSENEAR DROPOUTMAX1963/76 toc1220µs/div200mA/div20mV/div AC-COUPLED200mA V OUTV IN = 1.8V V OUT = 1.5VI OUT 20mATypical Operating Characteristics (continued)(V IN = (V OUT + 0.5V) or 1.8V, whichever is greater; SHDN = IN, C IN = 1µF, C OUT = 4.7µF, T A = +25°C, unless otherwise noted.)SHUTDOWN RESPONSEMAX1963/76 toc13100µs/div 1V/div500mV/divV OUTV SHDNMAX1963/76 toc1440ms/div1V/div1V/div1V/divV OUT000V SHDNV RESETMAX1976ASHUTDOWN/RESET RESPONSEMAX1963/76 toc15200ms/div2V/div1V/div1V/divV OUTV IN000V MAX1976ALINE/RESET RESPONSEM A X 1963A /M A X 1976ALow-Input-Voltage, 300mA LDO Regulators with RESET in SOT and TDFN 6_______________________________________________________________________________________Pin DescriptionDetailed Description The MAX1963A/MAX1976A are low-dropout, high-accu-racy, low-quiescent-current linear regulators designed primarily for battery-powered applications. These devices supply loads up to 300mA and are available with preset output voltages from +0.75V to +3.0V. As illustrated in F igure 1, the MAX1963A/MAX1976A consist of a refer-ence, an error amplifier, a p-channel pass transistor, an internal feedback voltage-divider, and a power-good comparator.The reference is connected to the error amplifier, which compares this reference with the feedback voltage and amplifies the difference. If the feedback voltage is lower than the reference voltage, the pass-transistor gate is pulled lower, which allows more current to pass to the output and increases the output voltage. If the feedback voltage is too high, the pass-transistor gate is pulled up, allowing less current to pass to the output.Internal p-Channel Pass Transistor The MAX1963A/MAX1976A feature a 0.33Ω(R DS(ON)) p-channel MOSF ET pass transistor. Unlike similar designs using pnp pass transistors, p-channel MOSFETs require no base drive, which reduces quies-cent current. The pnp-based regulators also waste con-siderable current in dropout when the pass transistor saturates and use high base-drive currents under large loads. The MAX1963A/MAX1976A do not suffer from these problems and consume only 90µA (typ) of quies-cent current under heavy loads, as well as in dropout.Shutdown Pull SHDN low to enter shutdown. During shutdown, the output is disconnected from the input, an internal 1.5kΩresistor pulls OUT to GND, RESET is actively pulled low, and the supply current drops below 1µA.RESET Output The MAX1963A/MAX1976A microprocessor (µP) supervi-sory circuitry asserts a guaranteed logic-low reset during power-up, power-down, and brownout conditions down to +1V. RESET asserts when V OUT is below the reset threshold and remains asserted for at least t RP after V OUT rises above the reset threshold of regulation.Current Limit The MAX1963A/MAX1976A monitor and control the pass transistor’s gate voltage, limiting the output current to 450mA (min). If the output exceeds I LIM, the MAX1963A/ MAX1976A output voltage drops.Thermal-Overload Protection Thermal-overload protection limits total power dissipa-tion in the MAX1963A/MAX1976A. When the junction temperature exceeds T J= +165°C, a thermal sensorturns off the pass transistor, allowing the IC to cool. The thermal sensor turns the pass transistor on again afterthe junction temperature cools by 15°C, resulting in a pulsed output during continuous thermal-overload con-ditions. Thermal-overload protection safeguards theMAX1963A/MAX1976A in the event of fault conditions.F or continuous operation, do not exceed the absolute maximum junction-temperature rating of T J= +150°C.Operating Region and Power DissipationThe MAX1963A/MAX1976A maximum power dissipa-tion depends on the thermal resistance of the IC pack-age and circuit board, the temperature difference between the die junction and ambient air, and the rateof airflow. The power dissipated in the device is P =I OUT✕(V IN- V OUT). The maximum allowed power dissi-pation is:P MAX= (T J(MAX)- T A) / (θJC+ θCA)where (T J(MAX)- T A) is the temperature difference between the MAX1963A/MAX1976A die junction andthe surrounding air, θJC is the thermal resistance of the junction to the case, and θCA is the thermal resistancefrom the case through the PC board, copper traces,and other materials to the surrounding air. F or best heatsinking, expand the copper connected to the exposed paddle or GND.The MAX1963A/MAX1976A deliver up to 300mA and operate with an input voltage up to +3.6V. However,when using the 6-pin SOT23 version, high output cur-rents can only be sustained when the input-output dif-ferential voltage is less than 2V, as shown in Figure 2.The maximum allowed power dissipation for the 6-pinTDFN is 1.951W at T A= +70°C. Figure 3 shows that the maximum input-output differential voltage is not limitedby the TDFN package power rating.Applications InformationCapacitor Selection andRegulator Stability Capacitors are required at the MAX1963A/MAX1976Ainput and output for stable operation over the full tem-perature range and with load currents up to 300mA. Connect a 1µF ceramic capacitor between IN and GNDand a 4.7µF low-ESR ceramic capacitor between OUTand GND. The input capacitor (C IN) lowers the source impedance of the input supply. Use larger output capacitors to reduce noise and improve load-transient response, stability, and power-supply rejection.The output capacitor’s equivalent series resistance (ESR) affects stability and output noise. Use outputMAX1963A/MAX1976ALow-Input-Voltage, 300mA LDO Regulatorswith RESET in SOT and TDFN _______________________________________________________________________________________7M A X 1963A /M A X 1976Acapacitors with an ESR of 30m Ωor less to ensure sta-bility and optimize transient response. Surface-mount ceramic capacitors have very low ESR and are com-monly available in values up to 10µF. Connect C IN and C OUT as close to the MAX1963A/MAX1976A as possi-ble to minimize the impact of PC board trace induc-tance.Noise, PSRR, and Transient ResponseThe MAX1963A/MAX1976A are designed to operate with low dropout voltages and low quiescent currents in battery-powered systems while still maintaining good noise, transient response, and AC rejection. See the T ypical Operating Characteristics for a plot of Power-Supply Rejection Ratio (PSRR) versus F requency.When operating from noisy sources, improved supply-noise rejection and transient response can be achieved by increasing the values of the input and output bypass capacitors and through passive filtering techniques.The MAX1963A/MAX1976A load-transient response (see the T ypical Operating Characteristics ) shows two components of the output response: a near-zero DC shift from the output impedance due to the load-current change, and the transient response. A typical transient response for a step change in the load current from 20mA to 200mA is 20mV. Increasing the output capacitor’s value and decreasing the ESR attenuates the overshoot.Input-Output (Dropout) VoltageA regulator’s minimum input-output voltage difference (dropout voltage) determines the lowest usable supply voltage. In battery-powered systems, this determines the useful end-of-life battery voltage. Because the MAX1963A/MAX1976A use a p-channel MOSF ET pass transistor, the dropout voltage is a function of drain-to-source on-resistance (R DS(ON) = 0.33Ω) multiplied by the load current (see the T ypical Operating Characteristics ).V DROPOUT = V IN - V OUT = 0.33Ω✕I OUTThe MAX1963A/MAX1976A ground current reduces to 70µA in dropout.Low-Input-Voltage, 300mA LDO Regulators with RESET in SOT and TDFN 8_______________________________________________________________________________________MAX1963A/MAX1976ALow-Input-Voltage, 300mA LDO Regulatorswith RESET in SOT and TDFN_______________________________________________________________________________________9Chip InformationTRANSISTOR COUNT: 2556PROCESS: BiCMOSMinimum order quantity is 15,000 units.M A X 1963A /M A X 1976ALow-Input-Voltage, 300mA LDO Regulators with RESET in SOT and TDFN 10______________________________________________________________________________________Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)MAX1963A/MAX1976Awith RESET in SOT and TDFN______________________________________________________________________________________11Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages.)M A X 1963A /M A X 1976Awith RESET in SOT and TDFN 12______________________________________________________________________________________Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)MAX1963A/MAX1976Awith RESET in SOT and TDFN______________________________________________________________________________________13Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)M A X 1963A /M A X 1976Awith RESET in SOT and TDFN 14______________________________________________________________________________________MAX1963A/MAX1976Awith RESET in SOT and TDFNMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________15©2005 Maxim Integrated Products Printed USAis a registered trademark of Maxim Integrated Products, Inc. Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to /packages.)。
1翻译YX、YXKS、YXKK 6kV 系列高效高压三相异步电动机 样本
YX、YXKS、YXKK6kV系列高效高压三相异步电动机一、概述YX、YXKS、YXKK6kV系列高效高压三相异步电动机是我公司21世纪的最新产品,是我公司引进、消化美国西屋公司、瑞士ABB公司高压三相异步电动机设计、制造技术,联合国内知名高校、科研院所共同研发,并结合我公司60多年长期的高压三相异步电动机系列设计制造的经验,开发的新一代高效节能电机产品,可与Y系列高压三相异步电机互换,提高企业的运行效益,节能减排。
本系列电动机的功率等级和安装尺寸及公差均符合国家标准GB/T755《旋转电机定额和性能》国际电工委员会标准IEC34-1《旋转电机定额和性能》和GB/T13957及机械行业标准JB/T7593,JB/T10315.1、JB/T10315.2等。
电气性能方面效率值在上述标准基础上降低损耗20%,其它电气性能符合上述标准要求。
本系列电动机的外壳防护等级根据GB/T4942.1和IEC34-5《旋转电机外壳防护等级》的标准分别有IP23、IPW24、IP44和IP54四种。
IP23电动机可按用户要求制成IP44(管道通风)。
如果用户需要其它防护等级可另行供货。
本系列电动机的冷却方法根据GB/T1993和IEC34-6《旋转电机冷却方法》的标准分别有IC01、IC81W、IC611、IC616。
如果用户需要其它冷却方法可另行供货。
本系列电动机的结构及安装型式为IMB3(卧式带底脚),符合GB/T997和IEC34-7《电机结构及安装型式代号》的规定。
二、优势特点1优化的电磁设计本系列电动机进行了电磁优化设计,对尺寸、气隙、槽配合及槽形进行了全面优化,电机的尺寸达到合理的匹配,电机的性能达到最佳。
2.低谐波绕组本系列电动机采用低谐波绕组,降低电机的定子铜耗和杂散损耗,提高电机的运行效率。
3高强度磁性槽楔我公司经过长期研究,采用高强度磁性槽楔,稳定的槽楔紧固工艺和材料,成功地解决了磁性槽楔脱落的问题,提高了电机的电气性能。
maxtec maxventuri 用户手册 - 中文(简体)说明书
866.4.Maxtec
I
警告
表示潜在的危险情况,如果不避免,可能导致死亡或严重损伤。
» 本器械不适于与生命支持器械/系统联用。 » 未遵从本手册中的警告或预防措施可能导致仪器损坏并威胁到患者和/或医护人员的福祉。 » 不正确使用本器械可能造成流量和氧气读数不准确,从而导致不正确的治疗、缺氧症或高氧
症、以及其他患者损伤或不适。请遵照本用户手册中概括的流程。
» 请勿在火焰、易燃/易爆物质、蒸气或氛围附近使用本器械。 在上述环境中操作氧气分析器
可能导致火灾或爆炸。 » 请勿在 MRI 环境中使用本器械。 » 本器械整体(包括电极)不适于在易燃麻醉剂混合物存在下或在易爆气体氛围中使用。 在上
述环境中操作氧气分析器可能导致火灾或爆炸。 » 如果 O2% 偏离了设定的水平,请检查患者界面的鼻腔插管未被痰液或鼻中隔堵塞。对回路或
患者界面的流量限制将导致氧气水平的升高。 对喉管的流量限制将不能被流量计检测出。 » 本器械在氧气供应中断时不会发出警报。 » 在调整氧气含量前确保氧气读数稳定。 » 本器械在氧气水平过高或过低时不会发出警报。 » 请勿在患者头部或颈部附近保留过长导管,以避免导致窒息。 » 请仅使用 Maxtec 替换传感器。 使用其他任何传感器将导致保修失效并可能导致产品损坏、
Maxtec 建议控制阀的 o 型环每 2 年更换或保养一次。
本保修不包含常规维护项目,如电池。对因使用后或因设备的滥用、误用、错误应用、改造、疏 忽或意外而造成的购买者或其他人的附带或后果损害,Maxtec 概不负责。
本有限产品保证取代所有其他明示或默示保证,包括但不限于适销性或特定目的适用性的任何默示 保证。
电话 (800) 748.5355 传真 (801) 270.5590 电子邮件:sales@ 网址:
MAXIM MAX6315 数据手册
________________General DescriptionThe MAX6315 low-power CMOS microprocessor (µP)supervisory circuit is designed to monitor power sup-plies in µP and digital systems. It provides excellent cir-cuit reliability and low cost by eliminating external components and adjustments. The MAX6315 also pro-vides a debounced manual reset input.This device performs a single function: it asserts a reset signal whenever the V CC supply voltage falls below a preset threshold or whenever manual reset is asserted.Reset remains asserted for an internally programmed interval (reset timeout period) after V CC has risen above the reset threshold or manual reset is deasserted. The MAX6315’s open-drain RESET output can be pulled up to a voltage higher than V CC .The MAX6315 comes with factory-trimmed reset thresh-old voltages in 100mV increments from 2.5V to 5V.Preset timeout periods of 1ms, 20ms, 140ms, and 1120ms (minimum) are also available. The device comes in a SOT143 package.For microcontrollers (µCs) and µPs with bidirectional reset pins, see the MAX6314 data sheet.________________________ApplicationsComputers ControllersIntelligent InstrumentsCritical µP and µC Power Monitoring Portable/Battery-Powered Equipment____________________________Featureso Small SOT143 Packageo Open-Drain RESET Output Can Exceed V CC o Precision, Factory-Set V CC Reset Thresholds:100mV Increments from 2.5V to 5V o ±1.8% Reset Threshold Accuracy at T A = +25°C o ±2.5% Reset Threshold Accuracy Over Temp.o Four Reset Timeout Periods Available: 1ms, 20ms, 140ms, or 1120ms (minimum) o Immune to Short V CC Transients o 5µA Supply Currento Pin-Compatible with MAX811MAX6315Open-Drain SOT µP Reset Circuit________________________________________________________________Maxim Integrated Products 1__________________Pin Configuration__________Typical Operating Circuit19-2000; Rev 1; 1/99Ordering and Marking Information appear at end of data sheet.For free samples & the latest literature: , or phone 1-800-998-8800.For small orders, phone 1-800-835-8769.查询MAX6315US25D1-T供应商M A X 6315Open-Drain SOT µP Reset Circuit 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V CC = +2.5V to +5.5V, T A = -40°C to +85°C, unless otherwise noted. Typical values are at T A = +25°C.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Note 1:The MAX6315 monitors V CC through an internal factory-trimmed voltage divider that programs the nominal reset threshold.Factory-trimmed reset thresholds are available in 100mV increments from 2.5V to 5V (see Ordering and Marking Information ).V CC ........................................................................-0.3V to +6.0V RESET ....................................................................-0.3V to +6.0V All Other Pins..............................................-0.3V to (V CC + 0.3V)Input Current (V CC ).............................................................20mA Output Current (RESET )......................................................20mA Rate of Rise (V CC )...........................................................100V/µsContinuous Power Dissipation (T A = +70°C)SOT143 (derate 4mW/°C above +70°C)........................320mW Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10sec).............................+300°CMAX6315Open-Drain SOT µP Reset Circuit_______________________________________________________________________________________360-50-303090SUPPLY CURRENT vs. TEMPERATURE215TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )-101050347060135SUPPLY CURRENT vs. SUPPLY VOLTAGE215SUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (µA )2344500-50-301090POWER-DOWN RESET DELAYvs. TEMPERATURE1040TEMPERATURE (°C)P O W E R -D O W N R E S E T D E L A Y (µs )-1020303050701.040.96-50-301090NORMALIZED RESET TIMEOUT PERIOD vs. TEMPERATURE (V CC RISING)0.970.981.021.001.03M A X 6315-04TEMPERATURE (°C)N O R M A L I Z E D R E S E T T I M E O U T P E R I O D-100.991.013050701.0060.994-50-301090NORMALIZED RESET THRESHOLD vs. TEMPERATURE (V CC FALLING)0.9960.9981.0041.000M A X 6315-05TEMPERATURE (°C)N O R M A L I Z E D R E S E T T H R E S H O L D-101.0023050701000101001000MAXIMUM TRANSIENT DURATION vs. RESET COMPARATOR OVERDRIVE20RESET COMP. OVERDRIVE, V TH - V CC (mV)M A X I M U M T R A N S I E N T D U R A T I O N (µs )406080__________________________________________Typical Operating Characteristics(T A= +25°C, unless otherwise noted.)______________________________________________________________Pin Description_______________Detailed DescriptionReset OutputA microprocessor’s (µP’s) reset input starts the µP in a known state. The MAX6315 asserts reset to prevent code-execution errors during power-up, power-down,or brownout conditions. RESET is guaranteed to be a logic low for V CC > 1V (see Electrical Characteristics ).Once V CC exceeds the reset threshold, the internal timer keeps reset asserted for the reset timeout period (t RP ); after this interval RESET goes high. If a brownout condition occurs (monitored voltage dips below its pro-grammed reset threshold), RESET goes low. Any time V CC dips below the reset threshold, the internal timer resets to zero and RESET goes low. The internal timer starts when V CC returns above the reset threshold, and RESET remains low for the reset timeout period.The MAX6315’s RESET output structure is a simple open-drain N-channel MOSFET switch. Connect a pull-up resistor to any supply in the 0V to +6V range. Select a resistor value large enough to register a logic low when RESET is asserted (see Electrical Characteristics ),and small enough to register a logic high while supply-ing all input current and leakage paths connected to the RESET line. A 10k Ωpull-up is sufficient in most applica-tions.Often, the pull-up connected to the MAX6315’s RESET output will connect to the supply voltage monitored at the IC’s V CC pin. However, some systems may use the open-drain output to level-shift from the monitored sup-ply to reset circuitry powered by some other supply (Figure 1). This is one useful feature of an open-drain output. Keep in mind that as the MAX6315’s V CC decreases below 1V, so does the IC’s ability to sink current at RESET . Finally, with any pull-up, RESET will be pulled high as V CC decays toward 0V. The voltage where this occurs depends on the pull-up resistor value and the voltage to which it connects (see Electrical Characteristics ).Manual-Reset InputMany µP-based products require manual-reset capabil-ity, allowing the operator, a test technician, or external logic circuitry to initiate a reset. A logic low on MR asserts reset. Reset remains asserted while MR is low,and for the reset active timeout period after MR returns high.MR has an internal 63k Ωpull-up resistor, so it can be left open if not used. Connect a normally open momen-tary switch from MR to GND to create a manual reset function; external debounce circuitry is not required.If MR is driven from long cables or if the device is used in a noisy environment, connecting a 0.1µF capacitor from MR to ground provides additional noise immunity.__________Applications InformationNegative-Going V CC TransientsIn addition to issuing a reset to the µP during power-up,power-down, and brownout conditions, these devices are relatively immune to short-duration negative-going transients (glitches). The Typical Operating Character-istics show the Maximum Transient Duration vs. Reset Threshold Overdrive, for which reset pulses are not generated. The graph was produced using negative-going pulses, starting at V RST max and ending below the programmed reset threshold by the magnitude indi-cated (reset threshold overdrive). The graph shows the maximum pulse width that a negative-going V CC tran-sient may typically have without causing a reset pulse to be issued. As the transient amplitude increases (i.e.,goes farther below the reset threshold), the maximum allowable pulse width decreases. A 0.1µF bypass capacitor mounted close to V CC provides additional transient immunity.M A X 6315Open-Drain SOT µP Reset Circuit 4_______________________________________________________________________________________Figure 1. MAX6315 Open-Drain RESET Output Allows Use with Multiple SuppliesMAX6315Open-Drain SOT µP Reset Circuit_______________________________________________________________________________________5________________________________________________________Ordering Information†The MAX6315 is available in a SOT143 package, -40°C to +85°C temperature range.††The first two letters in the package top mark identify the part, while the remaining two letters are the lot tracking code.†††Sample stocks generally held on the bolded products; also, the bolded products have 2,500 piece minimum-order quantities.Non-bolded products have 10,000 piece minimum-order quantities. Contact factory for details.Note:All devices available in tape-and-reel only. Contact factory for availability.M A X 6315Open-Drain SOT µP Reset Circuit 6__________________________________________________________________________________________________________________________________Ordering Information (continued)†The MAX6315 is available in a SOT143 package, -40°C to +85°C temperature range.††The first two letters in the package top mark identify the part, while the remaining two letters are the lot tracking code.†††Sample stocks generally held on the bolded products; also, the bolded products have 2,500 piece minimum-order quantities.Non-bolded products have 10,000 piece minimum-order quantities. Contact factory for details.Note:All devices available in tape-and-reel only. Contact factory for availability.MAX6315Open-Drain SOT µP Reset Circuit_______________________________________________________________________________________7___________________Chip InformationTRANSISTOR COUNT: 519________________________________________________________Package InformationM A X 6315Open-Drain SOT µP Reset Circuit NOTESMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.8_____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©1999 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.。
AZM 161SK_12 12RITU_024_B1 电磁闸产品说明书
13.06.2016 05:57:28hDatasheet AZM 161SK12/12RITU024B1AZM 161SK12/12RITU024B1Solenoid interlock / AZM 161I / AZM 161IB1(Minor differences between the printed image and the original product may exist!)• Compact design• Interlock with protection against incorrect locking.• Individual coding• Coding level "High" according to ISO 14119• Doubleinsulated • High holding force • Long life• 130 mm x 90 mm x 30 mm • 1 Cable entry M 20 x 1.5• Screw connection• Manual release, lateral • Emergency exit, rear• Particularly suitable for sliding doorsOrdering detailsProduct type description AZM 161SK12/12RITU024B1Article number 103000234EAN code eCl@ss 27272603ApprovalApprovalBG USA/CAN CCCClassificationStandardsEN ISO 138491B 10d Normallyclosed contact (NC) 2.000.000Mission time 20 Y earsnoticeGlobal PropertiesProduct name AZM 161IStandardsEN 6094751, BGGSET19Compliance with the Directives (Y/N) Y es Number of actuating directions 3 pieceActive principle electromechanical Individual coding Coding level "High" according to ISO 14119Duty cycleMagnet 100 %Materials Material of the housings glassfibre reinforced thermoplastic, Plastic selfextinguishing, Material of the actuator Stainless steel Material of the contacts SilverHousing coating NoneWeight515 gMechanical dataDesign of electrical connection Screw connectionCable section Min. Cable section1 x 0,25 mm² Max. Cable section1 x 1.5 mm², flexibleMechanical life> 1.000.000 operationsnotice All indications about the cable section are including the conductorferrules.Emergency unlocking device (Y/N)Y esManual release (Y/N)Y esEmergency release (Y/N)NoLatching force30 NPositive break force20 Npositive break travel10 mmClamping force F2000 NMax. Actuating speed2 m/sMinimum actuating radius150 mmActuating frequency max. 1000 / hAmbient conditionsAmbient temperature Min. environmental temperature−25 °C Max. environmental temperature+60 °CProtection class IP67 to IEC/EN 60529Electrical dataDesign of control element Normally open contact (NO), Opener (NC)Switching principle Creep circuit elementNumber of auxiliary contacts2 pieceNumber of safety contacts4 piecePower to unlock Y esPower to lock NoRated control voltage U s24 VAC/DCPower consumption max. 10 WRated impulse withstand voltage U imp4 kVRated insulation voltage U i250 VThermal test current I the6 AUtilisation category AC15: 230 V / 4 ADC13: 24 V / 2,5 AMax. fuse rating6 A gG Dfuse To DIN EN 602691ATEXExplosion protection categories for gases NoneExplosion protected category for dusts NoneMiscellaneous dataApplicationssliding safety guard,removable guard,hinged safety guardDimensionsDimensions of the sensor Width of sensor130 mm Height of sensor90 mm Length of sensor30 mmnoticeOn hinged guards, minimum actuating radius at 90° to the plane of the actuator 180 mmminimum actuating radius on hinged guards in line with the plane of the actuator 150 mmThe actuator is not available separately.The axis of the hinge should be 5 mm above the top edge of the safety switch and in the same plane Manual release• For maintenance, installation, etc.• Topside (ordering suffix ED) or rearside (ordering suffix EU) mounting possible• The emergency exit is used where an intervention in an already locked hazardous area is required • Emergency exit by pressing the red push button• For manual release using 5 triangular key, available as accessoryIncluded in deliveryIncluded in delivery• Individually coded actuator• tamperproof screws• Slot sealing plugsDiagramNote Diagrampositive break NC contactactiveno activeNormallyopen contactNormallyclosed contactSwitch travel diagramNotes Switch travel diagramContact closedContact openSetting rangeBreak pointPositive opening sequence/ angleVS adjustable range of NO contactVÖ adjustable range of NC contactN after travelOrdering suffixThe applicable ordering suffix is added at the end of the part number of the safety switch. Order example: AZM 161SK12/12RITU024B11637...16370,3 µm goldplated contactsDocumentsOperating instructions and Declaration of conformity (en) 562 kB, 20.01.2016Code: mrl_azm161i_enOperating instructions and Declaration of conformity (jp) 767 kB, 12.04.2016Code: mrl_azm161i_jpOperating instructions and Declaration of conformity (nl) 511 kB, 15.08.2012Code: mrl_azm161i_nlOperating instructions and Declaration of conformity (da) 504 kB, 27.08.2012Code: mrl_azm161i_daOperating instructions and Declaration of conformity (de) 565 kB, 20.01.2016Code: mrl_azm161i_deOperating instructions and Declaration of conformity (pl) 589 kB, 06.04.2016Code: mrl_azm161i_plOperating instructions and Declaration of conformity (es) 444 kB, 09.03.2016Code: mrl_azm161i_esOperating instructions and Declaration of conformity (pt) 510 kB, 27.08.2012Code: mrl_azm161i_ptOperating instructions and Declaration of conformity (sv) 498 kB, 27.08.2012Code: mrl_azm161i_svOperating instructions and Declaration of conformity (cs) 586 kB, 19.04.2016Code: mrl_azm161i_csOperating instructions and Declaration of conformity (it) 562 kB, 19.04.2016Code: mrl_azm161i_itOperating instructions and Declaration of conformity (fr) 567 kB, 28.04.2016Code: mrl_azm161i_frEAC certification (ru) 809 kB, 05.10.2015Code: q_6040p17_ruImagesProduct photoDimensional drawing (miscellaneous)Dimensional drawing (miscellaneous)Actuating radiusActuating radiusK.A. Schmersal GmbH & Co. KG, Möddinghofe 30, D42279 WuppertalThe data and values have been checked throroughly. Technical modifications and errors excepted. Generiert am 13.06.2016 05:57:28h Kasbase 3.2.2.F.64I。
安川变频器GA700技术手冊说明书
使用前安裝和配線起動步驟與試運轉符合國外標準網路通訊故障排除檢查和維護廢棄物處理規格參數一覽表參數的詳細內容資料編號SITP C71061707A安川變頻器GA700高性能型技術手冊型號CIPR-GT70Axxxxxxxx容量範圍200V 級(三相電源用)0.4~110kW400V 級(三相電源用)0.4~355kW為了安全使用本產品,請務必閱讀該使用說明書。
另外,請妥善保管該使用說明書,並將其交至最終使用者手中。
2株式會社安川電機SITP C71061707A安川變頻器GA700技術手冊株式會社安川電機SITP C71061707A 安川變頻器GA700技術手冊3目錄i.前言和一般注意事項 (13)i.1使用前 (14)關於本書中的術語、簡稱...................................................14關於註冊商標 (14)i.2為了安全使用 (15)與安全有關的警語.........................................................15安全注意事項............................................................15警告標誌的內容與位置.. (16)i.3關於保固 (18)關於本產品的適用 (18)1.使用前 (19)1.1安全注意事項......................................................201.2變頻器型號和銘牌的確認 (21)銘牌....................................................................21型號的查閱方法. (21)2.安裝和配線 (25)2.1安全注意事項......................................................262.2安裝環境..........................................................282.3安裝方向和安裝空間的確認...........................................292.4搬運、安裝........................................................31搬運、安裝時的注意事項 (31)2.5發熱量............................................................322.6安裝/拆卸操作器. (35)拆下操作器..............................................................35安裝操作器.. (35)2.7將操作器安裝於控制盤等處 (36)在遠離變頻器的場所操作操作器.............................................36在遠離變頻器的場所安裝操作器 (36)2.8拆卸/安裝外蓋 (41)拆卸/安裝外蓋(步驟A ) (41)2.9變更變頻器的保護構造 (43)安裝保護蓋(步驟A ) (43)2.10安裝方法..........................................................452.11配線.. (48)標準連接圖 (48)2.12主迴路的配線 (51)馬達和主迴路的連接.......................................................51主迴路端子台的排列.......................................................51主迴路端子的功能 (52)電線尺寸和緊鎖力矩 (53)主迴路端子與馬達的配線 (60)主迴路端子間的保護 (63)2.13主迴路端子台的配線步驟 (64)進行主迴路端子台配線(步驟A) (64)2.14控制迴路的配線 (67)控制迴路配線圖 (67)控制迴路端子的功能 (68)控制迴路端子的排列 (70)控制迴路端子台的配線 (71)控制迴路端子台的開關排列 (73)2.15輸入輸出訊號的連接 (74)脈波序列輸出 (74)共射極模式與共集極模式的設定 (74)選擇多功能類比輸入端子A1~A3的輸入訊號 (75)選擇多功能類比輸入端子A3的輸入訊號 (76)選擇多功能類比監視輸出端子FM、AM的輸出訊號 (76)MEMOBUS/Modbus通訊的終端電阻設為ON (76)2.16與外部的聯鎖 (78)2.17安裝制動電阻器 (79)制動電阻器(ERF型)的連接 (79)制動電阻器裝置(LKEB型)的連接 (79)制動裝置(CDBR型)的連接 (79)制動裝置的並聯連接 (80)制動選購品使用注意事項 (80)2.18保護變頻器的配線 (82)配線用斷路器(MCCB)或漏電斷路器(ELCB)的連接 (82)漏電斷路器的連接 (82)2.19保護制動選購品、馬達 (83)在變頻器輸入側安裝電磁接觸器(MC) (83)在變頻器輸出側安裝熱繼電器 (83)2.20改善功率因數 (84)AC電抗器或DC電抗器的連接 (84)2.21開關突波不流出外部 (85)2.22降低雜訊 (86)輸入側(一次側)的雜訊濾波器的連接 (86)輸出側(二次側)的雜訊濾波器的連接 (86)2.23故障時保護變頻器 (88)分路迴路保護 (88)2.24配線檢查表 (91)2.25馬達使用注意事項 (93)用於現有標準馬達 (93)用於同步馬達 (93)用於特殊馬達時的注意事項 (94)動力傳動結構 (94)3.起動步驟與試運轉 (95)3.1安全注意事項 (96)3.2操作器各部分的名稱與功能 (97)LCD顯示器 (98)操作器的指示燈 (99)操作器的模式和選單 (100)3.3LED狀態燈 (102)3.4起動步驟 (103)4株式會社安川電機SITP C71061707A安川變頻器GA700技術手冊流程圖A(透過最低限度的設定變更,連接馬達進行運轉) (103)子流程圖A-1(感應馬達的自動調整和試運轉步驟) (104)子流程圖A-2(PM馬達的自動調整和試運轉步驟) (105)子流程圖A-3(EZ向量控制模式的試運轉步驟) (106)3.5變頻器起動時的確認事項 (108)接通電源前的確認 (108)接通電源後的確認 (108)進行初始設定 (108)3.6操作器的操作方法 (110)HOME畫面的顯示確認與操作 (110)顯示監視 (111)設定常用的監視 (111)顯示常用監視 (112)設定以橫條顯示的監視 (113)以橫條顯示監視 (114)設定以類比指針顯示的監視 (115)以類比指針顯示監視 (116)變更參數的設定值 (117)確認常用參數 (118)將參數儲存作為備份 (119)將備份的參數寫入變頻器 (120)核對操作器的參數和變頻器的參數 (121)確認變更的參數 (122)將變更的參數恢復為出廠設定 (124)顯示故障記錄 (125)進行自動調整 (125)選擇操作器所顯示的語言 (127)設定日期 (128)使用設定引導畫面對參數進行設定 (130)不顯示初始設定畫面 (131)開始登記資料日誌 (132)設定資料日誌的內容 (133)設定背光的自動熄滅 (135)顯示變頻器的資訊 (136)3.7應用程式上自動設定最佳參數(應用程式選擇) (138)3.8自動調整 (140)感應馬達用馬達參數的自動調整 (140)PM馬達用馬達參數的自動調整 (140)EZ調整 (142)控制系統自動調整 (142)進行自動調整前的注意事項 (143)3.9試運轉 (146)空載狀態下的試運轉 (146)用空載進行試運轉 (146)實際負載試運轉 (146)用實際負載進行試運轉 (147)3.10試運轉時的微調(控制性能的調整) (148)無PG V/f控制模式及附PG V/f控制模式 (148)無PG向量控制模式 (148)附PG向量控制模式 (150)無PG高級向量控制模式 (150)PM用無PG向量控制模式 (151)PM用無PG高級向量控制模式 (152)PM用附PG向量控制模式 (152)EZ向量控制模式 (153)3.11試運轉時的確認表 (154)4.符合國外標準 (157)株式會社安川電機SITP C71061707A安川變頻器GA700技術手冊54.1安全注意事項 (158)4.2歐洲標準 (160)低電壓指令 (160)EMC指令 (172)4.3UL標準 (181)安裝場所 (181)主迴路端子的配線 (181)控制迴路端子的低電壓配線 (189)馬達的過載、過熱保護 (190)4.4UL Standards (195)Area of Use (195)Main Circuit Terminal Wiring (195)Low Voltage Wiring for Control Circuit Terminals (211)Drive Motor Overload and Overheat Protection (211)4.5安全輸入 (217)規格 (217)注意事項 (217)安全功能的使用方法 (218)5.網路通訊 (221)5.1安全注意事項 (222)5.2現場總線網路的對應 (223)5.3MEMOBUS/Modbus通訊 (224)主站/從屬站的構成 (224)通訊規格 (224)與PLC間的通訊 (224)透過MEMOBUS/Modbus通訊運轉 (226)通訊時機 (226)資訊格式 (227)指令/回應時的資訊範例 (228)確定指令 (230)自檢 (230)通訊資料一覽 (231)錯誤代碼 (250)6.故障排除 (253)6.1安全注意事項 (254)6.2故障、輕故障、警告、錯誤的種類 (256)6.3故障、輕故障、警告、錯誤代碼一覽 (257)6.4故障 (262)6.5輕故障、警告 (277)6.6參數設定錯誤 (285)6.7自動調整錯誤 (289)6.8備份功能的動作模式顯示和錯誤 (292)6.9故障發生後變頻器的恢復方法 (293)發生故障的同時變頻器電源被切斷時的恢復步驟 (293)發生故障時變頻器電源未被切斷時的恢復步驟 (293)故障重定 (293)6.10操作器上無顯示時的故障排除 (294)無法變更參數的設定 (294)即使輸入運轉指令馬達也不旋轉 (294)馬達旋轉方向與運轉指令相反 (295)馬達只朝一個方向旋轉 (295)馬達異常發熱 (295)無法在操作器選擇希望進行的自動調整 (296)6株式會社安川電機SITP C71061707A安川變頻器GA700技術手冊加速時馬達失速/馬達未依設定值加速、減速 (296)馬達轉速和頻率指令值的設定值相差較大 (296)PM馬達的速度不穩定 (297)馬達振動強烈,無法正常旋轉 (297)即使連接制動選購品,馬達的減速時間也較長 (297)進行制動時垂直軸的負載滑落 (297)運轉變頻器後,其他控制裝置發生誤動作、收音機有雜音 (298)變頻器運轉中漏電斷路器(ELCB)進行不必要的動作 (298)馬達旋轉時機械發出異常聲音 (298)馬達旋轉時機械產生振動或波動 (298)PID輸出故障 (298)由於起動轉矩不足,馬達無法起動 (299)即使變頻器輸出被切斷,馬達仍未完全停止 (299)輸出頻率達不到頻率指令值 (299)馬達的激磁音發生變動 (299)停電恢復後,馬達也不重新起動 (299)7.檢查和維護 (301)7.1安全注意事項 (302)7.2檢查 (304)日常檢查 (304)定期檢查 (304)7.3維護 (306)7.4冷卻風扇、內部空氣攪動風扇的更換 (308)冷卻風扇、內部空氣攪動風扇的使用數量 (308)更換風扇(步驟A) (308)更換風扇(步驟B) (310)更換風扇(步驟C) (311)7.5更換變頻器主體 (314)關於控制迴路端子台 (314)更換變頻器 (314)7.6更換操作器的電池 (318)7.7存放要領 (319)8.廢棄物處理 (321)8.1安全注意事項 (322)8.2關於廢棄物處理的注意事項 (323)9.規格 (325)9.1安全注意事項 (326)9.2重載額定(HD)與輕載額定(ND) (327)9.3各種機型的規格(200V級) (328)9.4各種機型的規格(400V級) (330)9.5通用規格 (333)9.6變頻器的降低額定值 (336)載波頻率的設定和額定電流值 (336)根據海拔高度降低額定值 (338)9.7變頻器外形圖 (339)盤內安裝型(IP20) (339)封閉壁掛型(UL Type1) (341)9.8頂銷孔的外形尺寸(UL Type1) (344)9.9周邊機器和選購品 (345)10.參數一覽表 (349)株式會社安川電機SITP C71061707A安川變頻器GA700技術手冊710.1安全注意事項 (350)10.2參數一覽表的查閱方法 (351)表示控制模式的圖示及用語 (351)10.3參數群組 (352)10.4A:環境設定 (356)A1:環境設定模式 (356)A2:常用參數設定模式 (357)10.5b:應用程式 (358)b1:運轉模式選擇 (358)b2:直流制動/短路制動 (359)b3:速度搜尋 (359)b4:定時功能 (360)b5:PID控制 (361)b6:DWELL功能 (363)b7:DROOP(低下)控制 (364)b8:節能控制 (364)b9:零伺服 (365)10.6C:自動調整 (366)C1:加減速時間 (366)C2:S曲線特性 (366)C3:滑差補償 (367)C4:轉矩補償 (367)C5:速度控制(ASR:Automatic Speed Regulator) (368)C6:載波頻率 (369)10.7d:指令 (370)d1:頻率指令 (370)d2:頻率上限/下限 (371)d3:跳躍頻率 (371)d4:頻率指令保持指令、UP/DOWN指令、UP2/DOWN2指令 (371)d5:轉矩控制 (372)d6:激磁減弱和激磁增強 (372)d7:偏壓頻率 (373)10.8E:馬達參數 (374)E1:馬達1的V/f特性 (374)E2:馬達參數 (375)E3:馬達2的V/f特性 (375)E4:馬達2的參數 (376)E5:PM馬達的參數 (376)E9:EZ向量控制模式的馬達參數 (377)10.9F:選購品 (378)F1:PG選購卡的設定 (378)F2:類比輸入選購卡的設定 (379)F3:數位式輸入選購卡的設定 (380)F4:類比輸出選購卡的設定 (380)F5:數位式輸出選購卡的設定 (381)F6:通訊選購卡的設定 (381)F7:通訊選購卡的設定 (384)10.10H:端子功能選擇 (387)H1:多功能接點輸入 (387)H2:多功能接點輸出 (390)H3:多功能類比輸入 (394)H4:多功能類比輸出 (396)H5:MEMOBUS/Modbus通訊 (397)H6:脈波序列輸入輸出 (398)H7:虛擬輸入輸出功能選擇 (398)10.11L:保護功能 (400)8株式會社安川電機SITP C71061707A安川變頻器GA700技術手冊L1:馬達保護功能 (400)L2:瞬間停電處理 (400)L3:失速防止功能 (401)L4:頻率檢出 (402)L5:故障重試 (403)L6:過轉矩/轉矩不足檢出 (403)L7:轉矩限制 (404)L8:硬體保護 (404)L9:硬體保護2 (406)10.12n:特殊調整 (407)n1:防止波動功能 (407)n2:速度回授檢出控制功能 (407)n3:高滑差制動、過激磁減速 (407)n4:無PG高級向量控制的特殊調整 (408)n5:前饋控制 (408)n6:馬達線間電阻線上變更 (409)n7:EZ向量控制的特殊調整 (409)n8:PM馬達控制 (409)10.13o:操作器相關的設定 (411)o1:操作器的顯示設定 (411)o2:操作器的功能設定 (412)o3:參數的備份功能 (413)o4:維護監視的設定 (413)o5:資料日誌功能 (414)10.14q:DriveWorksEZ參數 (415)q1-01~q8-40:DriveWorksEZ未使用 (415)10.15r:DriveWorksEZ連接參數 (416)r1-01~r1-40:DriveWorksEZ連接參數1~20(高位元/低位元) (416)10.16T:自動調整 (417)T0:自動調整模式 (417)T1:感應馬達的馬達參數自動調整 (417)T2:PM馬達的馬達參數自動調整 (417)T3:控制系統自動調整 (418)T4:EZ調整 (419)10.17U:監視 (420)U1:狀態監視 (420)U2:故障追蹤 (421)U3:故障記錄 (423)U4:維護監視 (423)U5:應用程式監視 (426)U6:控制監視 (426)U8:DriveWorksEZ用的使用者監視 (428)10.18在A1-02[控制模式的選擇]出廠設定發生變更的參數 (429)10.19在E3-01[馬達2的控制模式選擇]出廠設定發生變更的參數 (433)10.20在E1-03[V/f曲線]出廠設定發生變更的參數 (434)10.21在o2-04[變頻器容量選擇]和C6-01[ND/HD選擇]出廠設定發生變更的參數 (436)200V級 (436)400V級 (441)10.22在E5-01[馬達代碼的選擇]出廠設定發生變更的參數 (448)安川製SMRA系列SPM馬達 (448)安川製SSR1系列IPM馬達(遞減轉矩用) (449)安川製SST4系列IPM馬達(固定轉矩用) (457)11.參數的詳細內容 (467)11.1安全注意事項 (468)株式會社安川電機SITP C71061707A安川變頻器GA700技術手冊911.2A:環境設定 (469)A1:環境設定模式 (469)A2:常用參數的設定模式 (484)11.3b:應用程式 (486)b1:運轉模式選擇 (486)b2:直流制動/短路制動 (496)b3:速度搜尋 (498)b4:定時功能 (505)b5:PID控制 (507)b6:DWELL功能 (521)b7:DROOP(低下)控制 (522)b8:節能控制 (523)b9:零伺服 (527)11.4C:自動調整 (528)C1:加減速時間 (528)C2:S曲線特性 (531)C3:滑差補償 (532)C4:轉矩補償 (535)C5:速度控制(ASR:Automatic Speed Regulator) (537)C6:載波頻率 (544)11.5d:指令 (548)d1:頻率指令 (548)d2:頻率上限/下限 (553)d3:跳躍頻率 (554)d4:頻率指令保持指令、UP/DOWN指令、UP2/DOWN2指令 (555)d5:轉矩控制 (559)d6:激磁減弱和激磁增強 (564)d7:偏壓頻率 (564)11.6E:馬達參數 (566)E1:馬達1的V/f特性 (566)E2:馬達參數 (572)E3:馬達2的V/f特性 (574)E4:馬達2的參數 (576)E5:PM馬達的參數 (578)E9:EZ向量控制模式的馬達參數 (581)11.7F:選購卡 (584)F1:PG選購卡的設定 (584)F2:類比輸入選購卡的設定 (589)F3:數位式輸入選購卡的設定 (591)F4:類比輸出選購卡的設定 (594)F5:數位式輸出選購卡的設定 (596)F6、F7:通訊選購卡的設定 (599)11.8H:端子功能選擇 (616)H1:多功能接點輸入 (616)多功能接點輸入的設定值 (619)H2:多功能接點輸出 (635)H2多功能接點輸出參數 (637)多功能接點輸出的設定值 (642)H3:多功能類比輸入 (654)H3:多功能類比輸入參數 (655)多功能類比輸入的設定值 (659)H4:多功能類比輸出 (664)H5:MEMOBUS/Modbus通訊 (667)H6:脈波序列輸出輸出 (670)H7:虛擬輸入輸出功能選擇 (673)11.9L:保護功能 (676)L1:馬達保護功能 (676)10株式會社安川電機SITP C71061707A安川變頻器GA700技術手冊L2:瞬間停電處理 (681)L3:失速防止功能 (688)L4:頻率檢出 (696)L5:故障重試 (698)L6:過轉矩/轉矩不足檢出 (699)L7:轉矩限制 (703)L8:硬體保護 (706)L9:硬體保護2 (713)11.10n:特殊調整 (714)n1:防止波動功能 (714)n2:速度回授檢出抑制功能 (716)n3:高滑差制動、過激磁減速 (716)n4:無PG高級向量控制的特殊調整 (719)n5:前饋控制 (721)n6:馬達線間電阻線上調整 (724)n7:EZ向量控制的特殊調整 (724)n8:PM馬達控制 (725)11.11o:操作器的設定 (732)o1:操作器的顯示設定 (732)o2:操作器的功能設定 (737)o3:參數的備份功能 (739)o4:維護監視的設定 (741)o5:資料日誌功能 (743)11.12T:自動調整 (748)T0:自動調整模式 (748)T1:感應馬達的馬達參數自動調整 (748)T2:PM馬達的馬達參數自動調整 (750)T3:控制系統自動調整 (753)T4:EZ調整 (753)索引 (756)改版履歷 (765)前言和一般注意事項本章對與本產品相關的安全注意事項進行說明。
站电力系统
AC220
circuit
六氟化硫气体额定压力(20℃表压) Rated SF6 pressure (under MPa
0.04
the 20℃ bar)
防 护 等 级 Protection 充气壳体IP67 Air compartment IP67
level
仪表室IP4X
Meters compartment
故障中、故障后的电压、电流、断路器状态的波形 • 5、配有RS485或RS422国际通用通讯接口
IP4X
IP65 IP4X
外形尺寸 Dimension (宽×高×深) (W ×H ×D)
mm 800×1650×2380
名词解释
• 1、额定短路开断电流:是指开关绝限断开电流的最大能力 ,辟如 开关上表明额定短路开断电流20KA,表示20KA内的短路跳闸触头灭 弧热元件动作等有效,超过这个绝限跳闸接头灭弧热元件动作不保 证,会产生电弧。
二、变电系统简介
• 1、变电所一次部分 • 2、所用电及二次部分
变电所一次部分
• 1、应县压气站站内设35/10.5kV变电所一座,8000KVA主 变压器两台。35kV侧为单母线分段接线,10kV侧为单母线 分段接线。
• 2、35kV侧正常运行方式为:分段断路器断开,两回路 35kV电源进线各用一台8000kVA主变运行( 分段断路器可 实现备自投,当一路停电时另一回路可同时带两台主变运 行,但此种运行方式需经供电局许可方可实现。)
三、配电部分
• 1、变频电机驱动装置配电:我站3套变频电机驱动装置分别由站内 35kV变电所10kVⅠ段、Ⅱ段母线隔离变出线柜出线。单套变频电机 驱动装置包括10/4×2.2KV,4400kVA,2×DY5/Dd0接线方式隔离变 压器;4×2.2/4.16kV,4300kVA变频器;4.16kV,3600kW异步电动 机各1台。其中,隔离变压器和变频器分别设在变电所隔离变压器 室和变频器室;变频电机设在压缩机房内。
西门子空冷型完美无谐波高压变频器培训资料
西门子空冷型完美无谐波变频器调试步骤
• • • • • • • • • 二、送控制电380V后的检查 1. 校验变频器状态。 2. 测量各种供电电压数值。 3. 检查各部件上电后状态良好。 4. 读取变频器内原始数据。 5. 根据现场电机及负载情况预设变频器参数。 6. 冷却风扇转向。 三、变频器主回路反送电试验 1. 停控制电源(380V),拆所有单元T1,T2间连线,接入一输出 可调三相调压器。 • 2. 送控制电源(380V),调节调压器输出电压,慢慢给定至最大, 测量并观察单元工作情况。(单元工作情况检查,) • 3. 停控制电源(380V),脱开调压器接T1,T2间连线,动力进线 接上(出线脱开)。
西门子空冷型完美无谐波系列高压变频器柜示意图
单体柜名称
#手动旁路柜 #变压器柜 #单元控制柜 #单元柜
控制单元柜
控制单元柜内电器元件
• 信号调理板 . DCR数字控制卡箱
控制单元柜内电器元件
#变压器(输入380v输出220v) #故障复位开关
无谐波系列高压变频器与众不同的设计
• 西门子空冷型完美无谐波变频器已获专利的集成设计可确 保产品无与伦比的可靠性、高效性和多功能性。罗宾康完美无 谐波变频器的设计能够荣错可能损坏传统驱动系统的故障。传 统的变频器通常有五个单独的组件,如谐波滤波器、功率因数 校正电路、变压器、功率变换器和电机滤波器。罗宾康完美无 谐波的拓扑只需要隔离变压器和功率变换器这两个主要组件。 集成系统可以实现快速、简便、低成本安装和启动,这样可以 减少损耗和缩短停产时间,为您提供更多的项目灵活性。罗宾 康完美无谐波变频器采用了罗宾康专利的低压单元串联拓扑结 构,维护简单、显著提高电能质量和产品灵活性。还提供单元 旁路功能提高系统的可用性 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
___________________________________________________________________Selector Guide________________General DescriptionThe MAX6316–MAX6322 family of microprocessor (µP)supervisory circuits monitors power supplies and microprocessor activity in digital systems. It offers sev-eral combinations of push/pull, open-drain, and bidirec-tional (such as Motorola 68HC11) reset outputs, along with watchdog and manual reset features. The Selector Guide below lists the specific functions available from each device. These devices are specifically designed to ignore fast negative transients on V CC . Resets are guaranteed valid for V CC down to 1V.These devices are available in 26 factory-trimmed reset threshold voltages (from 2.5V to 5V, in 100mV incre-ments), featuring four minimum power-on reset timeout periods (from 1ms to 1.12s), and four watchdog timeout periods (from 6.3ms to 25.6s). Thirteen standard ver-sions are available with an order increment requirement of 2500 pieces (see Standard Versions table); contact the factory for availability of other versions, which have an order increment requirement of 10,000 pieces.The MAX6316–MAX6322 are offered in a miniature 5-pin SOT23 package.________________________ApplicationsPortable Computers Computers ControllersIntelligent InstrumentsPortable/Battery-Powered Equipment Embedded Control Systems____________________________Features♦Small 5-Pin SOT23 Package♦Available in 26 Reset Threshold Voltages2.5V to 5V, in 100mV Increments ♦Four Reset Timeout Periods1ms, 20ms, 140ms, or 1.12s (min)♦Four Watchdog Timeout Periods6.3ms, 102ms, 1.6s, or 25.6s (typ) ♦Four Reset Output StagesActive-High, Push/Pull Active-Low, Push/Pull Active-Low, Open-Drain Active-Low, Bidirectional♦Guaranteed Reset Valid to V CC = 1V♦Immune to Short Negative V CC Transients ♦Low Cost♦No External ComponentsMAX6316–MAX63225-Pin µP Supervisory Circuits withWatchdog and Manual Reset________________________________________________________________Maxim Integrated Products 119-0496; Rev 7; 11/07_______________Ordering InformationOrdering Information continued at end of data sheet.*The MAX6318/MAX6319/MAX6321/MAX6322 feature two types of reset output on each device.Typical Operating Circuit and Pin Configurations appear at end of data sheet.For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,or visit Maxim’s website at .Specify lead-free by replacing “-T” with “+T” when ordering.ELECTRICAL CHARACTERISTICS(V CC = 2.5V to 5.5V, T A = -40°C to +125°C, unless otherwise noted. Typical values are at T A = +25°C.) (Note 1)M A X 6316–M A X 63225-Pin µP Supervisory Circuits with Watchdog and Manual Reset 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Voltage (with respect to GND)V CC ......................................................................-0.3V to +6V RESET (MAX6320/MAX6321/MAX6322 only)...... -0.3V to +6V All Other Pins.........................................-0.3V to (V CC + 0.3V)Input/Output Current, All Pins.............................................20mAContinuous Power Dissipation (T A = +70°C)SOT23-5 (derate 7.1mW/°C above +70°C)...............571mW Operating Temperature Range..........................-40°C to +125°C Junction Temperature......................................................+150°C Storage Temperature Range..............................-65°C to +160°C Lead Temperature (soldering, 10s).................................+300°CTH available in 100mV increments from 2.5V to 5V (see Table 1 at end of data sheet).Note 3:Guaranteed by design.MAX6316–MAX63225-Pin µP Supervisory Circuits withWatchdog and Manual Reset_______________________________________________________________________________________3Note 5:Measured from RESET V OL to (0.8 x V CC ), R LOAD = ∞.Note 6:WDI is internally serviced within the watchdog period if WDI is left unconnected.Note 7:The WDI input current is specified as the average input current when the WDI input is driven high or low. The WDI input is designed for a three-stated-output device with a 10µA maximum leakage current and capable of driving a maximum capac-itive load of 200pF. The three-state device must be able to source and sink at least 200µA when active.ELECTRICAL CHARACTERISTICS (continued)M A X 6316–M A X 63225-Pin µP Supervisory Circuits with Watchdog and Manual Reset 4_________________________________________________________________________________________________________________________________Typical Operating Characteristics(T A = +25°C, unless otherwise noted.)021*********-4020-20406080100MAX6316/MAX6317/MAX6318/MAX6320/MAX6321SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (μA )302010504090807060100-40-20020406080100V CC FALLING TO RESET PROPAGATIONDELAY vs. TEMPERATURETEMPERATURE (°C)R E S E T P R O P A G A T I O N D E L A Y (μs )140180160240220200300280260320-40020-20406080100MAX6316/MAX6317/MAX6319/MAX6320/MAX6322MANUAL RESET TO RESETPROPAGATION DELAY vs. TEMPERATURETEMPERATURE (°C)P R O P A G A T I O N D E L A Y (n s )0.950.980.970.961.000.991.041.031.021.011.05-40-2020406080100NORMALIZED RESET TIMEOUT PERIOD vs. TEMPERATUREM A X 6316t o c 04TEMPERATURE (°C)N O R M A L I Z E D R E S E T T I M E O U T P E R I O D0.950.980.970.961.000.991.041.031.021.011.05-40-2020406080100MAX6316/MAX6317/MAX6318/MAX6320/MAX6321NORMALIZED WATCHDOG TIMEOUTPERIOD vs. TEMPERATUREM A X 6316t o c 05TEMPERATURE (°C)N O R M A L I Z E D W A T C H D O G T I M E O U T P E R I O D800101001000MAXIMUM V CC TRANSIENT DURATION vs. RESET THRESHOLD OVERDRIVE2010RESET THRESHOLD OVERDRIVE (mV) V RST - V CCT RA N S I E N T D U R A T I O N (μs )3050604070200ns/divMAX6316M/6318MH/6319MHBIDIRECTIONALPULLUP CHARACTERISTICSMAX6316–MAX63225-Pin µP Supervisory Circuits withWatchdog and Manual Reset_______________________________________________________________________________________5______________________________________________________________Pin DescriptionM A X 6316–M A X 63225-Pin µP Supervisory Circuits with Watchdog and Manual Reset 6______________________________________________________________________________________________________Detailed DescriptionA microprocessor’s (µP) reset input starts or restarts the µP in a known state. The reset output of the MAX6316–MAX6322 µP supervisory circuits interfaces with the reset input of the µP, preventing code-execution errors during power-up, power-down, and brownout condi-tions (see the Typical Operating Circuit ). The MAX6316/MAX6317/MAX6318/MAX6320/MAX6321 are also capa-ble of asserting a reset should the µP become stuck in an infinite loop.Reset OutputThe MAX6316L/MAX6318LH/MAX6319LH feature an active-low reset output, while the MAX6317H/MAX6318_H/MAX6319_H/MAX6321HP/MAX6322HP feature an active-high reset output. RESET is guaran-teed to be a logic low and RESET is guaranteed to be a logic high for V CC down to 1V.The MAX6316–MAX6322 assert reset when V CC is below the reset threshold (V RST ), when MR is pulled low (MAX6316_/MAX6317H/MAX6319_H/MAX6320P/MAX6322HP only), or if the WDI pin is not serviced withinthe watchdog timeout period (t WD ). Reset remains assert-ed for the specified reset active timeout period (t RP ) after V CC rises above the reset threshold, after MR transitions low to high, or after the watchdog timer asserts the reset (MAX6316_/MAX6317H/MAX6318_H/MAX6320P/MAX6321HP). After the reset active timeout period (t RP )expires, the reset output deasserts, and the watchdog timer restarts from zero (Figure 2).Figure 1. Functional DiagramFigure 2. Reset Timing DiagramMAX6316–MAX63225-Pin µP Supervisory Circuits withWatchdog and Manual Reset_______________________________________________________________________________________7Bidirectional R E S E T OutputThe MAX6316M/MAX6318MH/MAX6319MH are designed to interface with µPs that have bidirectional reset pins,such as the Motorola 68HC11. Like an open-drain output,these devices allow the µP or other devices to pull the bidirectional reset (RESET ) low and assert a reset condi-tion. However, unlike a standard open-drain output, it includes the commonly specified 4.7k Ωpullup resistor with a P-channel active pullup in parallel.This configuration allows the MAX6316M/MAX6318MH/MAX6319MH to solve a problem associated with µPs that have bidirectional reset pins in systems where sev-eral devices connect to RESET (F igure 3). These µPs can often determine if a reset was asserted by an exter-nal device (i.e., the supervisor IC) or by the µP itself (due to a watchdog fault, clock error, or other source),and then jump to a vector appropriate for the source of the reset. However, if the µP does assert reset, it does not retain the information, but must determine the cause after the reset has occurred.The following procedure describes how this is done in the Motorola 68HC11. In all cases of reset, the µP pulls RESET low for about four external-clock cycles. It then releases RESET , waits for two external-clock cycles,then checks RESET ’s state. If RESET is still low, the µP concludes that the source of the reset was external and, when RESET eventually reaches the high state, it jumps to the normal reset vector. In this case, stored-state information is erased and processing begins fromscratch. If, on the other hand, RESET is high after a delay of two external-clock cycles, the processor knows that it caused the reset itself and can jump to a different vector and use stored-state information to determine what caused the reset.A problem occurs with faster µPs; two external-clock cycles are only 500ns at 4MHz. When there are several devices on the reset line, and only a passive pullup resis-tor is used, the input capacitance and stray capacitance can prevent RESET from reaching the logic high state (0.8✕V CC ) in the time allowed. If this happens, all resets will be interpreted as external. The µP output stage is guaran-teed to sink 1.6mA, so the rise time can not be reduced considerably by decreasing the 4.7k Ωinternal pullup resistance. See Bidirectional Pullup Characteristics in the Typical Operating Characteristics .The MAX6316M/MAX6318MH/MAX6319MH overcome this problem with an active pullup FET in parallel with the 4.7k Ωresistor (F igures 4 and 5). The pullup transistor holds RESET high until the µP reset I/O or the supervisory circuit itself forces the line low. Once RESET goes below V PTH , a comparator sets the transition edge flip-flop, indi-cating that the next transition for RESET will be low to high. When RESET is released, the 4.7k Ωresistor pulls RESET up toward V CC . Once RESET rises above V PTH but is below (0.85 x V CC ), the active P-channel pullup turns on. Once RESET rises above (0.85 x V CC ) or the 2µs one-shot times out, the active pullup turns off. The parallel combination of the 4.7k Ωpullup and theFigure 3. MAX6316M/MAX6318MH/MAX6319MH Supports Additional Devices on the Reset BusM A X 6316–M A X 63225-Pin µP Supervisory Circuits with Watchdog and Manual Reset 8_______________________________________________________________________________________Figure 4. MAX6316/MAX6318MH/MAX6319MH Bidirectional Reset Output Functional DiagramMAX6316–MAX63225-Pin µP Supervisory Circuits withWatchdog and Manual Reset_______________________________________________________________________________________9P-channel transistor on-resistance quickly charges stray capacitance on the reset line, allowing RESET to transition from low to high within the required two elec-tronic-clock cycles, even with several devices on the reset line. This process occurs regardless of whether the reset was caused by V CC dipping below the reset threshold, the watchdog timing out, MR being asserted,or the µP or other device asserting RESET . The parts do not require an external pullup. To minimize supply cur-rent consumption, the internal 4.7k Ωpullup resistor dis-connects from the supply whenever the MAX6316M/MAX6318MH/MAX6319MH assert reset.Open-Drain R E S E T OutputThe MAX6320P/MAX6321HP/MAX6322HP have an active-low, open-drain reset output. This output struc-ture will sink current when RESET is asserted. Connect a pullup resistor from RESET to any supply voltage up to 6V (Figure 6). Select a resistor value large enough toregister a logic low (see Electrical Characteristics ), and small enough to register a logic high while supplying all input current and leakage paths connected to the RESET line. A 10k Ωpullup is sufficient in most applications.Manual-Reset InputThe MAX6316_/MAX6317H/MAX6319_H/MAX6320P/MAX6322HP feature a manual reset input. A logic low on MR asserts a reset. After MR transitions low to high, reset remains asserted for the duration of the reset timeout peri-od (t RP ). The MR input is connected to V CC through an internal 52k Ωpullup resistor and therefore can be left unconnected when not in use. MR can be driven with TTL-logic levels in 5V systems, with CMOS-logic levels in 3V systems, or with open-drain or open-collector output devices. A normally-open momentary switch from MR to ground can also be used; it requires no external debouncing circuitry. MR is designed to reject fast, negative-going transients (typically 100ns pulses). A 0.1µF capacitor from MR to ground provides additional noise immunity.The MR input pin is equipped with internal ESD-protection circuitry that may become forward biased. Should MR be driven by voltages higher than V CC , excessive current would be drawn, which would damage the part. F or example, assume that MR is driven by a +5V supply other than V CC . If V CC drops lower than +4.7V, MR ’s absolute maximum rating is violated [-0.3V to (V CC + 0.3V)], and undesirable current flows through the ESD structure from MR to V CC . To avoid this, use the same supply for MR as the supply monitored by V CC . This guarantees that the voltage at MR will never exceed V CC .Watchdog InputThe MAX6316_/MAX6317H/MAX6318_H/MAX6320P/MAX6321HP feature a watchdog circuit that monitors the µP’s activity. If the µP does not toggle the watchdog input (WDI) within the watchdog timeout period (t WD ),reset asserts. The internal watchdog timer is cleared by reset or by a transition at WDI (which can detect pulses as short as 50ns). The watchdog timer remains cleared while reset is asserted. Once reset is released, the timer begins counting again (Figure 7).The WDI input is designed for a three-stated output device with a 10µA maximum leakage current and the capability of driving a maximum capacitive load of 200pF.The three-state device must be able to source and sink at least 200µA when active. Disable the watchdog function by leaving WDI unconnected or by three-stating the driver connected to WDI. When the watchdog timer is left open circuited, the timer is cleared internally at intervals equal to 7/8 of the watchdog period.Figure 6. MAX6320P/MAX6321HP/MAX6322HP Open-Drain RESET Output Allows Use with Multiple SuppliesFigure 5. Bidirectional RESET Timing DiagramM A X 6316–M A X 63225-Pin µP Supervisory Circuits with Watchdog and Manual Reset 10______________________________________________________________________________________Applications InformationWatchdog Input CurrentThe WDI input is internally driven through a buffer and series resistor from the watchdog counter. For minimum watchdog input current (minimum overall power con-sumption), leave WDI low for the majority of the watch-dog timeout period. When high, WDI can draw as much as 160µA. Pulsing WDI high at a low duty cycle will reduce the effect of the large input current. When WDI is left unconnected, the watchdog timer is serviced within the watchdog timeout period by a low-high-low pulse from the counter chain.Negative-Going V CC TransientsThese supervisors are immune to short-duration, nega-tive-going V CC transients (glitches), which usually do not require the entire system to shut down. Typically,200ns large-amplitude pulses (from ground to V CC ) on the supply will not cause a reset. Lower amplitude puls-es result in greater immunity. Typically, a V CC transient that goes 100mV under the reset threshold and lasts less than 4µs will not trigger a reset. An optional 0.1µF bypass capacitor mounted close to V CC provides addi-tional transient immunity.Ensuring Valid Reset OutputsDown to V CC = 0The MAX6316_/MAX6317H/MAX6318_H/MAX6319_H/MAX6321HP/MAX6322HP are guaranteed to operate properly down to V CC = 1V. In applications that require valid reset levels down to V CC = 0, a pulldown resistor to active-low outputs (push/pull and bidirectional only,F igure 8) and a pullup resistor to active-high outputs(push/pull only, Figure 9) will ensure that the reset line is valid while the reset output can no longer sink orsource current. This scheme does not work with the open-drain outputs of the MAX6320/MAX6321/MAX6322.The resistor value used is not critical, but it must be large enough not to load the reset output when V CC is above the reset threshold. F or most applications,100k Ωis adequate.Watchdog Software Considerations(MAX6316/MAX6317/MAX6318/MAX6320/MAX6321)One way to help the watchdog timer monitor software execution more closely is to set and reset the watchdog input at different points in the program, rather than pulsing the watchdog input high-low-high or low-high-low. This technique avoids a stuck loop, in which the watchdog timer would continue to be reset inside the loop, keeping the watchdog from timing out.Figure 7. Watchdog Timing RelationshipFigure 9. Ensuring RESET Valid to V CC = 0 on Active-High Push/Pull OutputsFigure 8. Ensuring RESET Valid to V CC = 0 on Active-Low Push/Pull and Bidirectional OutputsMAX6316–MAX6322Watchdog and Manual Reset______________________________________________________________________________________11F igure 10 shows an example of a flow diagram where the I/O driving the watchdog input is set high at the beginning of the program, set low at the end of every subroutine or loop, then set high again when the pro-gram returns to the beginning. If the program should hang in any subroutine, the problem would be quickly corrected, since the I/O is continually set low and the watchdog timer is allowed to time out, causing a reset or interrupt to be issued. As described in the Watchdog Input Current section, this scheme results in higher time average WDI current than does leaving WDI low for the majority of the timeout period and periodically pulsing it low-high-low.Figure 10. Watchdog Flow Diagram__________________Pin ConfigurationsTypical Operating CircuitTable 2. Standard VersionsTable 1. Factory-Trimmed Reset ThresholdsM A X 6316–M A X 6322Watchdog and Manual ResetTable 3. Reset/Watchdog Timeout PeriodsMAX6316–MAX6322Watchdog and Manual Reset______________________________________________________________________________________13__Ordering Information (continued)a watchdog feature (see Selector Guide) are factory-trimmed to one of four watchdog timeout periods. Insert the letter corre-sponding to the desired watchdog timeout period (W, X, Y, or Z from Table 3) into the blank following the reset timeout suffix.TRANSISTOR COUNT: 191SUBSTRATE IS INTERNALLY CONNECTED TO V+Chip Informationdard versions only. The required order increment for nonstandard versions is 10,000 pieces. Contact factory for availability.M A X 6316–M A X 6322Watchdog and Manual Reset 14______________________________________________________________________________________Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)M axim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a M axim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________15©2007 Maxim Integrated Productsis a registered trademark of Maxim Integrated Products, Inc.MAX6316–MAX6322 Watchdog and Manual ResetRevision History。