高一数学教案:对数函数1

合集下载

人教版数学高一教案对数及其运算(一)

人教版数学高一教案对数及其运算(一)

§3.2 对数与对数函数3.2.1 对数及其运算(一)一.教学目标:1.知识技能:①理解对数的概念,了解对数与指数的关系;②理解和掌握对数的性质;③掌握对数式与指数式的关系.2.过程与方法:通过与指数式的比较,引出对数定义与性质.3.情感、态度、价值观(1)学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力.(2)通过对数的运算法则的学习,培养学生的严谨的思维品质.(3)在学习过程中培养学生探究的意识.(4)让学生理解平均之间的内在联系,培养分析、解决问题的能力.二.重点与难点:(1)重点:对数式与指数式的互化及对数的性质(2)难点:对数性质的推导三.学法与教具:(1)学法:讲授法、讨论法、类比分析与发现(2)教具:投影仪教学过程[问题情境] 对数,延长了天文学家的生命.“给我空间、时间和对数,我可以创造一个宇宙”,这是16世纪意大利著名学者伽利略的一段话.从这段话可以看到,伽利略把对数与最宝贵的空间和时间相提并论.那么,“对数”到底是什么呢?本节就来探讨这个问题.探究点一 对数的概念问题1 若24=M ,则M 等于多少?若2-2=N ,则N 等于多少?答: M =16,N =14. 问题2 若2x =16,则x 等于多少?若2x =14,则x 等于多少? 答: x 的值分别为4,-2.问题3 满足2x =3的x 的值,我们用log 23表示,即x =log 23,并叫做“以2为底3的对数”.那么满足2x =16,2x =14,4x =8的x 的值如何表示? 答: 分别表示为log 216,log 214,log 48. 小结: 1.在指数函数f (x )=a x (a >0,且a ≠1)中,对于实数集R 内的每一个值x ,在正实数集内都有唯一确定的值y 和它对应;反之,对于正实数集内的每一个确定的值y ,在R 内都有唯一确定的值x 和它对应.幂指数x ,又叫做以a 为底y 的对数.一般地,对于指数式a b =N ,我们把“以a 为底N 的对数b ”记作log a N ,即b =log a N (a >0,a ≠1).其中,数a 叫做对数的底数,N 叫做真数,读作“b 等于以a 为底N 的对数”.2.对数log a N (a >0,且a ≠1)的性质(1)0和负数没有对数,即N >0;(2)1的对数为0,即log a 1=0;(3)底的对数等于1,即log a a =1.3.常用对数以10为底的对数叫做常用对数.为了简便起见,对数log 10N 简记作lg N .探究点二 对数与指数的关系问题1 当a >0,且a ≠1时,若a x =N ,则x =log a N ,反之成立吗?为什么?答:反之也成立,因为对数表达式x =log a N 不过是指数式a x =N 的另一种表达形式,它们是同一关系的两种表达形式.问题2 在指数式a x =N 和对数式x =log a N 中,a ,x ,N 各自的地位有什么不同?答问题3 若a b =N ,则b =log a N ,二者组合可得什么等式?答:对数恒等式:a =N .问题4 当a >0,且a ≠1时,log a (-2),log a 0存在吗?为什么?由此能得到什么结论? 答:不存在,因为log a (-2),log a 0对应的指数式分别为a x =-2,a x =0,x 的值不存在,由此能得到的结论是:0和负数没有对数.问题5 根据对数定义,log a 1和log a a (a >0,a ≠1)的值分别是多少?答:log a 1=0,log a a =1.∵对任意a >0且a ≠1,都有a 0=1, ∴化成对数式为log a 1=0; ∵a 1=a ,∴化成对数式为log a a =1.小结: 对数log a N (a >0,且a ≠1)具有下列性质:(1)0和负数没有对数,即N >0;(2)1的对数为0,即log a 1=0;(3)底的对数等于1,即log a a =1.例1 求log 22, log 21, log 216, log 212. 解: 因为21=2,所以log 22=1;因为20=1,所以log 21=0;因为24=16,所以log 216=4;因为2-1=12,所以log 212=-1. 小结: log a N =x 与a x =N (a >0,且a ≠1,N >0)是等价的,表示a ,x ,N 三者之间的同一种关系,可以利用其中两个量表示第三个量.因此,已知a ,x ,N 中的任意两个量,就能求出另一个量. 跟踪训练1 将下列指数式写成对数式:(1)54=625; (2)2-6=164; (3)3a =27; (4)⎝⎛⎭⎫13m =5.73. 解: (1)log 5625=4;(2)log 2164=-6;(3)log 327=a ;(4)log 135.73=m . 例2 计算:(1)log 927; (2)log 4381; (3)log 354625.解:(1)设x =log 927,则9x =27,32x =33,∴x =32. (2)设x =log 4381,则⎝⎛⎭⎫43x =81,3=34,∴x =16.(3)令x =log 354625,∴⎝⎛⎭⎫354x =625,5=54,∴x =3.小结:要求对数的值,设对数为某一未知数,将对数式化为指数式,再利用指数幂的运算性质求解.跟踪训练2 求下列各式中的x 的值:(1)log 64x =-23; (2)log x 8=6; (3)lg 100=x . 解: (1)x =(64) -23=(43) -23=4-2=116.(2)x 6=8,所以x =(x 6) 16=816=(23) 16=212= 2.(3)10x =100=102,于是x =2.探究点三 常用对数问题 阅读教材96页下半页,说出什么叫常用对数?常用对数如何表示?答:以10为底的对数叫做常用对数.通常把底10略去不写,并把“log”写成“lg”,并把log 10N 记做lg N .如果以后没有指出对数的底,都是指常用对数.如“100的对数是2”就是“100的常用对数是2”.例3 求lg 10,lg 100,lg 0.01.解:因为101=10,所以lg 10=1;因为102=100,所以lg 100=2;因为10-2=0.01,所以lg 0.01=-2.小结:由本例题可以看出,对于常用对数,当真数为10n (n ∈Z )时,lg 10n =n ;当真数不是10的整数次方时,常用对数的值可通过查对数表或使用科学计算器求得.跟踪训练3 求下列各式中的x 的值:(1)log 2(log 5x )=0;(2)log 3(lg x )=1; (3)log (2-1)13+22=x .解: (1)∵log 2(log 5x )=0. ∴log 5x =20=1,∴x =51=5.(2)∵log 3(lg x )=1,∴lg x =31=3,∴x =103=1 000.(3)∵log (2-1)13+22=x ,∴(2-1)x =13+22=1(2+1)2=12+1=2-1, ∴x =1.当堂检测1.若log (x +1)(x +1)=1,则x 的取值范围是( B ) A.x >-1B.x >-1且x ≠0C.x ≠0D.x ∈R 解析:由对数函数的定义可知x +1≠1,x +1>0即x >-1且x ≠0.2.已知log 12x =3,则x 13=__12______.解析:∵log 12x =3,∴x =(12)3, ∴x 13=12. 3.已知a 12=49(a >0),则log 23a =__4______.解析:由a 12=49(a >0),得a =(49)2=(23)4, 所以log 23a =log 23(23)4=4. 4.将下列对数式写成指数式:(1)log 16=-4;(2)log 2128=7;(3)lg 0.01=-2.解:(1)⎝⎛⎭⎫12-4=16;(2)27=128; (3)10-2=0.01.课堂小结:1.掌握指数式与对数式的互化a b =N ⇔log a N =b .2.对数的常用性质有:负数和0没有对数,log a 1=0,log a a =1.3.对数恒等式有:a log a N =N ,log a a n =n .4.常用对数:底数为10的对数称为常用对数,记为lg N .。

高中数学对数函数备课教案

高中数学对数函数备课教案

高中数学对数函数备课教案备课内容:对数函数
教学目标:
1. 了解对数函数的定义和性质;
2. 掌握对数函数的图像特点和变化规律;
3. 能够解决对数函数的相关题目。

教学重点:
1. 对数函数的定义和性质;
2. 对数函数的图像特点和变化规律。

教学难点:
1. 对数函数与指数函数之间的关系;
2. 解决对数函数相关题目的方法。

教学准备:
1. 教学课件;
2. 教辅书籍;
3. 黑板、粉笔;
4. 试题集。

教学步骤:
一、导入(5分钟)
1. 上课前,与学生讨论指数函数的相关知识;
2. 引入对数函数的概念,并与指数函数进行比较。

二、讲解(15分钟)
1. 讲解对数函数的定义和性质;
2. 展示对数函数的图像特点和变化规律;
3. 指导学生如何分析对数函数的性质和变化规律。

三、练习(15分钟)
1. 让学生通过计算和作图来练习对数函数相关题目;
2. 纠正学生的错误,并解释正确的解题方法。

四、总结(5分钟)
1. 总结对数函数的重要性及与指数函数的关系;
2. 强调对数函数在实际问题中的应用。

五、作业布置(5分钟)
1. 布置对数函数相关的作业;
2. 可根据学生的不同水平布置不同难度的题目。

教学反思:
在备课过程中,要充分理解对数函数的概念及其性质,并通过实际例题进行讲解,让学生
理解对数函数的图像特点和变化规律。

同时,要设计合理的练习题目,帮助学生巩固所学
知识,提高解题能力。

在教学过程中,要及时发现学生的问题并加以解决,确保教学效果。

高一数学教案:对数函数1

高一数学教案:对数函数1

2.3.4对数函数【学习目标】一、过程目标 1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。

2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。

3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。

二知识技能目标1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。

2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。

三情感目标1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣。

2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。

教学重点难点:1对数函数的定义、图象和性质。

2对数函数性质的初步应用。

教学工具:多媒体【学前准备】对照指数函数试研究对数函数的定义、图象和性质。

【探究活动】一、创设情境回顾指数函数定义、图象和性质。

二、活动尝试师:我们已经学习了指数和对数这两种运算,请同学们回顾指数幂运算和对数运算的定义,并说出这两种运算的本质区别。

(生交流,师结合学生的交流作如下总结)在等式)0,1,0(>≠>=N a a N a b且 中已知底数a 和指数b ,求幂值N ,就是指数问题;已知底数a 和幂值N ,求指数b ,就是我们前面刚刚学习过的对数问题,而且无论是求幂值N 还是求指数b ,结果都只有一个。

师:在某细胞分裂过程中,细胞个数y 是分裂次数x 的函数xy 2=。

因此,当已知细胞的分裂次数x 的值(即输入值是分裂次数x ),就能求出细胞个数y 的值(即输出值是细胞个数y ),这样,就建立起细胞个数y 和分裂次数x 之间的一个关系式,你还记得这个函数模型的类型吗?生:是 函数。

师:反过来,在等式xy 2=中,如果我们知道了细胞个数y ,求分裂次数x ,这将会是我们研究的哪类问题?生: 问题。

对数的概念教学设计(江苏南京师大附中张萍)

对数的概念教学设计(江苏南京师大附中张萍)

课题:3.2.1对数的概念(第1课时)授课教师:师大学附属中学萍教材:教版高中数学必修1一. 教材分析对数这节课是教版必修1第3章对数函数第1课时.学习对数的概念是对指数概念和指数函数的回顾与深化,是学习对数函数的基础.二. 学情分析高一学生已经学习了函数的概念、函数的表示方法与函数的一般性质,对函数有了初步的认识.学生已经完成了分数指数幂和指数函数的学习,了解了研究函数的一般方法,经历过从特殊到一般,具体到抽象的研究过程.对数的概念对学生来说,是全新的,需要教师引导学生利用指数与指数函数的相关知识理解对数的概念.在教学过程中,力求让学生体会运用从特殊到一般,类比等数学方法来理解对数式与指数式之间的在联系,将对数这一新知纳入已有的知识结构中.三. 教学目标1. 理解对数的概念,会熟练地进行指数式与对数式的互化.2. 学生在解决具体问题中体会引入对数的必要性,在举例过程中理解对数.3. 学生在学习过程中感受化归与转化、数形结合、特殊到一般的数学思想,学会用相互联系的观点辩证地看问题.四. 重点与难点1. 重点:(1)对数的概念;(2)对数式与指数式的互化.2. 难点:对数概念的理解.五. 教学方法与教学手段问题教学法,启发式教学.六.教学过程1. 创设情境 建构概念某种放射性物质不断变化为其他物质,每经过1年,这种物质剩留的质量是原来的84%.(设该物质最初的质量为1)【问题1】你能就此情境提出一个问题吗?[设计意图]通过学生熟悉的问题情境,让学生自主地提出问题,引发思考,体会这些问题之间的关联是指数式a b =N 中已知两个量求第三个量.[教学过程]师:写好的同学请和同桌交流一下.师:你提的是什么问题呢?生:经过5年,这种物质的剩留量为原来的多少?师:是多少呢?生:0.845=N.师:有不同的问题吗?生:经过多少年,这种物质的剩留量为原来的一半?师:这个问题怎么解决呢? 0.84x=12. 师:同学们提出了很好的问题,这两个问题实际上都与我们学过的指数函数y=0.84x 有关.第一个问题是已知指数x 求幂y ;第二个问题是已知幂y 求指数x .如果底数是未知的,那么,我们还可以解决已知指数x 和幂y 求底数a 的问题.[阶段小结]这些问题实际就是在研究a b=N (其中a >0且a ≠1)中已知两个量求第三个量.我们可以研究以下三类问题:设a b=N.(1)已知a,b,求N;比如32=9,53=125,……(2)已知b,N,求a;比如a5=32⇒a=2,a3=5⇒a=35,……(3)已知a,N,求b.2b=2⇔b=1,2b=4⇔b=2,【问题2】2b=3,这样的指数b有没有呢?[设计意图]利用具体的问题引发学生的认知冲突,引导学生运用数形结合的方法探索指数b是存在的,并且只有一个,进而想办法用数学符号表示指数b.[教学过程]生:2b=3这个问题和指数函数y=2x有关,我们可以作出它的图象来观察.师:作出2x=3与y=3的图象,发现它们有交点,而且只有一个,那么指数b 在哪里呢?生:交点的横坐标就是指数b.师:看来满足2b=3的指数b可由“2和3”唯一确定,但它究竟是个什么数呢?现在用我们学过的数又不能把它写出来,怎么办呢?生:用一个新的符号来表示它.师:是的,数学家也是这么想的,他们解决这种问题的办法就是引进一个新的符号,比如这里的a3=5,a等于什么呢?数学家就用a=35来表示,a是由3和5确定的,将3和5写在相应的位置.师:现在如何表示这里的指数b 呢?指数b 由2和3确定,数学家用log 23来表示,读作以2为底3的对数,其中2为底数,写在下方,3叫真数.师:有了这个符号,就可以解决我们刚才的问题了,0.84x=12⇔ x =log 0.8412. 师:你能再举一些这样的对数吗?生:3b =10⇔ b =log 310;4b =5⇔ b =log 45;2b =7⇔ b =log 27;……师:这里的1能用对数表示吗?生:1= log 22.师:同样这里的2也可以表示为log 24. 对数b 其实就是一个数.思考:根据这些具体的例子,你能得到一般情况下,对数是怎么表示的吗? 对数的概念:如果a 的b 次幂等于N (其中a >0,a ≠1),即a b =N ,那么就称b 是以 a 为底 N 的对数,记作log a N =b .其中,a 叫做对数的底数,N 叫做真数.数学史简介:对数是由17世纪格兰数学家纳皮尔发明的,有兴趣的同学可以查阅相关的数学史资料.师:根据对数的概念,我们不难发现,对数来源于指数,这两个等式表示的是a ,b ,N 三个量之间的同一个关系,只是表现形式不同而已,比如在a b =N 中,a >0,a ≠1,a 叫底数,b 叫指数,N 叫幂,当变为对数式时,a 的围不变,a 还叫底数,指数b 现在叫对数,幂N 现在叫真数.2.具体实例 理解概念[学生活动]请每位同学写出2—3个对数,与同桌交流.[设计意图]深入理解对数.第一阶段,让学生体会对数可以转化为指数,对数式和指数式是等价的;第二阶段,认识特殊的对数,明确对数式中a ,b ,N 的围.[教学过程]师:大家都在积极地认识对数这个新朋友.我们一起来看看,有同学写了这样一个对数log 327. 你知道它是个什么样的数吗?师:为什么等于3呢?生:因为33 =27.师:还有同学写了log 139,这是个什么数啊?生:-2.师:为什么?生:因为(13)-2 =9. 师:想认识对数只要将它转化为相应的指数式就容易理解了.师:我也写一个log 926,这是个什么数呢?师:你知道它大概是多大吗?生:1到2之间.师:你怎么知道的呢?生:因为91=9,92=81,26在9和81之间.师:你是将问题转化为指数问题来考虑的.我们知道对数就是一个数,可以设它为b,转化为9b=26就好理解了.[阶段小结]其实想要认识同学写的对数,只要将它转化为相应的指数式就明白了,指数式和对数式是可以等价转化的.师:看大家写的对数有大于0的,有小于0的,有没有等于0的对数呢?生:log21=0.师:还有吗?生:只要底数取a>0,a≠1,真数为1的对数都等于0.师:怎么表示呢?生:log a1=0(a>0,a≠1).师:为什么?生:因为a0=1(a>0,a≠1) .师:a0=1是个特殊的指数式,还有其他特殊的指数式吗?生:a1=a.师:由这个我们又能得到什么样的对数式呢?生:log a a=1(a>0,a≠1) .师:对数可正可负可为0,那对数是否能取到所有的实数呢?师:你怎么知道的呢?生:从指数式a b=N(其中a>0且a≠1)中我们可以知道.师:对数b可以取到一切实数,底数a>0,a≠1,真数N应满足什么要求呢?生:大于0.生:在a>0且a≠1时,a b=N,根据指数函数的值域可知N只能取大于0的数.[阶段小结]通过讨论,我们认识了一些特殊的对数,知道对数b可以取到一切实数,但是真数N必须大于0. 在认识对数的过程中,我们运用了对数式与指数式之间的等价转化.3.概念应用方法总结练习求下列各式的值:(1)log264;(2)log101100;(3)log927.[设计意图](1)理解对数是个数,对数问题可以转化为指数问题来解决.(2)反思解题过程,从中得到两个对数性质log a a b=b,a log a N=N (a>0且a≠1),为对数求值提供新的方法.(3)激起学生进一步探索对数相关结论的兴趣.(4)介绍常用对数和自然对数.[教学过程]师:回头看第1个问题的解决过程,log226=6,log1010-2=-2你有什么发现?师:一般情况下log a a b=b对吗?生:对,因为a b= a b.师:在log a a b=b这个式子中,真数N变成了a b,相当于将指数式a b=N带入对数式log a N=b,消去N.现在如果将对数式log a N=b带入指数式a b=N消去b,会得到什么呢?生:a log a N=N (a>0且a≠1).师:从第3小题中,你又会有什么发现呢?对数还有很多有趣的性质,有兴趣的同学可以继续研究.师:大家看第2小题底数是10,我们通常将以10为底的对数叫常用对数,简记为log10 N=lg N.以后在高等数学和物理学中还会经常用到以e为底的对数,叫做自然对数,loge N=ln N.比如,lg2,ln3.【问题3】什么是对数?研究对数的基本方法是什么?[设计意图]回顾反思本节课学习的知识和方法.主要让学生体会研究一个新的数学对象的一般方法,即生:对数就是一个数.遇到对数问题转化为指数问题来解决.师:很好,我们通过一些具体的例子得到了对数的概念,又通过举例和练习进一步认识了对数,在认识的过程中,发现遇到对数的问题可以转化为指数问题来解决.这两个式子是等价的,表示的是a,b,N这三个量之间的同一种关系.师:既然对数就是一个数,你觉得下面我们可以研究什么?生:对数的运算.师:那如何研究对数的运算性质呢?请同学们先回去思考,我们下节课再研究.4. 课堂小结布置作业(1)课本P74 练习第1、3、4、5题.(2)探究对数的运算性质.[设计意图]布置作业的面向全体学生,旨在掌握对数的概念,熟练对数式与指数式的互化.探究对数的运算性质给学生提供进一步自主研究对数的机会.七. 教学设计说明对数概念对于高一的同学来讲是一个全新的概念。

高一数学教案对数5篇

高一数学教案对数5篇

高一数学教案对数5篇高一数学教案对数1教学目标1.使学生掌握的概念,图象和性质.(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象.2.通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.3.通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.教学建议教材分析(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究.(2)本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数在和时,函数值变化情况的区分.(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.教法建议(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是.(2)对底数的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.高一数学教案对数2教学目标1.使学生了解反函数的概念;2.使学生会求一些简单函数的反函数;3.培养学生用辩证的观点观察、分析解决问题的能力。

高一数学对数函数教案5篇

高一数学对数函数教案5篇

高一数学对数函数教案5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职场文书、书信函件、教学范文、演讲致辞、心得体会、学生作文、合同范本、规章制度、工作报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as workplace documents, correspondence, teaching samples, speeches, insights, student essays, contract templates, rules and regulations, work reports, and other materials. If you want to learn about different data formats and writing methods, please pay attention!高一数学对数函数教案5篇高一数学对数函数教案1教学目标1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.教学重点与难点教学重点:函数单调性的概念.教学难点:函数单调性的判定.教学过程设计一、引入新课师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?(用投影幻灯给出两组函数的图象.)第一组:第二组:生:第一组函数,函数值y随X的增大而增大;第二组函数,函数值y随X的增大而减小.师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当X变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)二、对概念的分析(板书课题:)师:请同学们打开课本第51页,请XX同学把增函数、减函数、单调区间的定义朗读一遍.(学生朗读.)师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量X的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?生:我认为是一致的.定义中的“当X1<X2时,都有f(X(1)<f(X(2)”描述了y随X的增大而增大;“当X1<X2时,都有f(X(1)>f(X(2)”描述了y随X的增大而减少.师:说得非常正确.定义中用了两个简单的不等关系“X1<X2”和“f(X(1)<f(X(2)或f(X(1)>f(X(2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!(通过教师的情绪感染学生,激发学生学习数学的兴趣.)师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1X)和y=f2(X)的图象,体会这种魅力.(指图说明.)师:图中y=f1X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f1X(1)<f1X)因此y=f1X)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1X)的单调增区间;而图中y=f2(X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f2(X(1)>f2(X(2)因此y=f2(X)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(X)的单调减区间.(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应。

高一数学对数函数及其性质(第一课时)

高一数学对数函数及其性质(第一课时)

诚西郊市崇武区沿街学校对数函数及其性质〔第一课时〕【教学目的】一.知识与技能目的1.掌握对数函数的概念,图象。

2.能由对数函数的图象探究、理解对数函数的性质并学会简单应用。

二.过程与方法目的1.用联络的观点分析问题,通过对对数函数的学习,浸透数形结合的数学思想。

2.培养学生的数学应用意识。

三.情感态度与价值观1.通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联络,认识事物之间的互相转化,用联络的观点分析、解决问题,激发学生的学习兴趣。

2.在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维才能以及数学交流才能,增强学习的积极性。

【教学重点】对数函数的定义、图象和性质。

【教学难点】底数a对对数函数性质的影响。

【教学过程】一.创设情景,引入新课材料1:回忆学习指数函数时用的实例。

某种细胞分裂时,一个分裂成为原来的两个。

细胞的个数y 是分裂次数x 的函数:y=x2。

假设要求这种细胞经过多少次分裂,大约可以得到1万个,10万个……细胞,根据下表:对于每一个细胞个数y ,通过对应关系y x2log =,都有唯一确定的分裂次数x 与它对应,所以分裂次数x 就是分裂后要得到的细胞个数y 的函数。

材料2:课本73页2.2.1的例6,考古学家一般通过提取附着在出土文物、古遗址上死亡物体的残留物,利用P t573021log=估算出土文物或者者古遗迹的年代。

根据下表:对于每一个碳14含量P ,通过对应关系573021,都有唯一确定的年代t 与它对应,所以生物死亡年数t 是其体内碳14含量P 的函数。

根据材料1、2,可以得到生活中的又一类与指数函数有着亲密关系的函数模型——对数函数。

二.讲解新课 (一)对数函数的概念1.根据材料1、2中的两个函数x y 2log =,P t 573021log =,我们据此抽象出一个更具有一般性的函数模型:x y a log =结合指数的定义可得函数式x y a log =中的底数a 必须满足a ﹥0且a ≠1。

对数教学设计【优秀5篇】

对数教学设计【优秀5篇】

对数教学设计【优秀5篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!对数教学设计【优秀5篇】高中数学对数教学教案有哪些篇一教学目标1.理解并掌握对数性质及运算法则,能初步运用对数的性质和运算法则解题。

数学教案高中对数函数

数学教案高中对数函数

数学教案高中对数函数
1. 了解对数函数的基本概念和性质。

2. 学会求解对数函数的基本运算和应用问题。

3. 能够分析对数函数的图像及性质。

教学重点:
1. 对数函数的定义和性质。

2. 对数函数的运算。

3. 对数函数的图像分析。

教学难点:
1. 对数函数与指数函数的关系。

2. 对数函数的变化规律。

教学准备:
1. 教材《高中数学》。

2. 教学课件。

3. 实例题目。

教学过程:
第一步:引入
通过举例引入对数函数的定义和性质,让学生了解对数函数的基本概念。

第二步:基本性质
讲解对数函数的基本性质,包括对数的定义、性质和常用公式等内容。

第三步:基本运算
讲解对数函数的基本运算,包括对数的加减乘除运算,以及对数方程的解法。

第四步:应用问题
通过实例题目,让学生掌握对数函数在实际问题中的应用方法。

第五步:图像分析
讲解对数函数的图像及性质,包括对数函数的增减性和极限性质等内容。

第六步:练习与总结
让学生进行练习题目,巩固对数函数的基本知识,并对本节课进行总结和归纳。

教学反思:
通过本节课的教学,学生应该能够掌握对数函数的基本概念、性质和运算方法,以及对数函数的图像分析方法,从而提高数学思维能力和解题能力。

同时,教师还应该注重引导学生进行思维训练和实际问题的应用,提高学生的分析和解决问题的能力。

高一数学课程教案初步认识对数函数的像与性质

高一数学课程教案初步认识对数函数的像与性质

高一数学课程教案初步认识对数函数的像与性质高一数学课程教案 - 初步认识对数函数的像与性质对数函数是高中数学中的重要知识点之一,在数学课程教学中起着重要的作用。

本教案旨在帮助高一学生初步认识对数函数的像与性质,从而提升他们的数学思维和解题能力。

一、对数函数的基本概念对数函数可以表示为y=logₐx,其中x>0,a>0且a≠1。

在此教案中,我们以底数为2的对数函数为例进行讲解。

二、对数函数的像对数函数y=log₂x的像是指函数的值域。

在讲解像之前,我们先回顾一下指数函数y=2ˣ的定义域和值域。

指数函数的定义域为实数集R,值域为正实数集R⁺。

当x取任何实数时,2ˣ都是正实数。

那么对数函数的像与指数函数有何关系呢?我们来观察一下指数函数和对数函数的图像。

[插入对数函数和指数函数的图像]从图像中可以看出,指数函数的图像位于第一象限,而对数函数的图像则位于第一和第四象限。

对数函数是指数函数的反函数,因此对数函数的像应为正实数。

由此可以得出,对数函数的像为实数集R。

三、对数函数的性质1. 对数函数的定义域为正实数集R⁺。

这是由于对数函数要求底数大于0且不等于1,而指数函数的自变量为实数。

2. 对数函数的值域为实数集R。

由于对数函数是指数函数的反函数,因此对数函数的像为实数。

3. 对数函数的图像在直线y=x上对称。

这是因为反函数的特性决定的,也可以从对数函数和指数函数的图像中观察得出。

四、对数函数的应用对数函数在实际问题中有广泛的应用。

以下是对数函数的几个常见应用领域:1. 指数增长和衰减模型。

由于指数函数和对数函数是相互关联的,所以对数函数可以用来描述指数增长和衰减的过程。

2. 计算器的对数功能。

常见的科学计算器都配备了对数功能,这是因为对数函数在计算中的重要性。

3. 数据压缩和编码。

对数函数可以用于数据的压缩和编码,从而减少存储和传输的空间。

五、课堂练习1. 计算log₂8的值。

2. 求解方程2ˣ=16。

高一数学课程教案引入对数函数的概念与性质

高一数学课程教案引入对数函数的概念与性质

高一数学课程教案引入对数函数的概念与性质一、教学内容与目标:本节课主要目标是引入对数函数的概念与性质,让学生了解对数函数的基本概念、特点以及在实际问题中的应用,并掌握常见的对数函数的性质。

具体内容如下:1. 对数函数的概念引入1.1 引导学生回顾指数函数的基本概念1.2 解释对数函数与指数函数的关系1.3 介绍对数函数的定义与表示方法2. 对数函数的性质2.1 对数函数的定义域和值域2.2 对数函数的图像及其性质2.3 对数函数的增减性和奇偶性2.4 对数函数的其它重要性质3. 对数函数的应用3.1 对数函数在实际问题中的应用举例3.2 解决实际问题时对数函数的运用技巧二、教学过程:1. 导入与概念引入1.1 老师通过提问与学生互动,回顾指数函数的基本概念,引出对数函数的概念引入。

1.2 老师给出一个实际问题,让学生思考如何利用对数函数解决该问题,引出对数函数与指数函数的关系。

2. 对数函数的概念与表示方法2.1 老师解释对数函数的定义与表示方法,引导学生理解对数函数的基本概念。

2.2 老师通过实例演示,让学生掌握对数函数的表示方法和运用技巧。

3. 对数函数的性质3.1 老师介绍对数函数的定义域和值域,引导学生理解对数函数的取值范围。

3.2 老师讲解对数函数的图像及其性质,帮助学生掌握对数函数的形状与变化趋势。

3.3 老师引导学生探究对数函数的增减性和奇偶性,提出相关问题并引导学生回答与讨论。

3.4 老师介绍对数函数的其它重要性质,如对数函数与指数函数的反函数关系等。

4. 对数函数的应用4.1 老师给出一些具体问题,让学生运用对数函数解决实际问题。

4.2 老师引导学生分析问题,培养学生运用对数函数解决实际问题的能力。

三、教学方法与手段:1. 教师讲授法:通过讲解基本概念与性质,帮助学生建立对对数函数的初步认识。

2. 提问与讨论法:通过提出问题,引导学生思考与讨论,激发学生的学习兴趣和独立思考能力。

高一数学(对数函数的概念与图象)教学设计 教案

高一数学(对数函数的概念与图象)教学设计 教案

2.2.2对数函数的概念与图象一、内容与解析(一)内容:对数函数的概念与图象(二)解析:本节课要学的内容是什么是对数函数,对数函数的图象形状及画法,其核心是对数函数的图象画法,理解它关键就是要理解掌握对数函数的图象特点.学生已经掌握了指数函数的图象画法及特点,函数图象的一般画法,本节课的内容就是在此基础上的发展.由于它是研究对数函数性质的依据,是本学科的核心内容.教学的重点是对数函数的图象特点与画法,解决重点的关键是利用函数图象的一般画法画出具体对数函数的图象,从而归纳出对数函数的图象特点,再根据图象特点确定对数函数的一般画法。

二、教学目标及解析(一)教学目标:1,理解对数函数的概念;掌握对数函数的图象的特点及画法。

2,通过具体实例,直观感受对数函数模型所刻画的数量关系;通过具体的函数图象的画法逐步认识对数函数的特征;3,培养学生运用类比方法探索研究数学问题的素养,提高学生分析问题、解决问题的能力。

(二)解析:1,理解对数函数的概念是来源于实践的,能从函数概念的角度阐述其意义;掌握对数函数的图象和性质,做到能画草图,能分析图象,能从图象观察得出对数函数的单调性、值域、定点等;了解同底指数函数和对数函数互为反函数,能说出它们的图象之间的关系,知道它们的定义域和值域之间的关系,了解反函数带有逆运算的意味;2,通过具体的实例,归纳得出一般的函数图象特征,并能够通过图象特征得到相应的函数特征,培养学生的作图、识图的能力和归纳总结能力;3,类比指数函数的图象和性质的研究方法,来研究对数函数,让学生认识到研究问题的方法上的一般性;同时,让学生认识到类比这一数学思想,即对相似的问题可以借鉴之前问题的研究方法来研究,有助于提高学生分析问题、解决问题的能力。

三、问题诊断分析本节课容易出现的问题是:对数函数的图象特点的探究容易出现图象不对、归纳不全、有所偏差等情形。

出现这一问题的原因是:学生作图能力、识图能力、归纳能力不强。

高一数学对数的运算数学教案

高一数学对数的运算数学教案

高一数学对数的运算数学教案高一数学对数的运算数学教案高一数学对数的运算数学教案1 教学目的:1、掌握对数的运算性质,并能理解推导这些法那么的根据和过程;2、能较纯熟地运用法那么解决问题;教学重点:对数的运算性质教学过程:一、问题情境:1、指数幂的运算性质;2、问题:对数运算也有相应的运算性质吗?二、学生活动:1、观察教材P59的表2—3—1,验证对数运算性质、2、理解对数的运算性质、3、证明对数性质、三、建构数学:1〕引导学生验证对数的运算性质、2〕推导和证明对数运算性质、3〕运用对数运算性质解题、探究:①简易语言表达:“积的对数=对数的和”……②有时逆向运用公式运算:如③真数的取值范围必须是:不成立;不成立、④注意:,四、数学运用:1、例题:例1、〔教材P60例4〕求以下各式的值:〔1〕;〔2〕125;〔3〕〔补充〕lg、例2、〔教材P60例4〕,求以下各式的值〔结果保存4位小数〕〔1〕;〔2〕、例3、用,表示以下各式:例4、计算:〔1〕;〔2〕;〔3〕2、练习:P60〔练习〕1,2,4,5、五、回忆小结:本节课学习了以下内容:对数的运算法那么,公式的逆向使用、六、课外作业:P63习题5补充:1、求以下各式的值:〔1〕6—3;〔2〕lg5+lg2;〔3〕3+、2、用lgx,lgy,lgz表示以下各式:〔1〕lg〔xyz〕;〔2〕lg;〔3〕;〔4〕、3、lg2=0、3010,lg3=0、4771,求以下各对数的值〔准确到小数点后第四位〕〔1〕lg6;〔2〕lg;〔3〕lg;〔4〕lg32、高一数学对数的运算数学教案2 经典例题关于的方程的实数解在区间,求的取值范围。

反思提炼:1.常见的四种指数方程的一般解法〔1〕方程的解法:〔2〕方程的解法:〔3〕方程的解法:〔4〕方程的解法:2.常见的三种对数方程的`一般解法〔1〕方程的解法:〔2〕方程的解法:〔3〕方程的解法:3.方程与函数之间的转化。

4.通过数形结合解决方程有无根的问题。

高中数学对数的教案

高中数学对数的教案

高中数学对数的教案教学目标:1. 理解对数的概念和特点。

2. 掌握对数运算的基本规律。

3. 能够解决实际问题中的对数计算题目。

教学重点和难点:重点:对数的定义、性质和运算规律。

难点:运用对数解决实际问题。

教学准备:1. 教师备课内容:对数的定义、性质、运算规律和应用。

2. 学生学习资料:教科书、练习册、笔记本等。

教学过程:1. 导入:通过引入一个真实生活中的问题,引发学生对对数的兴趣和好奇心,如:某个物种的数量翻倍的规律。

2. 讲解对数的定义和性质:介绍对数的定义、性质,引导学生理解对数的含义和作用,如:logaM=N 等价于 a^N=M。

3. 讲解对数运算规律:介绍对数的运算规律,包括对数的加减乘除运算规律,引导学生学会对数的基本计算方法。

4. 案例分析:结合实际问题,进行对数的应用案例分析,让学生感受对数在解决实际问题中的重要性和实用性。

5. 练习:布置一些对数计算练习题,让学生独立完成并相互交流讨论,巩固对数的运算能力。

6. 总结:总结本节课的重点内容,强化学生对对数的理解和应用能力。

教学延伸:1. 鼓励学生进行更多的实际问题解决,提高对数的应用能力。

2. 引导学生进行对数的拓展学习,如对数的图像性质、对数方程的求解等。

教学反思:1. 检查学生对对数的理解情况,及时纠正学生的错误认识。

2. 调整教学方法,根据学生的学习情况进行灵活的教学安排。

教学评价:通过学生的课堂表现、作业成绩和考试成绩等多方面进行综合评价,及时反馈学生的学习情况,以便调整教学策略和方法。

高一数学对数函数教案

高一数学对数函数教案

高一数学对数函数教案高一数学对数函数教案(7篇)在教学工作者开展教学活动前,总不可避免地需要编写教案,教案是备课向课堂教学转化的关节点。

那么优秀的教案是什么样的呢?以下是小编整理的高一数学对数函数教案,仅供参考,欢迎大家阅读。

高一数学对数函数教案1学习目标1. 通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2. 能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3. 通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养数形结合的思想方法,学会研究函数性质的方法.旧知提示复习:若,则,其中称为,其范围为,称为 .合作探究(预习教材P70- P72,找出疑惑之处)探究1:元旦晚会前,同学们剪彩带备用。

现有一根彩带,将其对折后,沿折痕剪开,可将所得的两段放在一起,对折再剪段。

设所得的彩带的根数为,剪的次数为,试用表示 .新知:对数函数的概念试一试:以下函数是对数函数的是( )A. B. C. D. E.反思:对数函数定义与指数函数类似,都是形式定义,注意辨别,如:,都不是对数函数,而只能称其为对数型函数;对数函数对底数的限制,且 .探究2:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?研究方法:画出函数图象,结合图象研究函数性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 作图:在同一坐标系中画出下列对数函数的图象.新知:对数函数的图象和性质:象定义域值域过定点单调性思考:当时,时, ; 时, ;当时,时, ; 时, .典型例题例1求下列函数的定义域:(1) ; (2) .例2比较大小:(1) ; (2) ; (3) ;(4) 与 .课堂小结1. 对数函数的概念、图象和性质;2. 求定义域;3. 利用单调性比大小.知识拓展对数函数凹凸性:函数,是任意两个正实数.当时, ;当时, .学习评价1. 函数的定义域为( )A. B. C. D.2. 函数的定义域为( )A. B. C. D.3. 函数的定义域是 .4. 比较大小:(1)log 67 log 7 6 ; (2) ; (3) .课后作业1. 不等式的解集是( ).A. B. C. D.2. 若,则( )A. B. C. D.3. 当a1时,在同一坐标系中,函数与的图象是( ).4. 已知函数的定义域为,函数的定义域为,则有( )A. B. C. D.5. 函数的定义域为 .6. 若且,函数的图象恒过定点,则的坐标是 .7.已知,则 = .8. 求下列函数的定义域:2.2.2 对数函数及其性质(2)学习目标1. 解对数函数在生产实际中的简单应用;2. 进一步理解对数函数的图象和性质;3. 学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质.旧知提示复习1:对数函数图象和性质.a1 0图性质(1)定义域:(2)值域:(3)过定点:(4)单调性:复习2:比较两个对数的大小:(1) ; (2) .复习3:(1) 的定义域为 ;(2) 的定义域为 .复习4:右图是函数,,,的图象,则底数之间的关系为 .合作探究 (预习教材P72- P73,找出疑惑之处)探究:如何由求出x?新知:反函数试一试:在同一平面直角坐标系中,画出指数函数及其反函数图象,发现什么性质?反思:(1)如果在函数的图象上,那么P0关于直线的对称点在函数的图象上吗?为什么?(2)由上述过程可以得到结论:互为反函数的两个函数的图象关于对称.典型例题例1求下列函数的反函数:(1) ; (2) .提高:①设函数过定点,则过定点 .②函数的反函数过定点 .③己知函数的图象过点(1,3)其反函数的图象过点(2,0),则的表达式为 .小结:求反函数的步骤(解x 习惯表示定义域)例2溶液酸碱度的测量问题:溶液酸碱度pH的计算公式,其中表示溶液中氢离子的浓度,单位是摩尔/升.(1)分析溶液酸碱度与溶液中氢离子浓度之间的变化关系?(2)纯净水摩尔/升,计算其酸碱度.例3 求下列函数的值域:(1) ;(2) .课堂小结① 函数模型应用思想;② 反函数概念.知识拓展函数的概念重在对于某个范围(定义域)内的任意一个自变量x的值,y都有唯一的值和它对应. 对于一个单调函数,反之对应任意y值,x也都有惟一的值和它对应,从而单调函数才具有反函数. 反函数的定义域是原函数的值域,反函数的值域是原函数的定义域,即互为反函数的两个函数,定义域与值域是交叉相等.学习评价1. 函数的反函数是( ).A. B. C. D.2. 函数的反函数的单调性是( ).A. 在R上单调递增B. 在R上单调递减C. 在上单调递增D. 在上单调递减3. 函数的反函数是( ).A. B. C. D.4. 函数的值域为( ).A. B. C. D.5. 指数函数的反函数的图象过点,则a的值为 .6. 点在函数的反函数图象上,则实数a的值为 .课后作业1. 函数的反函数为( )A. B. C. D.2. 设,,,,则的大小关系是( )A. B. C. D.3. 的反函数为 .4. 函数的值域为 .5. 已知函数的反函数图象经过点,则 .6. 设,则满足的值为 .7. 求下列函数的反函数.(1) y= ; (2)y= (a1,x (3) .高一数学对数函数教案21.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用。

【教案】对数函数教学设计-2021-2022学年高一上学期数学人教A版(2019)必修第一册

【教案】对数函数教学设计-2021-2022学年高一上学期数学人教A版(2019)必修第一册

课时教学设计(第 1 课时/总3课时)课题 4.4.1对数函数的概念课型新课1、教学内容分析本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.1节《对数函数的概念》.对数函数是高中数学在指数函数之后的重要初等函数之一.对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处.相较于指数函数,对数函数的图象亦有其独特的美感.学习中让学生体会在类比推理,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程.为之后学习数学提供了更多角度的分析方法.培养学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养.2、学习者分析对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这个重要数学思想的进一步理解与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决相关自然科学领域中实际问题的重要工具,是学生今后学习对数函数的性质的基础.3、学习目标确定 1.理解对数函数的定义,会求对数函数的定义域;2.了解对数函数与指数函数之间的联系,培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法.3.在学习对数函数过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,感受数学、理解数学、探索数学,提高学习数学的兴趣.4、学习重点和难点教学重点:对数函数的概念、求对数函数的定义域教学难点:对数函数与指数函数的关系.5、学习评价设计1.对数函数的概念及其应用2.会求与对数函数有关的定义域问题3.会应用对数函数模型6、学习活动设计教师活动学生活动设计意图一、情景导入我们已经研究了死亡生物体内碳14的含量思考、讨论并交流温故知新,通过对上节指数函数问题的回顾,提出新的问题,构建对数函数的概念.培养和发展逻y随死亡时间t的变化而衰减的规律.反过来,已知死亡生物体内碳14的含量,如何得知死亡了多长时间呢?进一步地,死亡时间t是碳14的含量y的函数吗?辑推理和数学抽象的核心素养.二、获得新知阅读课本130-131页,思考并完成以下问题1. 对数函数的概念是什么?2. 对数函数解析式的特征?总结并板书对数函数的概念,及解析式的特征. 学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题.体现学生的主体地位.三、例题精讲课本P130例1 例2创新设计P84例1 例2 例3 完成课本131页练习1、2、3及创新设计对应的训练1、训练2、训练3概念深化,例题讲解四、小结1.对数函数的概念2.对数函数有关的定义域的求法五、作业分层训练209页必做:1-10选做:11-14 归纳总结、独立完成作业知识运用,复习巩固.分层布置作业使不同程度的学生都能有所提高.7、板书设计 4.4.1 对数函数的概念对数函数的概念例题小结8、教学反思与改进说明:(1)教学设计要突出学生的主体地位,依据学科课程标准要求突出单元和课时学习对学生发展的价值,设计情境化、问题化、活动化、任务化的学习活动,增强学生学习过程的整体性.(2)教学设计、课堂实施和学习评价要保持一致性.目的是促进课堂“教学评”的改进.(3)教学反思与改进突出课堂学习目标的达成度,依据学生的变化和本课教学的特色,从教学观念和操作系统两个方面进行反思.五、课时教学设计(教师)课时教学设计(第2课时/总3课时)课题 4.4.2对数函数的图象和性质(一) 课型新课1、教学内容分析本节课是新版教材人教A 版普通高中课程标准实验教科书数学必修1第四章第4.4.2节《对数函数的图像和性质》 是高中数学在指数函数之后的重要初等函数之一.对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处.相较于指数函数,对数函数的图象亦有其独特的美感.在类比推理的过程中,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程.为之后学习数学提供了更多角度的分析方法.培养和发展学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养.2、学习者分析学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进-一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进- -步完善初等函数的认识的系统性,加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受)1,0(log ≠>=a a x y a 中,a 取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质.最后将对数函数、指数函数的图象和性质进行比较,以便加深对对数函数的概念、图象和性质的理解,同时也为后面教学作准备.3、学习目标确定1. 掌握对数函数的图像和性质;能利用对数函数的图像与性质来解决简单问题;2. 经过探究对数函数的图像和性质,对数函数与指数函数图像之间的联系,对数函数内部的的联系.培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法.3. 在学习对数函数过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,探索数学.4、学习重点和难点教学重点:掌握对数函数的图像和性质,对数函数与指数函数之间的联系,不同底数的对数函数图象之间的联系.教学难点: 对数函数的图像与指数函数的关系;不同底数的对数函数之间的联系.5、学习评价设计1.对数函数图象的识别2.对数函数图象的应用3.比较对数值的大小6、学习活动设计教师活动学生活动设计意图(一)回顾旧知 思考:我们该如何去研究对数函数的性质呢?问题 1. 利用“描点法”作函数xy 2log =x y 21log =的图像.回顾思考并自由发言.独立作出两个函数图象.温故知新,通过对上节指数函数问题的回顾,提出新的问题,提出研究对数函数图像与性质的方法.培养和发展逻辑推理和数学抽象的核心素养.(二)获得新知 问题2:课本132页思考问题3:课本132页探究引导归纳总结对数函数的性质.小组合作,讨论交流 通过画出特殊的对数函数的图形,观察归纳出对数函数的性质,发展学生逻辑推理,数学抽象、数学运算等核心素养.(三)例题精讲,跟踪训练课本P193 例3课本例4引导得出反函数的概念完成P135练习1,2完成练习3通过典例问题的分析,让学生进一步熟悉对数函数的图像与性质.培养逻辑推理核心素养.(四)小结1.对数函数的图象及性质2.反函数(五)作业必做:习题4.4第1,2,5,7选做:12,13 归纳总结、独立完成作业知识运用,复习巩固.分层布置作业使不同程度的学生都能有所提高.7、板书设计 4.4.2 对数函数的图象和性质例题练习1. 对数函数图像2. 对数函数的性质3.反函数8、教学反思与改进说明:(1)教学设计要突出学生的主体地位,依据学科课程标准要求突出单元和课时学习对学生发展的价值,设计情境化、问题化、活动化、任务化的学习活动,增强学生学习过程的整体性.(2)教学设计、课堂实施和学习评价要保持一致性.目的是促进课堂“教学评”的改进.(3)教学反思与改进突出课堂学习目标的达成度,依据学生的变化和本课教学的特色,从教学观念和操作系统两个方面进行反思.课时教学设计(第3课时/总3课时)课题 4.4.2对数函数的图象和性质(一) 课型习题课1、教学内容分析本节课是新版教材人教A 版普通高中课程标准实验教科书数学必修1第四章第4.4.2节《对数函数的图像和性质》 是高中数学在指数函数之后的重要初等函数之一.对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处.相较于指数函数,对数函数的图象亦有其独特的美感.在类比推理的过程中,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程.为之后学习数学提供了更多角度的分析方法.培养和发展学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养.2、学习者分析学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进-一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进- -步完善初等函数的认识的系统性,加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受)1,0(log ≠>=a a x y a 中,a 取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质.最后将对数函数、指数函数的图象和性质进行比较,以便加深对对数函数的概念、图象和性质的理解,同时也为后面教学作准备.3、学习目标确定1. 掌握对数函数的图像和性质;能利用对数函数的图像与性质来解决简单问题;2. 经过探究对数函数的图像和性质,对数函数与指数函数图像之间的联系,对数函数内部的的联系.培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法.3. 在学习对数函数过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,探索数学.4、学习重点和难点教学重点:掌握对数函数的图像和性质,对数函数与指数函数之间的联系,不同底数的对数函数图象之间的联系.教学难点:对数函数的图像与指数函数的关系;不同底数的对数函数之间的联系.5、学习评价设计 1.对数函数图象的识别2.对数函数图象的应用3.比较对数值的大小6、学习活动设计教师活动学生活动设计意图回顾对数函数的图象和性质.创新设计P86例1 回顾思考并回答.完成创新设计P86的自主检测训练1温故知新,回顾对数函数图像与性质的方法.检验上节课所学,会识别对数函数图象.创新设计例2 完成训练2会应用对数函数的图象.创新设计例3 完成训练3 利用对数函数的图象和性质解决比较大小的问题.小结1.对数函数的图象2.比较对数值大小的方法作业必做:分层训练P2111-10选做:11-14 归纳总结、独立完成作业知识运用,复习巩固.分层布置作业使不同程度的学生都能有所提高.7、板书设计 4.4.2 对数函数的图象和性质例题练习1. 对数函数图像2. 对数函数比较大小的方法8、教学反思与改进说明:(1)教学设计要突出学生的主体地位,依据学科课程标准要求突出单元和课时学习对学生发展的价值,设计情境化、问题化、活动化、任务化的学习活动,增强学生学习过程的整体性.(2)教学设计、课堂实施和学习评价要保持一致性.目的是促进课堂“教学评”的改进.(3)教学反思与改进突出课堂学习目标的达成度,依据学生的变化和本课教学的特色,从教学观念和操作系统两个方面进行反思.。

高一数学教案范文5篇

高一数学教案范文5篇

高一数学教案范文5篇对于高一的学生来说,高中数学还是有一定的难度的,老师应该怎么制作教案,带领他们尽快适应高中数学呢?今天在这给大家整理了(高一数学)教案大全,接下来随着一起来看看吧!高一数学教案(一)教学目标:1.进一步理解对数函数的性质,能运用对数函数的相关性质解决对数型函数的常见问题.2.培养学生数形结合的思想,以及分析推理的能力.教学重点:对数函数性质的应用.教学难点:对数函数的性质向对数型函数的演变延伸.教学过程:一、问题情境1.复习对数函数的性质.2.回答下列问题.(1)函数y=log2x的值域是;(2)函数y=log2x(x≥1)的值域是;(3)函数y=log2x(03.情境问题.函数y=log2(x2+2x+2)的定义域和值域分别如何求呢?二、学生活动探究完成情境问题.三、数学运用例1 求函数y=log2(x2+2x+2)的.定义域和值域.练习:(1)已知函数y=log2x的值域是[-2,3],则x的范围是________________.(2)函数,x(0,8]的值域是.(3)函数y=log (x2-6x+17)的值域.(4)函数的值域是_______________.例2 判断下列函数的奇偶性:(1)f (x)=lg (2)f (x)=ln( -x)例3 已知loga 0.751,试求实数a 取值范围.例4 已知函数y=loga(1-ax)(a0,a≠1).(1)求函数的定义域与值域;(2)求函数的单调区间.练习:1.下列函数(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域为R的有(请写出所有正确结论的序号).2.函数y=lg( -1)的图象关于对称.3.已知函数(a0,a≠1)的图象关于原点对称,那么实数m= .4.求函数,其中x [ ,9]的值域.四、要点归纳与(方法)小结(1)借助于对数函数的性质研究对数型函数的定义域与值域;(2)换元法;(3)能画出较复杂函数的图象,根据图象研究函数的性质(数形结合).五、作业课本P70~71-4,5,10,11.高一数学教案(二)教学类型:探究研究型设计思路:通过一系列的猜想得出德.摩根律,但是这个结论仅仅是猜想,数学是一门科学,所以需要论证它的正确性,因此本节通过剖析维恩图的四部分来验证猜想的正确性,并对德摩根律进行简单的应用,因此我们制作了本微课.教学过程:一、片头(20秒以内)内容:你好,现在让我们一起来学习《集合的运算——自己探索也能发现的数学规律(第二讲)》。

对数函数的概念教案学年高一上学期数学人教必修第一册全文

对数函数的概念教案学年高一上学期数学人教必修第一册全文

精选全文完整版(可编辑修改)4.4.1对数函数的概念(教案)课程地位本小节内容选自《普通高中数学必修第一册》人教A 版(2019)第四章《指数函数与对数函数》的第四节《对数函数》(第一课时),是后续内容学习的基础,至关重要. 学习目标1、通过具体实例,理解对数函数的概念,会求对数型函数的定义域;2、学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,了解对数函数在生产实际中的简单应用,感受数学建模思想;3、了解对数函数与指数函数之间的联系,培养学生观察、分析和归纳问题的思维能力;渗透类比等基本数学思想方法. 学习重难点重点:对数函数的概念;难点:从不同的问题情境中归纳对数函数,并掌握对数函数的定义域. 课前自主预习 1、复习函数的概念: P62 指数函数的图象: P117 指数和对数间的互化:P122对数的运算: P124 2、预习:本节所处教材的第130页.对数函数的概念: 对数函数的定义域: 教学过程一、复习回顾,问题导入【问题1】 (细胞分裂)细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……若某个细胞分裂后个数为x ,如何表示其分裂次数y ? (22log y x y x =⇒=)【问题2】(对半剪线)将长线两端对齐从中剪断,每段长度为原始的12,再次对齐剪断,每段长度为原始的14,继续对齐剪断,每段长度为原始的18.......若此时线的长度为原始的x ,如何表示它被对齐剪断的次数y ?(121()log 2y x y x =⇒=)观察比较问题1和问题2所得y 与x 之间的关系式,可以发现,y 与x 之间的关系式都形如log a y x =,根据指数和对数互化,以及指数函数的图象上x 与y 两者相互之间是完全一一对应的,所以这是函数。

【设计意图】由问题引入,凸显学习新概念的必要性,并再次理解函数的定义。

培养学生数学抽象的核心素养。

二、新知教学,概念应用 (一)对数函数的概念一般地,函数log (0,1)a y x a a =>≠且叫做对数函数,其中x 为自变量,定义域为(0,)+∞。

高一数学必修知识点1《对数函数》教案

高一数学必修知识点1《对数函数》教案

高一数学必修知识点1《对数函数》教案教学目标:①掌握对数函数的性质。

②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值域及单调性。

③注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。

教学重点与难点:对数函数的性质的应用。

教学过程设计:⒈复习提问:对数函数的概念及性质。

⒉开始正课1比较数的大小例1比较下列各组数的大小。

⑴loga5.1,loga5.9(a>0,a≠1)⑵log0.50.6,logЛ0.5,lnЛ师:请同学们观察一下⑴中这两个对数有何特征生:这两个对数底相等。

师:那么对于两个底相等的对数如何比大小生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。

师:对,请叙述一下这道题的解题过程。

生:对数函数的单调性取决于底的大小:当0调递减,所以loga5.1>loga5.9;当a>1时,函数y=loga某单调递增,所以loga5.1板书:解:Ⅰ)当0∵5.1<5.9∴loga5.1>loga5.9Ⅱ)当a>1时,函数y=loga某在(0,+∞)上是增函数,∵5.1<5.9∴loga5.1师:请同学们观察一下⑵中这三个对数有何特征生:这三个对数底、真数都不相等。

师:那么对于这三个对数如何比大小生:找“中间量”,log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,log0.50.6<1,所以logЛ0.5<log0.50.6<lnЛ。

板书:略。

师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函数的单调性比大小,②借用“中间量”间接比大小,③利用对数函数图象的位置关系来比大小。

2函数的定义域,值域及单调性。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题对数函数
教学目标
在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题.
通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想.
通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性.
教学重点,难点
重点是理解对数函数的定义,掌握图像和性质.
难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质.
教学方法
启发研讨式
教学用具
投影仪
教学过程
引入新课
今天我们一起再来研究一种常见函数.前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.
反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.
提问:什么是指数函数?指数函数存在反函数吗?
由学生说出是指数函数,它是存在反函数的.并由一个学生口答求反函数的过程:
由得.又的值域为,
所求反函数为.
那么我们今天就是研究指数函数的反函数-----对数函数.
2.8对数函数 (板书)
对数函数的概念
定义:函数的反函数叫做对数函数.
由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?
教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为,对数函数的值域为,且底数就是指数函数中的,故有着相同的限制条件.
在此基础上,我们将一起来研究对数函数的图像与性质.
二.对数函数的图像与性质 (板书)
作图方法
提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图.
由于指数函数的图像按和分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况和,并分别以
和为例画图.
具体操作时,要求学生做到:
指数函数和的图像要尽量准确(关键点的位置,图像的变化趋势等).
画出直线.
的图像在翻折时先将特殊点对称点找到,变化趋势由靠
近轴对称为逐渐靠近轴,而的图像在翻折时可提示学生分两段翻折,在左侧的先翻,然后再翻在右侧的部分.
学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出
和的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:
草图.
教师画完图后再利用投影仪将和的图像画在同一坐标系内,如图:
然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)
性质
定义域:
值域:
由以上两条可说明图像位于轴的右侧.
截距:令得,即在轴上的截距为1,与轴无交点即以轴为渐近线.
奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于轴对称.
单调性:与有关.当时,在上是增函数.即图像是上升的当时,在上是减函数,即图像是下降的.
之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:
当时,有;当时,有.
学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.
最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)
对图像和性质有了一定的了解后,一起来看看它们的应用.
三.简单应用 (板书)
研究相关函数的性质
求下列函数的定义域:
(1) (2) (3)
先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.
利用单调性比较大小 (板书)
比较下列各组数的大小
(1)与; (2)与;
(3)与;(4)与.
让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.
三.巩固练习
练习:若,求的取值范围.
四.小结
五.作业略
板书设计
教案点评:
根据教材内容和课程标准的要求,本节课的重点是理解对数函数的定义,掌握图像和性质。

教案的编写从四个环节设计教学过程。

各个教学环节,依据教学内容和教学目标的不同要求,呈现的教学方式、方法各有不同,第一个环节从复习指数函数开始,有学生熟悉的指数函数入手,引起学生兴趣;第二个环节是对数函数的定义;第三个环节:因为学生已经具有一定的作图能力,让学生画出常见的几个函数图象,并总结出对数函数的性质。

第四个环节:简单应用。

因此通过学生之间、师生之间的交流、讨论,使知识系统化、条理化,利于学生记忆对数函数的性质。

相关文档
最新文档