1.2.3三角函数的诱导公式(2)(最新整理)
三角函数诱导公式大全
三角函数诱导公式大全1.正弦函数诱导公式:正弦函数的诱导公式是通过余弦函数定义和平方性质得到的。
sin^2A + cos^2A = 1根据这个公式,我们可以得到以下诱导公式:sin(-A) = -sinAsin(A ± B) = sinA cosB ± cosA sinBsin2A = 2sinAcosAsin3A = 3sinA - 4sin^3A2.余弦函数诱导公式:余弦函数的诱导公式是通过正弦函数定义和平方性质得到的。
sin^2A + cos^2A = 1根据这个公式,我们可以得到以下诱导公式:cos(-A) = cosAcos(A ± B) = cosA cosB - sinA sinBcos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2Acos3A = 4cos^3A - 3cosA3.正切函数诱导公式:正切函数的诱导公式是通过正弦函数和余弦函数诱导公式得到的。
tanA = sinA / cosA根据正弦函数和余弦函数诱导公式,我们可以得到以下诱导公式:tan(-A) = -tanAta n(A ± B) = (tanA ± tanB) / (1 ∓ tanA tanB)tan2A = 2tanA / (1 - tan^2A)tan3A = (3tanA - tan^3A) / (1 - 3tan^2A)4.余切函数诱导公式:余切函数的诱导公式是通过正切函数的诱导公式得到的。
cotA = 1 / tanA根据正切函数的诱导公式,我们可以得到以下诱导公式:cot(-A) = -cotAcot(A ± B) = (cotA cotB ∓ 1) / (cotB ± cotA)cot2A = (1 - tan^2A) / 2tanAcot3A = (3cotA - cot^3A) / (cot^2A - 3)5.正割函数诱导公式:正割函数的诱导公式是通过余弦函数的诱导公式得到的。
三角函数诱导公式及推导
三角函数诱导公式:所谓三角函数诱导公式,就是将角n·π/2±α的三角函数转化为角α的;常用公式:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin2kπ+α=sinα k∈Zcos2kπ+α=cosα k∈Ztan2kπ+α=tanα k∈Zcot2kπ+α=cotαk∈Z公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sinπ+α= -sinαcosπ+α=-cosαtanπ+α= tanαcotπ+α=cotα公式三:任意角α与-α的三角函数值之间的关系:sin-α=-sinαcos-α= cosαtan-α=-tanαcot-α=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sinπ-α= sinαcosπ-α=-cosαtanπ-α=-tanαcotπ-α=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin2π-α=-sinαcos2π-α= cosαtan2π-α=-tanαcot2π-α=-cotα公式六:π/2±α与α的三角函数值之间的关系:sinπ/2+α=cosαsinπ/2-α=cosαcosπ/2+α=-sinαcosπ/2-α=sinαtanπ/2+α=-cotαtanπ/2-α=cotαcotπ/2+α=-tanαcotπ/2-α=tanα推算公式:3π/2 ±α与α的三角函数值之间的关系:sin3π/2+α=-cosαsin3π/2-α=-cosαcos3π/2+α=sinαcos3π/2-α=-sinαtan3π/2+α=-cotαtan3π/2-α=cotαcot3π/2+α=-tanαcot3π/2-α=tanα诱导公式记忆口诀:“奇变偶不变,符号看象限”;“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切;反之亦然成立“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·π/2±α是第几象限角,从而得到等式右边是正号还是负号;以cosπ/2+α=-sinα为例,等式左边cosπ/2+α中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<π/2+α<π,y=cosx在区间π/2,π上小于零,所以右边符号为负,所以右边为-sinα;符号判断口诀:全,S,T,C,正;这五个字口诀的意思就是说:内任何一个角的四种都是“+”;内只有是“+”,其余全部是“-”;内只有和是“+”,其余全部是“-”;内只有是“+”,其余全部是“-”;也可以这样理解:一、二、三、四指的角所在象限;全正、正弦、正切、余弦指的是对应象限三角函数为正值的名称;口诀中未提及的都是负值;“ASTC”反Z;意即为“all全部”、“”、“”、“”按照将字母Z反过来写所占的象限对应的三角函数为正值;另一种口诀:正弦一二切一三,余弦一四紧相连,言之为正;推导过程:万能公式推导sin2α=2sinαcosα=2sinαcosα/cos2α+sin2α,因为cos2α+sin2α=1再把分式上下同除cos^2α,可得sin2α=2tanα/1+tan2α然后用α/2代替α即可;同理可推导余弦的万能公式;正切的可通过比余弦得到;三倍角公式推导tan3α=sin3α/cos3α=sin2αcosα+cos2αsinα/cos2αcosα-sin2αsinα=2sinαcos2α+cos2αsinα-sin3α/cos3α-cosαsin2α-2sin2αcosα上下同除以cos3α,得:tan3α=3tanα-tan3α/1-3tan2αsin3α=sin2α+α=sin2αcosα+cos2αsinα=2sinαcos2α+1-2sin2αsinα=2sinα-2sin3α+sinα-2sin3α=3sinα-4sin3αcos3α=cos2α+α=cos2αcosα-sin2αsinα=2cos2α-1cosα-2cosαsin2α=2cos3α-cosα+2cosα-2cos3α=4cos3α-3cosα即sin3α=3sinα-4sin3αcos3α=4cos3α-3cosα和差化积公式推导首先,我们知道sina+b=sinacosb+cosasinb,sina-b=sinacosb-cosasinb我们把两式相加就得到sina+b+sina-b=2sinacosb同理,若把两式相减,就得到cosasinb=sina+b-sina-b/2同样的,我们还知道cosa+b=cosacosb-sinasinb,cosa-b=cosacosb+sinasinb所以,把两式相加,我们就可以得到cosa+b+cosa-b=2cosacosb同理,两式相减我们就得到sinasinb=-cosa+b-cosa-b/2这样,我们就得到了积化和差的公式:cosasinb=sina+b-sina-b/2sinasinb=-cosa+b-cosa-b/2好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式我们把上述四个公式中的a+b设为x,a-b设为y,那么a=x+y/2,b=x-y/2把a,b分别用x,y表示就可以得到和差化积的四个公式:sinx+siny=2sinx+y/2cosx-y/2sinx-siny=2cosx+y/2sinx-y/2cosx+cosy=2cosx+y/2cosx-y/2cosx-cosy=-2sinx+y/2sinx-y/2三角函数同角三角函数的基本关系式倒数关系tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系sin2α+cos2α=11+tan2α=sec2α1+cot2α=c sc2α同角三角函数关系六角形记忆法构造以“上弦、中切、下割;左正、右余、中间1”的正六边形为模型;倒数关系对角线上两个函数互为倒数;商数关系六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积;主要是两条虚线两端的的乘积,下面4个也存在这种关系;由此,可得关系式;平方关系在带有阴影线的中,上面两个顶点上的三角的平方和等于下面顶点上的三角的平方;两角和差公式sinα+β=sinαcosβ+cosαsinβsinα-β=sinαcosβ-cosαsinβcosα+β=cosαcosβ-sinαsinβcosα-β=cosαcosβ+sinαsinβtanα+β=tanα+tanβ /1-tanαtanβtanα-β=tanα-tanβ/1+tanαtanβ二倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2αtan2α=2tanα/1-tan2αtan1/2α=sin α/1+cos α=1-cos α/sin α半角的正弦、余弦和正切公式sin2α/2=1-cosα/2cos2α/2=1+cosα/2tan2α/2=1-cosα/1+cosαtanα/2=1—cosα/sinα=sinα/1+cosα万能公式sinα=2tanα/2/1+tan2α/2cosα=1-tan2α/2/1+tan2α/2tanα=2tanα/2/1-tan2α/2三倍角的正弦、余弦和正切公式sin3α=3sinα-4sin3αcos3α=4cos3α-3cosαtan3α=3tanα-tan3α/1-3tan2α三角函数的和差化积公式sinα+sinβ=2sinα+β/2cosα-β/2sinα-sinβ=2cosα+β/2sinα-β/2 cosα+cosβ=2cosα+β/2cosα-β/2 cosα-cosβ=-2sinα+β/2sinα-β/2三角函数的积化和差公式sinα·cosβ=0.5sinα+β+sinα-βcosα·sinβ=0.5sinα+β-sinα-βcosα·cosβ=0.5cosα+β+cosα-βsinα·sinβ=-0.5cosα+β-cosα-β。
1.2.3三角函数的诱导公式2
小结
诱导公式
2 k 2 "偶" " 奇 " 3 2 2 不 变 变 n n 2 符号看 " 象限 " 2 n为奇数 n为偶数
函数名不变, 符号看象限
(将α看成锐角)
诱导公式 四:
sin( ) sin , cos( ) cos , tan( ) tan .
公式五
• 复习初中知识
sin 30
cos60 sin45 cos45 sin60 cos30
y
P( x, y)
p4 ( y, x )
cos(
2
O
A(1,0)
2
公式六
2
• 用公式五证明下式成立
) cos ) sin
p5 ( y, x )
2
sin(
cos(
2
y
P( x, y)
O
A(1,0)
诱导公式五: 诱导公式六: sin( ) cos , sin( ) cos , 2 2 cos( ) sin . cos( ) sin . 2 2 函数名改变,符号看象限
0
) 3, 例3. 已. 4cos( ) sin(2 )
综合练习
求值或化简 1.sin 1 sin 2 sin 3
2 2 2
sin 89
2
sin cos sin cos 2 2 2 . 2. cos sin
(完整word)三角函数诱导公式大全,推荐文档
三角函數誘導公式大全三角函数诱导公式常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
三角函数的8个诱导公式(汇总)
三角函数的8个诱导公式(汇总)三角函数的8个诱导公式1. 正弦函数的诱导公式sin(-x) = -sin(x)这个公式表明,正弦函数的值在x轴上是关于原点对称的。
也就是说,如果一个角度的正弦值为a,那么它的相反数的正弦值就是-a。
这个公式在解三角形问题时非常有用,为它可以帮助我们计算负角度的正弦值。
2. 余弦函数的诱导公式cos(-x) = cos(x)这个公式表明,余弦函数的值在y轴上是关于原点对称的。
也就是说,如果一个角度的余弦值为a,那么它的相反数的余弦值也是a。
这个公式同样也可以帮助我们计算负角的余弦值。
3. 正切函数的诱导公式tan(-x) = -tan(x)这个公式表明,正切函数的值在原点上是关于y轴对称的。
也就是说,如果一个角的正切值为a,那么它的相反数的正切值就是-a。
这个公式在计算负角的正切值时非常有用。
4. 余切函数的诱导公式cot(-x) = -cot(x)这个公式表明,余切函数的值在原点上是关于x轴对称的。
也就是说,如果一个角的余切值为a,那么它的相反数的余切值就是-a。
这个公式同样也可以帮助我们计算负角的余切值。
5. 正弦函数的平方的诱导公式sin^2(x) + cos^2(x) = 1这个公式是三角函数中最著名的公式之一,它表明正弦函数的平方加上余弦函数的平方等于1。
这个公式在解三角形问题时非常有用,为它可以帮助我们计算三角形中的未知边长。
6. 正切函数的平方的诱导公式tan^2(x) + 1 = sec^2(x)这个公式表明,正切函数的平方加1等于其对应的正割函数的平方。
这个公式在计算三角形中的未知边长时非常有用。
7. 余切函数的平方的诱导公式cot^2(x) + 1 = csc^2(x)这个公式表明,余切函数的平方加1等于其对应的余割函数的平方。
这个公式同样也可以帮助我们计算三角形中的未知边长。
8. 正弦函数和余弦函数的诱导公式sin(x + π/2) = cos(x)cos(x + π/2) = -sin(x)这两个公式表明,正弦函数和余弦函数之间存在一种特殊的关系,即它们的相位差为π/2。
12个诱导公式
12个诱导公式
诱导公式是三角函数中一个重要的部分,用于将任意角的三角函数转化为已知的锐角三角函数。
以下是12个常用的诱导公式:
1. 公式一:sin(π + α) = -sinα
2. 公式二:cos(π + α) = -cosα
3. 公式三:tan(π + α) = tanα
4. 公式四:sin(π/2 + α) = cosα
5. 公式五:cos(π/2 + α) = -sinα
6. 公式六:tan(π/2 + α) = -cotα
7. 公式七:sin(π - α) = sinα
8. 公式八:cos(π - α) = -cosα
9. 公式九:tan(π - α) = -tanα
10. 公式十:sin(3π/2 - α) = -cosα
11. 公式十一:cos(3π/2 - α) = sinα
12. 公式十二:tan(3π/2 - α) = -cotα
这些公式可以通过三角函数的周期性和对称性进行推导,是解决三角函数问题的重要工具。
在解题时,可以根据需要选择合适的诱导公式进行转化。
例如,可以将角度转换为锐角,或将正弦、余弦、正切函数进行互化。
除了这12个诱导公式外,还有一些其他常用的三角函数公式,如两角和与差公式、倍角公式等。
这些公式可以进一步扩展和深化三角函数的知识体系,为解决复杂的三角函数问题提供更多工具。
1_2_3_三角函数的诱导公式(2)
cos
2
ห้องสมุดไป่ตู้
cos
2
sin
sin
公式六
sin
2
cos
cos
2
sin
你能利用单位圆中的三角函 数线导出公式六吗? 动画
公式五
sin
2
cos
cos
2
sin
公式六
sin
2
cos
cos
2
sin
怎样记忆公式五与公式六?
函数名改变,符号看象限.
思考2:
tan
2
?
1.已知sin53.13°=0.8 , 求 cos143.13°和 cos216.87°.
0.8
0.8
1.2.3_三角函数的诱导公式(2)
练习
2.求证:
sin
3
2
cos
cos
3 2
sin
1.2.3_三角函数的诱导公式(2)
练习
3. 化简:
1 cos(2 ) 1 cos(2 ) 1 cos(2 ) 1 cos(2 )
运用
例1.求证:
sin
3 2
cos
cos
3
2
sin
证明:sin
3 2
cos
3 2
sin
2
sin
2
cos
2
cos
2
cos
sin
运用
例2. 已知cos(75°+α)=1/3, 且
-180°<α<-90°, 求cos(15°-α)的值.
分析 (15°-α)+(75°+α)=90° 解: 由 -180°<α<-90°,
(整理)三角函数转换公式.
(整理)三⾓函数转换公式.三⾓函数转换公式1、诱导公式:sin(-α) = -sinα;cos(-α) = cosα;sin(π/2-α) = cosα;cos(π/2-α) = sinα;sin(π/2+α) = cosα;cos(π/2+α) = -sinα;sin(π-α) = sinα;cos(π-α) = -cosα;sin(π+α) = -sinα;cos(π+α) = -cosα;tanA= sinA/cosA;tan(π/2+α)=-cotα;tan(π/2-α)=cotα;tan(π-α)=-tanα;tan(π+α)=tanα2、两⾓和差公式:sin(A±B) = sinAcos±BcosAsinBcos(A±B) = cosAcosB sinAsinBtan(A±B) = (tanA±tanB)/(1 tanAtanB)cot(A±B) = (cotAcotB 1)/(cotB±3、倍⾓公式sin2A=2s inA?cosAcos2A=cosA2-sinA2=1-2sinA2=2cosA2-1tan2A=2tanA/(1-tanA2)=2cotA/(cotA2-1)4、半⾓公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))5、和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)6、积化和差sinαsinβ = -1/2*[cos(α-β)-cos(α+β)]cosαcosβ = 1/2*[cos(α+β)+cos(α-β)]sinαcosβ = 1/2*[sin(α+β)+sin(α-β)]cosαsinβ = 1/2*[sin(α+β)-sin(α-β)]7、万能公式2t a n 12t a n 2t a n ,2t a n 12t a n 1c o s ,2t a n 12t a n 2s i n 2222α-α=αα+α-=αα+α=α2010年全国硕⼠研究⽣⼊学统⼀考试数学考试⼤纲--数学三考试科⽬:微积分.线性代数.概率论与数理统计考试形式和试卷结构⼀、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.⼆、答题⽅式答题⽅式为闭卷、笔试.三、试卷内容结构微积分56%线性代数22%概率论与数理统计22%四、试卷题型结构试卷题型结构为:单项选择题选题8⼩题,每题4分,共32分填空题6⼩题,每题4分,共24分解答题(包括证明题)9⼩题,共94分微积分⼀、函数、极限、连续考试内容函数的概念及表⽰法函数的有界性.单调性.周期性和奇偶性复合函数.反函数.分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建⽴数列极限与函数极限的定义及其性质函数的左极限和右极限⽆穷⼩量和⽆穷⼤量的概念及其关系⽆穷⼩量的性质及⽆穷⼩量的⽐较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表⽰法,会建⽴应⽤问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利⽤两个重要极限求极限的⽅法.7.理解⽆穷⼩的概念和基本性质.掌握⽆穷⼩量的⽐较⽅法.了解⽆穷⼤量的概念及其与⽆穷⼩量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最⼤值和最⼩值定理.介值定理),并会应⽤这些性质.⼆、⼀元函数微分学考试内容导数和微分的概念导数的⼏何意义和经济意义函数的可导性与连续性之间的关系平⾯曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数.反函数和隐函数的微分法⾼阶导数⼀阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性.拐点及渐近线函数图形的描绘函数的最⼤值与最⼩值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的⼏何意义与经济意义(含边际与弹性的概念),会求平⾯曲线的切线⽅程和法线⽅程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数.3.了解⾼阶导数的概念,会求简单函数的⾼阶导数.4.了解微分的概念,导数与微分之间的关系以及⼀阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗⽇( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应⽤.6.会⽤洛必达法则求极限.7.掌握函数单调性的判别⽅法,了解函数极值的概念,掌握函数极值、最⼤值和最⼩值的求法及其应⽤.8.会⽤导数判断函数图形的凹凸性(注:在区间内,设函数具有⼆阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、⼀元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数⽜顿⼀莱布尼茨(Newton- Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(⼴义)积分定积分的应⽤考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握⽜顿⼀莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利⽤定积分计算平⾯图形的⾯积.旋转体的体积和函数的平均值,会利⽤定积分求解简单的经济应⽤问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念⼆元函数的⼏何意义⼆元函数的极限与连续的概念有界闭区域上⼆元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法⼆阶偏导数全微分多元函数的极值和条件极值.最⼤值和最⼩值⼆重积分的概念.基本性质和计算⽆界区域上简单的反常⼆重积分考试要求1.了解多元函数的概念,了解⼆元函数的⼏何意义.2.了解⼆元函数的极限与连续的概念,了解有界闭区域上⼆元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数⼀阶、⼆阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解⼆元函数极值存在的充分条件,会求⼆元函数的极值,会⽤拉格朗⽇乘数法求条件极值,会求简单多元函数的最⼤值和最⼩值,并会解决简单的应⽤问题.5.了解⼆重积分的概念与基本性质,掌握⼆重积分的计算⽅法(直⾓坐标.极坐标).了解⽆界区域上较简单的反常⼆重积分并会计算.五、⽆穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件⼏何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径.收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握⼏何级数及级数的收敛与发散的条件,掌握正项级数收敛性的⽐较判别法和⽐值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解...及的麦克劳林(Maclaurin)展开式.六、常微分⽅程与差分⽅程考试内容常微分⽅程的基本概念变量可分离的微分⽅程齐次微分⽅程⼀阶线性微分⽅程线性微分⽅程解的性质及解的结构定理⼆阶常系数齐次线性微分⽅程及简单的⾮齐次线性微分⽅程差分与差分⽅程的概念差分⽅程的通解与特解⼀阶常系数线性差分⽅程微分⽅程的简单应⽤考试要求1.了解微分⽅程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分⽅程.齐次微分⽅程和⼀阶线性微分⽅程的求解⽅法.3.会解⼆阶常系数齐次线性微分⽅程.4.了解线性微分⽅程解的性质及解的结构定理,会解⾃由项为多项式.指数函数.正弦函数.余弦函数的⼆阶常系数⾮齐次线性微分⽅程.5.了解差分与差分⽅程及其通解与特解等概念.6.了解⼀阶常系数线性差分⽅程的求解⽅法.7.会⽤微分⽅程求解简单的经济应⽤问题.线性代数⼀、⾏列式考试内容⾏列式的概念和基本性质⾏列式按⾏(列)展开定理考试要求1.了解⾏列式的概念,掌握⾏列式的性质.2.会应⽤⾏列式的性质和⾏列式按⾏(列)展开定理计算⾏列式.⼆、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法⽅阵的幂⽅阵乘积的⾏列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对⾓矩阵、三⾓矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解⽅阵的幂与⽅阵乘积的⾏列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会⽤伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握⽤初等变换求矩阵的逆矩阵和秩的⽅法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表⽰向量组的线性相关与线性⽆关向量组的极⼤线性⽆关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性⽆关向量组的正交规范化⽅法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表⽰、向量组线性相关、线性⽆关等概念,掌握向量组线性相关、线性⽆关的有关性质及判别法.3.理解向量组的极⼤线性⽆关组的概念,会求向量组的极⼤线性⽆关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其⾏(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性⽆关向量组正交规范化的施密特(Schmidt)⽅法.四、线性⽅程组考试内容线性⽅程组的克莱姆(Cramer)法则线性⽅程组有解和⽆解的判定齐次线性⽅程组的基础解系和通解⾮齐次线性⽅程组的解与相应的齐次线件⽅程组(导出组)的解之间的关系⾮齐次线性⽅程组的通解考试要求1.会⽤克莱姆法则解线性⽅程组.2.掌握⾮齐次线性⽅程组有解和⽆解的判定⽅法.3.理解齐次线性⽅程组的基础解系的概念,掌握齐次线性⽅程组的基础解系和通解的求法.4.理解⾮齐次线性⽅程组解的结构及通解的概念.5.掌握⽤初等⾏变换求解线性⽅程组的⽅法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对⾓化的充分必要条件及相似对⾓矩阵实对称矩阵的特征值和特征向量及相似对⾓矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的⽅法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对⾓化的充分必要条件,掌握将矩阵化为相似对⾓矩阵的⽅法.3.掌握实对称矩阵的特征值和特征向量的性质.六、⼆次型考试内容⼆次型及其矩阵表⽰合同变换与合同矩阵⼆次型的秩惯性定理⼆次型的标准形和规范形⽤正交变换和配⽅法化⼆次型为标准形⼆次型及其矩阵的正定性考试要求1.了解⼆次型的概念,会⽤矩阵形式表⽰⼆次型,了解合同变换与合同矩阵的概念.2.了解⼆次型的秩的概念,了解⼆次型的标准形、规范形等概念,了解惯性定理,会⽤正交变换和配⽅法化⼆次型为标准形.3.理解正定⼆次型.正定矩阵的概念,并掌握其判别法.概率论与数理统计⼀、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率⼏何型概率条件概率概率的基本公式事件的独⽴性独⽴重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和⼏何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独⽴性的概念,掌握⽤事件独⽴性进⾏概率计算;理解独⽴重复试验的概念,掌握计算有关事件概率的⽅法.⼆、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、⼆项分布、⼏何分布、超⼏何分布、泊松(Poisson)分布及其应⽤.3.掌握泊松定理的结论和应⽤条件,会⽤泊松分布近似表⽰⼆项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应⽤,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布函数⼆维离散型随机变量的概率分布、边缘分布和条件分布⼆维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独⽴性和不相关性常见⼆维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解⼆维离散型随机变量的概率分布和⼆维连续型随机变量的概率密度、掌握⼆维随机变量的边缘分布和条件分布.3.理解随机变量的独⽴性和不相关性的概念,掌握随机变量相互独⽴的条件,理解随机变量的不相关性与独⽴性的关系.4.掌握⼆维均匀分布和⼆维正态分布,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独⽴随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、⽅差、标准差及其性质随机变量函数的数学期望切⽐雪夫(Chebyshev)不等式矩、协⽅差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、⽅差、标准差、矩、协⽅差、相关系数)的概念,会运⽤数字特征的基本性质,并掌握常⽤分布的数字特征.2.会求随机变量函数的数学期望.3.了解切⽐雪夫不等式.五、⼤数定律和中⼼极限定理考试内容切⽐雪夫⼤数定律伯努利(Bernoulli)⼤数定律⾟钦(Khinchine)⼤数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切⽐雪夫⼤数定律、伯努利⼤数定律和⾟钦⼤数定律(独⽴同分布随机变量序列的⼤数定律).2.了解棣莫弗—拉普拉斯中⼼极限定理(⼆项分布以正态分布为极限分布)、列维—林德伯格中⼼极限定理(独⽴同分布随机变量序列的中⼼极限定理),并会⽤相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本⽅差和样本矩分布分布分布分位数正态总体的常⽤抽样分布考试要求.了解总体、简单随机样本、统计量、样本均值、样本⽅差及样本矩的概念,其中样本⽅差定义为2.了解产⽣变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布得上侧分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本⽅差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最⼤似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(⼀阶矩、⼆阶矩)和最⼤似然估计法.。
诱导公式大全
诱导公式大全诱导公式是数学中的一个重要概念,它可以帮助我们简化复杂的表达式,解决各种数学问题。
在本文中,我们将为大家详细介绍各种常见的诱导公式,希望能够帮助大家更好地理解和运用这些公式。
一、三角函数的诱导公式。
1. sin(A ± B) = sinAcosB ± cosAsinB。
2. cos(A ± B) = cosAcosB ∓ sinAsinB。
3. tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)。
这些诱导公式可以帮助我们简化三角函数的加减运算,特别是在解决三角函数的复合运算问题时,能够起到很大的作用。
二、指数函数的诱导公式。
1. e^x ± e^(-x) = 2coshx。
2. e^x ∓ e^(-x) = 2sinhx。
3. (e^x + e^(-x)) / 2 = coshx。
4. (e^x e^(-x)) / 2 = sinhx。
这些诱导公式是指数函数的一些常见运算公式,通过这些公式,我们可以将指数函数的运算转化为双曲函数的运算,从而简化计算过程。
三、对数函数的诱导公式。
1. ln(xy) = ln x + ln y。
2. ln(x/y) = ln x ln y。
3. ln(x^n) = nlnx。
对数函数的诱导公式主要是针对对数的乘除运算和指数的换底运算,这些公式在解决对数函数的复合运算问题时非常有用。
四、微积分中的诱导公式。
1. (x^n)' = nx^(n-1)。
2. (e^x)' = e^x。
3. (lnx)' = 1/x。
4. (sinx)' = cosx。
5. (cosx)' = -sinx。
6. (tanx)' = sec^2x。
这些微积分中的诱导公式是我们在求导过程中经常会用到的公式,通过这些公式,我们可以快速求得各种函数的导数,解决各种微积分问题。
三角函数的诱导公式(二)(附答案)
三角函数的诱导公式(二)[学习目标] 1.掌握诱导公式五、六的推导 ,并能应用解决简单的求值、化简与证明问题.2.对诱导公式一至六,能作综合归纳,体会六组公式的共性与个性,培养由特殊到一般的数学推理意识和能力.3.继续体会知识的“发生”、“发现”过程,培养研究问题、发现问题、解决问题的能力.知识点一 诱导公式五~六(1)公式五:sin ⎝⎛⎭⎫π2-α=cos α;cos ⎝⎛⎭⎫π2-α=sin α. 以-α替代公式五中的α,可得公式六.(2)公式六:sin ⎝⎛⎭⎫π2+α=cos α;cos ⎝⎛⎭⎫π2+α=-sin α. 思考1 根据任意角α与π2-α的终边关于直线y =x 对称,推导诱导公式五.思考2 根据π2+α=π-(π2-α)这一等式,利用诱导公式四和诱导公式五推导诱导公式六.知识点二 诱导公式的理解、记忆与灵活应用公式一~四归纳:α+2k π(k ∈Z ),-α,π±α的三角函数值,等于角α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号,简记为:“函数名不变,符号看象限”. 公式五~六归纳:π2±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号,简记为:“函数名改变,符号看象限”或“正变余、余变正、符号象限定”.六组诱导公式可以统一概括为“k ·π2±α(k ∈Z )”的诱导公式.当k 为偶数时,函数名不改变;当k 为奇数时,函数名改变;前面加一个把α视为锐角时原函数值的符号,记忆口诀为“奇变偶不变,符号看象限”.思考 请你根据上述规律,完成下列等式. sin(32π-α)=-cos α,cos(32π-α)=-sin α sin(32π+α)=-cos α,cos(32π+α)=sin α.题型一 利用诱导公式求值例1 已知cos ⎝⎛⎭⎫α+π6=35,π2≤α≤3π2,求sin ⎝⎛⎭⎫α+2π3的值. 解 ∵α+2π3=⎝⎛⎭⎫α+π6+π2, ∴sin(α+2π3)=sin ⎣⎡⎦⎤⎝⎛⎭⎫α+π6+π2=cos ⎝⎛⎭⎫α+π6=35.跟踪训练1 已知sin ⎝⎛⎭⎫π6+α=33,求cos ⎝⎛⎭⎫α-π3的值. 解 ∵cos ⎝⎛⎭⎫α-π3=cos ⎝⎛⎭⎫π3-α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π6+α =sin ⎝⎛⎭⎫π6+α=33.题型二 利用诱导公式证明恒等式例2 求证:tan (2π-α)sin (-2π-α)cos (6π-α)sin ⎝⎛⎭⎫α+3π2cos ⎝⎛⎭⎫α+3π2=-tan α.证明 左边=tan (-α)·sin (-α)·cos (-α)sin ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α·cos ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α=(-tan α)·(-sin α)·cos αsin ⎣⎡⎦⎤-⎝⎛⎭⎫π2-αcos ⎣⎡⎦⎤-⎝⎛⎭⎫π2-α=sin 2α-sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α =sin 2α-cos α·sin α=-sin αcos α=-tan α=右边.∴原等式成立.跟踪训练2 求证:2sin ⎝⎛⎭⎫θ-3π2cos ⎝⎛⎭⎫θ+π2-11-2sin 2 (π+θ)=tan (9π+θ)+1tan (π+θ)-1. 证明 左边=-2sin ⎝⎛⎭⎫3π2-θ·(-sin θ)-11-2sin 2θ=2sin ⎣⎡⎦⎤π+⎝⎛⎭⎫π2-θsin θ-11-2sin 2θ=-2sin ⎝⎛⎭⎫π2-θsin θ-11-2sin 2θ=-2cos θsin θ-1cos 2θ+sin 2θ-2sin 2θ =(sin θ+cos θ)2sin 2θ-cos 2θ=sin θ+cos θsin θ-cos θ. 右边=tan θ+1tan θ-1=sin θ+cos θsin θ-cos θ.∴左边=右边,故原等式成立. 题型三 诱导公式的综合应用例3 已知f (α)=sin (α-3π)cos (2π-α)sin ⎝⎛⎭⎫-α+3π2cos (-π-α)sin (-π-α).(1)化简f (α);(2)若α是第三象限的角,且cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值; (3)若α=-31π3,求f (α)的值.解 (1)f (α)=(-sin α)·cos α·(-cos α)(-cos α)sin α=-cos α.(2)∵cos ⎝⎛⎭⎫α-3π2=-sin α=15,∴sin α=-15, 又α是第三象限的角, ∴cos α=-1-⎝⎛⎭⎫-152=-265,∴f (α)=265. (3)f ⎝⎛⎭⎫-31π3=-cos ⎝⎛⎭⎫-31π3=-cos ⎝⎛⎭⎫-6×2π+5π3 =-cos5π3=-cos π3=-12. 跟踪训练3 已知cos(α-75°)=-13,且α为第四象限角,求sin(105°+α)的值.解 ∵cos(α-75°)=-13<0,且α为第四象限角,∴α-75°是第三象限角.∴sin(α-75°)=-1-cos 2(α-75°) =-1--132=-223.∴sin(105°+α)=sin[180°+(α-75°)] =-sin(α-75°)=223.诱导公式的应用例4 已知cos ⎝⎛⎭⎫π2+α=2sin ⎝⎛⎭⎫α-π2, 求sin 3(π-α)+cos (α+π)5cos ⎝⎛⎭⎫5π2-α+3sin ⎝⎛⎭⎫7π2-α的值.解 ∵cos ⎝⎛⎭⎫π2+α=2sin ⎝⎛⎭⎫α-π2, -sin α=-2sin(π2-α),∴sin α=2cos α,∴tan α=2. ∴sin 3(π-α)+cos (α+π)5cos ⎝⎛⎭⎫5π2-α+3sin ⎝⎛⎭⎫7π2-α=sin 3α-cos α5cos (π2-α)-3sin ⎝⎛⎭⎫π2+α=sin 3α-cos α5sin α-3cos α=sin 2α·tan α-15tan α-3=2sin 2α-110-3=2sin 2α-17=2sin 2α-(sin 2α+cos 2α)7(sin 2α+cos 2α)=sin 2α-cos 2α7(sin 2α+cos 2α) =tan 2α-17(tan 2α+1) =4-17×(4+1)=335.1.若sin α=12,则cos(π2+α)的值为( )A.12B.32 C .-12 D .-32 2.已知sin ⎝⎛⎭⎫α-π6=13,则cos ⎝⎛⎭⎫α+π3的值为( ) A .-233 B.233 C.13 D .-133.代数式sin 2(A +45°)+sin 2(A -45°)的化简结果是 . 4.已知sin(π+α)=-13.计算:(1)cos ⎝⎛⎭⎫α-3π2; (2)sin ⎝⎛⎭⎫π2+α; (3)tan(5π-α).5.已知sin(5π-θ)+sin ⎝⎛⎭⎫52π-θ=72,求sin 4⎝⎛⎭⎫π2-θ+cos 4⎝⎛⎭⎫32π+θ的值.一、选择题1.已知sin(5π2+α)=15,那么cos α等于( )A .-25B .-15 C.15 D.252.若sin(3π+α)=-12,则cos(7π2-α)等于( )A .-12 B.12 C.32 D .-323.已知sin ⎝⎛⎭⎫α-π4=13,则cos ⎝⎛⎭⎫π4+α的值等于( ) A .-13 B.13 C .-223 D.2234.若sin(π+α)+cos ⎝⎛⎭⎫π2+α=-m ,则cos ⎝⎛⎭⎫32π-α+2sin(2π-α)的值为( ) A .-2m 3 B.2m 3 C .-3m 2 D.3m25.已知cos(π2+φ)=32,且|φ|<π2,则tan φ等于( )A .-33 B.33C .- 3 D. 3 6.已知cos(75°+α)=13,则sin(α-15°)+cos(105°-α)的值是( )A.13B.23 C .-13 D .-23 二、填空题7.式子cos 2(π4-α)+cos 2(π4+α)= .8.若sin(α+π12)=13,则cos(α+7π12)= .9.已知f (α)=tan (π-α)·cos (2π-α)·sin (π2+α)cos (-α-π),化简f (α)= .10.已知tan(3π+α)=2,则sin (α-3π)+cos (π-α)+sin (π2-α)-2cos (π2+α)-sin (-α)+cos (π+α)= .三、解答题11.已知角α终边经过点P (-4,3),求 cos (π2+α)sin (-π-α)cos (11π2-α)sin (9π2+α)的值.12.已知sin(θ-32π)+cos(32π+θ)=35,求sin 3(π2+θ)-cos 3(3π2-θ).当堂检测答案1.答案 C解析 ∵sin α=12,∴cos(π2+α)=-sin α=-12.2.答案 D解析 cos ⎝⎛⎭⎫α+π3=cos ⎣⎡⎦⎤π2+⎝⎛⎭⎫α-π6=-sin ⎝⎛⎭⎫α-π6=-13. 3.答案 1解析 原式=sin 2(A +45°)+sin 2(45°-A ) =sin 2(A +45°)+cos 2(A +45°)=1.4.解 ∵sin(π+α)=-sin α=-13,∴sin α=13.(1)cos ⎝⎛⎭⎫α-3π2=cos ⎝⎛⎭⎫3π2-α=-sin α=-13. (2)sin ⎝⎛⎭⎫π2+α=cos α,cos 2α=1-sin 2 α=1-19=89. ∵sin α=13,∴α为第一或第二象限角.①当α为第一象限角时,sin ⎝⎛⎭⎫π2+α=cos α=223. ②当α为第二象限角时,sin ⎝⎛⎭⎫π2+α=cos α=-223. (3)tan(5π-α)=tan(π-α)=-tan α, ∵sin α=13,∴α为第一或第二象限角.①当α为第一象限角时,cos α=223,∴tan α=24,∴tan(5π-α)=-tan α=-24. ②当α为第二象限角时,cos α=-223,tan α=-24,∴tan(5π-α)=-tan α=24.5.解 ∵sin(5π-θ)+sin ⎝⎛⎭⎫52π-θ =sin(π-θ)+sin ⎝⎛⎭⎫π2-θ =sin θ+cos θ=72, ∴sin θcos θ=12[(sin θ+cos θ)2-1]=12⎣⎡⎦⎤⎝⎛⎭⎫722-1=38,∴sin 4⎝⎛⎭⎫π2-θ+cos 4⎝⎛⎭⎫32π+θ=cos 4θ+sin 4θ =(sin 2θ+cos 2θ)2-2sin 2θcos 2θ =1-2×⎝⎛⎭⎫382=2332.课时精练答案一、选择题 1.答案 C解析 sin(5π2+α)=cos α,故cos α=15,故选C.2.答案 A解析 ∵sin(3π+α)=-sin α,∴sin α=12,∴cos(7π2-α)=cos(3π2-α)=-cos(π2-α)=-sin α=-12.3.答案 A解析 cos ⎝⎛⎭⎫π4+α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4+α =sin ⎝⎛⎭⎫π4-α=-sin ⎝⎛⎭⎫α-π4=-13.4.答案 C解析 ∵sin(π+α)+cos ⎝⎛⎭⎫π2+α=-sin α-sin α=-m , ∴sin α=m2.故cos ⎝⎛⎭⎫32π-α+2sin(2π-α)=-sin α-2sin α =-3sin α=-32m .5.答案 C解析 由cos(π2+φ)=-sin φ=32,得sin φ=-32,又∵|φ|<π2,∴φ=-π3,∴tan φ=- 3.6.答案 D解析 sin(α-15°)+cos(105°-α)=sin [(75°+α)-90°]+cos [180°-(75°+α)] =-sin [90°-(75°+α)]-cos(75°+α) =-cos(75°+α)-cos(75°+α) =-2cos(75°+α)=-23.二、填空题 7.答案 1解析 原式=sin 2[π2-(π4-α)]+cos 2(π4+α)=sin 2(π4+α)+cos 2(π4+α)=1.8.答案 -13解析 cos(α+7π12)=cos[π2+(α+π12)]=-sin(α+π12)=-13.9.答案 sin α解析 f (α)=tan (π-α)·cos (2π-α)·sin (π2+α)cos (-α-π)=-tan α·cos α·cos α-cos α=sin α.10.答案 2解析 ∵tan(3π+α)=2,∴tan α=2, ∴原式=sin αsin α-cos α=tan αtan α-1=22-1=2. 三、解答题11.解 ∵角α终边经过点P (-4,3), ∴tan α=y x =-34,11 ∴cos (π2+α)sin (-π-α)cos (11π2-α)sin (9π2+α)=-sin α·sin α-sin α·cos α=tan α =-34.12.解 ∵sin(θ-32π)+cos(32π+θ)=-sin(32π-θ)-cos(π2+θ)=sin(π2-θ)+sin θ=sin θ+cos θ=35.∴sin θcos θ=12[(sin θ+cos θ)2-1]=12(925-1)=-825.∴sin 3(π2+θ)-cos 3(3π2-θ)=cos 3θ+cos 3(π2-θ)=cos 3θ+sin 3θ=(sin θ+cos θ)(sin 2θ-sin θcos θ+cos 2θ) =35×[1-(-825)]=99125.。
三角函数诱导公式大全
三角函数诱导公式大全三角函数是数学中重要的一类函数,由于其广泛应用于几何、物理、工程等领域,深受学生和研究人员的关注。
三角函数的诱导公式是求解三角函数值的重要方法,它们能够将某些特定角度的三角函数值转化为其他角度的三角函数值。
本文将介绍三角函数诱导公式的常见形式和应用。
一、基本诱导公式:1. 正弦函数的诱导公式:已知角α,β满足α+β=π/2,则sinα = cosβ。
例如:sin30° = cos(90°-30°) = cos60° = 1/2。
2. 余弦函数的诱导公式:已知角α,β满足α+β=π/2,则cosα = sinβ。
例如:cos45° = sin(90°-45°) = sin45° = 1/√2。
3. 正切函数的诱导公式:已知角α,β满足α+β=π/4,则tanα = cotβ。
例如:tan30° = cot(45°-30°) = cot15°。
4. 余切函数的诱导公式:已知角α,β满足α+β=π/4,则cotα = tanβ。
例如:cot60° = tan(90°-60°) = tan30° = 1/√3。
二、倍角诱导公式:1. 正弦函数的倍角诱导公式:sin2α = 2sinαcosα。
例如:sin60° = 2sin30°cos30° = 2×(1/2)×(√3/2) = √3/2。
cos2α = cos²α - sin²α。
例如:cos60° = cos²30° - sin²30° = (√3/2)² -(1/2)² = 1/4。
3. 正切函数的倍角诱导公式:tan2α = (2tanα) / (1 - tan²α)。
高1数学-三角函数-诱导公式
高一数学诱导公式知识点1.诱导公式一~四(1)公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos α,tan(α+2k π)=tan α,其中k ∈Z .(2)公式二:sin(π+α)=-sin α,cos(π+α)=-cos α,tan(π+α)=tan α.(3)公式三:sin(-α)=-sin α,cos(-α)=cos α,tan(-α)=-tan α.(4)公式四:sin(π-α)=sin α,cos(π-α)=-cos α,tan(π-α)=-tan α.2.诱导公式的记忆2k π+α(k ∈Z ),π+α,π-α,-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.简记为“函数名不变,符号看象限”.3.诱导公式五~六(1)公式五:sin ⎝⎛⎭⎫π2-α=cos α;cos ⎝⎛⎭⎫π2-α=sin α. 以-α替代公式五中的α,可得公式六.(2)公式六:sin ⎝⎛⎭⎫π2+α=cos α;cos ⎝⎛⎭⎫π2+α=-sin α. 4.诱导公式的理解、记忆与灵活应用公式一~四归纳:α+2k π(k ∈Z ),-α,π±α的三角函数值,等于角α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号,简记为:“函数名不变,符号看象限”.公式五~六归纳:π2±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号,简记为:“函数名改变,符号看象限”或“正变余、余变正、符号象限定”.六组诱导公式可以统一概括为“k ·π2±α(k ∈Z )”的诱导公式.当k 为偶数时,函数名不改变;当k 为奇数时,函数名改变;前面加一个把α视为锐角时原函数值的符号,记忆口诀为“奇变偶不变,符号看象限”.题型一 给角求值【例1】求下列各三角函数值.(1)sin(-83π); (2)cos 196π; (3)sin[(2n +1)π-23π].【过关练习】1.求下列三角函数值.(1)sin ⎝⎛⎭⎫-436π;(2)cos 296π;(3)tan(-855°).2.sin 585°的值为( )A .-22 B.22 C .-32 D.323.cos(-16π3)+sin(-16π3)的值为( ) A .-1+32B.1-32C.3-12 D.3+12题型二 给值求值问题【例1】已知cos(α-75°)=-13,且α为第四象限角,求sin(105°+α)的值.【例2】已知cos ⎝⎛⎭⎫α+π6=35,π2≤α≤3π2,求sin ⎝⎛⎭⎫α+2π3的值.【过关练习】1.已知cos(α-π)=-513,且α是第四象限角,则sin α等于( ) A .-1213 B.1213 C.512 D .±12132.已知sin(5π2+α)=15,那么cos α等于( ) A .-25 B .-15 C.15 D.253.若sin(3π+α)=-12,则cos(7π2-α)等于( ) A .-12 B.12 C.32 D .-324.已知cos(π+α)=-35,π<α<2π,求sin(α-3π)+cos(α-π)的值.5.已知sin ⎝⎛⎭⎫π6+α=33,求cos ⎝⎛⎭⎫α-π3的值.题型三 三角函数式的化简【例1】化简下列各式.(1)tan (2π-α)sin (-2π-α)cos (6π-α)cos (α-π)sin (5π-α);(2)1+2sin 290°cos 430°sin 250°+cos 790°.【过关练习】1.化简:(1)sin (540°+α)·cos (-α)tan (α-180°);(2)cos (θ+4π)·cos 2(θ+π)·sin 2(θ+3π)sin (θ-4π)sin (5π+θ)cos 2(-π+θ).2.化简:cos (180°+α)sin (α+360°)sin (-α-180°)cos (-180°-α).题型四 利用诱导公式证明恒等式【例1】求证:tan (2π-α)sin (-2π-α)cos (6π-α)sin ⎝⎛⎭⎫α+3π2cos ⎝⎛⎭⎫α+3π2=-tan α.【过关练习】1.求证:2sin ⎝⎛⎭⎫θ-3π2cos ⎝⎛⎭⎫θ+π2-11-2sin 2 (π+θ)=tan (9π+θ)+1tan (π+θ)-1.题型五 诱导公式的综合应用【例1】已知f (α)=sin (α-3π)cos (2π-α)sin ⎝⎛⎭⎫-α+3π2cos (-π-α)sin (-π-α). (1)化简f (α);(2)若α是第三象限的角,且cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值; (3)若α=-31π3,求f (α)的值.【过关练习】1.已知角α终边经过点P (-4,3),求cos (π2+α)sin (-π-α)cos (11π2-α)sin (9π2+α)的值.2.已知tan(3π+α)=2,则sin (α-3π)+cos (π-α)+sin (π2-α)-2cos (π2+α)-sin (-α)+cos (π+α)= .【补救练习】1.cos 600°的值为( ) A.32 B.12 C .-32 D .-122.若sin α=12,则cos(π2+α)的值为( ) A.12 B.32 C .-12 D .-323.化简下列各式.(1)sin(-193π)cos 76π; (2)sin(-960°)cos 1 470°-cos(-240°)sin(-210°).4.已知sin(π+α)=-13.计算: (1)cos ⎝⎛⎭⎫α-3π2; (2)sin ⎝⎛⎭⎫π2+α; (3)tan(5π-α).1.sin 2(π+α)-cos(π+α)cos(-α)+1的值为( )A .1B .2sin 2αC .0D .22.tan(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)的值为( ) A.m +1m -1 B.m -1m +1C .-1D .1 3.若sin(π-α)=log 8 14,且α∈⎝⎛⎭⎫-π2,0,则cos(π+α)的值为( ) A.53B .-53C .±53D .以上都不对4.已知cos ⎝⎛⎭⎫π6+θ=33,则cos ⎝⎛⎭⎫5π6-θ= .5.已知sin ⎝⎛⎭⎫α-π6=13,则cos ⎝⎛⎭⎫α+π3的值为( ) A .-233 B.233 C.13 D .-136.已知sin ⎝⎛⎭⎫α-π4=13,则cos ⎝⎛⎭⎫π4+α的值等于( ) A .-13 B.13 C .-223 D.2237.已知f (α)=tan (π-α)·cos (2π-α)·sin (π2+α)cos (-α-π),化简f (α)= .1.若sin(π+α)+cos ⎝⎛⎭⎫π2+α=-m ,则cos ⎝⎛⎭⎫32π-α+2sin(2π-α)的值为( ) A .-2m 3 B.2m 3 C .-3m 2 D.3m 22.已知cos(π2+φ)=32,且|φ|<π2,则tan φ等于( ) A .-33 B.33C .- 3 D.3 3.式子cos 2(π4-α)+cos 2(π4+α)= . 4.若cos(α-π)=-23,求sin (α-2π)+sin (-α-3π)cos (α-3π)cos (π-α)-cos (-π-α)cos (α-4π)的值.5.在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos(π-B ),求△ABC 的三个内角.6.已知cos ⎝⎛⎭⎫π2+α=2sin ⎝⎛⎭⎫α-π2,求sin 3(π-α)+cos (α+π)5cos ⎝⎛⎭⎫5π2-α+3sin ⎝⎛⎭⎫7π2-α的值.。
1.3三角函数的诱导公式(2)上课
tan( ) tan
求任意角的三角函数值,一般按下面步 骤进行:
任意负角的 三角函数
用公式三或一 任意正角的 三角函数
用公式一
0o到360o的角 用公式
的三角函数 二或四
锐角三 角函数
填写下表
4 5 5 7 8
3
4
34
3
sin 3
2
3
2 3
2
2
2
2
2
cos
3 +C
4
3、已知tan 1,求值
3
sin3( ) cos(2 ) tan(2 )
sin( 2 ) cos( 3 ) tan( ) tan(3 )
2
2
口诀:奇变偶不变,符号看象限
意义:k (k Z)的三角函数值
2
1)当k为偶数时,等于的同名三角函数值,前面加上 一个把看作锐角时原三角函数值的符号;
2)当k为奇数时,等于的异名三角函数值,前面加上 一个把看作锐角时原三角函数值的符号;
诱导公式一:
sin( k 2 ) sin cos( k 2 ) cos tan( k 2 ) tan
诱导公式一:
sin( k 2 ) sin cos( k 2 ) cos tan( k 2 ) tan
诱导公式二:
(k z)
sin sin
cos cos
tan tan
诱导公式三:
sin sin
cos cos
tan() tan
诱导公式四:
sin sin
诱导公式二:
(k z)
sin sin
cos cos
tan tan
诱导公式三:
sin sin
三角函数的诱导公式_(2)[精选文档]
2 2
(2)cos(1290) cos1290 cos(210 3 360)
cos 210 cos(180 30) cos 30 3
2
练习:
利用公式求值 sin(16 )
3
解 :sin( 16 ) sin(16 ) sin(4 4 )
3
3
3
(sin 4 ) sin( ) (sin )
温故知新
公式二
公式二
sin( ) sin cos( ) cos tan( ) tan
记忆方法:利用图形
公式三
公式三
sin( ) sin
cos( ) cos
tan( ) tan
负角→正角
记忆方法:利用图形
公式四
公式四
sin( ) sin cos( ) cos tan( ) tan
α的余弦(正弦)函数值,再放上将α当作
锐角时原函数值的符号.
sin( k 2 ) sin cos( k 2 ) cos tan( k 2 ) tan
sin( ) sin
cos( ) cos
tan( ) tan
sin( ) cos
2
cos(
)
sin
2
3
公 sin( ) sin
式 cos( ) cos
三 tan( ) tan
公 sin( ) sin 式 cos( ) cos 四 tan( ) tan
函数名不变,符号看象限
练习:
1 求下列三角函数值:
(1) sin 225 ; (2)cos 1290 ;
解:(1)sin 225 sin(180 45) sin45
2
cos( 3 ) sin
三角函数的诱导公式与解析式
三角函数的诱导公式与解析式三角函数是数学中重要的概念之一,它们在几何学、物理学、工程学等领域具有广泛的应用。
在三角函数的学习中,诱导公式与解析式是关键的概念,它们帮助我们简化三角函数的计算和推导过程。
本文将详细介绍三角函数的诱导公式与解析式。
一、正弦函数的诱导公式与解析式正弦函数是最基本的三角函数之一,它在直角三角形中的定义是:对于一个角的正弦值等于该角的对边与斜边的比值。
正弦函数的诱导公式是指由一个角的正弦值得到另一个角的正弦值的公式。
1. 诱导公式正弦函数具有以下诱导公式:sin(π/2 - θ) = cosθsin(π/2 + θ) = cosθsin(3π/2 - θ) = -cosθsin(3π/2 + θ) = -cosθ这些诱导公式可以帮助我们在计算过程中简化问题,将复杂的角度转化为简单的角度。
2. 解析式正弦函数的解析式可以表示为:sinθ = a/c其中,a为角的对边长度,c为斜边长度。
通过解析式,我们可以根据给定的对边长度和斜边长度,计算出对应角的正弦值。
二、余弦函数的诱导公式与解析式余弦函数也是常见的三角函数之一,它在直角三角形中的定义是:对于一个角的余弦值等于该角的邻边与斜边的比值。
余弦函数的诱导公式是指由一个角的余弦值得到另一个角的余弦值的公式。
1. 诱导公式余弦函数具有以下诱导公式:cos(π/2 - θ) = sinθcos(π/2 + θ) = -sinθcos(3π/2 - θ) = -sinθcos(3π/2 + θ) = sinθ通过这些诱导公式,我们可以简化计算过程,将复杂的角度转化为简单的角度。
2. 解析式余弦函数的解析式可以表示为:cosθ = b/c其中,b为角的邻边长度,c为斜边长度。
通过解析式,我们可以根据给定的邻边长度和斜边长度,计算出对应角的余弦值。
三、正切函数的诱导公式与解析式正切函数是三角函数中的另一个重要概念,它在直角三角形中的定义是:对于一个角的正切值等于该角的对边与邻边的比值。
三角函数的诱导公式
三角函数的诱导公式三角函数的诱导公式是一组重要的公式,用于将一个三角函数表达式中的一个三角函数用其他三角函数来表示。
这些公式有助于简化和转化三角函数的计算。
在本文中,我们将讨论常见的三角函数诱导公式,并给出其推导过程。
首先,我们来讨论三角函数的基本定义。
在直角三角形中,正弦(sin)、余弦(cos)和正切(tan)定义为:sin A = 直角边对边 / 斜边cos A = 直角临边 / 斜边tan A = 直角边对边 / 直角临边下面是一些常见的三角函数诱导公式及其推导过程:1.同角三角函数:sin(-A) = -sin A推导:考虑一个直角三角形,如果角A是正角,那么角-A就是负角。
根据三角函数定义,我们有-sin A = 直角边对边 / 斜边 = sin(-A)。
cos(-A) = cos A推导:同理,我们可以得出-cos A = 直角临边 / 斜边 = cos(-A)。
tan(-A) = -tan A推导:同样地,我们可以得出-tan A = 直角边对边 / 直角临边 = tan(-A)。
2. 余割(csc)、正割(sec)和余切(cot)函数:csc A = 1 / sin Asec A = 1 / cos Acot A = 1 / tan A3.互余角公式:sin(A + π/2) = cos A推导:考虑一个直角三角形,如果角A是0度,那么角A + π/2就是90度。
根据三角函数定义,我们有sin(0) = 0和cos(90) = 0,所以sin(A +π/2) = cos A。
cos(A + π/2) = -sin A推导:同样地,我们可以得出cos(A + π/2) = -sin A。
tan(A + π/2) = -cot A推导:同样地,我们可以得出tan(A + π/2) = -cot A。
4.余角公式:sin(π/2 - A) = cos A推导:考虑一个直角三角形,如果角A是0度,那么角π/2 - A就是90度。
1.3三角函数的诱导公式(2)
研修班
5
3.已知sin(3πθ) lg 1 , 3 10
求
cos(πθ)
cosθcos πθ
1
cos(θ 2π)
的值.
cosθcosπθ cos(θ 2π)
18
2020/4/25
研修班
6
下面我们来研究α与π/2-α的三角函
数值之间的关系
设α是锐角,它的终边
1.5
与单位圆的交点为
P1
1
0.5
O
-1
例1、求证:(1)sin(32πα) cosα; (2)cos(32πα) sinα.
π/2±α,3π/2±α的三角函数值等于α的
余函数(正弦函数与余弦函数互为余函数)值, 前面加上把α看成是锐角时原函数所在象限
的符号.2020/4/25Fra bibliotek研修班
10
例2.化简
sin
2πα
cos
πα
cos
π2 α
cos
三角函数的诱导公式(2)
2020/4/25
研修班
1
复习提问:
公式一:
sin(α+k·360°) = sinα cos(α+k·360°) = cosα tan(α+k·360°) = tanα
公式二:
2020/4/25
sin( ) sin
cos( ) cos
tan( ) tan
例3:已知cos (750+)=1/3, 求cos(1050-)+cos(2850-)
0 巩固练习:
1 已知sin(/4+)=1/2,则sin(3/4-)的 值是 1/2 。
2 cos(-8/3)+cos(+13/3)= 0 .
三角函数诱导公式大全
三角函數誘導公式大全三角函数诱导公式常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学 编号:SX-13-01-08
1.2.3三角函数的诱导公式(2)
编写人:刘祖尧 审核人:高一数学组 编写时间:2013年10月
班 组 姓名
【学习目标】
1、能进一步运用诱导公式求出任意角的三角函数值
2、能通过公式的运用,了解未知到已知、复杂到简单的转化过程
3、进一步准确记忆并理解诱导公式,灵活运用诱导公式求值。
【重点】诱导公式五、六的推导探究
诱导公式一~~六的综合应用
【难点】发现终边与角的终边关于直线对称的角之间的数量关系。
αx y =【知识链接】诱导公式一~~四
【数学思想】观察法,归纳法
【学习过程】
一、复习回顾
1、复习四组诱导公式:一~~四,回顾的含意。
函数名不变,符号看象限的含意
2、已知:求的值,3tan =α)
2sin()cos(4)sin(3)cos(2απααπαπ-+-+--二、学习探究
问题一:若角的终边与角的终边关于直线y=x 对称(如图),
αβ(1)角与角有何关系?
αβ(2)角与角的正弦函数与余弦函数值之间有何关系?
αβ(3)由(1),(2)你能发现什么结论?
的
新知一:当角的终边与角的终边关于y=x 对称时,与的关系为:αβαβ_________________公式五():__________________________________________;
απ
-2 __________________________________________;
___________________________________________.问题二:若角的终边与角的终边关于直线对称,你能得到什么结论?αβx y -=当角的终边与角的终边关于对称时,与的关系为:αβx y -=αβ)2(
απβ+-=新知二:公式六():__________________________________________;
απ
+2 __________________________________________; ___________________________________________.也可由)]2([)2(
αππαπ--=+f f 试用的关系导出公式六
)2(2απ
παπ
--=+思考:这六组公式可以用口诀“奇变偶不变,符号看象限”来记忆,如何理解这一口诀?
⎩⎨⎧=±⋅)()()()()()()2(1为奇数为偶数k f k f k f αααπ⎪⎪⎪⎭
⎫ ⎝⎛±⋅的符号。
所在象限中的锐角时,当上把的余函数,( )中填是f k f f απααα2)()(1【典型例题】
例1、求证:,.ααπcos 23sin -=⎪⎭⎫ ⎝⎛+ααπsin 23cos =⎪⎭
⎫ ⎝⎛+
例2、化简:(1)0
00
0800cos 260sin 440cos 280sin 21++(2))2cos()2sin()2
7cos()2sin()23sin()sin()3tan(απαπααπαπαπαπ++--+---例3、已知,且,求.()3175cos =+α 90180-<<-α()
α- 15cos 三、总结提升
※学习小结 诱导公式一~~六
※知识拓展 “奇变偶不变,符号看象限”的理解与“活用”
【学习评价】
※自我评价你完成本节导学案的情况为( ).
A. 很好
B. 较好
C. 一般
D. 较差
【当堂检测】1、求证:,.ααπsin 23cos -=⎪⎭⎫ ⎝⎛-ααπcos 23sin -=⎪⎭
⎫ ⎝⎛-
2、化简:
0200
020sin 170cos 160cos 200sin 21)1(---(2))tan()2
3cos()2sin(1
)(tan 12αππααπα+--+-3、已知,是第三象限角,求的值3
1)75cos(0=+αα)105sin()105cos(00-+-αα【课后作业】1、已知A 、B 、C 为△ABC 的三个内角,求证2
A cos 2C
B sin =+2、已知,计算(1) (2) 21)sin(-
=+απ)5sin(απ-)2sin(απ+(3) (4))23cos(πα-)2tan(απ-。