3D7303M-200中文资料
3M胶带型号及用途
用于LCM,LED发光二极管,FV太阳能电池组件,TP触摸屏,PCB,FPC,光通讯器件,电子标签,电子纸,智能卡封装,EL冷光片,无源器件,封装测试,SMT表面贴装,摄像头,手机组装,电脑装配,DVD,数码产品,半导体芯片,传感器,电气绝缘,汽车电子,医疗器械等行业等3M胶带种类包括以下部分:其中红色字体部分为模切常用胶带1、3MVHB泡绵胶带:4920/4930/4950/4955/4959s2、3M双面丙烯酸泡绵胶带:Y-4615/Y-4609/ 4618/46223、3M双面聚氨酯泡绵胶带:4016/4026/40324、3M双面聚乙烯泡绵胶带:4462/4466/4492/44965、3M双面聚氯乙烯泡绵胶带:4408/4416/44326、3M双面氯丁泡绵胶带:4962/4965/49927、3MDualLockTM工业扣件:SJ3550/SJ3551/SJ3552/SJ35608、3M ScotchmateTM工业扣件:SJ3526/SJ3527/SJ3571/SJ35729、3M双面无纺布胶带:9Y9448/908010、3M双面胶带:415/444/9495/9500/9690/973111、3M ATG打胶系统:924/926/92812、3M双面转移胶膜:467MP/468MP13、3M夹片:7945MP/7956MP/7957MP/7993MP14、3M双面导热胶带:9882/9885/989015、3M双面导电胶带:9719,9713、9703、9705、9708、9709、9709SL、7303、5303、7393、7379、7371、7376、7378、8794、5363、7313、7396、5552R16、3M双面光学透明胶带OCA:8212A、8212、8141、8161、8185、8187、8171、8172、8195、819717、3M PolymaskTM保护胶带:3112/4178/511218、3M金属箔胶带:261/271/281/291/300PL/1115/1120/143619、3M BumponTM和RollstockTM脚垫:5012/5302A20、3M标签:7815/7816/7847/7613/7868/793021、3M水溶性胶带:906B/910/917B/9952/9969/997422、3M柔印贴版胶带:1015/1020/1115/1915/192023、3M地面标识胶带:471/5700/570224、3M高分子材料表面滑爽胶带:5451/5480/5490/5491/549825、3MPET线路板电镀保护胶带:331T/335/336/850/851/85326、3M波峰焊保护胶带:5413/5419/7413/7413T27、3M玻璃布胶带:361/36728、3M遮蔽胶带:200/232/244/2308/2310/2364/269329、3M纤维胶带:8915/893430、3M丙烯酸减震泡棉3M5060-02,3M5060-03,3M5060-05,3M5060S-02,3M5060SR-03,3M5060SR-0531、3M医用胶带:单面薄膜胶带、双面胶带和转移胶带、无纺布和织造布胶带、水胶体胶带、泡沫胶带长期优势现货供应3M以下产品:3M导热界面材料8805、8810、8815、8820、9889FR、5506、5591S、55033M导电纯胶膜9712、9713、9719、9703、9705、9708、9709异方性导电胶膜:9719,9713、9703、9705、9708、9709、9709SL、7303、5303、7393、7379、7371、7376、7378、8794、5363、7313、7396、5552R等最新型号3MACF导电胶膜、异方性导电胶膜、异方性导电胶带、ACF胶带3M高温胶带851、1278、1279、1280、5413、7414、5414、5419、5433、7413、7419、7413、7412、851ST、852ST3M光学透明胶带8212A、8212、8141、8161、8185、8187、8171、8172、8195、81973M遇水指示标签产品5557、5557NP、5558、55593M遮光胶带,3M黑白双面胶带55200H、55201H、6006H、6008H、9582H、9583H、4012-30、4012-50、4012-60、4019-50、4019-60、4019-85、4003C、4003T、4040、4007、4037,用于液晶显示器及背光模组3M遮光胶带,3M黑色双面胶带9004、9622、9632、936BK、9313B、9005、4362S、4363S、4364S,用于液晶显示器及背光模组用3M电磁屏蔽胶带电磁吸波材料:3M300PL铝箔胶带;3M508SN铜箔胶带;3M电磁屏蔽胶带/EMI/RFI胶带:9703,9705,9706,9708,9709,9709S,9709SL,9712,9713,9719,7761,7763,7765,7805,7810等;3M导电铜箔胶带:3M1181,3M1182,3M1183,3M1194,3MCU-35C,3M1245,3M1345,3M2245;3M导电铝箔胶带:3M1120,3M1170;3M1172,3M1178,3M1267;3MAL-25BT,3MAL-50BT,3MAL-25DC3M电磁吸波材料:3MAB5000电磁吸波材料;3MHigh-u磁场屏蔽片:1380;手机,CRT等;3M导电丙烯酸衬垫:eCAP7830,eCAP7830N;3MCN3190铜镍导电布;3M2191FR抗撕裂导电胶带;3MCN4190双面铜镍导电布胶带;3MAU2190导电金织物胶带;3MAG2300导电银织物胶带;3M电磁屏蔽套管:3MDS-5,DS-7,DS-10,DS-14,DS-30-DS-37。
三维打印机资料
三维打印机资料三维打印机在过去通常又被称为“快速成型机”。
它通过对电脑中三维软件的识别,进行STL(三角网格格式)转换,再结合切层软件确定摆放方位和切层路径,并进行切层工作和相关支撑材料的构造。
最后使用喷头将固态的线型成型材料加热成半熔融状态之后挤出来,和支撑材料自下而上,一次一层的构铸成最终实体。
简单点说,可以理解为软件把物体分成若干个横截面,而三维打印机将这些横截面一次一层的沉淀、堆积,最终形成我们所需的实体。
从它整个成像的过程来看,我们知道三维打印机至少由:软件控制系统、成型材料、支撑材料、成型材料匣、支撑材料匣、喷头、加热模组、成型空间等几大部份构成(如图)。
其中成型材料和支撑材料就相当于我们普通打印机的耗材,也有的机型不需要支撑材料,大大降低了用户的后期使用成本,如美国Z Corperation公司的Z系列机型。
目前,三维打印机除了能够在制造业中生成各种模型外,由于它的占地空间和环保理念都逐步适应了现代商务区的要求,也开始应用于教育、建筑、设计等多个行业。
美国Stratasys公司的桌面型ABS三维打印机就是专门针对办公室环境应用而设计的,无噪音,无有害气体。
在各个设计领域,使用三维打印机能够轻松将电脑中的效果模型转变为实物,更直观的表达出设计师的设计理念,便于交流和演示,同时切身体会该设计模型的手感,这是仅仅依靠计算机中CAD三维图像展示所不能做到的。
此外,我们可以将庞大的模型,分解成各个小型“零件”,成型之后再拼凑粘合,如房地产中的小区沙盘.但如果要将三维打印机像电脑一样应用到我们普通消费都的生活中,还存在一些具体的问题:1、打印速度问题早期的三维打印机形成一套模具得花两三天的时间,随着打印技术的提高和成型材料的改进,一般都用每分钟打印多少层来计算其工作速度,像上面提到的Dimension和ZP310Plus,每分钟都可以达到两三层的速度,形成一套模具只需几个小时。
但这种速度也只适用于为了提高工作效率和质量的相关企业,暂时无法被家庭用户所接受。
光宝科技 MaxTester 730C PON metro OTDR 规格手册说明书
S P E C S H E E TN E W O T D R G E N E R A T I O NKEY FEATURESHandy, lightweight, powerful, tablet-inspired design Rugged design built for outside plant7-inch, outdoor-enhanced touchscreen–the biggest in the handheld industry 12-hour battery lifeTamper-proof password protectionDynamic range up to 39 dB for up to 132 km point-to-point (P2P)Short dead zones: event dead zone (EDZ) = 0.5 m;attenuation dead zone (ADZ) = 2.5 m; PON dead zone = 30 m Single port for in-service troubleshooting with in-line 1490/1550 nm PON power meter (optional)iOLM-ready: one-touch multiple acquisitions, with clear go/no-go results presented in a straightforward visual format Supports high port count PON splitters (up to 1x128)Live fiber testing at 1625 nm or 1650 nmAPPLICATIONSFTTx/PON testing through splitters Access network testing (P2P)Metro links testing (P2P)Live fiber troubleshooting Passive optical LAN (POL)MaxTester 730C PON/metro OTDRFully featured, entry-level, dedicated OTDR with tablet-inspired design, suitable for metro and optimized to test through optical splitters, for seamless end-to-end FTTH characterization and troubleshooting.OPTIMIZED FOR FTTx/MDU FIBER DEPLOYMENTS AND TROUBLESHOOTING, SUITABLE FOR METROCOMPLEMENTARY PRODUCTS AND OPTIONSFiber inspection scope FIP-400B (WiFi or USB)Data post-processing software FastReporter 3Soft pulse suppressor bag SPSBTHE HANDHELD OTDR. . . REINVENTED.The MaxTester 700B/C Series is the first tablet-inspired OTDR line that is handy, lightweight and rugged enough for any outside plant environment. With a 7-inch, outdoor-enhanced touchscreen–the most efficient handheld display in the industry–it delivers an unprecedented user experience. Its intuitive Windows-like GUI ensures a fast learning curve. Plus, its new and improved OTDR 2 environment offers icon-based functions, instant boot-up, automatic macrobend finders as well as improved auto and real-time modes.The MaxTester 700B/C Series is a line of genuine high-performance OTDRs from the world’s leading manufacturer. It delivers EXFO’s tried and true OTDR quality and accuracy along with the best optical performance for right-first-time results, every time. The amazing 12-hour battery life will never let a technician down, and the plug-and-play hardware options, like the VFL, power meter and USB tools, make every technician’s job easier.Most importantly, the MaxTester 700B/C Series is finally bringing the intelligent Optical Link Mapper (iOLM), an intelligent OTDR-based application, to the handheld market. This advanced software turns even the most complex trace analysis into a simple, one-touch task.Ultimately, the MaxTester 700B/C Series is small enough to fit in your hand and big enough to fit all your needs!THE ENTRY-LEVEL SOLUTION DESIGNED FOR ALL YOUR TESTING NEEDSThe MaxTester 730C PON/metro OTDR is optimized to test through optical splitters up to 1x128, ensuring complete end-to-end FTTH characterization. The 1625-nm or 1650-nm, out-of-band, live testing port enables the efficient troubleshooting of active networks without affecting the signal of other clients. Plus, the high dynamic range makes it suitable for metro P2P testing. Other models available:•MaxTester 715B short access and FTTx last-mile installation and troubleshooting•MaxTester 720C LAN/WAN access OTDR—optimized for multimode and singlemode access network construction and troubleshooting SECURE YOUR INVESTMENT AGAINST THEFTProtected instruments have no value on the black market making them completely unappealing to thieves.With our security management option, administrators can define and load a tamper-proof security profileon the MaxTester, displaying a property message on the home screen and securing it with a user password(permanent or renewable).LOOKING FOR ICON-BASED MAPPING?Linear view (included on all EXFO OTDRs)Available on our OTDRs since 2006, the linear view simplifies the reading of an OTDR trace by displaying icons in a linear way for each wavelength. This view converts the graph data points obtained from a traditional single pulse trace into reflective, non-reflective or splitter icons. With applied pass/fail thresholds, it becomes easier to pinpoint faults on your link.This improved linear view offers you the flexibility to display both theOTDR graph and its linear view without having to perform a toggleto analyze your fiber link.Although this linear view simplifies OTDR interpretation of a singlepulse-width trace, the user must still set the OTDR parameters.In addition, multiple traces must often be performed in order tofully characterize the fiber links. See the section below to learnabout how the iOLM can perform this automatically and with moreaccurate results.OTDR testing comes withits load of challenges...In response to these challenges, EXFO developed a better way to test fiber optics:application designed to simplify OTDR testing by eliminating the need to configure parameters, and/or analyze and interpret multiple complex OTDR traces. Its advanced algorithms dynamically define the testing parameters, as well as the number of acquisitions that best fit the network under test. By correlating multipulse widths on multiple wavelengths, the iOLM locates and identifiesIn addition to the standard iOLM feature set, you can select added-value features as part of the Order a unit with the iOLM application onlyCOMBORun both iOLM and OTDR applications (Oi code)Add the iOLM software option to your iOLM-ready unit, even while in the fieldGET THE BEST OUT OF YOUR DATA POST-PROCESSING— ONE SOFTWARE DOES IT ALLThis powerful reporting software is the perfect complement to your OTDR, and can be used to create and customize reports to fully address your needs.OPTICAL PLUG-AND-PLAY OPTIONSThe MaxTester features plug-and-play optical options that can be purchased whenever you need them: at the time of your order or later on. In either case, installation is a snap, and can be performed by the user without the need for any software update. Optical power meterEXFO’s high-level power meter (GeX) can measure up to 27 dBm, the highest in the industry. This is essential for hybrid fiber-coaxial (HFC) networks or high-power signals. If used with an auto-lambda/auto-switching compatible light source, the power meter automatically synchronizes on the same wavelength, thus avoiding any risk of mismatched measurement.•Extensive range of connectors•Auto-lambda and auto-switching•Offers measurement storage and reporting•Seven standard calibrated wavelengthsVisual fault locator (VFL)The plug-and-play VFL easily identifies breaks, bends, faulty connectors and splices, in addition to other causes of signal loss. This basic, yet essential troubleshooting tool should be part of every field technician’s toolbox. The VFL visually locates and detects faults over distances of up to 5 km by creating a bright-red glow at the exact location of the fault on singlemode or multimode fibers (available with the optical power meter only).FIBER CONNECTOR INSPECTION AND CERTIFICATION–THE ESSENTIAL FIRST STEP BEFORE ANY OTDR TESTING Taking the time to properly inspect a fiber-optic connector using an EXFO fiber inspection scope can prevent a host of issues from arising further down the line, thus saving you time, money and trouble. Moreover, using a fully automated solution with autofocus capabilities will turn this critical inspection phase into a fast and hassle-free one-step process.Did you know that the connector of your OTDR/iOLM is also critical?The presence of a dirty connector at an OTDR port or launch cable can negatively impact your test results, and even cause permanent damage during mating. Therefore, it is critical to regularly inspect these connectors to ensure that they are free of any contamination. Making inspection the first step of your OTDR best practices willmaximize the performances of your OTDR and your efficiency.PACKAGED FOR EFFICIENCY1Singlemode OTDR port610/100 Mbit/s Ethernet port11 2Singlemode Live OTDR port7Two USB 2.0 ports12 3Stylus8AC adapter13 4Power meter9Home/switch application andscreen capture (hold)5Visual fault locator10Power on/off/stand by123456789101113SOFTWARE UTILITIESSoftware update Ensure that your MaxTester is up-to-date with the latest software.VNC configuration The Virtual Network Computing (VNC) utility allows technicians to easily remote control the unit via a computer or laptop. Microsoft Internet Explorer Access the Web directly from your device interface.Data mover Transfer all your daily test results quickly and easily.Centralized documentation Instant access to user guides and other relevant documents.Wallpapers Enhance your work environment with colorful and scenic backgrounds.PDF Reader View your reports in PDF format.Bluetooth file sharing Share files between your MaxTester and any Bluetooth-enabled device.WiFi connection WiFi FIP inspection scope interface. Upload test results and browse the Internet.Inspection scope USB or WiFi scope to inspect and analyze connectors.FTP server Exchange files over WiFi to an FTP application on a smartphone for easier file sharing from the field.Security management Tamper-proof security profile with user password (permanent or renewable) and custom property message.SPECIFICATIONS a。
国美资料库-国美技术资料库-电子产品设计-NATIONAL INSTRUMENTS SCXI-130
National Instruments ™, ™, and SCXI ™ are trademarks of National Instruments Corporation. Product and company names mentioned herein are trademarks or trade names of their respective companies.370253B-01© Copyright 2000 National Instruments Corp. All rights reserved.November 2000SCXI -1303 T ERMINAL B LOCK IntroductionThis document contains information and step-by-step instructions forverifying the performance of the temperature sensor on theNational Instruments SCXI-1303 terminal block. This temperature sensor is for cold-junction compensation of thermocouples on the terminal block.What Is Calibration?Calibration consists of verifying the measurement accuracy of a device and correcting for any measurement error. For SCXI-1303 terminal blocks, calibration is simply verifying the measurement accuracy of thecomponents on the terminal block. Because these components are notuser-adjustable, calibration consists of verification only, without correcting for any error. Verification is measuring the performance of a device and comparing the results to the factory specifications of the device.Why Should You Verify?The accuracy of electronic components drifts with time and temperature, which can affect measurement accuracy as the device ages. Verification ensures that your SCXI-1303 terminal block still meetsNational Instruments standards. If the results of the procedure indicate that the temperature sensor on your terminal block is out of specification, return the sensor to National Instruments for repair or replacement.How Often Should You Verify?The measurement accuracy requirements of your application determine how often you should verify the performance of your SCXI-1303 terminal block. National Instruments recommends you verify your terminal block at least once every year. You can shorten this interval to six months or90days, based on the demands of your application.™Equipment and Other Test RequirementsThis section describes the equipment, software, documentation, and testconditions required for verifying the performance of your SCXI-1303terminal block.Test EquipmentVerification requires a high-precision voltage source with at least 50ppmaccuracy, a multiranging 5 1/2 digit digital multimeter (DMM) with15ppm accuracy, and a thermometer that is accurate to within 0.1 °C.National Instruments recommends you use the following instruments forverifying the performance of your SCXI-1303 terminal block:•Calibrator—Fluke 5700A•DMM—NI 4060 or HP 34401AIf these instruments are not available, use the accuracy requirements listedabove to select a substitute calibration standard.Software and DocumentationYou can find all the necessary information to verify the performanceof the SCXI-1303 in this verification procedure. No other software ordocumentation is required. If you would like more information on theSCXI-1303, refer to the SCXI-1303 Terminal Block Installation Guide,which you can download from the National Instruments Web site at/manualsTest ConditionsFollow these guidelines to optimize the connections and the environmentduring verification:•Keep connections to the SCXI-1303 terminal block short. Long cablesand wires act as antennae, picking up extra noise that can affectmeasurements.•Use shielded copper wire for all cable connections to the device.Use twisted-pair wire to eliminate noise and thermal offsets.•Keep relative humidity below 80%.•Maintain a temperature between 15 and 35 °C.SCXI-1303 Terminal Block Calibration Verification ProcedureThis section contains step-by-step instructions for verifying theperformance of the temperature sensor on your SCXI-1303 terminal block.Verifying Temperature Sensor PerformanceComplete the following steps to verify the performance of the temperaturesensor on your terminal block:1.Connect a +5 VDC power source to the terminal block.a.Hold the terminal block vertically upright and view it from therear. The terminals on the 96-pin DIN connector are designatedas follows:–Column A is on the right, Column B is in the middle, andColumn C is on the left.–Row 1 is at the bottom and Row 32 is at the top.Figure1 illustrates the connector pin assignments. Individual pinsare identified by their column and row. For example, A3 denotesthe terminal located in Column A and Row3. This conforms to thelabeling of the pins on the front connector of a mating SCXImodule. It does not necessarily correspond to the labeling of thepins on the rear of the terminal block connector itself, which youcan only view by opening the terminal block enclosure.b.Strip 0.5 inches of insulation from one end of a 22 AWG solidwire. Insert the stripped end of the wire into terminal A1 on the96-pin female DIN connector on the rear of the terminal block.Attach the other end of this wire to the positive terminal of the+5VDC power supply.c.Strip 0.5 inches of insulation from one end of a 22 AWG solidwire. Insert the stripped end of the wire into terminal A2 on the96-pin female DIN connector on the rear of the terminal block.Attach the other end of this wire to the negative terminal of the+5VDC power supply.© National Instruments Corporation3SCXI-1303 Terminal Block Calibration ProcedureSCXI-1303 Terminal Block Calibration Procedure 2.Connect a calibrated DMM to the temperature-sensor output of theterminal block.a.Refer to Figure 2 to locate jumper W1 on your terminal block and verify that MTEMP is jumpered.b.Strip 0.5 inches of insulation from one end of a 22 AWG solidwire. Insert the stripped end of the wire into terminal A3 on the 96-pin female DIN connector on the rear of the terminal block. Attach the other end of this wire to the positive input terminal of the calibrated DMM.c.Connect the negative input terminal of the calibrated DMM to the negative terminal of the +5 VDC power supply.3.Place the terminal block in a temperature-controlled environment where the temperature is between 15and 35°C.4.When the terminal block temperature equilibrates with itssurroundings, measure the temperature sensor output V meas using a calibrated DMM.5.Measure the actual temperature T act in the temperature-controlled environment using a calibrated thermometer.6.Convert V meas (in volts) to measured temperature T meas (in degrees Celsius) by performing the following calculations:a.Calculateb.Calculatec.Calculatewhere T meas is in °Ca = 1.295361 × 10–3b = 2.343159 × 10–4c = 1.018703 × 10–7x 2.5V meas –5000--------------------------=y V meas x ------------ln =T meas 1a y b cy 2+()+----------------------------------273.15–=pare T act to T meas.•If (T meas− 0.5 °C) ≤ T act≤ (T meas+ 0.5 °C), the performance ofthe terminal block temperature sensor has been verified.•If T act< (T meas− 0.5 °C),the terminal block temperature sensor isnonfunctional. Do not substitute parts or modify equipment.Return the terminal block to National Instruments to ensure thatthe safety features are not compromised.•If T act> (T meas+ 0.5 °C), the terminal block temperature sensor isnonfunctional. Do not substitute parts or modify equipment.Return the terminal block to National Instruments to ensure thatthe safety features are not compromised.8.Return jumper W1 to its original position.You have completed verifying the performance of the temperature sensorof your SCXI-1303 terminal block.© National Instruments Corporation5SCXI-1303 Terminal Block Calibration ProcedureFigure 1. SCXI-1303 Front Connector Pin AssignmentsSCXI-1303 Terminal Block Calibration Figure 2. Location of Jumper W1 on the SCXI-1303 Terminal Block© National Instruments Corporation7SCXI-1303 Terminal Block Calibration Procedure。
MAX3000中文资料
MAX3000中文资料General DescriptionThe MAX3000E/MAX3001E/MAX3002–MAX3012 8-channel level translators provide the level shifting neces-sary to allow data transfer in a multivoltage system.Externally applied voltages, V CC and V L , set the logic lev-els on either side of the device. Logic signals present on the V L side of the device appear as a higher voltage logic signal on the V CC side of the device, and vice-versa.The MAX3000E/MAX3001E/MAX3002/MAX3004–MAX3012feature an EN input that, when low, reduces the V CC and V L supply currents to <2μA. The MAX3000E/MAX3001E also have ±15kV ESD protection on the I/O V CC side for greater protection in applications that route signals externally. The MAX3000E operates at a guaranteed data rate of 230kbps. The MAX3001E operates at a guaranteed data rate of 4Mbps. The MAX3002–MAX3012 operate at a guaranteed data rate of 20Mbps over the entire specified operating voltage range.The MAX3000E/MAX3001E/MAX3002–MAX3012 accept V L voltages from +1.2V to +5.5V and V CC voltages from +1.65V to +5.5V, making them ideal for data transfer between low-voltage ASICs/PLDs and higher voltage systems. The MAX3000E/MAX3001E/MAX3002–MAX3012 are available in 20-pin UCSP? and 20-pin TSSOP packages.ApplicationsCellphonesSPI? and MICROWIRE? Level Translation Low-Voltage ASIC Level Translation Smart Card Readers Cellphone Cradles Portable POS SystemsPortable Communication Devices Low-Cost Serial Interfaces GPSTelecommunications EquipmentFeatureso Guaranteed Data Rate Options230kbps (MAX3000E)4Mbps (MAX3001E)20Mbps (MAX3002–MAX3012)o Bidirectional Level Translation(MAX3000E/MAX3001E/MAX3002/MAX3003)o Unidirectional Level Translation (MAX3004–MAX3012)o Operation Down to +1.2V on V Lo ±15kV ESD Protection on I/O V CC Lines (MAX3000E/MAX3001E)o Ultra-Low 0.1μA Supply Current in Shutdown o Low Quiescent Current (<10μA)o UCSP and TSSOP PackagesMAX3000E/MAX3001E/MAX3002–MAX3012+1.2V to +5.5V , ±15kV ESD-Protected, 0.1μA,35Mbps, 8-Channel Level Translators________________________________________________________________ Maxim Integrated Products1Ordering Information19-2672; Rev 1; 10/03For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .UCSP is a trademark of Maxim Integrated Products, Inc.SPI is a trademark of Motorola, Inc.MICROWIRE is a trademark of National Semiconductor.*Future product—contact factory for availability.Ordering Information continued at end of data sheet.Pin Configurations and Functional Diagrams appear at endof data sheet.M A X 3000E /M A X 3001E /M A X 3002–M A X 3012+1.2V to +5.5V , ±15kV ESD-Protected, 0.1μA,35Mbps, 8-Channel Level Translators 2___________________________________________________________________ ____________________ABSOLUTE MAXIMUM RATINGSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Th ese are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.All Voltages Referenced to GNDV CC ...........................................................................-0.3V to +6V V L...........................................................................................-0.3V to +6V I/O V CC_......................................................-0.3V to (V CC + 0.3V)I/O VL_...........................................................-0.3V to (V L + 0.3V)EN, EN A/B...............................................................-0.3V to +6V Short-Circuit Duration I/O V L_, I/O V CC_to GND .......Continuous Continuous Power Dissipation (T A = +70°C)20-Pin TSSOP (derate 7.0mW/°C above +70°C).........559mW 20-Pin UCSP (derate 10mW/°C above +70°C)............800mW Operating Temperature RangesMAX3001EAUP .............................................-40°C to +125°C MAX300_EE_P.................................................-40°C to +85°C MAX30_ _E_P ..................................................-40°C to +85°C Junction Temperature......................................................+150°C Storage Temperature Range ............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CELECTRICAL CHARACTERISTICSMAX3000E/MAX3001E/MAX3002–MAX3012+1.2V to +5.5V , ±15kV ESD-Protected, 0.1μA,35Mbps, 8-Channel Level Translators________________________________________________________________ _______________________3ELECTRICAL CHARACTERISTICS (continued)(V CC = +1.65V to +5.5V, V L = +1.2V to V CC , EN = V L (MAX3000E/MAX3001E/MAX3002/MAX3004–MAX3012), EN A/B = V L or 0(MAX3003), T= T to T . Typical values are at V = +1.65V, V = +1.2V, and T = +25°C.) (Notes 1, 2)M A X 3000E /M A X 3001E /M A X 3002–M A X 3012+1.2V to +5.5V , ±15kV ESD-Protected, 0.1μA,35Mbps, 8-Channel Level Translators 4________________________________________________________________ _______________________TIMING CHARACTERISTICSNote 2:For normal operation, ensure that V L < (V CC + 0.3V). During power-up, V L > (V CC + 0.3V) does not damage the device.MAX3000E/MAX3001E/MAX3002–MAX3012+1.2V to +5.5V , ±15kV ESD-Protected, 0.1μA,35Mbps, 8-Channel Level Translators________________________________________________________________ _______________________5TIMING CHARACTERISTICS (continued)(V CC = +1.65V to +5.5V, V L = +1.2V to V CC , EN = V L (MAX3000E/MAX3001E/MAX3002/MAX3004–MAX3012), EN A/B = V L or 0(MAX3003), T= T to T . Typical values are at V = +1.65V, V = +1.2V, and T = +25°C.) (Note s 1, 2)Note 3:V CC from device 1 must equal V CC of device 2; V L from device 1 must equal V L of device 2.M A X 3000E /M A X 3001E /M A X 3002–M A X 3012+1.2V to +5.5V , ±15kV ESD-Protected, 0.1μA,35Mbps, 8-Channel Level Translators 6___________________________________________________________________ ____________________TIMING CHARACTERISTICS —MAX3002–MAX3012MAX3000E/MAX3001E/MAX3002–MAX3012+1.2V to +5.5V , ±15kV ESD-Protected, 0.1μA,35Mbps, 8-Channel Level Translators________________________________________________________________ _______________________7Typical Operating Characteristics(T A = +25°C, unless otherwise noted.)2000150010005000-4010-15356085TEMPERATURE (°C)V L S U P P L Y C U R R E N T (μA )V L SUPPLY CURRENT vs. TEMPERATURE (DRIVING I/O V CC , V CC = 3.3V, V L = 1.8V)0200060004000800010,0001.52.53.02.03.54.05.05.5SUPPLY VOLTAGE (V)V C C S U P P L Y C U R R E N T (μA )V CC SUPPLY CURRENT vs. SUPPLY VOLTAGE (DRIVING I/O V L , V L = 1.8V) 01002003004005006001.52.52.03.03.54.04.55.5V L SUPPLY CURRENT vs. SUPPLY VOLTAGE(DRIVING I/O V L , V L = 1.8V)SUPPLY VOLTAGE (V)V L S U P P L Y C U R R E N T (μA )05001500100020002500-4010-15356085TEMPERATURE (°C)V C C S U P P L Y C U R R E N T (μA )V CC SUPPLY CURRENT vs. TEMPERATURE (DRIVING I/O V CC , V CC = 3.3V, V L = 1.8V)0204060100104050203060708090100CAPACITIVE LOAD (pF)V L S U P P L Y C U R R E N T (μA )V L SUPPLY CURRENT vs. CAPACITIVE LOAD ON I/O V CC (DRIVING I/O V L , V CC = 3.3V, V L = 1.8V)020001000400030006000500070001030402050608090100CAPACITIVE LOAD (pF)V C C S U P P L Y C U R R E N T (μA )V CC SUPPLY CURRENT vs. CAPACITIVE LOAD ON I/O V CC (DRIVING I/O V L , V CC = 3.3V, V L = 1.8V)CAPACITIVE LOAD (pF)R I S E /F A L L T I M E (n s )90807060503020500100015002000010100MAX3000ERISE/FALL TIME vs. CAPACITIVE LOAD ON I/O V CC (DRIVING I/O V L , V CC = 3.3V, V L = 1.8V)M A X 3000E /M A X 3001E /M A X 3002–M A X 3012+1.2V to +5.5V , ±15kV ESD-Protected, 0.1μA,35Mbps, 8-Channel Level Translators 8___________________________________________________________________ ____________________Typical Operating Characteristics (continued)(T A = +25°C, unless otherwise noted.)0102030405060103020405060708090100CAPACITIVE LOAD (pF)R I S E /F A L L T I M E (n s )MAX3001ERISE/FALL TIME vs. CAPACITIVE LOAD ON I/O V CC (DRIVING I/O V L , V CC = 3.3V, V L = 1.8V)64201030204050CAPACITIVE LOAD (pF)R I S E /F A L L T I M E (n s )MAX3002–MAX3012RISE/FALL TIME vs. CAPACITIVE LOAD ON I/O V CC (DRIVING I/O V L , V CC = 3.3V, V L = 1.8V)050010001500200010206080100CAPACITIVE LOAD (pF)R I S E /F A L L T I M E (n s )MAX3000ERISE/FALL TIME vs. CAPACITIVE LOAD ON I/O V L (DRIVING I/O V CC , V CC = 3.3V, V L = 1.8V)304050900102030405060103020405060708090100CAPACITIVE LOAD (pF)R I S E /F A L L T I M E (n s )MAX3001ERISE/FALL TIME vs. CAPACITIVE LOAD ON I/O V L (DRIVING I/O V CC , V CC = 3.3V, V L = 1.8V)43211020152530CAPACITIVE LOAD (pF)R I S E /F A L L T I M E (n s )MAX3002–MAX3012RISE/FALL TIME vs. CAPACITIVE LOAD ON I/O V L (DRIVING I/O V CC , V CC = 3.3V, V L = 1.8V)100300400500104050203060708090100CAPACITIVE LOAD (pF)P R O P A G A T I O N D E L A Y (n s )MAX3000EPROPAGATION DELAY vs. CAPACITIVE LOAD ON I/O V CC (DRIVING I/O V L , V CC = 3.3V, V L = 1.8V)MAX3000E/MAX3001E/MAX3002–MAX3012+1.2V to +5.5V , ±15kV ESD-Protected, 0.1μA,35Mbps, 8-Channel Level Translators________________________________________________________________ _______________________9Typical Operating Characteristics (continued)(T A = +25°C, unless otherwise noted.)100200300400500600103020405060708090100CAPACITIVE LOAD (pF)P R O P A G A T I O N D E L A Y (n s )MAX3000EPROPAGATION DELAY vs. CAPACITIVE LOAD ON I/O V L (DRIVING I/O V CC , V CC = 3.3V, V L = 1.8V)03961215CAPACITIVE LOAD (pF)P R O P A G A T I O N D E L A Y (n s )1030204050MAX3001EPROPAGATION DELAY vs. CAPACITIVE LOAD ON I/O V L (DRIVING I/O V CC , V CC = 3.3V, V L = 1.8V)013245CAPACITIVE LOAD (pF)P R O P A G A T I O N D E L A Y (n s)1020152530MAX3002–MAX3012PROPAGATION DELAY vs. CAPACITIVE LOAD ON I/O V L (DRIVING I/O V CC , V CC = 3.3V, V L = 1.8V)1μsMAX3000E RAIL-TO-RAIL DRIVING (DRIVING I/O V L , V CC = 3.3V, V L = 1.8V,CV CC = 50pF, DATA RATE = 230kbps) GNDI/O V L_1V/div GNDMAX3000E/01E/02-12 toc19I/O V CC_2V/div 40nsMAX3001E RAIL-TO-RAIL DRIVING (DRIVING I/O V L , V CC = 3.3V, V L = 1.8V,CV CC = 50pF, DATA RATE = 4Mbps) GNDI/O V L_1V/div GNDMAX3000E/01E/02-12 toc20I/O V CC_2V/div 10nsMAX3002–MAX3012 RAIL-TO-RAIL DRIVING (DRIVING I/O V L , V CC = 3.3V, V L = 1.8V,CV CC = 50pF, DATA RATE = 20Mbps)GNDI/O V L_1V/div GNDMAX3000E/01E/02-12 toc21I/O V CC_2V/div 0105201525301030204050CAPACITIVE LOAD (pF)P R O P A G A T I O N D E L A Y (n s )MAX3001EPROPAGATION DELAY vs. CAPACITIVE LOAD ON I/O V CC (DRIVING I/O V L , V CC = 3.3V, V L = 1.8V)428610121020152530CAPACITIVE LOAD (pF)P R O P A G A T I O N D E L A Y (n s ) MAX3002–MAX3012PROPAGATION DELAY vs. CAPACITIVE LOAD ON I/O V CC (DRIVING I/O V L , V CC = 3.3V, V L = 1.8V)M A X 3000E /M A X 3001E /M A X 3002–M A X 3012+1.2V to +5.5V , ±15kV ESD-Protected, 0.1μA,35Mbps, 8-Channel Level Translators 10__________________________________________________________________ ____________________Pin DescriptionMAX3000E/MAX3001E/MAX3002MAX3000E/MAX3001E/MAX3002–MAX3012+1.2V to +5.5V , ±15kV ESD-Protected, 0.1μA,35Mbps, 8-Channel Level Translators______________________________________________________________________________________11Pin Description (continued)MAX3003M A X 3000E /M A X 3001E /M A X 3002–M A X 3012+1.2V to +5.5V , ±15kV ESD-Protected, 0.1μA,35Mbps, 8-Channel Level Translators 12__________________________________________________________________ ____________________Pin Description (continued)MAX3004–MAX3012MAX3000E/MAX3001E/MAX3002–MAX3012+1.2V to +5.5V , ±15kV ESD-Protected, 0.1μA,35Mbps, 8-Channel Level Translators________________________________________________________________ ______________________13______________________________________________T estCircuits/Timing DiagramsFigure 1a. Driving I/O V L Figure 1b. Timing for Driving I/O V LFigure 2a. Driving I/O V CCFigure 2b. Timing for Driving I/O V CCM A X 3000E /M A X 3001E /M A X 3002–M A X 3012+1.2V to +5.5V , ±15kV ESD-Protected, 0.1μA,35Mbps, 8-Channel Level Translators 14________________________________________________________________ _______________________________________________________T est Circuits/Timing Diagrams (continued)Figure 3. Propagation Delay from I/O V L to I/O V CC After ENFigure 4. Propagation Delay from I/O V CC to I/O V L After ENMAX3000E/MAX3001E/MAX3002–MAX3012+1.2V to +5.5V , ±15kV ES D-Protected, 0.1μA,35Mbps, 8-Channel Level Translators________________________________________________________________ ______________________15Detailed DescriptionThe MAX3000E/MAX3001E/MAX3002–MAX3012 logic-level translators provide the level shifting necessary to allow data transfer in a multivoltage system. Externally applied voltages, V CC and V L , set the logic levels on either side of the device. Logicsignals present on the V L side of the device appear as a higher voltage logic signal on the V CC side of the device, and vice-versa.The MAX3000E/MAX3001E/MAX3002/MAX3003 are bidirectional level translators allowing data translation in either direction (V L ?V CC ) on any single data line.The MAX3004–MAX3012 unidirectional level translators level shift data in one direction (V L →V CC or V CC →V L ) on any single data line. The MAX3000E/MAX3001E/MAX3002–MAX3012 accept V L from +1.2V to +5.5V. All devices have V CC ranging from +1.65V to +5.5V, mak-ing them ideal for data transfer between low-voltage ASICs/PLDs and higher voltage systems.The MAX3000E/MAX3001E/MAX3002/MAX3004–MAX3012 feature an output enable mode that reduces V CC supply current to less than 2μA, and V L supply current to less than 2μA when in shutdown. The MAX3000E/MAX3001E have ±15kV E SD protection on the V CC side for greater protection in applications that route signals externally. The MAX3000E operates at a guaranteed data rate of 230kbps; the MAX3001E oper-ates at a guaranteed data rate of 4Mbps and the MAX3002–MAX3012 are guaranteed with a data rate of 20Mbps of operation over the entire specified operating voltage range.Level TranslationFor proper operation, ensure that +1.65V ≤V CC ≤+5.5V,+1.2V ≤V L ≤+5.5V, and V L ≤V CC . During power-up sequencing, V L ≥V CC does not damage th e device.During power-supply sequencing, when V CC is floating and V L is powering up, up to 10mA current can be sourced to each load on the V L side, yet the device does not latch up.The maximum data rate also depends heavily on the load capacitance (see the Typical Operating Characteristics ), outputimpedance of the driver, and the operational voltage range (see the Timing Characteristics ).Input Driver RequirementsThe MAX3001E/MAX3002–MAX3012 architecture is based on a one-shot accelerator output stage. See Figure 5. Accelerator output stages are always in three-state except when there is a transition on any of the translators on the input side, either I/O V L or I/O V CC .Then, a short pulse is generated during which the accel-erator output stages become active and charge/dis-charge the capacitances at the I/Os. Due to its bidirectional nature, both input stages become active during the one-shot pulse. This can lead to some current feeding into the external source that is driving the trans-lator. However, this behavior helps to speed up the tran-sition on the driven side.For proper operation, the driver has to meet the follow-ing conditions: 50?maximum output impedance and 20mA minimum output current (for 20Mbps versions),400?maximum output impedance and 4mA minimum output current (for 4Mbps versions), 1k ?maximum out-put impedance and 1mA minimum output current (for 230kbps versions). Figure 6 shows a typical input cur-rent vs. input voltage.Enable Output Mode (EN, EN A/B)The MAX3000E/MAX3001E/MAX3002 and the MAX3004–MAX3012 feature an EN input, and the MAX3003 has an EN A/B input. Pull EN low to set the MAX3000E/MAX3001E/MAX3002/MAX3004–MAX3012s ’ I/O V CC 1through I/O V CC 8 in three-state output mode, while I/O V L 1 through I/O V L 8 have internal 6k ?pulldown resis-tors. Drive EN to logic high (V L ) for normal operation. For the MAX3003,pull EN A/B low to place channels 1B through 4B in active mode, while channels 1A through 4A are in three-state mode. Drive EN A/B to logic high (V L ) to enable channels 1A through 4A, while channels 1B through 4B remain in three-state mode.±15kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electro-static discharges encountered during handling and assembly. The I/O V CC lines have extra protection against static discharge. Maxim ’s engineers have developed state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD structures withstand high ESD in all states: normal operation, three-state output mode, and powered down. After an ESD event, Maxim ’s E versions keep working without latchup, whereas competing products can latch and must be powered down to remove latchup.ESD protection can be tested in various ways. The I/O V CC lines of the MAX3000E/MAX3001E are char-acterized for protection to ±15kV using the Human Body Model.M A X 3000E /M A X 3001E /M A X 3002–M A X 3012+1.2V to +5.5V , ±15kV ESD-Protected, 0.1μA,35Mbps, 8-Channel Level Translators 16__________________________________________________________________ ____________________ESD Test ConditionsESD performance depends on a variety of conditions.Contact Maxim for a reliability report that documents test setup, test methodology, and test results.Human Body ModelFigure 7a shows the Human Body Model and Figure 7b shows the current waveform it generates when dis-charged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of inter-est, which is then discharged into the test device through a 1.5k ?resistor.Machine ModelThe Machine Model for ESD tests all pins using a 200pFstorage capacitor and zero discharge resis-tance. Its objective is to emulate the stress caused by contact that occurs with handling and assembly during manufacturing. Of course, all pins require this protec-tion during manufacturing, not just inputs and outputs.Therefore, after PC board assembly, the Machine Model is less relevant to I/O ports.Applications InformationPower-Supply DecouplingTo reduce ripple and the chance of transmitting incor-rect data, bypass V L and V CC to ground with a 0.1μF capacitor. T o ensure full ±15kV ESD protection, bypass V CC to ground with a 1μF capacitor. Place all capaci-tors as close to the power-supply inputs as possible.I 2C Level TranslationFor I 2C level translation for I 2C applications, please refer to the MAX3372E –MAX3379E/MAX3390E –MAX3393E datasheet.Unidirectional vs. Bidirectional LevelTranslatorThe MAX3000E/MAX3001E/MAX3002/MAX3003 can also be used to translate signals without inversion.These devices provide the smallest solution (UCSP package) for unidirectional level translation without inversion.Figure 5. MAX3001E/MAX3002–MAX3012 Simplified Functional Diagram (1 I/O Line)MAX3000E/MAX3001E/MAX3002–MAX3012+1.2V to +5.5V , ±15kV ESD-Protected, 0.1μA,35Mbps, 8-Channel Level Translators17Selector Guide**See Table 1.Table 1. Data RateM A X 3000E /M A X 3001E /M A X 3002–M A X 3012+1.2V to +5.5V , ±15kV ESD-Protected, 0.1μA,35Mbps, 8-Channel Level TranslatorsMAX3000E/MAX3001E/MAX3002 Functional Diagram MAX3000E/MAX3001E/MAX3002–MAX3012+1.2V to +5.5V , ±15kV ESD-Protected, 0.1μA,35Mbps, 8-Channel Level TranslatorsMAX3003 Functional Diagram。
诺瓦科技LED3D外置式发射器EMT200规格书用户手册
科 使用第三方发射器及其配套的 3D 眼镜时,请参考对应的使用规范。
子
电
瓦
诺
安
西
8
3D 发射器 EMT200 快速指南
7 尺寸
7 尺寸
司
公
限
有
技
科
子
电
瓦
诺
安
单位:mm
西
9
3D 发射器 EMT200 快速指南
8 产品规格
8 产品规格
司
输入电压 额定电流 额定功耗
DC 5V 0.2A 1W
限公
尺寸
有 119.2mm×119.2mm×29.5mm
净重 包装信息
170.3g
技 包装盒:380mm×200mm×100mm
大外箱:390mm×210mm×110mm
科 1 根 RJ45 网线,长 1.5m 子 1 个 DC 5V2A 电源适配器
电5 副 3D 眼镜 2 个膨胀螺丝
瓦
诺
安
西
10
安诺 保证 3D 眼镜与显示屏信号同步,最终的 3D 效果取决于第三方发射器。 西
6
3D 发射器 EMT200 快速指南
5 固件升级与回读
5 固件升级与回读
司
公 EMT200 的固件升级与回读必须在配套软件 NovaLCT 上进行操作,操作步骤如下:
升级
限 步骤 1 启动 NovaLCT,选择“登录 > 同步高级登录”,登录到高级用户界面。 有 步骤 2 输入暗码“admin”,进入程序加载页面。
730 说明书_1_(1)
730电牵引采煤机使用说明书电气部分型号:MG300/730-WD请将此使用说明书交给最终用户手里太重煤机有限公司前言·本手册适用机型为MG300/730-WD交流电牵引采煤机。
·在使用本产品前,请先仔细阅读此手册并妥为保存以便日后查阅。
本说明书内容已经过认真核对,如有任何印刷错误和内容上的歧义,请及时与我们联系。
产品若有技术更改会编入新版说明书中,不另行通知。
安全须知·参与本产品的安装、调试、使用、维修的工作人员必须是具备相应资格的电工。
·严禁带电开盖检修。
·维修人员不得随意更换或者更改本质安全电路元件和接线方式。
·设备带电时严禁松动隔爆紧固件。
·电缆引入装置的密封圈、金属垫圈、压板等不得残缺,防爆部位紧固栓、接地线必须接牢。
·开机时必须确认煤机周围是否有人。
·严禁在不通冷却水的情况下开机采煤。
·严禁擅自屏蔽保护设置。
·操作人员离开时必须将隔离开关断开。
·采煤机配套变频器闲置不用时,半年应给变频器充电一次,可减小变频器电容的损耗。
·配套漏电闭锁装置的真空接触器,接触器损坏短接或强行给接触器、电机送电时应将接触器上漏电检测线拆除掉,以免高压进入漏检装置。
·采煤机在牵引停止时,尤其是在大倾角工作面上牵引停止时,应先减速后牵停,可减小对液压制动器的磨损,避免机组下滑。
·采煤机停机时,尤其是在大倾角工作面,应先减速牵停,后主停。
目录前言 (I)安全须知 .......................................................................................................................... I II1概述 (1)1.1适用环境 (1)1.2技术参数 (1)1.3产品特点 (2)2系统结构简介 (4)2.1系统结构示意图 (4)2.2控制箱部件介绍 (5)2.3箱体外围电气元件 (7)2.3.1遥控器与端头站 (7)2.3.2瓦斯断电仪与甲烷传感器 (8)2.3.3防爆分线盒 (10)2.3.4照明装置 (10)2.3.5预警装置 (10)3操作说明 (11)3.1主回路启动操作 (11)3.1.1先导试验操作 (11)3.1.2采煤机送电、断电 (11)3.1.3左截割电机、右截割电机的启动、停止操作 (12)3.1.4运输机停止操作 (12)3.2液压调高系统的升降操作 (13)3.3牵引系统操作 (13)3.4显示器的操作 (13)3.4.1显示界面切换说明 (13)3.5.1操作注意事项 (18)3.5.2主要功能 (18)4维护 (19)4.1日常检查 (19)4.2周检查 (19)4.3月检查 (19)5常见故障分析判断 (20)5.1采煤机无法起动 (20)5.2采煤机无法自保 (20)5.3截割电机无法启动 (20)5.4调高系统无法升降 (20)5.5变频装置无法供电 (20)5.6采煤机牵引控制故障 (21)5.7遥控装置故障 (21)5.8显示器故障 (21)附录A 变频装置使用指南 (22)(一)变频装置维修时的安全性能措施 (22)(二)变频装置特性及控制盘说明 (22)(三)变频装置的故障跟踪 (24)1概述MG300/730-WD 型交流电牵引采煤机是为了适应综采工作面自动化开采技术的发展,满足煤矿高产高效需求而开发研制的新一代双滚筒采煤机。
MA3D中文说明书
GrandMA 3D中文说明书内容1引言52系统要求3安装63.1奶奶办公桌或奶奶onPC版本3.2的IP 73.3连接奶奶办公桌3.4 1姥姥或奶奶2模式4数据94.1主/从94.2坐标系统5个快速启动6计划表面6.1菜单栏6.2工具栏6.3(第一阶段视图,三维对象视图)主要的Windows6.3.1第一阶段检视6.3.2鼠标+键盘操作6.3.3安排(对齐对象)的对象6.3.4复制(复制的三维物体)6.3.5三维对象6.4资产(信息窗)6.5属性6.6媒体数据库6.7材料6.8移动Pathes6.9会议6.10状态栏7灯具类型8三维建模和导入8.1三维模型8.2参数8.2.1轴8.2.2旋转轴8.2.3线性轴8.2.4束光.8.3自动导入8.4分配模型夹具类型8.5三维建模清单8.6创建一个三维模型9视频创建10常见问题11个键盘快捷键12指数马照明科技有限公司Dachdeckerstr。
16 D - 97297Waldbüttelbrunnwww.malighting.de1引言:奶奶3D是一个独特的新的用户界面,三维可视化创建利用与奶奶产品范围结合的阶段布局。
系列I和系列第二站的支持。
该软件被设计成一个灯光设计师的预编程工具。
它简化了创建显示,以节省时间和金钱的过程。
奶奶3D包括一个基本图形元素库。
使用多个窗口前/侧/顶视图可以在同一时间打开和更新。
所有的舞台元素被定位在X / Y / Z方向,也可能是周围的各种轴旋转。
习俗这些元素的表面纹理,可以导入位图格式,或可能选择从一个图书馆。
灯笼,灯具或移动灯的设置,可以简单地检索到的奶奶控制台或电子转帐的奶奶onPC每放映文件。
有没有需要设置的DMX 线,DMX地址或单个装置的操作模式,因为这些细节,都已经预先调整中的奶奶。
当切换到3D渲染模式,奶奶3D软件变得极其强大的可视化实时渲染设施。
所有绘图元素,装置及灯笼与表面纹理,作为一种虚拟现实。
赛米控丹佛斯 SEMITRANS 混合碳化硅功率模块 SKM200GAL12F4SiC3 数据表
© by SEMIKRONRev. 1.0–01.12.20201SEMITRANS ®3High Speed IGBT4 ModulesSKM200GAL12F4SiC3Features*•IGBT4 = 4. Generation Fast Trench (High Speed) IGBT (Infineon)•With Silicon Carbide Schottky diodes (ROHM)•Insulated copper baseplate using DBC Technology (Direct Bonded Copper) •UL recognized, file no. E63532•With integrated gate resistor •For higher switching frequenciesTypical Applications•AC inverter drives •UPS•Electronic welders •DC/DC convertersRemarks•Case temperature limited to T c = 125°C max.•Recommended T op = -40 ... +150°C •Product reliability results valid for T j = 150°CAbsolute Maximum Ratings SymbolConditions Values UnitIGBT V CES T j =25°C 1200V I C T j =175°CT c =25°C 312A T c =80°C239A I Cnom 200A I CRM400A V GES -20 (20)V t psc V CC =800V V GE ≤ 15V V CES ≤ 1200 V R G on/off ≥ 2 ΩT j =150°C10µs T j -40 (175)°C Inverse diodeI F T j =175°CT c =25°C 123A T c =80°C93A I FRM 168A I FSM t p =8.3ms, sin 180°, T j =25°C295A T j-40 (175)°C Freewheeling diode I F T j =175°CT c =25°C 123A T c =80°C93A I FRM 168A I FSM t p =8.3ms, sin 180°, T j =25°C295A T j -40...175°C Module I t(RMS)500A T stg -40 (125)°C V isolAC sinus 50 Hz, t =1min4000VCharacteristics SymbolConditionsmin.typ.max.UnitIGBT V CE(sat)I C =200A V GE =15V chiplevel T j =25°C 2.06 2.42V T j =150°C 2.59 2.97V V CE0chiplevel T j =25°C 1.10 1.28V T j =150°C 0.95 1.13V r CE V GE =15V chiplevel T j =25°C 4.8 5.7m ΩT j =150°C8.29.2m ΩV GE(th)V GE =V CE , I C =7.6mA5.1 5.86.4V I CES V GE =0V V CE =1200V T j =25°C 2.7mA T j =150°C -mA C ies V CE =25V V GE =0Vf =1MHz 12.3nF C oes f =1MHz 0.81nF C res f =1MHz0.69nF Q G V GE =- 8 V...+ 15 V 1134nC R GintT j =25°C2.4Ω2Rev. 1.0–01.12.2020© by SEMIKRONt d(on)VCC =600V I C =200AV GE =+15/-15V R G on =1ΩR G off =1Ωdi/dt on =7100A/µs di/dt off =2850A/µs Tj =150°C 140ns t r T j =150°C 30ns E on T j =150°C 3.5mJ t d(off)T j =150°C 340ns t f T j =150°C 60ns E offT j =150°C14mJR th(j-c)per IGBT0.115K/W Inverse diodeV F = V EC I F =80AV GE =0V chiplevelT j =25°C 1.40 1.60V T j =150°C 1.79 2.10V V F0chiplevel T j =25°C 0.95 1.05V T j =150°C 0.830.90V r F chiplevelT j =25°C5.66.9m ΩT j =150°C1215m ΩC j parallel to C oss , f =1MHz, V R =800V, T j =25°C0.340nF Q c V R =800V, di/dt off =500A/µs, T j =25°C 0.26µC R th(j-c)per diode0.42K/W Freewheeling diodeV F = V EC I F =80AV GE =0V chiplevelT j =25°C 1.40 1.60V T j =150°C 1.79 2.10V V F0chiplevel T j =25°C 0.95 1.05V T j =150°C 0.830.90V r F chiplevelT j =25°C 5.6 6.9m ΩT j =150°C1215m ΩC j f =1MHz,V R =800V,T j =25°C 0.340nF Q c V R =800V, di/dt off =500A/µs, T j =25°C 0.26µC R th(j-c)per diode0.42K/W Module L CE 15nH R CC'+EE'measured per switchT C =25°C0.55m ΩT C =125°C0.85m ΩR th(c-s)calculated without thermal coupling (λgrease =0.81 W/(m*K))0.020.038K/W M s to heat sink M635Nm M t to terminals M62.55Nm Nm w325gCharacteristics SymbolConditions min.typ.max.UnitSEMITRANS ® 3High Speed IGBT4 ModulesSKM200GAL12F4SiC3Features*•IGBT4 = 4. Generation Fast Trench (High Speed) IGBT (Infineon)•With Silicon Carbide Schottky diodes (ROHM)•Insulated copper baseplate using DBC Technology (Direct Bonded Copper) •UL recognized, file no. E63532•With integrated gate resistor •For higher switching frequenciesTypical Applications•AC inverter drives •UPS•Electronic welders •DC/DC convertersRemarks•Case temperature limited to T c = 125°C max.•Recommended T op = -40 ... +150°C •Product reliability results valid for T j = 150°C© by SEMIKRON Rev. 1.0–01.12.202034Rev. 1.0–01.12.2020© by SEMIKRON© by SEMIKRON Rev. 1.0–01.12.20205This is an electrostatic discharge sensitive device (ESDS) due to international standard IEC 61340.*IMPORTANT INFORMATION AND WARNINGSThe specifications of SEMIKRON products may not be considered as guarantee or assurance of product characteristics ("Beschaffenheitsgarantie"). The specifications of SEMIKRON products describe only the usual characteristics of products to be expected in typical applications, which may still vary depending on the specific application. Therefore, products must be tested for the respective application in advance. Application adjustments may be necessary. The user of SEMIKRON products is responsible for the safety of their applications embedding SEMIKRON products and must take adequate safety measures to prevent the applications from causing a physical injury, fire or other problem if any of SEMIKRON products become faulty. The user is responsible to make sure that the application design is compliant with all applicable laws, regulations, norms and standards. Except as otherwise explicitly approved by SEMIKRON in a written document signed by authorized representatives of SEMIKRON, SEMIKRON products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. No representation or warranty is given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation, warranties of non-infringement of intellectual property rights of any third party. SEMIKRON does not assume any liability arising out of the applications or use of any product; neither does it convey any license under its patent rights, copyrights, trade secrets or other intellectual property rights, nor the rights of others. SEMIKRON makes no representation or warranty of non-infringement or alleged non-infringement of intellectual property rights of any third party which may arise from applications. Due to technical requirements our products may contain dangerous substances. For information on the types in question please contact the nearest SEMIKRON sales office. This document supersedes and replaces all information previously supplied and may be superseded by updates. SEMIKRON reserves the right to make changes.6。
730采煤机电气说明书
主控器
AC220V
DC±12V
3LV+、3LV0
3LV-
霍尔电流互感器供电电源
第六部分遥控系统功能及原理
遥控系统是本质安全型系统。遥控器采用世界最先进的低功耗芯片,自行研制,具有体积小重量轻,抗震、防摔、防水,经久耐用等特点。遥控接收机(端头站)采用不锈钢壳体并腐蚀字体既既美观大方又可防止生锈。
5.4对截割电机和牵引电机恒功率控制过载保护
5.5完成对运输机的闭锁控制
第二部分控制箱
1.功能结构
控制箱位于主机架中央,它可从采空侧方便地推入和抽出,主要功能是完成采煤机的控制和监测。控制箱分为两个箱体一个接线腔和一个隔爆腔,隔爆腔和接线腔之间用接线柱和过线组来连接,接线柱连接主回路,过线组连接控制信号回路。控制箱后面有三个大喇叭口,一个用于400V电源的引入,其余两个作为牵引电机供电电缆的通道,小喇叭口用来接收和发送控制信号电缆通道。
额定容量500VA
额定输入AC1140V,50HZ
额定输出AC220V/127V(127V给语警及照明供电)
绝缘等级F级
结构特征干式真空环氧树脂浇铸
3.4电流互感器(T1,T2)
高压箱内设两个电压型电流互感器,是为检测两个截割电机的电流而设置。
型号特制专用
额定输入AC0~300A
额定输出AC 0~10V
3.遥控系统具有以下特点:
3.1遥控发射机使用普通的两节5号碱性电池供电,不用充电,工作电流小于10mA,待机耗电小于60uA,从而使两个5号电池在正常工作情况下可持续两个月以上,既减轻矿工的班班充电检查烦琐工作,又保证可换班不换遥控器的工作,提高遥控的利用率。
3.2遥控器防护等级IP67。壳体选用ABS添加阻燃材料及玻璃钢纤维,按钮外护套采用进口抗老化硒胶既柔软易密封又富有弹性,并在外壳上安装减震防摔装置,使遥控器不怕水、不怕摔。
MG730说明书1
截割电缆:
UCP3×70+1×16+4×4
牵引电缆:
UCP3×35+1×6+4×4
泵电机电缆:
UCP3×16+1×4+3×2.5
3.7 冷却和喷雾
采高 (m) 2.6 3.6 4.6
5
鸡西煤矿机械有限公司
MG300/730-WD 型交流电牵引采煤机
水泵站型号: 压力 (MPa): 额定流量 (l/min): 冷却水压 (MPa): 外喷雾水压 (MPa): 供水管 型号:
项目 采高范围 装机功率 截割功率 牵引功率 过煤高度 滚筒直径 滚筒截深 摇臂型式 牵引力 调速方式 整机布置式 整机重量
MG300/730-WD 型采煤机主要技术特征
内容
项目
~
煤层倾角
工作面倾角
泵站功率
机面高度
下切深度
φφ
滚筒转速
;
摇臂摆动中心距
整体弯摇臂
摇臂长度
;
牵引速度
机载交流变频
牵引型式
积木式组合
赛米控丹佛斯 SEMITRANS 混合碳化硅功率模块 SKM200GB12F4SiC3 数据表
© by SEMIKRONRev. 1.0–25.11.20201SEMITRANS ®3High Speed IGBT4 ModulesSKM200GB12F4SiC3Features*•IGBT4 = 4. Generation Fast Trench (High Speed) IGBT (Infineon)•With Silicon Carbide Schottky diodes (ROHM)•Insulated copper baseplate using DBC Technology (Direct Bonded Copper) •UL recognized, file no. E63532•With integrated gate resistor •For higher switching frequenciesTypical Applications•AC inverter drives •UPS•Electronic welders •DC/DC convertersRemarks•Case temperature limited to T c = 125°C max.•Recommended T op = -40 ... +150°C •Product reliability results valid for T j = 150°CAbsolute Maximum Ratings SymbolConditions Values UnitIGBT V CES T j =25°C 1200V I C T j =175°CT c =25°C 312A T c =80°C239A I Cnom 200A I CRM400A V GES -20 (20)V t psc V CC =800V V GE ≤ 15V V CES ≤ 1200 V R G on/off ≥ 2 ΩT j =150°C10µs T j -40...175°C Inverse diodeV RRM T j =25°C 1200V I F T j =175°CT c =25°C 123A T c =80°C93A I FRM 168A I FSM t p =8.3ms, sin 180°, T j =25°C295A T j -40...175°C Module I t(RMS)500A T stg -40 (125)°C V isolAC sinus 50 Hz, t =1min4000VCharacteristics SymbolConditionsmin.typ.max.UnitIGBT V CE(sat)I C =200AV GE =15V chiplevel T j =25°C 2.06 2.42V T j =150°C 2.59 2.97V V CE0chiplevel T j =25°C 1.10 1.28V T j =150°C 0.95 1.13V r CE V GE =15V chiplevel T j =25°C 4.8 5.7m ΩT j =150°C8.29.2m ΩV GE(th)V GE =V CE , I C =7.6mA5.1 5.86.4V I CES V GE =0V V CE =1200V T j =25°C 2.7mA T j =150°C -mA C ies V CE =25V V GE =0Vf =1MHz 12.3nF C oes f =1MHz 0.81nF C res f =1MHz0.69nF Q G V GE =- 8 V...+ 15 V 1134nC R Gint T j =25°C 2.4Ωt d(on)V CC =600V I C =200AV GE =+15/-15V R G on =1ΩR G off =1Ωdi/dt on =7100A/µs di/dt off =2850A/µs T j =150°C 140ns t r T j =150°C 30ns E on T j =150°C 3.5mJ t d(off)T j =150°C 340ns t f T j =150°C 60ns E off T j =150°C 14mJR th(j-c)per IGBT0.115K/W2Rev. 1.0–25.11.2020© by SEMIKRONSEMITRANS ®3High Speed IGBT4 ModulesSKM200GB12F4SiC3Features*•IGBT4 = 4. Generation Fast Trench (High Speed) IGBT (Infineon)•With Silicon Carbide Schottky diodes (ROHM)•Insulated copper baseplate using DBC Technology (Direct Bonded Copper) •UL recognized, file no. E63532•With integrated gate resistor •For higher switching frequenciesTypical Applications•AC inverter drives •UPS•Electronic welders •DC/DC convertersRemarks•Case temperature limited to T c = 125°C max.•Recommended T op = -40 ... +150°C •Product reliability results valid for T j = 150°CCharacteristics SymbolConditionsmin.typ.max.UnitInverse diodeV F = V SD I F =80AV GE =0V chiplevelT j =25°C 1.40 1.60V T j =150°C 1.79 2.10V V F0chiplevel T j =25°C 0.95 1.05V T j =150°C 0.830.90V r FchiplevelT j =25°C 5.6 6.9m ΩT j =150°C1215m ΩC j f =1MHz,V R =800V,T j =25°C, parallel to C oss0.34nF Q c V R =800V, di/dt off =6200A/µs 0.26µCR th(j-c)per diode0.42K/W Module L CE 15nH R CC'+EE'measured per switchT C =25°C 0.55m ΩT C =125°C0.85m ΩR th(c-s)1calculated without thermal coupling (λgrease =0.81 W/(m*K))0.020.038K/W M s to heat sink M635Nm M t to terminals M62.55Nm Nm w325g© by SEMIKRON Rev. 1.0–25.11.202034Rev. 1.0–25.11.2020© by SEMIKRON© by SEMIKRON Rev. 1.0–25.11.20205This is an electrostatic discharge sensitive device (ESDS) due to international standard IEC 61340.*IMPORTANT INFORMATION AND WARNINGSThe specifications of SEMIKRON products may not be considered as guarantee or assurance of product characteristics ("Beschaffenheitsgarantie"). The specifications of SEMIKRON products describe only the usual characteristics of products to be expected in typical applications, which may still vary depending on the specific application. Therefore, products must be tested for the respective application in advance. Application adjustments may be necessary. The user of SEMIKRON products is responsible for the safety of their applications embedding SEMIKRON products and must take adequate safety measures to prevent the applications from causing a physical injury, fire or other problem if any of SEMIKRON products become faulty. The user is responsible to make sure that the application design is compliant with all applicable laws, regulations, norms and standards. Except as otherwise explicitly approved by SEMIKRON in a written document signed by authorized representatives of SEMIKRON, SEMIKRON products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. No representation or warranty is given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation, warranties of non-infringement of intellectual property rights of any third party. SEMIKRON does not assume any liability arising out of the applications or use of any product; neither does it convey any license under its patent rights, copyrights, trade secrets or other intellectual property rights, nor the rights of others. SEMIKRON makes no representation or warranty of non-infringement or alleged non-infringement of intellectual property rights of any third party which may arise from applications. Due to technical requirements our products may contain dangerous substances. For information on the types in question please contact the nearest SEMIKRON sales office. This document supersedes and replaces all information previously supplied and may be superseded by updates. SEMIKRON reserves the right to make changes.6。
SM200-C 433 RTU 综合显示仪使用说明书
SM200-C433RTU综合显示仪使用说明书嘉兴市松茂电子有限公司1、SM200-C综合显示仪介绍 (3)1.1产品简介 (3)1.2产品性能 (3)1.3主要参数 (3)2、SM200-C综合显示仪实物图及指示灯功能 (4)2.1实物图 (4)2.2接线图 (4)2.3端口介绍 (4)3、配置软件功能介绍及操作步骤 (6)3.1通讯连接 (6)3.2系统参数查询与设置 (7)3.3数据记录 (8)4、Modscan32软件 (9)5、服务与保修 (10)免责声明:在您使用本产品前,请您仔细阅读本文档。
因不按文档规定的方法使用,而对本产品造成的任何损坏,本公司将不予以承担责任。
这篇文档是本公司为本产品所作的产品说明,但由于产品或软件升级等原因有可能造成文档中的部分内容变化或者失效,我们不保证由此产生的一切后果,请注意版本变化,并及时更新。
为及时取得最新信息,请随时留意我们的网站:,如果您对这篇文档或本产品的性能描述有什么不明之处,请你联系你的供应商或与我们直接联系,********************,QQ:2850687718以供咨询和解答。
版权声明:本篇文档的版权由本公司独家享有,任何人在未取得本公司书面许可前,不得以任何形式(包括转抄、复印、翻译、电子邮件等形式)向第三方透露本文的任何内容。
1、SM200-C综合显示仪介绍1.1产品简介SM200-C433RTU综合显示仪是集成RS232/RS485与433短距离传输于一体的高科技产品,是微型RTU系统。
它以高档ARM处理器为核心,由高精度运算放大器、接口芯片、看门狗电路、输入输出回路等组成,并且嵌入通信模块。
所构成的远程数据采集RTU终端,具有性能稳定、性价比高等特点。
由于SM200-C433RTU综合显示仪是专为工业产品集成设计的,在温度范围、震动、电磁兼容性和接口多样性等方面均采用特殊设计,保证了恶劣环境下的稳定工作,为您的设备提供了高质量保证。
233D2773P001 用户手册 洗衣机说明书
用户手册洗衣机欢迎使用本产品!本手册含有使用新洗衣机之前应该了解的相关信息,在此希望用户您能够仔细阅读本手册。
233D2773P001了解所购洗衣机本手册中保含详细的洗衣机的正确使用方法。
敬请阅读,按照使用手册进行操作。
类型:电机洗衣机安装要求洗衣机需要安装在坚实的平地上,周围有足够的空间、电源和供排水设施;大多数情况下,各家都具备以上条件和设施。
安装工具:水准仪、钳子、一字螺丝刀、十字螺丝刀。
拆开洗衣机的外包装确定洗衣机内外的包装材料全部清除干净。
找平水平位置。
Minimum height 2,20 m最低高度2.20米90,0 cm minimum 最低90厘米注水该洗衣机适用于水压在70到700千帕的家庭供水环境,某些地区水压过低会影响机器的注水时间。
排水需配备直径为 3.8厘米的排水立管将洗衣机的水排出。
其长度需在90到110厘米之间,需与室内排水系统相连接。
供水为保证适量的水压,水箱底部和洗衣机进水口至少有2.2米的高差。
建议最小水压为70千帕或0.07兆帕。
若使用水池供水,则需使用水泵保证进水压力。
安装空间若将洗衣机安装在小房间或内室中,请参考下图尺寸和空间。
机器底部请勿放置地毯或地垫。
排水管。
排水管位于机器的右后方(正视图)。
将水管往外拔,直至看到管头,将管头安入排水立管内。
供水:该机器不得使用挠性软管,应按照本国规定使用固定水管。
进水口采用美国国家标准的螺纹【3/4-11 1/2】。
不用热水时,请盖上堵盖以防泄漏。
不得使用旧水管。
警告:请勿手动加水,可能会因干筒工作或溢水导致阀门损坏,从而造成洗衣机故障。
本洗衣机内置安全系统,能有效防止注水超过最高水位线。
一旦超过最高水位线,排水泵将自动启动,并发送错误代码。
重要提示:若该产品配备温度旋钮,在不使用热水进行清洗时,请将旋钮调至冷水――冷水模式。
建议每月清理一次滤网。
安装验证:•打开上水阀门,任选一种洗涤程序,选择中档水位,按下开始/停止键,完成一次洗衣过程。
MAM-200电脑说明书
螺杆空压机微电脑控制器(中文液晶显示-200)用户手册特点:●LCD中英文显示●对电机具有短路、堵转、缺相、过载、不平衡等全方位保护功能●对电机具有起停控制、运行控制●对空压机进行防逆转保护●对多点温度进行检测与控制保护●自动调节负荷率控制压力平衡●高度集成,高可靠性,高性价比●远程/机旁选择控制●联动/独立选择运行●RS-485通讯功能一、基本操作1、按键说明图1I——起动键:按此键可起动电机运行O——停机键:按此键可停止电机运行S——设定键:修改完数据后,按此键确认数据存储输入❽——上移键:数据修改时,按此键上翻修改该数位;在菜单选择时作为选择键。
❾——下移键:数据修改时,按此键下翻修改该数位;在菜单选择时作为选择键。
❼——移位键/确认键:修改数据时,此键作为移位键;在菜单选择时作为确定键。
❾❽——手动加载/卸载键:在手动方式下,在一定压力范围内按此键可加载或卸载。
↳——返回键/复位键:在菜单操作时作为返回键返回上一级菜单;故障停机时,按此键复位。
2、状态显示与操作机组通电后显示如下界面:5秒后显示以下主界面:按“❾”进入以下菜单选择界面:a、运行参数查看按“❾”或“❽”移动黑色滚动条到“运行参数”菜单后,按确认键“❼”后弹出下一级菜单:再按“❼”弹出如为最后一级菜单,界面不会出现黑色滚动条,按返回键“↳”返回上级菜单或主界面。
如在某一界面停止操作,数秒钟后自动返回主界面。
用“❾”、“❽”移动键、确认键“❼”和返回键“↳”用同样方法可完全观察到运行时间、本次运行时间、维护参数、历史故障、出厂日期、现场故障等运行参数并返回到上级菜单。
b、日历时间按“❾”或“❽”移动黑色滚动条到“日历”菜单后,按确认键“❼”后弹出在停机状态下可对日期、时间进行调整,操作方法为:按“❾”或“❽”移动黑色滚动条到需修改的参数项后按确定键“❼”后出现闪烁位,此时“❾”和“❽”键变为上翻和下翻键修改当前位,“❼”变为移位键移动修改位。
3D打印机G-M代码详解
3D打印机G-M代码详解G-M指令详解概述众所周知,3D打印机执⾏的是⼀堆指令,这⼀堆指令都来源于⼀个指令集,即G-M指令集。
⽽固件就负责解释这些指令,并将命令指派给电⼦原件,从⽽完成打印任务。
因此,固件和指令集必须相互配合,否则打印机不会正常⼯作。
开源的3D打印机使⽤的固件多种多样,但和这些固件匹配的指令集绝⼤多数指令都相同,即RepRap G-M指令集。
由于Marlin 固件使⽤的最为⼴泛,笔者就以Marlin固件的指令集为例作叙述。
了解G-M指令有什么⽤?这⽤处可⼤了。
帮助使⽤者更⽅便地调试打印机,检测打印机的问题,扩展打印机菜单功能…反正好处多多,不管你信不信,反正我是信了。
废话不多说,进⼊正题。
G-M指令集就是⼀些以G或M开头的代码,有时候还会掺杂⼀些以其其他字母以标⽰参数意义,⽐如T、S、F、P等。
具体意义见下表,表中nnn表⽰因此,能够被Marlin固件识别的代码应该是像下⾯的样⼦:N3 T0*57N4 G92 E0*67N5 G28*22N6 G1 F1500.0*82N7 G1 X2.0 Y2.0 F3000.0*85N8 G1 X3.0 Y3.0*33详解注释G-Code⼀⾏中分号“;”后⾯的内容为解释性语句,即注释。
固件会忽略其内容。
为了减少通信量,可以把注释信息都去掉。
标记代码N 和*,⽐如N123 [...G Code 写在这⾥...] *71。
这是⾏码和标记码。
RepRap的固件会以⼀个本地计算的值来对⽐标记码,如果两者值不同,就会要求重复输⼊该条指令。
⾏码和检查码都可以去掉,RepRap仍会⼯作, 但它不会做检查。
你必须同时使⽤,或同时放弃使⽤。
检查码cs 是通过对对应的指令(包括它的的⾏码)的原始字节数据进⾏异或位运算得出的。
int cs = 0;for(i = 0; cmd[i] != '*' && cmd[i] != NULL; i++)cs = cs ^ cmd[i];cs &= 0xff; // Defensive programming...检查码cs的值即是其*符号右边的⼗进制数字,RepRap固件希望每次命令的⾏代码都是逐次增加1的⼤⼩,不然的话,它会返回⼀个错误。
赛米控丹佛斯 SEMITRANS IGBT模块 SKM200GB12E4 数据表
SEMITRANS ®3IGBT4 ModulesSKM200GB12E4Features•IGBT4 = 4. generation medium fast trench IGBT (Infineon)•CAL4 = Soft switching 4. generation CAL-diode•Isolated copper baseplate using DBC technology (Direct Bonded Copper) •Increased power cycling capability •With integrated gate resistor•For higher switching frequenzies up to 12kHz•UL recognized, file no. E63532Typical Applications*•AC inverter drives •UPSRemarks•Case temperature limited to T c = 125°C max.•Recommended T op = -40 ... +150°C •Product reliability results valid for T j = 150°CAbsolute Maximum Ratings SymbolConditions Values UnitIGBT V CES T j =25°C 1200V I C T j =175°CT c =25°C 313A T c =80°C241A I Cnom 200A I CRMI CRM = 3xI Cnom 600A V GES -20...20V t psc V CC =800V V GE ≤ 15V V CES ≤ 1200VT j =150°C10µs T j-40...175°C Inverse diode I F T j =175°CT c =25°C 229A T c =80°C 172A I Fnom200A I FRM I FRM = 3xI Fnom600A I FSM t p =10ms, sin 180°, T j =25°C990A T j -40 (175)°C Module I t(RMS)T terminal =80°C500A T stg -40...125°C V isolAC sinus 50 Hz, t =1min4000VCharacteristics SymbolConditions min.typ.max.UnitIGBT V CE(sat)I C =200A V GE =15V chiplevel T j =25°C 1.80 2.05V T j =150°C 2.20 2.40V V CE0chiplevel T j =25°C 0.80.9V T j =150°C 0.70.8V r CE V GE =15V chiplevel T j =25°C 5.00 5.75m ΩT j =150°C7.508.00m ΩV GE(th)V GE =V CE , I C =7.6mA55.86.5V I CES V GE =0V V CE =1200V T j =25°C 2.7mA T j =150°C mA C ies V CE =25V V GE =0Vf =1MHz 12.3nF C oes f =1MHz 0.81nF C res f =1MHz0.69nF Q G V GE =- 8 V...+ 15 V 1130nC R Gint T j =25°C 3.8Ωt d(on)V CC =600V I C =200A V GE =±15V R G on =1ΩR G off =1Ωdi/dt on =5500A/µs di/dt off =2300A/µs T j =150°C 204ns t r T j =150°C 40ns E on T j =150°C 21mJ t d(off)T j =150°C 490ns t f T j =150°C 107ns E off T j =150°C 27mJ R th(j-c)per IGBT0.14K/WCharacteristics SymbolConditionsmin.typ.max.UnitInverse diodeV F = V EC I F =200AV GE =0V chiplevelT j =25°C 2.20 2.52V T j =150°C 2.15 2.47V V F0chiplevel T j =25°C 1.3 1.5V T j =150°C 0.9 1.1V r FchiplevelT j =25°C 4.5 5.1m ΩT j =150°C6.3 6.8m ΩI RRM I F =200A di/dt off =4450A/µs V GE =±15VV CC =600VT j =150°C 174A Q rr T j=150°C33µC E rr T j =150°C 13mJR th(j-c)per diode0.26K/W Module L CE 1520nH R CC'+EE'terminal-chip T C =25°C 0.25m ΩT C =125°C0.5m ΩR th(c-s)per module 0.020.038K/W M s to heat sink M635Nm M t to terminals M62.55Nm Nm w325gSEMITRANS ® 3IGBT4 ModulesSKM200GB12E4Features•IGBT4 = 4. generation medium fast trench IGBT (Infineon)•CAL4 = Soft switching 4. generation CAL-diode•Isolated copper baseplate using DBC technology (Direct Bonded Copper) •Increased power cycling capability •With integrated gate resistor•For higher switching frequenzies up to 12kHz•UL recognized, file no. E63532Typical Applications*•AC inverter drives •UPSRemarks•Case temperature limited to T c = 125°C max.•Recommended T op = -40 ... +150°C •Product reliability results valid for T j = 150°CFig. 1: Typ. output characteristic, inclusive R CC'+ EE'Fig. 2: Rated current vs. temperature I C = f (T C )Fig. 3: Typ. turn-on /-off energy = f (I C )Fig. 4: Typ. turn-on /-off energy = f (R G )Fig. 5: Typ. transfer characteristic Fig. 6: Typ. gate charge characteristicFig. 7: Typ. switching times vs. I C Fig. 8: Typ. switching times vs. gate resistor R GFig. 9: Transient thermal impedance Fig. 10: Typ. CAL diode forward charact., incl. R CC'+ EE'Fig. 11: CAL diode peak reverse recovery current Fig. 12: Typ. CAL diode peak reverse recovery chargeThis is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MONOLITHIC TRIPLE FIXED DELAY LINE (SERIES 3D7303)FEATURES• All-silicon, low-power CMOS technology • TTL/CMOS compatible inputs and outputs • Vapor phase, IR and wave solderable • Auto-insertable (DIP pkg.)• Low ground bounce noise• Leading- and trailing-edge accuracy • Delay range: 10 through 500ns • Delay tolerance: 2% or 1.0ns• Temperature stability: ±3% typical (0C-70C)• Vdd stability: ±1% typical (4.75V-5.25V)• Minimum input pulse width: 20% of totaldelay• 14-pin DIP available as drop-in replacement forhybrid delay linesFUNCTIONAL DESCRIPTIONThe 3D7303 Triple Delay Line product family consists of fixed-delay CMOS integrated circuits. Each package contains three matched,independent delay lines. Delay values can range from 10ns through 500ns. The input is reproduced at the output without inversion,shifted in time as per the user-specified dash number. The 3D7303is TTL- and CMOS-compatible, capable of driving ten 74LS-type loads, and features both rising- and falling-edge accuracy.The all-CMOS 3D7303 integrated circuit has been designed as a reliable, economic alternative to hybrid TTL fixed delay lines. It isoffered in a standard 8-pin auto-insertable DIP and a space saving surface mount 8-pin SOIC.data delay devices, inc.®3PACKAGES87651234I1I2I3GNDVDD O1O2O33D7303M DIP3D7303H Gull-Wing(300 Mil)12348765I1I2I3GNDVDD O1O2O33D7303Z SOIC(150 Mil)1413121110981234567I1N/C I2N/C I3N/C GNDVDD N/C O1N/C O2N/C O33D7303DIP3D7303G Gull-Wing 3D7303K Unused pinsremoved (300 Mil)PIN DESCRIPTIONSI1Delay Line 1 Input I2Delay Line 2 Input I3Delay Line 3 Input O1Delay Line 1 Output O2Delay Line 2 Output O3Delay Line 3 Output VCC +5 Volts GND GroundN/CNo ConnectionTABLE 1: PART NUMBER SPECIFICATIONSPART NUMBER DELAY INPUT RESTRICTIONS DIP-83D7303M 3D7303H SOIC-83D7303Z DIP-143D73033D7303GDIP-143D7303K PER LINE (ns)Max Operating FrequencyAbsolute Max Oper. Freq.Min Operating Pulse WidthAbsolute Min Oper. P.W.-10-10-10-1010 ± 1.033.3 MHz 100.0 MHz 15.0 ns 5.0 ns -15-15-15-1515 ± 1.022.2 MHz 100.0 MHz 22.5 ns 5.0 ns -20-20-20-2020 ± 1.016.7 MHz 100.0 MHz 30.0 ns 5.0 ns -25-25-25-2525 ± 1.013.3 MHz 83.3 MHz 37.5 ns 6.0 ns -30-30-30-3030 ± 1.011.1 MHz 71.4 MHz 45.0 ns 7.0 ns -40-40-40-4040 ± 1.08.33 MHz 62.5 MHz 60.0 ns 8.0 ns -50-50-50-5050 ± 1.0 6.67 MHz 50.0 MHz 75.0 ns 10.0 ns -100-100-100-100100 ± 2.0 3.33 MHz 25.0 MHz 150.0 ns 20.0 ns -200-200-200-200200 ± 4.0 1.67 MHz 12.5 MHz 300.0 ns 40.0 ns -300-300-300-300300 ± 6.0 1.11 MHz 8.33 MHz 450.0 ns 60.0 ns -400-400-400-400400 ± 8.00.83 MHz 6.25 MHz 600.0 ns 80.0 ns -500-500-500-500500 ± 10.00.67 MHz5.00 MHz750.0 ns100.0 nsNOTE:Any delay between 10 and 500 ns not shown is also available.©1996 Data Delay DevicesAPPLICATION NOTESOPERATIONAL DESCRIPTIONThe 3D7303 triple delay line architecture isshown in Figure 1. The individual delay lines are composed of a number of delay cells connected in series. Each delay line produces at its output a replica of the signal present at its input, shifted in time. The delay lines are matched and share the same compensation signals, whichminimizes line-to-line delay deviations over temperature and supply voltage variations.INPUT SIGNAL CHARACTERISTICSThe Frequency and/or Pulse Width (high or low)of operation may adversely impact the specified delay accuracy of the particular device. The reasons for the dependency of the output delay accuracy on the input signal characteristics are varied and complex. Therefore a Maximum and an Absolute Maximum operating inputfrequency and a Minimum and an Absolute Minimum operating pulse width have been specified.OPERATING FREQUENCYThe Absolute Maximum Operating Frequency specification, tabulated in Table 1, determines the highest frequency of the delay line input signal that can be reproduced, shifted in time at the device output, with acceptable duty cycle distortion.The Maximum Operating Frequencyspecification determines the highest frequency of the delay line input signal for which the output delay accuracy is guaranteed.To guarantee the Table 1 delay accuracy for input frequencies higher than the Maximum Operating Frequency , the 3D7303 must be tested at the user operating frequency.Therefore, to facilitate production and device identification, the part number will include a custom reference designator identifying the intended frequency of operation. Theprogrammed delay accuracy of the device is guaranteed, therefore, only at the user specified input frequency. Small input frequency variation about the selected frequency will only marginally impact the programmed delay accuracy, if at all.Nevertheless, it is strongly recommended that the engineering staff at DATA DELAY DEVICES be consulted.OPERATING PULSE WIDTHThe Absolute Minimum Operating Pulse Width (high or low) specification, tabulated in Table 1, determines the smallest Pulse Width of the delay line input signal that can bereproduced, shifted in time at the device output,with acceptable pulse width distortion.The Minimum Operating Pulse Width (high or low) specification determines the smallest Pulse Width of the delay line input signal for which the output delay accuracy tabulated in Table 1 is guaranteed.To guarantee the Table 1 delay accuracy for input pulse width smaller than the Minimum Operating Pulse Width , the 3D7303 must be tested at the user operating pulse width.Therefore, to facilitate production and device identification, the part number will include aO1I1Delay Line Delay Line Delay LineO2I2O3I3Temp & VDD Compensation VDDGND Figure 1: 3D7303 Functional DiagramAPPLICATION NOTES (CONT’D)custom reference designator identifying the intended frequency and duty cycle of operation. The programmed delay accuracy of the device is guaranteed, therefore, only for the user specified input characteristics. Small input pulse width variation about the selected pulse width will only marginally impact the programmed delay accuracy, if at all. Nevertheless, it is strongly recommended that the engineering staff at DATA DELAY DEVICES be consulted. POWER SUPPLY AND TEMPERATURE CONSIDERATIONS The delay of CMOS integrated circuits is strongly dependent on power supply and temperature. The monolithic 3D7303 programmable delay line utilizes novel and innovative compensation circuitry to minimize the delay variations induced by fluctuations in power supply and/or temperature.The thermal coefficient is reduced to 600PPM/C, which is equivalent to a variation , over the 0C-70C operating range, of ±3% from the room-temperature delay settings and/or 1.0ns, whichever is greater. The power supply coefficient is reduced, over the 4.75V-5.25V operating range, to ±1% of the delay settings at the nominal 5.0VDC power supply and/or 2.0ns, whichever is greater. It is essential that the power supply pin be adequately bypassed and filtered. In addition, the power bus should be of as low an impedance construction as possible. Power planes are preferred.DEVICE SPECIFICATIONSTABLE 2: ABSOLUTE MAXIMUM RATINGSPARAMETER SYMBOL MIN MAX UNITS NOTES DC Supply Voltage V DD-0.37.0VInput Pin Voltage V IN-0.3V DD+0.3VInput Pin Current I IN-1.0 1.0mA25CStorage Temperature T STRG-55150CLead Temperature T LEAD300C10 sec TABLE 3: DC ELECTRICAL CHARACTERISTICS(0C to 70C, 4.75V to 5.25V)PARAMETER SYMBOL MIN MAX UNITS NOTES Static Supply Current*I DD30mAHigh Level Input Voltage V IH 2.0VLow Level Input Voltage V IL0.8VHigh Level Input Current I IH1µA V IH = V DD Low Level Input Current I IL1µA V IL = 0V High Level Output Current I OH-4.0mA V DD = 4.75VV OH = 2.4V Low Level Output Current I OL 4.0mA V DD = 4.75VV OL = 0.4V Output Rise & Fall Time T R & T F2ns C LD = 5 pf*I DD(Dynamic) = 3 * C LD * V DD * F Input Capacitance = 10 pf typical where:C LD = Average capacitance load/line (pf)Output Load Capacitance (C LD) = 25 pf maxF = Input frequency (GHz)SILICON DELAY LINE AUTOMATED TESTINGTEST CONDITIONSINPUT:OUTPUT:Ambient Temperature:25o C ± 3o C R load :10K Ω ± 10%Supply Voltage (Vcc): 5.0V ± 0.1V C load :5pf ± 10%Input Pulse:High = 3.0V ± 0.1VThreshold:1.5V (Rising & Falling)Low = 0.0V ± 0.1VSource Impedance:50Ω Max.Rise/Fall Time: 3.0 ns Max. (measuredbetween 0.6V and 2.4V )Pulse Width:PW IN = 1.25 x Total Delay Period:PER IN = 2.5 x Total DelayNOTE:The above conditions are for test only and do not in any way restrict the operation of the device.10K Ω470Ω5pfDevice Under TestDigital ScopeFigure 2: Test SetupFigure 3: Timing Diagramt PLHt PHLPER INPW INt RISEt FALL0.6V0.6V1.5V 1.5V2.4V 2.4V 1.5V1.5VV IHV ILV OHV OLINPUT SIGNALOUTPUT SIGNAL。