3涡流检测精品PPT课件
第三节涡流检测的
涡流探伤仪,分选,扫描成像, 涡流探伤仪,分选,扫描成像,磁记忆应力诊断
Hale Waihona Puke 钢管涡流检测脉冲涡流检测技术研究及其应用的新进展
2 脉冲涡流检测的基本原理
图1 脉冲涡流的产生及检测信号的拾取过程
表3-1 涡流检测的应用
检测目的 探 伤
影响涡流特性的因素
缺陷的形状、 缺陷的形状、尺寸和位置 电导率 检测距离和薄板长度 工件的尺寸和形状
用
途
导电的管、棒、线材及零部件 导电的管、 的缺陷检测 材料分选和非磁性材料电导率 的测定 覆膜和薄板厚度的测量 工件尺寸和形状的控制
3、结构件疲劳裂纹探伤 服役中的结构件上可能产生各种缺陷, 服役中的结构件上可能产生各种缺陷 , 尤以疲劳裂纹为 多见。适合采用探头式线圈进行检测的,既包括形状复杂的零 多见。适合采用探头式线圈进行检测的 也包括除管、 棒材以外形状不规则的材料和零件, 件, 也包括除管、 棒材以外形状不规则的材料和零件,如板 材、 型材等。 型材等。 由于这类材料和零件的形状、 结构多种多样, 由于这类材料和零件的形状 、 结构多种多样 , 因此探头 式线圈的形貌也多种多样。 式线圈的形貌也多种多样。比如要采用涡流方法完成飞机维修 手册所规定的全部检查项目,就要配备以下各式探头, 手册所规定的全部检查项目,就要配备以下各式探头,包括笔 式探头、 钩式探头、 平探头、 孔探头和异形探头等。 式探头、 钩式探头、 平探头、 孔探头和异形探头等。
二、材质检验 材质检验 电导率的测量是利用涡流电导仪测量出非铁磁性金属的 电导率 的测量是利用涡流电导仪测量出非铁磁性金属的 电导率值,而电导率值与金属中所含杂质、材料的热处理状态 电导率值,而电导率值与金属中所含杂质、 以及某些材料的硬度、耐腐蚀等性能有关,所以可进行材质的 以及某些材料的硬度、耐腐蚀等性能有关,所以可进行材质的 分选。 分选。 材料的电导率是影响检测线圈阻抗的重要因素, 材料的电导率是影响检测线圈阻抗的重要因素 , 因此在 涡流检测中可用来评价材料的材质和其他性能。 涡流检测中可用来评价材料的材质和其他性能。这种评价不会 损伤零部件的加工表面,且特别适合现场检测。 损伤零部件的加工表面,且特别适合现场检测。
涡流检测—涡流检测技术(无损检测课件)
检测线圈的分类
穿过式线圈 检测管材、棒材和线材,用于在线检测
探头式线圈 放在板材、钢锭、棒、管、坯等表面上用,尤其适用于局部检
测,通常线圈中装入磁芯,用来提高检测灵敏度,用于在役检测 内插式线图
管内壁、钻孔。用于材质和加工工艺检查
第3节 涡流检测的基本原理
4. 设备器材
一般的涡流检测仪主要由振荡器、探头、信号输出电 路、放大器、信号处理器、显示器、电源等部分组成
第3节 涡流检测的基本原理
5. 检测技术
缺陷检测即通常所说的涡流探伤。主要影响因素包括工作 频率、电导率、磁导率、边缘效应、提离效应等。
➢ 工作频率是由被检测对象的厚度、所期望的透入深度、要 求达到的灵敏度或分辨率以及其他检测目的所决定的。检 测频率的选择往往是上述因素的一种折衷。在满足检测深 度要求的前提下,检测频率应选的尽可能高,以得到较高 的检测灵敏度。
5. 检测技术
➢ 边缘效应:当检测线圈扫查至接近零件边缘或其上面的孔 洞、台阶时,涡流的流动路径就会发生畸变。这种由于被 检测部位形状突变引起涡流相应变化的现象称为边缘效应。 边缘效应作用范围的大小与被检测材料的导电性、磁导性、
检测线圈的尺寸、结构有关。
5. 检测技术
➢ 提离效应:针对放置式线圈而言,是指随着检测线圈离开 被检测对象表面距离的变化而感应到涡流反作用发生改变 的现象,对于外通式和内穿式线圈而言,表现为棒材外径 和管材内径或外径相对于检测线圈直径的变化而产生的涡 流响应变化的现象。
4. 设备器材
检测仪器的基本组成和原理: 激励单元的信号发生器产生交变电流供给检测线 圈,放大单元将检测线圈拾取的电压信号放大并 传送给处理单元,处理单元抑制或消除干扰信号, 提取有用信号,最终显示单元给出检测结果。
涡流检测—涡流检测基本原理(无损检测课件)
第2节 涡流检测的基本原理
原理
原理:当载有交变电流的线圈接近被检工件时,材料表面与近 表面会感应出涡流,其大小、相位和流动轨迹与被检工件的电 磁特性和缺陷等因素有关,涡流产生的磁场作用会使线圈阻抗 发生变化,测定线圈阻抗即可获得被检工件物理、结构和冶金 状态等信息。
第2节 涡流检测的基本原理
2. 涡流检测的特点
➢ (1ቤተ መጻሕፍቲ ባይዱ适用于各种导电材质的试件探伤。包括各种钢、钛、 镍、铝、铜及其合金。
➢ (2)可以检出表面和近表面缺陷。 ➢ (3)探测结果以电信号输出,容易实现自动化检测。 ➢ (4)由于采用非接触式检测,所以检测速度很快。 ➢ (5)不需接触工件也不用耦合介质,所以可以进行高温
在线检测。
2. 涡流检测的特点
➢ (6)形状复杂的试件很难应用。因此一般只用其检测管 材,板材等轧制型材。
➢ (7)不能显示出缺陷图形,因此无法从显示信号判断出 缺陷性质。
➢ (8)各种干扰检测的因素较多,容易引起杂乱信号。 ➢ (9)由于集肤效应,埋藏较深的缺陷无法检出 ➢ (10)不能用于不导电材料的检测。
第3章涡流检测技术
? 逆磁质:
? 感生磁场微弱、与外磁场方向相反的物质,如铜。
? 铁磁质:
? 感生磁场强的物质,如铁,钴、镍及其合金。
? 磁导率:
相对磁导率 :
3.2.1.3 电磁感应
? 1.电磁感应:
? 当穿过闭合导电回路所包围面积的磁通量发生变化时,回路中将产生 电流的现象。
? 法拉第感应定律 感应电动势
? 2. 自感应:
? 3.2.2 涡流检测技术原理
3.2.1 与涡流检测相关的电学和磁学基本知识
? 3.2.1.1 金属的导电性
? 3.2.1.2 金属的磁特性 ? 3.2.1.3 电磁感应
3.2.1.2 金属的磁特性
? 磁化:
? 物质在外磁场作用下感生出磁场的物理过程称为磁化。
? 顺磁质:
? 感生磁场微弱、与外磁场方向相同的物质,如铝。
? 表面或近表面缺陷检测 ? 只适用于导电材料 ? 非接触,无需耦合 ? 检测速度快,易于实现自动化 ? 适用于高温检测 ? 适用于异型材料和小零件检测
3.1.3 涡流检测的发展过程
? 1879年,英国人休斯利用感生涡流对不同的合金进行了判 断实验。
? 20世纪50年代初,德国的福斯特等人提出阻抗平面图分析 法和相似定律。
? 涡流检测根据线圈视在阻抗(信号)的变化特征获得被检材料的物理 特性或工艺特性(信息)。
of Penetration
(Skin Depth)
Eddy Current Density
High Frequency High Conductivity High Permeability
1/e or 37 % of surface density
Depth
Eddy Current Density Low Frequency Low Conductivity Low Permeability
《涡流检测》课件
检测能力。
提高检测精度与可靠性
高频涡流检测技术
研究高频涡流检测技术,以获取更丰富的信号特征,提高检测精度 和可靠性。
信号处理与模式识别
通过改进信号处理算法和模式识别技术,降低噪声干扰,提高检测 结果的可靠性。
标准化与规范化
制定涡流检测的标准化和规范化体系,确保不同设备、不同人员之间 的检测结果具有可比性。
06 涡流检测的未来发展与挑 战
新技术与新方法的探索
人工智能与机器学习
01
利用人工智能和机器学习技术,实现涡流检测的自动化和智能
化,提高检测效率和准确性。
光学涡流检测技术
02
结合光学技术,发展新型的光学涡流检测方法,实现非接触、
高灵敏度的检测。
复合涡流检测技术
03
探索多种涡流检测技术的复合应用,发挥各自优势,提高综合
详细描述
金属材料涡流检测案例包括对各种金属制品、铸件、焊接件等的检测。通过涡流 检测,可以快速准确地检测出金属材料中的裂纹、夹杂物、气孔等缺陷,为金属 材料的生产和质量控制提供重要的保障。
工程结构涡流检测案例
总结词
工程结构的涡流检测主要应用于桥梁、建筑、管道等大型结构的无损检测,以确保结构的安全性和可靠性。
03 涡流检测方法与实验
常规涡流检测
常规涡流检测是一种基于电磁感 应原理的无损检测方法,通过在 导电材料表面激发涡流来检测材
料内部的缺陷和损伤。
常规涡流检测具有快速、非接触、 无需耦合剂等优点,适用于各种 导电材料的表面和近表面缺陷检
测。
常规涡流检测的局限性在于对深 层缺陷的检测能力有限,且容易 受到材料导电率和磁导率的影响。
涡流具有热效应和磁效应,会导致导体发热和磁化,从而影响导体的磁导率和电导 率。
涡流检测
12
(2)按电联接方式分类(P75) a.绝对式:只用一个检测线圈进行涡流检测
适用场合:材质分选、涂层测厚及材料探伤
b.差动式:两个线圈反接在一起进行工作
标准比较式 自比较式
适用场合:管(棒)材表面的局部缺陷。 优缺点比较见P77表3-3。 3.对比试样 作用:检测和鉴定涡流检测仪的性能,如灵敏度、分辨
化就可发现有无缺陷。
5
H1 I1 H2 δ
原线圈的等效阻抗Z变化:
I2
Z Z ( , , , )
被测体电阻率 被测体磁导率 激励电流的频率
线圈与导体间距离
涡流作用原理
6
3.涡流的趋肤效应
趋肤效应:当交变电流通过导体
时,分布在导体横截面上的电流密度 是不均匀的,即表层密度最大,越靠 近截面的中心电流密度越小的现象。 涡流的衰减公式:
硬度HRB
时效硬化铝合金的硬度与电导率的关系
16
(3)混料分选
如果混杂材料或零部件的电导率分布带不相互重合,就可 以利用涡流法先测出混料的电导率,再与已知牌号或状态的材 料和零部件的电导率比较,从而将混料区分开。
注意事项: 1)材料厚度的影响
进行混料分选时,材料厚度至少应为涡流渗透深度的3倍。
2)环境温度的影响
40 0
P 0.5
Fe
Si 1
铜中杂质的含量%
铜中杂质的含量与电导率的关系
15
(2)热处理状态的鉴别 原理:相同的材料经过
电导率(相对值) 1.85 1.80 1.75
1.70 1.65 1.60 1.55 1.50 84 86 88
不同的热处理后不仅硬度不
同,而且电导率也不同。
铝合金
涡流检测课件
涡流检测课件一、教学内容本节课我们将学习《涡流检测》的相关知识。
该内容属于《无损检测技术》教材的第五章,详细内容包括涡流检测的原理、检测设备、检测过程以及应用领域。
重点分析涡流检测在实际工程中的应用实例。
二、教学目标1. 掌握涡流检测的基本原理及其在无损检测中的应用。
2. 学会使用涡流检测设备,并了解其操作注意事项。
3. 能够分析涡流检测的优缺点,并将其应用于实际工程中。
三、教学难点与重点教学难点:涡流检测原理的理解,检测设备的使用。
教学重点:涡流检测的应用领域及操作注意事项。
四、教具与学具准备1. 教具:涡流检测设备一套,PPT课件。
2. 学具:笔记本、教材、笔。
五、教学过程1. 导入:通过展示一个实际工程中涡流检测的应用案例,引发学生对涡流检测的兴趣,进而引入本节课的内容。
2. 原理讲解:详细讲解涡流检测的基本原理,结合PPT课件,使学生理解涡流检测的原理。
3. 设备介绍:介绍涡流检测设备的组成、功能及操作注意事项。
4. 实践操作:现场演示涡流检测设备的操作过程,并指导学生进行实际操作。
5. 例题讲解:讲解涡流检测在实际工程中的应用实例,使学生学会分析问题、解决问题。
6. 随堂练习:布置一些有关涡流检测的练习题,巩固所学知识。
六、板书设计1. 涡流检测原理2. 涡流检测设备3. 涡流检测操作流程4. 涡流检测应用实例七、作业设计1. 作业题目:分析涡流检测在某一工程领域的应用,阐述其优点及局限性。
2. 答案要点:(1)应用领域:航空航天、汽车制造、电力系统等。
(2)优点:无需耦合剂,检测速度快,易于实现自动化。
(3)局限性:对材料导电性有一定要求,检测深度有限。
八、课后反思及拓展延伸1. 反思:本节课通过实际案例导入、原理讲解、设备演示等环节,使学生掌握了涡流检测的基本知识。
但在教学过程中,要注意关注学生的学习反馈,及时调整教学节奏。
2. 拓展延伸:引导学生了解其他无损检测方法,如超声波检测、射线检测等,以便在实际工程中能够灵活运用各种检测技术。
《涡流检测》课件
涡流检测的应用领域
金属材料检测
涡流检测广泛应用于金属材料的检测,如钢铁、铜、铝等,可检 测表面和近表面的缺陷、裂纹、夹杂物等。
非导电材料检测
对于非导电材料,如玻璃、陶瓷等,涡流检测同样适用,可检测表 面和内部的裂纹、气孔等。
复合材料检测
涡流检测在复合材料检测中也有广泛应用,可检测复合材料的层间 缺陷、脱粘等。
电磁感应基础
电磁感应原理
01
当导体在磁场中作相对运动时,会在导体中产生电动势或电流
的现象。
法拉第电磁感应定律
02
当穿过闭合回路的磁通量发生变化时,回路中会产生感应电流
。
楞次定律
03
感应电流的方向总是阻碍引起它的磁通量的变化。
涡流的产生与性质
涡流的产生
当动,形成电涡流 。
VS
详细描述
复合材料检测案例中,涡流检测技术被广 泛应用于复合材料的无损检测。涡流检测 可以快速检测出复合材料中的界面脱粘、 分层等缺陷,且对缺陷的定位和定量精度 较高。同时,案例也分析了涡流检测在复 合材料无损检测中的局限性,如对某些特 定类型的复合材料可能不适用等。
05 涡流检测的未来发展与挑 战
详细描述
管道检测案例中,涡流检测技术被广泛应用于石油、化工、电力等行业的管道无损检测。通过涡流检测,可以快 速检测出管道内部的裂纹、腐蚀等缺陷,提高检测效率,降低维护成本。同时,案例也分析了涡流检测在管道检 测中的局限性,如对非金属材料不敏感等。
金属板材检测案例
总结词
金属板材检测案例展示了涡流检测在金属板材无损检测中的应用,通过案例分析,了解涡流检测在金 属板材检测中的优缺点。
感谢您的观看
THANKS
涡流检测的优缺点
涡流检测PPT课件
来描述
1 e 37%
1 1 f
2
渗透深度
与频率
的平方根成反比。
f
涡流检测的试验基础
将两个线圈固定在一起。在线圈Ⅰ上输入交流电流,在线圈Ⅱ上接一
个电压表,同时把这两个线圈放在金属块上面。
线圈Ⅰ将激励出一个交变磁场。如果线圈Ⅰ、线圈Ⅱ和金属块靠的 很近,以至于线圈Ⅰ所激励的磁场对线圈Ⅱ和金属块都有感应,那么 在金属块中就会产生出涡流,而线圈Ⅱ中的电压表也相应地有一个读 数。线圈Ⅰ是供激励磁场用的称为激励线圈;而线圈Ⅱ是供测量用的 称为测试线圈。
EL
L
dI dt
L-自感系数(H)
1 2 ➢互感:两线圈回路 和回路 ,其中分别通以电流I1和I2,则任一
回路中电流所产生的磁感应线将通过另一回路所包围的面积。其中 任一回路电流发生变化时,其磁通量的变化,在另一回路中会产生 感生电动势。两个载流回路相互激起感生电动势的现象称为互感现 象。
互感 电动势
主要应用: (1)能检测出材料和构件中的缺陷,例如裂纹、折叠、气孔和夹杂等。 (2)能测量材料的电导率、磁导率、检测晶粒度、热处理状况、材料的硬 度和尺寸等。
(3)金属材料或零件的混料分选。通过检查其成分、组织和物理性能的差 异而达到分选的目的。
主要应用: (4)测量金属材料上的非金属涂层、铁磁性材料上的非铁磁性材料涂层 和镀层的厚度等。 (5)在无法进行直接测量的情况下,可用来测量金属箔、板材和管材的 厚度,测量管材和棒材的直径等。
(4)对于各种类型的工件和检测线圈, 有各自对应的阻抗图。
二 有效磁导率和特征频率
1 有效磁导率
eff
eff
1 j1 ( jka) jka j0 ( jka)
《涡流检测》课件
《涡流检测》课件一、教学内容本节课的教学内容来自于《无损检测》一书的第五章,主要讲述涡流检测的原理、设备和应用。
具体内容包括:涡流检测的基本原理、涡流检测的设备组成、涡流检测的适用范围和限制、以及涡流检测在实际工程中的应用案例。
二、教学目标1. 让学生了解涡流检测的基本原理,理解涡流检测的设备组成和工作方式。
2. 通过实例分析,使学生掌握涡流检测在实际工程中的应用。
3. 培养学生对涡流检测技术的兴趣,激发学生对无损检测领域的研究热情。
三、教学难点与重点1. 涡流检测的基本原理。
2. 涡流检测设备的组成和工作方式。
3. 涡流检测在实际工程中的应用。
四、教具与学具准备1. PPT课件。
2. 涡流检测设备实物图。
3. 涡流检测实例视频。
五、教学过程1. 实践情景引入:通过涡流检测设备实物图,让学生了解涡流检测在实际工程中的应用。
2. 涡流检测原理讲解:讲解涡流检测的基本原理,包括涡流的产生、发展和消失过程。
3. 涡流检测设备组成:介绍涡流检测设备的组成,包括发射器、接收器、探头等。
4. 涡流检测工作方式:讲解涡流检测的工作方式,包括断线检测、裂纹检测、材料识别等。
5. 实例分析:通过涡流检测实例视频,分析涡流检测在实际工程中的应用。
6. 随堂练习:让学生结合实例,分析涡流检测的适用范围和限制。
7. 板书设计:涡流检测原理、设备组成、应用案例。
8. 作业设计:题目1:涡流检测的基本原理是什么?答案:涡流检测的基本原理是利用交变磁场在导体中产生的涡流效应,对导体进行无损检测。
题目2:涡流检测设备主要由哪些部分组成?答案:涡流检测设备主要由发射器、接收器、探头等部分组成。
题目3:涡流检测在实际工程中有什么应用?答案:涡流检测在实际工程中可以用于断线检测、裂纹检测、材料识别等。
六、课后反思及拓展延伸1. 反思本节课的教学效果,看是否达到了教学目标。
2. 探讨涡流检测在其他领域的应用,激发学生的研究热情。
3. 搜集更多关于涡流检测的最新研究成果,下一节课与学生分享。
第3章涡流检测技术-精选文档
3.1 概 述
3.2 涡流检测基础知识 3.3 涡流检测仪器及设备 3.4 涡流检测方法 3.5 涡流检测诊断常用标准 3.6 涡流检测技术应用
3.1 概 述
3.1.1 涡流检测基本原理 3.1.2 涡流检测的应用
3.1.3 涡流检测的特点
3.1.4 涡流检测的发展过程
3.1.1 涡流检测基本原理
3.1.1 涡流检测基本原理
涡流检测
利用电磁感应原理,通过测定被检工件内感生涡流的变化来无损评定 导电材料及其工件的某些性能,或发现缺陷的无损检测方法称为涡流 检测。 当检测线圈中通有交变电流时,在线圈周围产生交变磁场;当此交变 磁场相对导体作运动时,导体中会感生出涡状流动的电流。 涡流伴生的感应磁场与原磁场叠加,使检测线圈的复阻抗发生变化。 导体内感生涡流的幅值、相位、流动形式及其伴生磁场受导体的物理 特性影响,进而影响检测线圈的复阻抗。 因此通过监测检测线圈的阻抗变化即可非破坏地评价导体的物理和工 艺性能。
顺磁质:
逆磁质:
铁磁质:
磁导率:
相对磁导率:
3.2.1.3 电磁感应
1.电磁感应:
当穿过闭合导电回路所包围面积的磁通量发生变化时,回路中将产生 电流的现象。 法拉第感应定律 感应电动势
2. 自感应:
当线圈中通有交变电流时,
线圈中将产生感应电动势的现象。
3. 互感应:
两载流线圈相互激起感应电动势的现象
涡流探伤能够达到的极限深度:
涡流密度仅约为其表面密度的5%时的深度 - 3δ。
涡流检测—涡流检测应用(无损检测课件)
7. 涡流检测工艺要点
➢ 线圈的选择 线圈的选择要使它能探测出指定的对比试块上的人工缺陷,
并且所选择的线圈要适合于试件的形状和尺寸。 ➢ 探伤灵敏度的选定
探伤灵敏度的选定是在其他调整步骤完成之后进行的,要 把指定的对比试块的人工缺陷的显示图象调整在探伤仪器显 示器的正常动作范围之内。 ➢ 平衡调整
应在实际探伤状态下,在试样无缺陷的部位进行电桥的平 衡调整。
7. 涡流检测工艺要点
➢ 相位角的选定 调整移相器的相位角使得指定的对比试块的人工缺陷能最
明显地探测出来,而杂乱信号最小。 ➢ 直流磁场的调整
第4节 涡流检测的基本原理
6. 实际应用
以钛合金小直径棒材(φ3~φ6mm)为例,介绍和说明涡流 检测技术在原材料质量复验中的应用。
➢ 方法的选择:小直径——通过式线圈(自比差动式线圈) f=50~500kHz
➢ 人工缺陷的制作:对比试样——人工缺陷的设计和加工 长度:5~10mm,宽度:0.05~0.1mm,深度依据验收标准
间限制,平稳性稍好
平探头 • 线圈直径5~15mm,外径10~20mm,探
测面是平面。 • 稳定的耦合,检测效率高,适合平面和
曲率小的弧面。 • 不适合形状复杂零件检测。
5. 检测技术
孔探头: • 线圈直径1~2mm,与被检测孔的直径大小无关,而探头端部镶
嵌检测线圈的球体直径要与被检测孔直径相同,保证检测线圈 与孔壁的紧密耦合。检测不同螺栓孔配备不同规格的孔探头。
对强磁性材料进行探伤时,用线圈的直流磁场,使试件磁 导率不均匀性所引起的杂乱信号降低到不致影响探伤结果的 水平上。
第3章涡流探伤-精选(公开课件)
1
3.1涡流检测简介
3.1.1 涡流检测的基本原理
当载有交变电流的检测线圈靠近导电工件 时,由于线圈磁场的作用,工件中将会感生 出涡流(其大小等参数与工件中的缺陷等有 关),而涡流产生的反作用磁场又将使检测 线圈的阻抗发生变化。因此,在工件形状尺 寸及探测距离等固定的条件下,通过测定探 测线圈阻抗的变化,可以判断被测工件有无 缺陷存在。
8
3.2.2.3涡流检测线圈的 阻抗
涡流的大小影响激励线 圈的电流大小。若施加的 交变电压不变,这种影响 可等效于激励线圈的阻抗 发生了变化。
设Z0为没有试件时线圈 的等效阻抗,Zs为有试件 时反射到激励线圈上的附 加阻抗,则线圈的阻抗Z可 表示为:
R0:激励线圈的电阻; X0:激励线圈的电抗; Rs:反射电阻;
号处理器消除各种干扰信号,最后将有用的信号输
入显示器显示检测结果。
15
3.3.1.1 振荡器
振荡器的作用是给电桥电路提供电源, 当作为电桥桥臂的检测线圈移动到有缺陷 的部位时,电桥输出信号,信号经放大后 输入检波器进行相位分析,再经滤波和幅 度分析后,送到显示和记录装置。
16
3.3.1.2 检出电路
查表得:μeff实=0.9798,μeff虚=0.1216;
当f=1000Hz时,f/fg=10,
查表得:μeff实=0.4678,μeff虚=0.3494
对某非磁性材料进行涡流探伤时,已知ur=1,
f=2kHz,ρ=20x10-8Ω·m,请计算渗透深度值为 多少?(ρ是电阻率) 5mm
2
3.1.2涡流检测的特点
3.1.2.1 用途及影响感生涡流的主要因素
涡流检测涡流检测应用无损检测课件.
涡流检测涡流检测应用无损检测课件.一、教学内容本节课将深入探讨《无损检测》教材第四章“涡流检测”部分,详细内容涵盖涡流检测的基本原理、检测设备、应用范围及其在工业检测中的优势。
具体涉及章节4.1“涡流检测原理”,4.2“涡流检测设备”,4.3“涡流检测的应用”。
二、教学目标1. 理解涡流检测的基本原理及其在无损检测领域的应用。
2. 掌握涡流检测设备的结构、功能及操作注意事项。
3. 能够运用涡流检测技术分析实际问题,并进行合理的数据解析。
三、教学难点与重点教学难点:涡流检测信号的解析与设备操作。
教学重点:涡流检测的原理及其在实际中的应用。
四、教具与学具准备1. 教具:涡流检测演示仪、PPT课件、涡流检测案例分析视频。
五、教学过程1. 导入新课:通过展示工业生产中因材料缺陷导致的设备故障视频,引发学生对无损检测重要性的思考,进而导入涡流检测的学习。
2. 基本原理讲解:讲解涡流检测的原理,结合PPT动画演示,使学生直观感受涡流检测过程。
3. 设备介绍:介绍涡流检测设备各部分结构、功能,并通过实物演示仪进行操作演示。
4. 实践案例分析:分析涡流检测在实际工业中的应用案例,讲解数据解析方法。
5. 随堂练习:发放练习题,让学生针对具体案例进行分析,巩固所学知识。
6. 答疑解惑:针对学生在练习过程中遇到的问题,进行解答和指导。
六、板书设计1. 涡流检测原理2. 涡流检测设备发生器探头信号处理器显示器3. 涡流检测应用案例七、作业设计1. 作业题目:解释涡流检测原理,并画出涡流检测示意图。
分析涡流检测设备各部分功能,并说明操作注意事项。
给出一个实际应用案例,进行涡流检测数据解析。
2. 答案:涡流检测原理:略。
涡流检测设备:略。
实际应用案例:根据案例分析,进行数据解析。
八、课后反思及拓展延伸1. 反思:本节课通过实践情景引入、例题讲解、随堂练习等方式,帮助学生理解涡流检测的基本原理和应用。
但在教学过程中,应注意关注学生的学习情况,及时调整教学进度和方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第第三章6章涡常流检用测无损检测方法
趋肤效应的存在使感生涡流的密度从被检材料或工件的表 面到其内部按指数分布规律递减。 在涡流检测中,定义涡流 密度衰减到其表面密度值的1/e(36.8%)时对应的深度为标 准渗透深度,也称趋肤深度,用符号h表示,其数学表达式为
h 503
fr
f — —电流频率,Hz;
涡流
第第三章6章涡常流检用测无损检测方法
涡流检测基本原理
当载有交变电流的检测线圈靠近 导电试件(相当于次级线圈)时,由
检测线圈
导电试件
线圈耦合互感电路
电磁感应理论可知,与涡流伴生的感应磁场与原磁场叠加,使 得检测线圈的复阻抗发生改变。导电体内感生涡流的幅值大小、 相位、流动形式及伴生磁场受到导电体的物理及制造工艺性能 的影响。因此,通过测定检测线圈阻抗的变化,就可以非破坏 性地判断出被测试件的物理或工艺性能及有无缺陷等,此即为 涡流检测的基本原理。
涡流检测是控制各种金属材料及少数非金属导电材料
(如石墨)及其产品品质的主要手段之一。与其他无损检测
方法相比,涡流检测更容易实现检测自动化,特别是对管材、
棒材和线材有很高的检测效率。
?
超声波检测的适用范围 射线检测的适用范围
第第三章6章涡常流检用测无损检测方法
超声波检测的适用范围:几乎所有材料(气相、液相、 固相,金属、非金属);检测缺陷类型:体积型、面积型均 可。工业超声检测常用的工作频率为0.5-10MHz。较高的频率 主要用于细晶材料和高灵敏度检测,较低的频率用于衰减较 大和粗晶材料(1MHz以下)。
r — —相对磁导率,无量纲; — —电导率,S / m。
第第三章6章涡常流检用测无损检测方法
磁导率 magnetic permeability
表征磁介质磁性的物理量。常用符号μ表示,或称绝对磁导 率。μ等于磁介质中磁感应强度B与磁场强度H之比。 空通磁常导使率用μ0的之是比磁。介质的相对磁导率μr ,其定义为磁导率μ与真 理磁量导。率μ,相对磁导率μr和磁化率xm都是描述磁介质磁性的物 几量对,。于与在顺H铁有磁磁关质质,μ中r>其,1数;B值与对远H于大的抗于关磁1系质。是μr<非1线,性但的两磁者滞的回μr线都,与μ1r相不差是无常 率在μ的国单际位单是位亨制利(/SI米)(中H,/相m对)磁。导率μr是无量纲的纯数,磁导
能检测; 3、一定条件下,能反映有关裂纹深度的信息; 4、不需用耦合剂,检测时与工件不接触,所以检测速度很快,
易于实现管、棒、线材高速、高效的自动化检测; 5、可在高温(耦合剂在高温下会流失)、薄壁管、细线、零件内
孔表面等其他检测方法不适用的场合实施检测;
第第三章6章涡常流检用测无损检测方法
6、涡流检测不仅可以探伤,而且可以揭示工件尺寸变化和材料 特性,例如电导率和磁导率的变化,利用这个特点可综合评价容器消 除应力热处理的效果,检测材料的质量以及测量尺寸。
第第三章6章涡常流检用测无损检测方法
第3章 涡流检测
3.1 涡流检测的基本原理 3.2 涡流检测的阻抗分析法 3.3 涡流检测的应用用电磁感应原理,通过检测被检工件内感生涡流的变
化来无损地评定导电材料及其工件的某些性能,或发现缺陷
的无损检测方法称为涡流检测。
7、缺点:受趋肤效应的限制,很难发现工件深处的缺陷;缺陷 的类型、位置、形状不易估计,需辅以其他无损检测的方法来进行缺 陷的定位和定性(感应磁场与原磁场叠加,使检测线圈的复阻抗发生改变,不 能直接反映缺陷的类型、位置、形状);不能用于绝缘材料的检测;对形状 复杂的零件,涡流检测的效率相对较低。
第第三章6章涡常流检用测无损检测方法
表3-1 涡流检测的应用
检测目的 影响涡流特性的因素
用途
探伤 材质分选 测厚
缺陷的形状、尺寸和位置 电导率 检测距离和薄板长度
导电的管、棒、线材及零部件 的缺陷检测
材料分选和非磁性材料电导率 的测定
覆膜和薄板厚度的测量
尺寸检测 工件的尺寸和形状
工件尺寸和形状的控制
物理量测量 工件与检测线圈之间的距 径向振幅、轴向位移及运动轨
第第三章6章涡常流检用测无损检测方法
涡流检测线圈测出的阻抗变化是各种信息的综合,若需要测出 材料内部某一特定信息(如裂纹)时就必须依靠线圈的设计以及仪 器的合理组成。抑制掉不需要的干扰信息,突出所需要检测的信息。 一般是将检测线圈接收到的信号变成电信号输入到涡流检测仪中, 进行不同的信号处理,在示波器或记录仪上显示出来,以判别材料 中是否有缺陷。如试件表面有裂纹,会阻碍涡流流过或使它流过的 途径发生扭曲变化,最终影响涡流磁场。适用探测线圈可把这些变 化情况检测出来。
离
迹的测量
第第三章6章涡常流检用测无损检测方法
三、 当直流电流通过导体时,横截面上的电流密度是均匀的。 但交变电流通过导体时,导体周围变化的磁场会在导体中产生 感应电流,从而会使沿导体截面的电流分布不均匀,表面的电 流密度较大,越往中心处越小,尤其是当频率较高时,电流几 乎是在导体表面附近的薄层中流动,这种现象称为趋肤效应。
交变的感生涡流渗入被检材料的深度与其频率的1/2次幂成反比。
常规涡流检测使用的频率较高(几百到几兆赫兹),渗透深度通常
较浅,因此常规涡流检测是一种表面或近表面的无损检测方法。
趋肤效应
h 503
fr
第第三章6章涡常流检用测无损检测方法
二、 1、对导电材料表面和近表面缺陷的检测灵敏度较高; 2、应用范围广,对影响感生涡流特性的各种物理和工艺因素均
射线检测的适用范围:几乎所有固体材料,而且对零件 表面形状及表面粗糙度均无严格要求,目前射线检测主要应 用于铸件和焊件的检测。射线检测对体积型缺陷的检测灵敏 度较高,对平面缺陷的检测灵敏度较低。
第第三章6章涡常流检用测无损检测方法
第一节 涡流检测的基本原理
一、
当导体处在变化的磁场中或相对于磁场运动切割磁力线时, 由电磁感应定律,其内部会感应出电流。这些电流的特点是: 在导体内部自成闭合回路,呈漩涡状流动,因此称之为涡流。 例如,在含有圆柱导体芯的螺管线圈中通有交变电流时, 圆柱 导体芯中将出现涡流。