较好的人工智能PPT(PPT34页)
人工智能 ppt课件

(2)自然数都是大于等于零的整数。 定义谓词如下: N(x):x是自然数。 I(x):x是整数。 GZ(x):x大于等于零。 (x)(N(x)→(GZ(x)∧I(x)))
(3) 西安市的夏天既干燥又炎热。 定义谓词: SUMMER(x):x处于夏天。 DRY(x):x很干燥。 HOT(x):x很炎热。
f4:从B瓶往C瓶倒油, 把C瓶倒满。
f5:从B瓶往A瓶倒油, 把B瓶倒空。
f6:从B瓶往C瓶倒油, 把B瓶倒空。
f1 f5 f7 0,0
f7
f1 f5
f7:从C瓶往A瓶倒油,
5,2
f4 f2
f3
4,3 f1 5,3
f7 f3
f8
4,0
f4
f5
0,1
f6 f8
f1
1,0
f7 f3
1,3
把C瓶倒空。
f8:从C瓶往B瓶倒油, 把C瓶倒空。
0,1,0 L(0,1)
L(1,0) L(0,1)
2,2,0
3,1,0
L(1,1)
R(1,1)L(0,2) R(0,2)
3,3,1
R(1,0) R(0,1)
1,1,1
0,2,1
L(1,1)R(0,2)
R(1,1)
L(0,2)
0,0,0
L(0,1) R(0,1)
R(0,1) L(0,1)
3,2,0
0,1,1
➢例1:设有下列事实性知识: 张晓辉是一名计算机系的学生,但他不喜欢 编程序。李晓鹏比他父亲长得高。
请用谓词公式表示这些知识。
(1)定义谓词及个体。 Computer(x):x是计算机系的学生。 Like(x,y):x喜欢y。 Higher(x,y):x比y长得高。
人工智能ppt课件

随着超级智能的发展,人类可能面临失去对人工智能系统的控制的风险,一旦失去控制,人工智能系统可能会对人类社会造成巨大威胁。
05
CHAPTER
未来的人工智能发展
物联网技术为人工智能提供了丰富的数据来源,而人工智能则为物联网提供了智能化的解决方案。
未来AI与物联网的结合将更加紧密,实现各种设备的互联互通和智能化管理。
THANKS
感谢您的观看。
社会影响
02
人工智能正在改变我们的生活方式,从日常生活中的各种便利设施,如智能家居、智能交通,到更广泛的社会问题,如数据隐私和安全、人工智能的道德和伦理问题。
科技发展
03
人工智能的发展推动了其他领域的技术进步,如机器学习、深度学习、自然语言处理等。这些技术的发展又进一步推动了人工智能的发展,形成了一个良性循环。
教育和培训
就业结构调整
人工智能算法的训练数据来源于人类社会,如果数据存在偏见或歧视,那么算法也可能会继承这些偏见和歧视,导致不公平的结果。
数据偏见
为了防止算法偏见和歧视,需要提高算法的透明度,让人们了解算法的工作原理和决策依据,以便及时发现和纠正偏见和歧视问题。
算法透明度
不可预测性
超级智能的人工智能系统可能具备高度自主性和学习能力,但其行为可能变得不可预测,甚至可能违反人类的价值观和伦理原则。
政策制定
政府需要制定相应的政策和法规,以规范AI的发展和应用。这包括数据隐私、AI的道德和伦理问题等。
教育
我们需要培养更多的AI人才,以适应这个快速发展的领域。同时,我们也需要提高公众对AI的认识和理解,以便更好地利用这项技术。
创新和应用
我们应该鼓励更多的创新和应用,以充分利用AI的潜力。同时,我们也需要关注AI的负面影响,并采取措施来减少这些影响。
人工智能PPT

人工智能PPT人工智能(Artificial Intelligence,简称AI)是一门研究如何使机器能够模拟和展现人类智能的科学与技术。
它涵盖了机器学习、自然语言处理、计算机视觉等多个领域,具有广泛的应用前景。
为了能够更好地向大家介绍人工智能,我准备了以下PPT内容。
第一部分:人工智能概述1. 什么是人工智能?人工智能是指通过类似人类思维的方式,使机器能够理解、学习和应用知识的科学与技术。
2. 人工智能的分类- 强人工智能:拥有与人类智能相媲美或超越人类的智能水平,能够进行高级思维和判断。
- 弱人工智能:在特定领域内完成一定任务,但不能拥有人类智能的所有特征。
3. 人工智能的应用领域- 机器学习:通过计算机算法,使机器能够从数据中自动学习和改进,如语音识别、图像处理等。
- 自然语言处理:研究如何使机器能够理解和生成人类语言,如智能问答系统、机器翻译等。
- 计算机视觉:使机器能够理解和解释图像和视频内容,如人脸识别、目标检测等。
- 智能机器人:将人工智能应用于机器人领域,使机器人能够自主感知、决策和执行任务。
第二部分:人工智能的发展历程1. 早期发展阶段20世纪40年代至60年代,人工智能的先驱们开始提出推理、学习和问题解决的思想,并开发了一些基础算法和系统。
2. 冬眠期20世纪70年代,人工智能的研究遇到了困难和挑战,进入了一个相对低迷的阶段,被称为“人工智能冬眠期”。
3. 复兴与进展20世纪80年代开始,人工智能逐渐复苏,并在机器学习、专家系统等领域取得了显著进展。
同时,计算能力和数据量的不断增加也为人工智能的发展提供了支持。
4. 当前应用与未来走向当前,人工智能已经广泛应用于各个行业,包括医疗、金融、交通等。
未来,人工智能将继续发展壮大,与人类共同构建智能化的社会。
第三部分:人工智能的挑战与应对1. 伦理与隐私问题- 人工智能的发展可能引发一些伦理和道德问题,如机器是否拥有意识和道德判断能力等。
2024版较好的人工智能PPT

策的科学。
发展历程
从早期的图像处理到现代深度学 习技术的应用,计算机视觉经历 了多个阶段的发展,逐渐实现了 从简单图像处理到复杂场景理解
的跨越。
应用领域
广泛应用于智能安防、自动驾驶、 医疗影像分析、工业质检等领域。
图像识别、目标检测和跟踪技术方法
当前应用领域及市场前景
应用领域
人工智能已广泛应用于金融、医疗、教育、交通、安防等领域,为人们提供了 更加便捷、高效、智能的服务。
市场前景
随着技术的不断发展和应用场景的不断拓展,人工智能市场将持续增长,成为 未来科技产业的重要支柱。同时,人工智能也将推动相关产业的发展,形成更 加完善的产业链和生态系统。
化学习、迁移学习等进行融合,以拓展其应用领域。
03
自然语言处理技术探讨
自然语言处理定义及挑战性问题
自然语言处理(NLP)定义
研究计算机处理、理解和运用人类自然语言的一门综合性科学 技术。
挑战性问题
包括词义消歧、文本蕴含、指代消解等,这些问题都是自然语 言处理中需要解决的难题。
文本挖掘、情感分析和语义理解技术方法
较好的人工智能PPT
目录
• 人工智能概述与发展历程 • 机器学习原理与技术介绍 • 自然语言处理技术探讨 • 计算机视觉在人工智能中应用 • 人工智能伦理、法律和社会影响 • 知识图谱与认知智能发展趋势
01
人工智能概述与发展历程
人工智能定义及特点
定义
人工智能是一种模拟人类智能的技 术和系统,能够执行复杂的任务, 包括学习、推理、理解自然语言、 识别图像、语音识别等。
现状分析
对各国人工智能法律法规进行梳理和比较, 总结经验和教训。
人工智能ppt课件模板

伦理与法规
道德与价值观:人工智能需要遵循道德和价值观,避免产生负面影响
04
安全与责任:人工智能需要确保安全,并明确责任归属,防止事故发生
03
公平与公正:人工智能需要确保公平和公正,避免歧视和不平等对待
02
隐私保护:人工智能需要遵守严格的隐私保护法规,防止数据滥用
01
人工智能的挑战与机遇
4
数据安全与隐私保护
01
数据安全:保护数据免受未经授权的访问、篡改、泄露和破坏
02
隐私保护:确保个人隐私不受侵犯,防止数据滥用
03
法律法规:制定和完善相关法律法规,保障数据安全和隐私保护
04
技术措施:采用加密、去标识化等技术手段,确保数据安全和隐私保护
05
企业责任:企业应承担数据安全和隐私保护的责任,加强内部管理,提高员工意识
人工智能与人类工作关系
01
挑战:人工智能可能取代部分人类工作,导致失业问题
02
机遇:人工智能可以提高工作效率,创造新的就业机会
03
合作:人工智能可以帮助人类完成复杂、重复性工作,提高工作质量
04
学习:人工智能可以促进人类学习新知识、新技能,提高自身竞争力
社会伦理与法规挑战
数据隐私与安全:保护用户隐私和数据安全,防止数据泄露和滥用
01
公平与歧视:确保AI系统公平对待不同群体,避免歧视和不平等对待
02
责任与监管:明确AI系统的责任归属,制定相应的法律法规进行监管
03
道德与价值观:确保AI系统符合社会道德和价值观,避免产生负面影响
04
谢谢观看!
汇报人
人工智能
பைடு நூலகம்
01.
人工智能介绍最新PPT课件

对图像中的场景进行解析和理解,包括场景分类 、场景布局、物体间关系等任务,有助于机器人 导航、自动驾驶等应用。
文字识别
从图像中识别出文字信息,包括印刷体文字识别 和手写文字识别等任务,广泛应用于文档数字化 、自然语言处理等领域。
05
CATALOGUE
人工智能伦理与安全问题
数据隐私保护政策解读
、建立监督机制、加强员工培训等。
算法偏见和歧视问题探讨
01
算法偏见和歧视的定义和表现
解释算法偏见和歧视的概念,以及在人工智能系统中可能出现的形式,
如性别、种族、年龄等方面的歧视。
02
算法偏见和歧视的原因分析
探讨导致算法偏见和歧视的主要原因,如数据不平衡、算法设计缺陷、
人类偏见等。
03
消除算法偏见和歧视的方法
智能客服系统能够实现多轮对话管理,根据用户的反馈和 问题进行持续的交流和解答,提高用户满意度和问题解决 效率。
智能化知识库
智能客服系统通过构建智能化知识库,整合企业内外部的 知识和信息,为用户提供全面、准确的问题解答和信息服 务。
智能推荐系统设计与实现
个性化推荐算法
智能推荐系统采用个性化推荐算法,根据用户的历史行为、兴趣偏 好和社交关系等信息,为用户推荐符合其需求的产品、服务和内容 。
自动驾驶算法
智能驾驶系统利用自动驾驶算法进行车辆控制决策和路径规划,实现车辆的自动导航和驾驶。
安全性与可靠性保障
智能驾驶系统通过多重安全保障机制,如冗余设计、故障预测与处理等,确保车辆在行驶过程中的安全 性和可靠性。同时,系统不断学习和优化自身性能,提高驾驶的准确性和稳定性。
THANKS
感谢观看
介绍消除算法偏见和歧视的技术和方法,如增加数据多样性、改进算法
40套人工智能PPT模板

人工智能伦理、法律与社会影
06
响
人工智能伦理问题探讨
人工智能的道德和伦理问题
01
探讨AI如何做出道德决策,以及AI系统是否应该具备道德和伦
理准则。
数据隐私和安全问题
02
分析AI如何处理和保护个人数据,以及在AI应用中如何确保数
据安全和隐私。
AI的歧视和偏见问题
03
讨论AI算法可能存在的歧视和偏见问题,以及如何解决这些问
深度学习是机器学习的一个分支,其模型结构更加复杂, 能够处理大规模数据并自动提取有效特征。
03
深度学习的应用场景
图像识别、语音识别、自然语言处理等领域取得了显著成 果,推动了人工智能的发展。
自然语言处理技术与应用
03
自然语言处理基本概念及原理
自然语言处理定义
研究计算机理解和生成人类自然语言的技术和方法。
01
AI对劳动力市场的 影响
分析AI技术对就业市场的影响, 包括就业机会、工作性质、薪资 水平等方面的变化。
02
AI对信息传播和社 交媒体的影响
讨论AI技术如何改变信息传播方 式,以及在社交媒体中的应用和 影响。
03
AI对文化和艺术的 影响
探讨AI技术如何影响文化和艺术 领域,包括创作过程、艺术表现 形式等方面的变化。
计算机视觉是人工智能的重要分支,通过模拟人类视觉系统的工作原理,实现对图像和视频 的智能处理和分析。
常见计算机视觉技术及应用场景
图像分类
将图像按照预定义的 类别进行分类,如猫 狗分类、花卉分类等。
目标检测
在图像中检测出感兴 趣的目标,并标注出 目标的位置和类别, 如人脸检测、车辆检 测等。
图像分割
(完整版)人工智能介绍PPT课件

智能模拟
机器视、听、触、感觉及思维方式的模拟:指纹识别,人脸识别,视网膜识别, 虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,逻辑推理,博弈,信 息感应与辨证处理。
谢谢
主条目:GOFAI
基于逻辑不像艾伦 纽厄尔和赫伯特 西蒙,JOHN MCCARTHY认为机器不需要模拟 人类的思想,而应尝试找到抽象推理和解决问题的本质,不管人们是否使用同样的 算法。他在斯坦福大学的实验室致力于使用形式化逻辑解决多种问题,包括知识表 示,智能规划和机器学习。致力于逻辑方法的还有爱丁堡大学,而促成欧洲的其他 地方开发编程语言PROLOG和逻辑编程科学。“反逻辑”斯坦福大学的研究者 (如 马文 闵斯基和西摩尔 派普特)发现要解决计算机视觉和自然语言处理的困难问题, 需要专门的方案-他们主张不存在简单和通用原理(如逻辑)能够达到所有的智能行 为。ROGER SCHANK 描述他们的“反逻辑”方法为 "SCRUFFY" 。常识知识库 (如DOUG LENAT的CYC)就是"SCRUFFY"AI的例子,因为他们必须人工一次编写一 个复杂的概念。
大脑模拟
主条目:控制论和计算神经科学 20世纪40年代到50年代,许多研究者探索神经病学,信息理论及控 制论之间的联系。其中还造出一些使用电子网络构造的初步智能, 如W. GREY WALTER的TURTLES和JOHNS HOPKINS BEAST。这 些研究者还经常在普林斯顿大学和英国的RATIO CLUB举行技术协 会会议。直到1960,大部分人已经放弃这个方法,尽管在80年代再 次提出这些原理。 符号处理
集成方法
智能AGENT范式智能AGENT是一个会感知环境并作出行动以达致目标的系统。最简单的智能AGENT是 那些可以解决特定问题的程序。更复杂的AGENT包括人类和人类组织(如公司)。这些范式可以让研究 者研究单独的问题和找出有用且可验证的方案,而不需考虑单一的方法。一个解决特定问题的AGENT可 以使用任何可行的方法-一些AGENT用符号方法和逻辑方法,一些则是子符号神经网络或其他新的方法。 范式同时也给研究者提供一个与其他领域沟通的共同语言--如决策论和经济学(也使用ABSTRACT AGENTS的概念)。90年代智能AGENT范式被广泛接受。AGENT体系结构和认知体系结构研究者设计出 一些系统来处理多ANGENT系统中智能AGENT之间的相互作用。一个系统中包含符号和子符号部分的系 统称为混合智能系统,而对这种系统的研究则是人工智能系统集成。分级控制系统则给反应级别的子符号 AI和最高级别的传统符号AI提供桥梁,同时放宽了规划和世界建模的时间。RODNEY BROOKS的 SUBSUMPTION ARCHITECTURE就是一个早期的分级系统计划。
《人工智能课件》.pptx

一种基于策略迭代的方法,直接优化策略参数以最大化期望回报。通过计算梯度并更新策 略参数来实现策略改进。
Actor-Critic 方法
结合了值迭代和策略迭代的方法。Actor 负责根据当前策略选择动作,Critic负责评估当前 策略的性能并指导Actor进行改进。两者相互促进,共同优化智能体的行为。
03 深度学习技术与应用
神经网络基本原理
01
神经元模型
神经网络的基本单元,模 拟生物神经元的结构和功
能。
前向传播
输入信号经过神经元处理 后向前传递的过程。
反向传播
根据误差信号调整神经元 权重的过程。
卷积神经网络 (CNN)
卷积层
通过卷积操作提取输入数 据的特征。
池化层
降低数据维度,减少计算
量。
06
人工智能伦理、法律和社会影
响
数据隐私和安全问题
数据隐私泄露
人工智能系统通常需要大量数据进行训练和学习,其中可能包含用户的个人隐 私信息。如果这些数据没有得到妥善保护,就可能导致隐私泄露事件。
网络安全问题
人工智能系统可能成为网络攻击的目标,例如黑客利用漏洞攻击人工智能系统, 获取敏感信息或者破坏系统的正常运行。
将数据划分为K个簇,每个簇的中心由簇内所有样本的均值表示。通过
迭代更新簇中心和重新划分样本,使得每个样本与其所属簇中心的距离
之和最小。
层次聚类
通过计算样本之间的距离,将距离近的样本合并为一个簇,然后不断重 复该过程,直到达到预设的簇数量或满足其他停止条件。
03
主成分分析 (PCA)
通过正交变换将原始特征空间中的线性相关变量转换为线性无关的新变
深度学习在图像识别与分类中的应用 通过训练深度神经网络模型,学习从原始图像数据中提取有用 的特征,进而实现图像的高效识别和分类。
人工智能ppt课件

词法分析
应用
研究单词的内部结构,包括词根、词 缀、词干等,以及单词的形态变化规 则。
在信息检索、机器翻译、智能问答等 领域中,词性标注有助于提高文本处 理的准确性和效率。
词性标注
为每个单词分配一个词性标签,如名 词、动词、形容词等,以便理解单词 在句子中的角色和含义。
句法分析与依存关系抽取
1 2
句法分析
AI歧视和偏见问题剖析
AI算法歧视
由于训练数据存在偏见或算法设计不合理,AI系统可能产生歧视 行为,如对某些人群的不公平待遇。
AI决策透明度
AI决策过程缺乏透明度,难以追溯和解释,可能导致不公平决策和 信任问题。
消除AI歧视和偏见措施
需要采取措施消除AI歧视和偏见,如增加多样性训练数据、改进算 法设计、提高决策透明度等。
AI在教育中应用前景展望
个性化教育
AI可以根据学生的学习 情况和需求提供个性化 教育方案,提高教育效
果和质量。
智能辅助教学
AI可以辅助教师进行教 学管理、作业批改等工 作,减轻教师负担,提
高教学效率。
在线教育资源
AI可以整合和优化在线 教育资源,为学生提供 更加丰富、优质的学习
资源。
教育公平
AI可以弥补地区间、城 乡间教育资源差距,为 更多人提供平等接受教
ERA
图像分类与目标检测
图像分类
利用深度学习算法对图像进行自动分类,包括通用分类 (如猫、狗、花等)和细粒度分类(如不同品种的猫、狗 等)。
目标检测 在图像中定位并识别出感兴趣的目标,如人脸检测、行人 检测、车辆检测等。目标检测算法通常包括基于滑动窗口 的方法和基于深度学习的方法。
评估指标
准确率、召回率、F1分数等用于评估图像分类和目标检测 算法的性能。
人工智能PPT完整版本

人类与人工智能之争
统治?被统治?
最极端的假设则预测了一个人工智能比人类 更加聪明的遥远未来。
人工智能的发展依然处于非常初级的阶段,现状基 本就是 ——
“没有人工,就没有智能”
人工智能的定义
人工智能(Artificial Intelligence), 英文缩写为AI。它是研究、开发用于模拟、 延伸和扩展人的智能的理论、方法、技术及 应用系统的一门新的技术科学。人工智能是 计算机科学的一个分支,它企图了解智能的 实质,并生产出一种新的能以人类智能相似 的方式做出反应的智能机器,该领域的研究 包括机器人、语言识别、图像识别、自然语 言处理和专家系统等。人工智能从诞生以来, 理论和技术日益成熟,应用领域也不断扩大, 可以设想,未来人工智能带来的科技产品, 将会是人类智慧的“容器”。 人工智能是对人的意识、思维的信息过程的 模拟。人工智能不是人的智能,但能像人那 样思考、也可能超过人的智能。
?
简史
人工智能的传说可以追溯到古埃及,但随着 1941年以来电子计算机的发展,技术已最终可 以创造出机器智能,“人工智能”一词最初是在 1956年Dartmouth学会上提出的,从那以后, 研究者们发展了众多理论和原理,人工智能的概 念也随之扩展,在它还不长的历史中,人工智能 的发展比预想的要慢,但一直在前进,从40年 前出现至今,已经出现了许多AI程序,并且它们 也影响到了其它 技术的发展。
只要你认可AI技术会不断发展,我 们会在智力上远远落后于AI,以至
于最终成为AI的宠物。
我们从计算机语言原理和人工智能发展史中可以得到答案:迄今为 止AI的所有智能化表现仅仅在模仿人类左半脑的理性思维模式,而完 全不具备右半脑的感性思维,且将来亦是如此。
(完整版)人工智能介绍PPT课件

2023/12/16
4
人工智能的未来
对待人工智能的态度
在人工智能发展遇到种种伦理困境的今天 ,我们要始终贯彻以人为本的原则,马克 思说过,“人是人的最高本质。”对于人 工智能的伦理领域的研究也要时刻与其技 术保持同步,要未雨绸缪但要避免过度敏 感。在这条智能走向智慧的路上还会有更 多的问题将接踵而至,而我们要做的就是 不偏不倚走在“科技以人为本”的道路上 迎接人工智能即将带给我们的种种福利。
Part 3 人工智能面临的问题
2023/12/16
3
人工智能面临的问题
人工智能的伦理问题
机器人的日益活跃肯定会引发全社会关 于伦理、道德的大讨论,这有可能会在 一定时间内阻碍机器人的发展,但总的 来说,科技是第一生产力,左右着人类 的进程,至于伦理、道德体系只是科技 的衍生物,大不了推倒重建,更何况, 我们已有了如此成熟的法律监管制度, 估计不会把自己搞瘫痪。如此看来,对 人工智能技术伦理问题的研究也就成为 了重中之重,机器人伦理问题近年来也 引起了许多学者和社会大众的关注 [1]
1956年,塞缪尔在IBM计算机上研制成功了具有自学习、自组织和自适应 能力的西洋跳棋程序。
1957年,纽厄尔、肖(Shaw)和西蒙等研制了一个称为逻辑理论机(LT)的 数学定理证明程序。
1958年,麦卡锡建立了行动规划咨询系统 1960年纽厄尔等研制了通用问题求解(GPS)程序。麦卡锡研制了人工智
人工智能简介
Brief introduction of
Artificial Intelligence
2023/12/16 Made by Bob
•Contents
1 人工智能是什么?
What is Artificial Intelligence?
ai人工智能人工智能介绍PPT

(三)人工智能新技术
计算智能
神经计算; 模糊计算; 进化计算; 自然计算
01
02
人工生命
人工脑; 细胞自动机
03
分布智能 多Agent , 群体智能
04
数据挖掘 知识发现; 数据挖掘
一、人工智能的基本内容
(四)物质、能量、信息、知识和智能
1、构成宇宙的三大要素: 三大要素:物质、能量与信息 信息:是物质和能量的表现形式,是以物质和能量为载体的客观存在
AI的定义 Turing测试
AI的研究目标
二、AI的定义及其研究目标
(一)AI的定义
1、AI的一般解释 人工智能就是用人工的方法在机器(计算机)上实现的智能,或称机器智能
人工智能的严格定义依赖于对智能的定义
AI无形式化 定义的理由
即要定义人工智能,首先应该定义智能
但智能本身也还无严格定义
二、AI的定义及其研究目标
1976年,斯坦福大学的杜达(R.D.Duda)等人开始研制地质勘探专家系统PROSPECTOR 这一时期,与专家系统同时发展的重要领域还有计算机视觉和机器人,自然语言理解与机 器翻译等。 新的问题: 专家系统本身所存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、没 有分布式功能、不能访问现存数据库等问题被逐渐暴露出来。
对智能的严格定义 有待于人脑奥秘的揭示,进一步认识
二、AI的定义及其研究目标
(一)AI的定义
2、认识智能的观点
思维理论 智能来源于思维活动,智能的核 心是思维,人的一切知识都是思 维的产物。可望通过对思维规律 和思维方法的研究,来揭示智能 的本质。
知识阈值理论 智能取决于知识的数量及其可运用程 度。一个系统所具有的可运用知识越
较好的人工智能PPT

较好的人工智能PPT在当今科技飞速发展的时代,人工智能(AI)已经成为了最热门的话题之一。
无论是在科技领域、商业应用,还是在日常生活中,AI 都发挥着越来越重要的作用。
而一份好的人工智能 PPT 不仅能够清晰地传达关于 AI 的关键信息,还能吸引观众的注意力,激发他们的兴趣和思考。
当我们着手制作一份较好的人工智能 PPT 时,首先要明确其目标受众。
是面向专业的技术人员,还是普通大众?不同的受众群体,对内容的深度和呈现方式的要求也会有所不同。
对于页面布局,简洁明了是关键。
避免过度拥挤的页面,保持适当的空白,能让观众的视觉得到放松,更专注于重要的内容。
选择一个清晰易读的字体,字体大小要适中,确保在不同的投影设备上都能清晰显示。
颜色搭配也要协调,一般来说,不超过三种主色调为宜,并且要考虑到色彩的对比度,以突出重点。
在内容方面,开头部分可以用一个引人入胜的案例或者一个震撼的AI 应用场景来吸引观众,引发他们的好奇心。
比如,展示自动驾驶汽车如何在复杂的路况中安全行驶,或者智能语音助手如何准确理解并回答用户的各种问题。
接下来,要对人工智能的概念进行通俗易懂的解释。
避免使用过于专业、晦涩的术语,可以用一些形象的比喻来帮助观众理解。
比如说,将人工智能比作一个拥有超强学习能力的“大脑”,能够不断从大量的数据中学习和总结规律。
然后,详细介绍人工智能的发展历程。
从早期的理论探索,到如今的广泛应用,让观众了解 AI 是如何一步步走到今天的。
可以插入一些关键的时间节点和标志性的事件,让发展脉络更加清晰。
重点阐述人工智能的核心技术,如机器学习、深度学习、自然语言处理等。
对于每一项技术,可以用简单的图表或者动画来展示其工作原理。
比如,用流程图展示机器学习中数据的输入、处理和输出过程,或者用动画演示深度学习中的神经网络是如何进行训练和优化的。
展示人工智能在各个领域的应用是必不可少的一部分。
医疗、金融、教育、交通等领域都因为 AI 的介入而发生了巨大的变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发展争议 人工智能会拥有情感,奴役人类吗?
“人类制造机器就是为了让机器在某些方 面强于人类,但是机器在某些方面超越人 类不意味着机器有能力学习其他方面的能 力,或者将不同的信息联系起来而做超越
人类的事情,而这一点非常重要”。
马克.扎克伯格 Facebook 创始人
vs
埃隆.马斯克 SpaceX 太 空探索技术公司CEO
"我们的未来不是再经 历进化,而是要经历 爆炸。"
--瑞·库茨维尔
2001年,瑞·库茨维尔提出摩尔定律的扩展定理, 即(Kurzweils Lawof Accelerated Return)。 该定理指出,人类出现以来所有技术发展都是以 指数增长。后来发展为奇点理论,奇点理论认为 很多技术处于指数增长中,如芯片的计算能力, DNA技术,数据的储存等等。他预测技术在突 破一个称之为奇点的临界点后爆发性增长,在 2045年左右会出现自己思考的人工智能。
THREE
第三部分 发展成果
3
三 发展成果
发
➢ 人机对弈:
展
Deep blue
成
AlphaGo
果
➢ 自动工程:
猎鹰系统等
➢ 模式识别:
2D/3D/ 多 维 识 别 系 统
➢ 知识工程:
专家系统,智能搜索引 擎等
FOUR
第四部分 发 展争议
5
电影中的人工智能
2015
技术奇点:人工智能是否会引发技术爆炸?
人工智能的应用领域
人工智能主要应用在哪?
自然语言处理 图像处理 数据挖掘
未来五年我国人工智能的发展大势所趋
TWO
第二部分 发展阶段
2
第一阶段 计算阶段
什么是计算?
计算是将各种运算方法与 数据结合并得出结论的行 为。这种行为存在于社会
生活的方方面面。
智能机器人的计算
借助自然界(生物界)规律的启示,根据其规律,设计出求解 问题的算法。物理学、化学、数学、生物学、心理学、生理学、 神经科学和计算机科学等学科的现象与规律都可能成为计算智 能算法的基础和思想来源。
计算智能阶段智能产品特点
“能存会算” ——快速计算与 存储
第二阶段 感知智能阶段
什么是感知?
感知就是具有能够感觉内 部、外部的状态和变化, 理解这些变化的某种内在
含义的能力。
智能机器人的感知
一个鲜活的生命可以通过ta的各种感觉器官和中枢神经系统来 感受、理解外部和自己内部的变化。而一个智能机器人要感知 这个世界,就必须具有一定的信息获取手段和信息处理方法。 对于许多机器人来说,获取信息的手段就是通过多种不同功能 的传感器来收集各种不同性质的信息。而对于信息的理解则是
智能机器人的认知
机器人的认知分为三个步骤: 1.获得数据 2.对数据进行加工整合得出结果 3.自我学习,自我完善
认知智能阶段智能产品特点
具有自主学习的能力,只需要给 出基本的反射式行为,所有的高 级认知能力都可以通过自主学 习得到,不需重新编程。各模块 之间互相依赖并且可以同时学
习,具有实时的学习能力。
人工智能的定义
人工智能(Artificial Intelligence), 英文缩写为AI。它是研究、开发用于模拟、 延伸和扩展人的智能的理论、方法、技术及 应用系统的一门新的技术科学。人工智能是 计算机科学的一个分支,它企图了解智能的 实质,并生产出一种新的能以人类智能相似 的方式做出反应的智能机器,该领域的研究 包括机器人、语言识别、图像识别、自然语 言处理和专家系统等。人工智能从诞生以来, 理论和技术日益成熟,应用领域也不断扩大, 可以设想,未来人工智能带来的科技产品, 将会是人类智慧的“容器”。 人工智能是对人的意识、思维的信息过程的 模拟。人工智能不是人的智能,但能像人那 样思考、也可能超过人的智能。
映了计算机“思维”的原理,也反映了人工智能的原理。0和1两个 数字能构成世间万物的一切逻辑,却无法创造灵感、拥有直 觉、获得情感。
人类与人工智能之争
统治?被统治?
最极端的假设则预测了一个人工智能比人类 更加聪明的遥远未来。
人工智能的发展依然处于非常初级的阶段,现状基 本就是 ——
“没有人工,就没有智能”
通过对传感器信息的处理来获得的。
感知智能阶段智能产品特点
“能听会说,能看 会写”-------------语音识别、手 写识别、图像识别
第三阶段 认知阶段
什么是认知?
认知是指对客观事物的特 征及事物间联系的反映,其 对象是有关问题、资料等 具体的信息,其过程是对这 些信息进行的编码、储存、 提取、应用等具体操作
军概第五小组报告 汇报人:杨念颖,李泽宽,夏红婷,王文欣
主要 内容
1
第一部分 总论
2 第二部分 发展阶段
3 第三部分 发展成果
4 第四部分 发展争议
ONE
第一部分 总 论
1
第一部分 总论 简史
人工智能的由来是什么?
定义
人工智能的定义是什么?
应用领域 人工智能可以用来干什么?
由来 人工智能(Artificial Intelligence)的
只要你认可AI技术会不断发展,我 们会在智力上远远落后于AI,以至
于最终成为AI的宠物。
我们从计算机语言原理和人工智能发展史中可以得到答案:迄今为 止AI的所有智能化表现仅仅在模仿人类左半脑的理性思维模式,而完 全不具备右半脑的感性思维,且将来亦是如此。
众所周知,计算机语言在历史发展上经历了机器语言、汇编语言 和高级语言,我们把最低级、最原始的计算机语言称为机器语言。机 器语言是用二进制代码表示的计算机能够直接识别的指令集合,它反源自谢 谢! THANK YOU
每一个成功者都有一个开始。勇于开始,才能找到成
•
1、
功的路 。2020/11/242020/11/24Tuesda y, November 24, 2020
成功源于不懈的努力,人生最大的敌人是自己怯懦
?
简史
人工智能的传说可以追溯到古埃及,但随着 1941年以来电子计算机的发展,技术已最终可 以创造出机器智能,“人工智能”一词最初是在 1956年Dartmouth学会上提出的,从那以后, 研究者们发展了众多理论和原理,人工智能的概 念也随之扩展,在它还不长的历史中,人工智能 的发展比预想的要慢,但一直在前进,从40年 前出现至今,已经出现了许多AI程序,并且它们 也影响到了其它 技术的发展。