八年级抽样测试试卷

合集下载

抽样调查练习题初二

抽样调查练习题初二

抽样调查练习题初二一、背景介绍抽样调查是一种常用的科学研究方法,通过从总体中选取一部分样本进行调查,从而推断总体的特征。

在初二学生中进行抽样调查,可以了解他们的兴趣爱好、学习状况、社交关系等信息,为学校和教育部门提供有益的参考。

二、调查目的本次抽样调查旨在了解初二学生的学习和生活情况,为学校提供有针对性的教学和管理措施。

三、调查内容调查内容包括但不限于以下几个方面:1. 学习情况:了解学生的学习成绩、学习方法和学习动力等方面的情况;2. 兴趣爱好:了解学生的兴趣爱好、参加的课外活动和俱乐部等情况;3. 社交关系:了解学生与同学、老师和家长的关系,以及是否存在欺凌和纠纷等情况;4. 健康状况:了解学生的身体健康状况,是否进行体育锻炼和定期体检等情况;5. 家庭背景:了解学生的家庭结构、父母工作情况和学生家庭环境等情况。

四、调查方法本次抽样调查将采用问卷调查的方式进行,问卷将在学校教学楼前发放,同时允许学生在家中填写问卷。

问卷中的问题将既包括选择题,也包括开放式问题,以便学生充分表达自己的想法和意见。

五、调查样本本次抽样调查将随机选取初二年级的部分学生作为样本,确保调查结果能够代表全体学生的情况。

选取样本时,将按照性别、班级和学习成绩等因素进行分层抽样,以保证样本的多样性和代表性。

六、调查保密性和法律合规性本次调查将严格保障学生的个人隐私和信息安全。

所获得的数据将仅用于学校的教学和管理目的,不得用于商业用途或泄露给任何未授权的第三方。

在问卷调查中,将明确告知学生填写问卷的目的和保密性,并征得学生和家长的知情同意。

七、调查时间和结果分析本次调查将于xx年xx月进行,将对收集到的数据进行系统整理和分析,并形成调查报告。

调查报告将用于学校的教学改进和管理决策,同时也将在学校网站上公布。

八、调查组织和沟通渠道本次调查由学校教务处和学生工作部门共同组织实施,负责问卷的发放、收集和数据整理。

学生和家长如有任何问题或建议,可以通过学校公示的联系方式与相关部门进行沟通。

北京市西城区2010-2011学年度八年级第二学期抽样测试B卷2011.6

北京市西城区2010-2011学年度八年级第二学期抽样测试B卷2011.6

北京市西城区(北区)2010–2011学年度第二学期抽样测试八年级数学(B 卷)试卷 2011.6一、精心选一选(本题共30分,每小题3分) 1.函数5+=x y 中,自变量x 的取值范围是( ). A . x >5- B . x ≥5- C . x ≤5- D .x ≠5-2.下列各组数中,以它们为边长的线段不能..构成直角三角形的是( ). A .6,8,10 B .8,15,17 C .1,3,2 D .2,2,32 3.下列函数中,当x >0时,y 随x 的增大而增大的是( ).A .x y 3-=B .4+-=x yC .x y 5-= D .xy 21= 4.对角线相等且互相平分的四边形一定是( ).A .等腰梯形B .矩形C .菱形D .平行四边形5.已知关于x 的方程0162=-+-m x x 有两个不相等的实数根,则m 的取值范围是( ).A .10<mB .10=mC .10>mD .10≥m 6.如图,等腰梯形ABCD 中,AD ∥BC ,BD 平分∠ABC , ∠DBC =30°,AD =5,则BC 等于( ).A .5B .7.5C .35D .107.用配方法解方程0142=+-x x ,下列变形正确的是( ).A .4)2(2=-x B .4)4(2=-x C .3)2(2=-x D .3)4(2=-x 8.右图为在某居民小区中随机调查的 10户家庭一年的月均用水量(单位:t )的条形统计图,则这10户家庭月均用水量的众数和中位数分别是( ). A .6.5,7 B .6.5,6.5 C .7,7 D .7,6.5户数月均用水量/tA BCD9.如图,反比例函数ky x=(0x >y ax b =+的图象交于点A (1,6)和点B (3当xkb ax <+时,x 的取值范围是( )A .13x << B .1<x 或3x > C .01x << D .01x <<或3x >10.如图,正方形ABCD 中,AB =4,点E ,F AD ,DC 上,且△BEF 为等边三角形,则△与△BFC 的面积比为( ).A .2:1B .3:1C .3:2D .二、细心填一填(本题共16分,每小题2分)11.若03)2(2=-++y x ,则y x -的值为___________.12.在“2011年北京郁金香文化节”中,北京国际鲜花港的6103⨯株郁金香为京城增添了亮丽的色彩.若这些郁金香平均每平方米种植的数量为n (单位:株/平方米),总种植面积为S (单位:平方米),则n 与S 的函数关系式为____________________.(不要求写出自变量S 的取值范围)13.如图,矩形ABCD 中,对角线AC ,BD 交于点O , ∠AOD =120°,BD =8,则AB 的长为___________.14.已知012=--x x ,则代数式111--x x 的值为__________.15.菱形ABCD 中,AB =2,∠ABC =60°,顺次连接菱形ABCD 各边的中点所得四边形的面积为____________.16.如图,□ABCD 中,点E 在AB 边上,将△EBC 沿 CE 所在直线折叠,使点B 落在AD 边上的点B′处, 再将折叠后的图形打开,若△AB ′E 的周长为4cm , △B ′DC 的周长为11cm ,则B ′D 的长为_________cm .17.正方形网格中,每个小正方形的边长为1.图1所示的矩形是由4个全等的直角梯形拼接而成的(图形的各顶点都在格点上;拼接时图形互不重叠,不留空隙),如果用这4个直角梯形拼接成一个等腰梯形,那么(1)仿照图1,在图2中画出一个拼接成的等腰梯形;(2)这个拼接成的等腰梯形的周长为________. A B CDOAB C D B'E18.如图,在平面直角坐标系xOy 中,1(1,0)A ,2(3,0)A ,3(6,0)A ,4(10,0)A ,……,以12A A 为对角线作第一个正方形1121AC A B ,以23A A 为对角线作第二个正方形2232A C A B ,以34A A 为对角线作第三个正方形3343A C A B ,……,顶点1B ,2B ,3B ,……都在第一象限,按照这样的规律依次进行下去,点5B 的坐标为__________;点n B 的坐标为_________________.三、认真算一算(本题共16分,第19题819.计算:(1; (2 解: 解:20.解方程:(1)237x x x -=+; (2)2(1)3(1)x x x -=-. 解: 解:四、解答题(本题共21分,第21题6分,第22、23、24题每题5分) 21.已知:如图,□ABCD 中,对角线AC ,BD 相交于点O ,延长CD 至F ,使DF =CD ,连接BF 交AD 于点E . (1)求证:AE =ED ;(2)若AB =BC ,求∠CAF 的度数.证明:(1)解:(2)22.甲,乙两人是NBA 联盟凯尔特人队的两位明星球员,两人在前五个赛季的罚球命中率如下表所示:(1(2)在某场比赛中,因对方球员技术犯规需要凯尔特人队选派一名队员进行罚球,你认为甲,乙两位球员谁来罚球更好?(请通过计算说明理由) 解:(1)(2)E F A D C B O23.为了增强员工的团队意识,某公司决定组织员工开展拓展活动.从公司到拓展活动地点的路程总长为126千米,活动的组织人员乘坐小轿车,其他员工乘坐旅游车同时从公司出发,前往拓展活动的目的地.为了在员工们到达之前做好活动的准备工作,小轿车决定改走高速公路,路程比原路线缩短了18千米,这样比按原路线行驶的旅游车提前24分钟到达目的地.已知小轿车的平均速度是旅游车的平均速度的1.2倍,求这两种车平均每小时分别行驶多少千米.解:24.已知:如图,梯形ABCD中,AD∥BC,∠B=90°,AD=a,BC=b,DC=ba+,且ab>,点M是AB边的中点.(1)求证:CM⊥DM;(2)求点M到CD边的距离.(用含a,b的式子表示)证明:(1)解:(2)五、解答题(本题共17分,第25、26题6分,第27题5分)AB CDM25.已知:如图1,直线13y x =与双曲线ky x=交于A ,B 两点,且点A 的坐标为(6,m ).(1)求双曲线ky x=的解析式; (2)点C (,4n )在双曲线ky x=上,求△AOC 的面积;(3)过原点O 作另一条直线l 与双曲线ky=交于P ,Q 两点,且点P 在第一象限.若由点A ,P ,B ,Q 所有符合条件的点P 的坐标.解:(1)(2)(3)26.已知:如图1,平面直角坐标系xOy 中,四边形OABC 是矩形,点A ,C 的坐标分别为(6,0),(0,2).点D 是线段BC 上的一个动点(点D 与点B ,C 不重合),过点D 作直线y =-12x +b 交折线O -A -B 于点E . (1)在点D 运动的过程中,若△ODE 的面积为S ,求S 与b 的函数关系式,并写出自变量的取值范围;(2)如图2,当点E 在线段OA 上时,矩形OABC 关于直线DE 对称的图形为矩形O′A′B′C′,C′B ′分别交CB ,OA 于点D ,M ,O ′A ′分别交CB ,OA 于 点N ,E .探究四边形DMEN 各边之间的数量关系,并对你的结论加以证 明;(3)问题(2)中的四边形DMEN 中,ME 的长为____________.解:(1)(2)(3)答:问题(2)中的四边形DMEN 中,ME 的长为____________.27.探究 问题1 已知:如图1,三角形ABC 中,点D 是AB 边的中点,AE ⊥BC ,BF ⊥AC ,垂足分别为点E ,F ,CAE ,BF 交于点M ,连接DE ,DF .若DE =k DF , 则k 的值为_____.拓展问题2 已知:如图2,三角形ABC 中,CB =CA ,点D 是AB 边的中点,点M 在三角形ABC 的内部,且∠MAC =∠MBC ,过点M 分别作ME ⊥BC ,MF ⊥AC , 垂足分别为点E ,F ,连接DE ,DF . 求证:DE =DF . 证明:推广问题3 如图3,若将上面问题2中的条件“CB =CA ”变为“CB ≠CA ”,其他条件不..... 变.,试探究DE 与DF 之间的数量关系,并证明你的结论. 解:图3 CE MF A DB图2 CE MFA DB北京市西城区(北区)2010 — 2011学年度第二学期抽样测试八年级数学(B 卷)参考答案及评分标准 2011.6二、细心填一填(本题共16分,每小题2分)11.5-; 12.6310n S⨯=;13.4;14.1-; 1516.3.5;17.(1)如图1所示(答案不唯一);(2)12+(每问1分)18.(18,3),2(1)1(,)22n n ++.(每空1分)三、认真算一算(本题共16分,第19题8分,第20题8分) 19.(1=----------------------------------------------------------2分=-------------------------------------------------------------3分. ---------------------------------------------------------------------------4分(2=-----------------------------------------------------------------------2分图1=84+ --------------------------------------------------------------------------------3分=2. -------------------------------------------------------------------------------4分20.(1)解:2470x x --=1a =,4b =-,7c =-,224(4)41(7)44b ac -=--⨯⨯-=. -----------------------------------------1分2b x a-±==42,----------------------------------------------2分2x =±所以原方程的根为1211x =,22x = --------------------------4分(2)解:因式分解,得 (1)(23)0x x -+=. ------------------------------------------1分10x -=或230x +=,---------------------------------------------------------2分解得11x =,232x =-. --------------------------------------------------------4分 阅卷说明:两个实数根各1分.四、解答题(本题共21分,第21题6分,第22、23、24题每题5分) 21.证明:(1)如图2.∵四边形ABCD 是平行四边形,∴ AB ∥CD ,AB =CD . -------------------------1分即AB ∥DF . E FADCBO图2∵DF =CD , ∴AB =DF . ∴四边形ABDF 是平行四边形. -----------------------------------------------2分∵AD ,BF 交于点E ,∴AE =DE . -------------------------------------------------------------------------3分解:(2)∵四边形ABCD 是平行四边形,且AB =BC ,∴四边形ABCD 是菱形. ---------------------------------------------------------4分∴AC ⊥BD . -------------------------------------------------------------------------5分∴∠COD =90°. ∵四边形ABDF 是平行四边形, ∴AF ∥BD . ∴∠CAF =∠COD =90°. ---------------------------------------------------------6分22.解:(1)8786838579845x ++++==甲,----------------------------------------------1分8785848084845x ++++==乙. ----------------------------------------------2分所以甲,乙两位球员罚球的平均命中率都为84%.(2)222222(8784)(8684)(8384)(8584)(7984)85s -+-+-+-+-==甲,-------3分222222(8784)(8584)(8484)(8084)(8484) 5.25s -+-+-+-+-==乙. -----4分由x x =甲乙,22s s >甲乙可知,乙球员的罚球命中率比较稳定,建议由乙球员来罚球更好. -------------------------------------------------------------------------------------5分23.解:设旅游车平均每小时行驶x 千米,则小轿车平均每小时行驶1.2x 千米.12612618241.260x x --=. ------------------------------------------------------------------2分解得90x =. --------------------------------------------------------------------------------3分经检验,90x =是原方程的解,并且符合题意. ---------------------------------4分∴1.2108x =. 答:旅游车平均每小时行驶90千米,小轿车平均每小时行驶108千米. ----5分24.证明:(1)延长DM ,CB 交于点E .(如图3)∵梯形ABCD 中,AD ∥BC , ∴∠ADM =∠BEM .∵点M 是AB 边的中点, ∴AM =BM .在△ADM 与△BEM 中, ∠ADM =∠BEM , ∠AMD =∠BME , AM =BM ,∴△ADM ≌△BEM . ------------------------------------------------------------1分∴AD =BE =a ,DM =EM . ∴CE =CB +BE =b a +. ∵CD =a b +, ∴CE =CD .∴CM ⊥DM . ----------------------------------------------------------------------2分 解:(2)分别作MN ⊥DC ,DF ⊥BC ,垂足分别为点N ,F .(如图4)∵CE =CD ,DM =EM ,∴CM 平分∠ECD .∵∠ABC = 90°,即MB ⊥BC ,∴MN =MB . --------------------------------------------------------------------------3分∵AD ∥BC ,∠ABC =90°,∴∠A =90°. ∵∠DFB =90°,∴四边形ABFD 为矩形.FN ECB MDA 图4E A D M BC图3∴BF = AD =a ,AB = DF .∴FC = BC -BF =b a -.∵Rt △DFC 中,∠DFC =90°, ∴222DF DC FC =-=22()()a b b a +--=4ab . ∴DF= ---------------------------------------------------------------------4分∴MN=MB =12AB =12DF即点M 到CD边的距离为-----------------------------------------------5分五、解答题(本题共17分,第25、26题6分,第27题5分) 25.解:(1)∵点A (6,)m 在直线13y x =上, ∴1623m =⨯=. --------------------------------------------------------------------1分∵点A (6,2)在双曲线ky x=上, ∴26k=, 12k =. ∴双曲线的解析式为12y x=. ---------------2(2)分别过点C ,A 作CD ⊥x 轴,AE ⊥x 轴,垂足分别为点D ,E .(如图5) ∵点C (,4)n 在双曲线12y x=上, ∴124n=,3n =,即点C 的坐标为(3,4). ---------------------------------3分∵点A ,C 都在双曲线12y x=上, ∴11262AOE COD S S ∆∆==⨯=. ∴AOC S ∆=COEA S 四边形AOE S ∆-=COEA S 四边形COD S ∆-=CDEA S 梯形,∴AOC S ∆=DE AE CD ⋅+)(21=)36()24(21-⨯+⨯=9. --------------------4分(3))3,4(P 或)34,9(P . -----------------------------------------------------------------6分阅卷说明:第(3)问两个点坐标各1分.26.解:(1)∵矩形OABC 中,点A ,C 的坐标分别为(6,0),(0,2), ∴点B 的坐标为(6,2).若直线b x y +-=21经过点C (0,2),则2=b ; 若直线b x y +-=21经过点A (6,0),则3=b ;若直线b x y +-=21经过点B (6,2),则5=b .①当点E 在线段OA 上时,即32≤<b 时,(如图6) ---------------------1分∵点E 在直线b x y +-=21上, 当0=y 时,b x 2=,∴点E 的坐标为)0,2(b . ∴S =b b 22221=⋅⋅. --------------------------------------------------------------2分 ②当点E 在线段BA 上时,即53<<b 时,(如图7) ---------------------3分∵点D ,E 在直线b x y +-=21上, 当2=y 时,42-=b x ; 当6=x 时,3-=b y ,∴点D 的坐标为)2,42(-b ,点E 的坐标为)3,6(-b . ∴D BE O AE CO D O ABC S S S S S ∆∆∆---=矩形)]3(2)][42(6[216)3(212)42(2126-----⋅--⋅--⨯=b b b bb b 52+-=. -------------------------------------------------------------------4分综上可得:2223),535).b b S b b b <≤⎧=⎨-+<<⎩ ( ((2)DM =ME =EN =ND .证明:如图8.∵四边形OABC 和四边形O′A′B′C′∴CB ∥OA , C ′B ′∥O ′A ′, 即DN ∥ME ,DM ∥NE .∴四边形DMEN 是平行四边形,且∠NDE =∠DEM . ∵矩形OABC 关于直线DE 对称的图形为矩形O′A′B′C′,∴∠DEM =∠DEN . ∴∠NDE =∠DEN . ∴ND =NE .∴四边形DMEN 是菱形.∴DM =ME =EN =ND . ------------------------------------------------------5分(3)答:问题(2)中的四边形DMEN 中,ME 的长为 2. 5 . -----------6分 27.问题1k的值为1 . ---------------------------------------------------------------------1分问题2 证明:如图9.∵CB =CA ,∴∠CAB =∠CBA . ∵∠MAC =∠MBC ,∴∠CAB -∠MAC =∠CBA -∠MBC , 即∠MAB =∠MBA . ∴MA =MB .图9CEM FADB∵ME ⊥BC ,MF ⊥AC ,垂足分别为点E ,F , ∴∠AFM =∠BEM =90°.在△AFM 与△BEM 中, ∠AFM =∠BEM , ∠MAF =∠MBE , MA =MB ,∴△AFM ≌△BEM . -------------------------------------------------------2分∴AF =BE .∵点D 是AB 边的中点, ∴BD = AD .在△BDE 与△ADF 中,BD = AD ,∠DBE =∠DAF , BE = AF ,∴△BDE ≌△ADF .∴DE =DF . ---------------------------------------------------------------------3分问题3 解:DE =DF .证明:分别取AM ,BM 的中点G ,H ,连接DG ,FG ,DH ,EH .(如图10)∵点D ,G ,H 分别是AB ,AM ,BM 的中点, ∴DG ∥BM ,DH ∥AM ,且DG =12BM ,DH =12AM . ∴四边形DHMG 是平行四边形. ∴∠DHM =∠DGM ,∵ME ⊥BC ,MF ⊥AC ,垂足分别为点E ,F , ∴∠AFM =∠BEM =90°. ∴FG =12AM = AG ,EH =12BM = BH . ∴FG = DH,DG =EH,------------------------------------------------------4分∠GAF =∠GF A ,∠HBE =∠HEB . ∴∠FGM =2∠F AM ,∠EHM =2∠EBM . ∵∠F AM =∠EBM , ∴∠FGM =∠EHM .图10GHBD A FM E C∴∠DGM+∠FGM =∠DHM+∠EHM,即∠DGF=∠DHE.在△EHD与△DGF中,EH = DG,∠EHD =∠DGF,HD = GF,∴△EHD≌△DGF.∴DE=DF.---------------------------------------------------------------------5分。

最新2022学年第二学期八年级下学期期末教学质量检测数学试题(含答案)

最新2022学年第二学期八年级下学期期末教学质量检测数学试题(含答案)

八年级数学本试卷共三大题23小题,其4页,满分100分.考试时间90分仲,不能使用计算器.注意事项:1. 答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡指定的位置上.2. 选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在问卷上,3. 非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图,答案必须写在答卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案:改动的答案也不能超出指定的区域.不准使用铅笔(除作图外),圆珠笔和涂改液,不按以上要求作答的答案无效。

一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项符合题目要求的. )1.设x1、x2是方程x²+x-1=0的两根,则x1+x2=(*)(A)-3(B)-1(C) 1(D) 32.若8与最简二次根式1 a是同类二次根式,则a的值为(*)(A) 7(B) 9(C) 2(D) 13.点(m. -1)在一次函数y=-2x+1的图象上,则m的值为(*).(A) m=-3(B) m=-1(C) m=1(D) m=24. 甲、乙两名同学在初二下学期数学6章书的单元测试中,平均成绩都是86分,方差分别是S²甲=4, S²乙=10,则成绩比较稳定的是(*)(A) 甲(B)乙(C)甲和乙一样(D)无法确定5.下列各比值中,是直角三角形的三边之比的是(*)(A) 1:2:3(B) 2:3:4(C) 3:4;6(D) 1:3:26.四边形ABCD中,已知AB// CD,下列条件不能判定四边形ABCD 为平行四边形的是(*)(A) AB=CD(B) AD=BC(C) AD∥BC(D)∠A+∠B= 180°7.下列各式中,运算正确的尼(*)(A)22-)(=-2(B)102=+8(C)82⨯=4(D) 2-22=8.如图,平行四边形ABCD的对角线AC、BD相交于点O, B.已知AD=5,BD=8, AC=6,则△OBC的面积为(*)(A) 5(B) 6(C) 8(D) 129.某家庭今年上半年1至6月份的月平均用水量5t,其中1至5月份月用水量(单位:t)统计表如图所示,根据信息该户今年上半年1至6月份用水量的中位数和众数分别是(*)(A)4,5(B)4.5,6(C)5, 6(D) 5.5, 610. 如图,已知一次的数y=kx+b的图象与x轴,y轴分别交于点(2, 0),点(0, 3).有下列结论:①关于x的方程k+b=0的解为x=2; ②当x>2时, y<0; ③当x<0时,y<3.其中正确的是(*)(A) ①②(B)①③(C)②③(D)①②③二、填空题(本大愿共6小题,每小题3分,共18分.)11.若关于x的一元二次方程x²- 2x+c= 0没有实数根。

江苏省苏州市姑苏区2023-2024学年八年级下学期期末数学模拟试题

江苏省苏州市姑苏区2023-2024学年八年级下学期期末数学模拟试题

江苏省苏州市姑苏区2023-2024学年八年级下学期期末数学模拟试题一、单选题1.若分式242x x --的值为0,则x 的值为( ) A .2± B .2- C .0 D .22.下列说法中,正确的是( )A .不可能事件的概率为0B .随机事件的概率为0.5C .概率很小的事件不可能发生D .概率很大的事件一定发生3.如图,在ABCD Y 中,120D ∠=︒,则A ∠的度数等于( )A .120︒B .30︒C .40︒D .60︒4.已知四边形ABCD 中,90A ∠=︒,AB CD ∥,B D ∠=∠,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )A .90D ??B . AB CD =C . BC CD = D . AC BD =5.如图,在ABC V 中,45,60,B C AD BC ∠=︒∠=︒⊥于点D ,BD =若E ,F 分别为AB ,BC 的中点,则EF 的长为( )A B C .1 D 6.对于反比例函数2y x=,下列说法不正确的是( ) A .图象关于()00,对称 B .当0x >时,y 随x 的增大而增大C .图象位于第一、三象限D .当1x >时,则02y <<7.在正数范围内定义运算“※”,其规则为2a b a b =+※,则方程()15x x +=※的解是( ) A .4x =或1x = B .2x = C .1x =或4x =- D .1x =8.如图,在Rt ABC V 中,90ACB ∠=︒,306A BC ∠=︒=,,D 为AC 上任意一点,F 为AB 的中点,连接BD E ,在BD 上且90BEC ∠=︒,连接EF ,则EF 的最小值为( )A B .3 C .3 D .3二、填空题9.若3y =,则y x 的立方根是 .10.某款新能源车在两年内价格从25万元降至16万元,如果设每年降价的百分率均为x (x >0),则由题意可列方程:.11.关于x 的一元二次方程220x x a +-=的一个根是2,则另一个根是.12.两千四百多年前,我国学者墨子就在《墨经》中记载了小孔成像实验的做法与成因,图1是小孔成像实验图,抽象为数学问题如图2:AC 与BD 交于点O ,AB CD ∥,若点O 到AB 的距离为10cm ,点O 到CD 的距离为15cm ,蜡烛火焰AB 的高度是3cm ,则蜡烛火焰倒立的像CD 的高度是cm .13.某汽车测评机构对A 款电动汽车与B 款燃油汽车进行对比调查,发现A 款电动汽车平均每公里充电费用比B 款燃油车平均每公里燃油费用少0.6元.当充电费和燃油费用均为200元时,A 款电动汽车的行驶里程是B 款燃油车的4倍.则A 款电动汽车平均每公里充电费用为元.14.如图,已知在平面直角坐标系中,(10)A -,、(20)B ,,菱形ABCD 的顶点C 在y 轴正半轴上,则点D 的坐标为.15.如图,AB 、CD 都是BD 的垂线,AB =4,CD =6,BD =14,P 是BD 上一点,联结AP 、CP ,所得两个三角形相似,则BP 的长是.16.如图,在边长为6的正方形ABCD 中,点M 、N 分别是边AD 、BC 的中点,Q 是边CD 上的一点.连接MN 、BQ ,将BCQ △沿着直线BQ 翻折,若点C 恰好与线段MN 上的点P 重合,则PQ 的长等于.三、解答题1718.解方程:3123x x x +=+-19.先化简,再求值:222111211a a a a a a⎛⎫--÷ ⎪-+--⎝⎭,其中a 满足2210a a +-=. 20.如图,在四边形ABCD 中,对角线BD 与AC 交于点F ,ADB ACB ∠=∠.(1)求证:ABD ACD ∠=∠;(2)过点A 作AE DC ∥交BD 于点E ,求证:EF BC AD AF =g g .21.某学校为了解在校生的体能素质情况,从全校八年级学生中随机抽取了部分学生进行了一次体育科目测试(把测试结果分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格)并将测试结果绘成了如下两幅不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是 ;(2)扇形统计图中∠α的度数是 ,并把条形统计图补充完整;(3)该校八年级有学生1500名,如果全部参加这次体育科目测试,那么估计不及格的人数为 人;(4)测试老师从被测学生中随机抽取一名,所抽学生为B 级的概率是多少?22.已知:如图,梯形ABCD 中,AD BC ∥,B C ∠=∠,E 、F 、G 、H 分别是AB BC CD DA 、、、的中点,连接EF FG GH HE 、、、.(1)求证:四边形EFGH 是菱形;(2)如果3AD =,5BC =,且EF FG ⊥,求四边形EFGH 的面积.23.如图,在66⨯的正方形网格中,每个小正方形的边长都为1,ABC V 的顶点在格点上,请仅用无刻度的直尺完成以下作图(保留作图痕迹).(1)在图1中,以点O 为位似中心,作格点A B C '''V ,使它与ABC V 的位似比为2:1;(2)在图2中,作格点ACD V ,使它与ABC V 相似,且AC 为公共边,A ∠为公共角. 24.我校的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min )成反比例关系.直至水温降至20℃时自动开机加热,重复上述自动程序.若在水温为20℃时,接通电源后,水温y (℃)和时间x (min )的关系如图所示.(1)a =___________,b =___________.(2)直接写出图中y 关于x 的函数关系式.(3)饮水机有多少时间能使水温保持在50℃及以上?(4)若某天上午700:饮水机自动接通电源,开机温度正好是20℃,问学生上午第一节下课时(840:)能喝到50℃以上的水吗?请说明理由.25.在矩形ABCD 中,AB =AC BD 、相交于点O ,过点O 作EF AC ⊥分别交射线AD 与射线CB 于点E 和点F ,连结CE AF 、.(1)如图,求证:四边形AFCE 是菱形;(2)当点E F 、分别在边AD 和BC 上时,如果设AD x =,菱形AFCE 的面积是y ,求y 关于x 的函数关系式,并写出x 的取值范围;(3)如果ODE V 是等腰三角形,直接写出AD 的长度.26.如图,在ABC V 中,直线DF 与边AB 相交于点D ,与边AC 相交于点E ,与线段BC 延长线相交于点F .(1)若1=AD DB ,2AE EC =,求BF FC 的值. (2)若12AD DB =,AE m EC n =,其中0m n >>,求BF FC的值. (3)请根据上述(1)(2)的结论,猜想AD BF CE DB FC EA ⋅⋅=(直接写出答案,不需要证明). 27.如图1,在平面直角坐标系中,直线162y x =-+与x 轴、y 轴相交于A 、B 两点,点C 在线段OA 上,将线段CB 绕着点C 顺时针旋转90︒得到CD ,此时点D 恰好落在直线AB 上,过点D 作DE x ⊥轴于点E ,(1)如图1,求证:BOC CED ≌△△.(2)求点D 的坐标.(3)若点P 在y 轴上,点Q 在直线AB 上,是否存在以C 、D 、P 、Q 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q 点的坐标;若不存在,请说明理由.。

苏科版数学 八年级下册 7.1 普查与抽样调查 课后练习题

苏科版数学 八年级下册 7.1 普查与抽样调查 课后练习题

一、单选题1. 下列调查中,最适合采用全面调查(普查)方式的是()A.一批节能灯的使用寿命B.对“神舟十六号”飞船零部件安全性的检查C.对某品牌手机电池待机时间的调查D.对中央电视台年春节联欢晚会满意度的调查2. 某市有3万名学生参加中考,为了考察他们的数学考试成绩,抽样调查了2000名考生的数学成绩,在这个问题中,下列说法正确的是()A.3万名考生是总体B.每名考生的数学成绩是个体C.2000名考生是总体的一个样本D.2000名是样本容量3. 要调查下列问题,需要进行全面调查的是()A.调查市场上某种食品的色素含量是否符合国家标准B.调查某品牌电池的使用寿命C.了解神舟十五号载人飞船设备零件的质量情况D.了解全市中小学生每周做家务的时间4. 中学生骑电动车上学给交通安全带来隐患,为了解某中学1000个学生家长对“中学生骑电动车上学”的态度,从中随机调查了200个家长,结果有180个家长持反对态度,则下列说法正确的是()A.总体是中学生B.样本容量是180C.估计该校约有的家长持反对态度D.该校只有180个家长持反对态度5. 以下调查中,适合进行全面调查的是()A.调查某校七年级全体学生的视力情况B.调查某批次汽车的抗撞击能力C.调查市场上某种食品的色素含量是否符合国家标准D.检测某城市的空气质量二、填空题6. 调查“神舟十三号载人飞船”的各零件合格情况,宜采用_________调查(填“全面”或“抽样”).7. “了解我省七年级学生的视力情况”适合做_____调查(填“全面”或“抽样”).8. 为了检查某批次2000包奶粉的质量,从中抽取50包进行检查,这个样本容量为_________.三、解答题9. 按照国家视力健康标准,学生视力状况分为:视力正常、轻度视力不良、中度视力不良、重度视力不良四个类别,分别用A、B、C、D表示,某数学兴趣小组为了解本校学生的视力健康状况,从全校1800名学生中随机抽取部分学生,进行视力状况调查,根据调查结果,绘制如下统计图.抽取的学生视力状况统计表类别A B C D人数70 m n25(1)________;________;(2)该校共有学生1800人,请估算该校学生中视力不良的总人数;(3)为更好的保护视力,结合上述统计数据分析,请你提出一条合理化的建议.10. 小雨同学为调查一个月内全校1000名学生的借书情况,在校园里对学生进行调查,并绘制了如下表格:借书次数0 1 2 3 4及4以上学生人数45 33 15 5 2(1)小雨同学采用的是什么调查方式?(2)总体、个体、样本、样本容量各是什么?11. 为了考察某市1万名初中生视力情况,从中抽取1000人进行视力检测,这个问题中总体、个体、样本、分别是多少?。

第二十章 数据的分析综合测试卷 人教版八年级数学下册

第二十章  数据的分析综合测试卷 人教版八年级数学下册

第二十章数据的分析综合测试卷(时间:100分钟满分:100分)一、选择题(本大题共10小題,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.某班有48人,在一次数学测验中,全班平均分为81分,已知不及格人数为6人,他们的平均分为46分,则及格学生的平均分是()A.78分B.86分C.80分D.82分2.一组数据2,3,5,x,7,4,6,9的众数是4,则这组数据的中位数是()A.4B92C.5D1123.某学校把学生的纸笔测试,实践能力两项成绩分别按60%,40%的比例计入学期总成绩,小颗实践能力这一项成绩是81分,若想学期总成绩不低于90分,则纸笔测试的成绩至少是()A.96分B.97分C.98分D.99分4.为了解学生课外阅读时间情况,随机收集了30名学生一天课外阅读时间,整理如下表:则本次调查中阅读时间的中位数和众数分别是()A.0.7和0.7B.0.9和0.7C.1和0.7D.0.9和1.15.为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:则关于这组数据的结论正确的是()A.平均数是144B.众数是141C.中位数是144.5D.方差是5.46.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大7.下表是某公司员工月收入的资料:能够反映该公司全体员工月收人水平的统计量是()A.平均数和众数B.平均数和中位数C.中位数和众数D.平均数和方差8.已知一组数据1,2,3,x,5,它们的平均数是3,则这组数据的方差为()A.1B.2C.3D.49.某校举办演讲比赛,李华根据演讲比赛时九位评委所给的分数制作了如下表格:对9位评委所给的分数,去掉一个最高分和一个最低分后,表格中数据一定不发生变化的是()A.平均数B.中位数C.众数D.方差10.已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是13,那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数和方差分别是()A.2,13B.2,1 c.4,23D.4,3二、填空题(本大题共4小题,每小题3分,共12分。

初三数学统计抽样方法练习题

初三数学统计抽样方法练习题

初三数学统计抽样方法练习题一、选择题1. 下列哪个不属于概率抽样的方法?A. 简单随机抽样B. 系统抽样C. 分层抽样D. 方便抽样2. 在全年级500名学生中进行调查,为了保证数据的真实性和代表性,最好采用下列哪种抽样方法?A. 方便抽样B. 分层抽样C. 多阶段抽样D. 简单随机抽样3. 为了调查某学校学生的学习习惯,将该校分为文科和理科两个分层,然后分别从两个分层中随机抽取部分学生进行调查,这是采用了哪种抽样方法?A. 分层抽样B. 系统抽样C. 简单随机抽样D. 方便抽样4. 用数字0、1、2等表示某城市居民的收入等级,调查时采用随机数表,将表中的数字与居民住址相对应,这是采用了哪种抽样方法?A. 方便抽样B. 简单随机抽样C. 系统抽样D. 多阶段抽样5. 在某企业中,每隔5个职工抽取一个作为样本,这是属于哪种抽样方法?A. 简单随机抽样B. 系统抽样C. 分层抽样D. 多阶段抽样二、计算题1. 某学校全体学生共1000人,想要进行班级的名字调查,随机抽取了其中10个班级进行调查。

试问,这属于哪种抽样方法?并计算每个班级的抽样概率。

(题目部分参考内容)答:这属于多阶段抽样方法。

每个班级的抽样概率为 1/100。

2. 某市区有100个居民小区,希望了解居民对社区环境的评价,抽取其中5个小区进行调查。

试问,这属于哪种抽样方法?并计算每个小区的抽样概率。

(题目部分参考内容)答:这属于简单随机抽样方法。

每个小区的抽样概率为 1/20。

三、解答题1. 为了调查某中学初三学生的学习时间分配情况,先在全校300名学生中随机抽取了30名学生作为样本,接着从这30名学生中随机抽取了15名男生和15名女生。

请问,这属于哪种抽样方法?并从样本中得到学习时间的数据结果。

(题目部分参考内容)答:这属于两阶段抽样方法,第一阶段为简单随机抽样,第二阶段为分层抽样。

学习时间数据结果应该从这30名学生中随机选择样本进行调查和统计。

初中数学《八下》 第二十章 数据的分析-数据的集中趋势 考试练习题

初中数学《八下》 第二十章 数据的分析-数据的集中趋势 考试练习题

初中数学《八下》第二十章数据的分析-数据的集中趋势考试练习题姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分评卷人得分1、某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查.在相同条件下,随机抽取了两种西瓜各7 份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,下面给出两种西瓜得分的统计图表.甲、乙两种西瓜得分表甲、乙两种西瓜得分统计表(1 )___________ ,___________ ;(2 )从方差的角度看, ___________ 种西瓜的得分较稳定(填“ 甲” 或“ 乙” );(3 )小明认为甲种西瓜的品质较好些,小军认为乙种西瓜的品质较好些.请结合统计图表中的信息分别写出他们的理由.知识点:数据的集中趋势【答案】(1 )a =88 ,b =90 ;(2 )乙;(3 )见解析【分析】(1 )根据中位数、众数的意义求解即可;(2 )根据数据大小波动情况,直观可得答案;(3 )从方差、中位数、众数的比较得出答案.【详解】解:(1 )甲品种西瓜测评得分从小到大排列处在中间位置的一个数是 88 ,所以中位数是 88 ,即a =88 ,将乙品种西瓜的测评得分出现次数最多的是90 分,因此众数是 90 ,即b =90 ,故答案为:a =88 ,b =90 ;(2 )由甲、乙两种西瓜的测评得分的大小波动情况,直观可得S 乙2<S 甲2,故答案为:乙;(3 )小明认为甲种西瓜的品质较好些,是因为甲的得分众数比乙的得分众数高;小军认为乙种西瓜的品质较好些,是因为乙的得分方差小和得分中位数比甲的高.【点睛】本题考查统计表,中位数、众数、平均数,理解中位数、众数、平均数的意义和计算方法是正确解答的前提.2、现有一组数据4 、 5 、 5 、 6 、 5 、 7 ,这组数据的众数是 ___ .知识点:数据的集中趋势【答案】5【分析】根据众数的意义求解即可.【详解】这组数据中出现次数最多的是5 ,共出现 3 次,因此众数是 5 ,故答案为: 5 .【点睛】本题考查的是众数:一组数中出现次数最多的数,熟练掌握众数的意义是解决本题的关键.3、一组数据:5,7,10,5,7,5,6. 这组数据的中位数和众数()A . 7 和 10B . 7 和 5C . 7 和 6D . 6 和 5知识点:数据的集中趋势【答案】D【分析】将这组数据排序后处于中间位置的数就是这组数据的中位数,出现次数最多的数为这组数据的众数.【详解】将这组数据重新排列为5 、 5 、 5 、 6 、 7 、 7 、 10 ,所以这组数据的众数为5 、中位数为 6 ,故选D .【点睛】本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.4、在5 月 31 日世界禁烟日到来之际,某校为了提高禁烟意识,在七、八年级举办了“ 关爱健康,远离香烟” 的知识竞赛,两个年级分别有 500 人为了了解本次竞赛成绩情况,现从中各随机抽取了部分同学的测试成绩x(得分均为整数,满分为100 分)进行调查分析,过程如下:第一步:收集数据七年级:68 88 100 100 79 94 89 85 100 88 81 69 98 7977 94 96 75 92 67八年级:69 97 78 89 98 100 99 100 95 99 99 69 75 1 00 99 78 79 87 85 79第二步:整理、描述数据第三步:分析数据第四步:应用数据(1 )直接写出a的值和八年级抽取了多少个同学的成绩进行分析(2 )在此次测试中,七年级甲学生的成绩为 89 分,八年级乙学生成绩为 90 分,甲、乙两人的成绩在各自年级中哪一个更靠前?请说明理由.(3 )若成绩在 90 分至 99 分之间(含 90 分, 99 分)的学生为二等奖,请估计七、八年级一共获得二等奖的学生总人数.知识点:数据的集中趋势【答案】(1 )a=99 ,八年级抽取了 20 个同学的成绩进行分析;(2 )甲的成绩在自己年级中更靠前;(3 )七、八年级一共获得二等奖的学生总人数为 300 人.【分析】(1 )根据众数的定义分别进行解答即可;(2 )把甲、乙两人的成绩与各自年级的中位数比较即可得到结论;(3 )七、八年级的总人数乘以 90 分至 99 分之间(含 90 分, 99 分)的学生数所占的百分比即可的结论.【详解】(1 )a=99 ,八年级抽取了 20 个同学的成绩进行分析;(2 )∵七年级同学的成绩的中位数是 88 ,八年级同学的成绩的中位数是 92 ,∴甲的成绩在自己年级中更靠前;(3 ) 1000×=300 人,答:七、八年级一共获得二等奖的学生总人数为300 人【点睛】本题主要考查了平均数、众数、中位数在实际问题中的正确应用,熟练掌握定义和计算公式是解题的关键.5、北京市6 月某日 10 个区县的最高气温如下表: ( 单位:℃)则这10 个区县该日最高气温的中位数是() .A . 32B . 31C . 30D . 29知识点:数据的集中趋势【答案】A【详解】∵从小到大排列后,排在中间位置的两个数都是 32 ,∴中位数是 32.故选A.6、某小组个人在一次数学小测试中,有个人的平均成绩为,其余个人的平均成绩为,则这个小组的本次测试的平均成绩为 ________.知识点:数据的集中趋势【答案】89【分析】先求出总成绩,再运用求平均数公式即可求出平均成绩.【详解】∵有 3 个人的平均成绩为 96 ,其余 7 个人的平均成绩为 86 ,∴这个小组的本次测试的总成绩为: 3×96+7×86=890 ,∴这个小组的本次测试的平均成绩为: 890÷10=89 .【点睛】本题主要考查的是平均数的求法,属于基础题型.熟记计算公式是解决本题的关键.7、甲、乙、丙、丁四人10 次随堂测验的成绩如图所示,从图中可以看出这 10 次测验平均成绩较高且较稳定的是()A .甲B .乙C .丙D .丁知识点:数据的集中趋势【答案】C【分析】利用平均数和方差的意义进行判断.【详解】解:由折线统计图得:丙、丁的成绩在92 附近波动,甲、乙的成绩在 91 附近波动,∴丙、丁的平均成绩高于甲、乙,由折线统计图得:丙成绩的波动幅度小于丁成绩的波动幅度,∴这四人中丙的平均成绩好又发挥稳定,故选:C .【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,与平均值的离散程度越差,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了折线统计图.8、某校开展了以“爱我家乡”为主题的艺术活动,从九年级 5 个班收集到的艺术作品数量(单位:件)分别为 48 , 50 , 47 , 44 , 50 ,则这组数据的中位数是()A . 44B . 47C . 48D . 50知识点:数据的集中趋势【答案】C【分析】根据中位数的意义,排序后处在中间位置的数即可.【详解】解:将这五个数据从小到大排列后处在第3 位的数是 48 ,因此中位数是 48 ;故选:C.【点睛】本题考查中位数的意义,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数是中位数.9、在庆祝中国共产党成立100 周年的“红色记忆”校园歌咏比赛中, 15 个参赛班级按照成绩(成绩各不相同)取前 7 名进入决赛,小红知道了自己班级的比赛成绩,如果要判断自己的班级能否进入决赛,还需要知道这 15 个参赛班级成绩的()A .平均数B .中位数C .众数D .方差知识点:数据的集中趋势【答案】B【分析】由于比赛取前7 名参加决赛,共有 15 名选手参加,根据中位数的意义分析即可.【详解】解:15 个不同的成绩按从小到大排序后,中位数之后的共有 7 个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B .【点睛】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.10、已知一组数据,,的平均数为5 ,方差为 4 ,那么数据,,的平均数和方差分别为__ .知识点:数据的集中趋势【答案】3 , 4【分析】根据平均数,方差定义进行解答即可.【详解】解:数据,,的平均数为5 ,,,数据,,的平均数是3 ;数据,,的方差为4 ,,,,的方差.故答案为:3 , 4 .【点睛】本题考查了平均数和方差,解题的关键是灵活运用平均数和方差.11、为了纪念建党100 周年,学校组织了“建党 100 周年党史知识竞赛”,张同学根据评分为小李的分数制作了如下表格:如果去掉一个最高分和最低分,那么下列哪个数据不会发生变化()A .众数B .平均数C .中位数D .方差知识点:数据的集中趋势【答案】C【分析】根据中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案.【详解】解:如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数,故选C .【点睛】本题主要考查了中位数,解决本题的关键是掌握中位数定义.12、已知一组数据,,,,的平均数是4 ,方差是 5 ,将这组数据中的每个数据都减去 2 ,得到一组新数据,则这组新数据的方差是 ______ .知识点:数据的集中趋势【答案】5【分析】根据一组数据的平均数与方差的定义和性质即可求解.【详解】解:由题意得:数据,,,,的平均数是4 ,方差是 5 ,新数据是,,,,,所以新数据的平均数是4-2=2 ,方差是:==5 .故答案为:5 .【点睛】本题考查了平均数和方差,解题的关键是掌握平均数和方差的变换特点.13、如图,小强同学根据乐清市某天上午和下午各四个整点时间的气温绘制成的折线统计图.(1 )根据图中信息分别求出上午和下午四个整点时间的平均气温.(2 )请你根据所学统计学知识,从四个整点时间温度猜测,这天上午和下午的气温哪个更稳定,并说明理由.知识点:数据的集中趋势【答案】(1 ) 24 , 24 ;(2 )上午的气温更加稳定,理由见解析.【分析】(1 )根据平均数的定义进行求解即可;(2 )分别求出上午和下午四个整点时间的方差然后进行比较即可.【详解】解:(1 )∴∴上午的气温更加稳定.【点睛】本题主要考查了平均数与方差,解题的关键在于能够熟练掌握相关知识进行求解.14、车间有22 名工人,某一天他们生产的零件个数统计如下:(1 )求这一天 22 名工人生产零件的平均个数.(2 )为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,请你确定这个“定额”,并说明理由.知识点:数据的集中趋势【答案】(1 ) 13 个;(2 )如果我是管理者,会将 13 个作为“定额”,因为平均数、众数、中位数都是 13 ,选 13 为定额,确保了大多数人能完成定额,有 7 人超产有奖,能起到较好的激励作用.(表达合理即可)【分析】(1 )根据平均数的计算方法进行计算即可;(2 )求出中位数、众数、平均数,从大多数员工能够完成任务为标准“定额”.【详解】解:(1 )(个)∴这一天 22 名工人生产零件的平均个数为 13 个.(2 )如果我是管理者,会将 13 个作为“定额”.因为平均数、众数、中位数都是13 ,选 13 为定额,确保了大多数人能完成定额,有 7 人超产有奖,能起到较好的激励作用.(表达合理即可)【点睛】本题考查平均数、中位数、众数,理解中位数、众数、平均数的意义和计算方法是正确解答的关键.15、开学前,根据学校防疫要求,小芸同学连续14 天进行了体温测量,结果统计如下表:这14 天中,小芸体温的众数是 ____________.知识点:数据的集中趋势【答案】36.6【分析】根据众数的定义就可解决问题.【详解】根据表格数据可知众数是36.6℃,故答案为:36.6 .【点睛】本题主要考查了众数的求解,正确理解众数的意义是解决本题的关键.16、东方红学校举行“学党史,听党话,跟党走”讲故事比赛,七位评委对其中一位选手的评分分别为: 85 , 87 , 89 , 91 , 85 , 92 , 90 .则这组数据的中位数为 ______ .知识点:数据的集中趋势【答案】89【分析】根据中位数的定义即可得.解:将这组数据按从小到大进行排序为,则中位数为89 ,故答案为:89 .【点睛】本题考查了中位数,熟记定义是解题关键.17、“最美鄂州,从我做起”.“五四”青年节当天,马桥村青年志愿小组到胡林社区参加美化社区活动. 6 名志愿者参加劳动的时间(单位:小时)分别为: 3 , 2 , 2 , 3 , 1 , 2 ,这组数据的中位数是 ______ .知识点:数据的集中趋势【答案】2【分析】根据中位数的求解方法求解即可.【详解】解:将所给6 个数据从小到大排列: 1 , 2 , 2 , 2 , 3 , 3 ,则中位数为=2 ,故答案为:2 .【点睛】本题考查中位数,熟练掌握中位数的求解方法是解答的关键.18、在2021 年初中毕业生体育测试中,某校随机抽取了 10 名男生的引体向上成绩,将这组数据整理后制成如下统计表:关于这组数据的结论不正确的是()A .中位数是 10.5B .平均数是 10.3C .众数是 10D .方差是 0.81知识点:数据的集中趋势【答案】A【分析】先将数据按照从小到大排列,再依次按照中位数的定义、平均数计算公式、众数定义、方差计算公式依次进行判断即可.【详解】解:将该组数据从小到大排列依次为:9 , 9 , 10 , 10 , 10 , 10 , 11 , 11 , 11 , 12 ;位于最中间的两个数是10 , 10 ,它们的平均数是 10 ,所以该组数据中位数是10 ,故 A 选项符合题意;该组数据平均数为:,故B 选项不符合题意;该组数据10 出现次数最多,因此众数是 10 ,故 C 选项不符合题意;该组数据方差为:,故D 选项不符合题意;故选:A .【点睛】本题考查了中位数和众数的定义以及方差和平均数的计算公式,解决本题的关键是牢记相关概念与公式等,本题的易错点是容易将表格中的数据混淆,同时计算容易出现错误,因此需要学生有一定的计算能力.19、某学校八年级(2 )班有 20 名学生参加学校举行的“学党史、看红书”知识竞赛,成绩统计如图.这个班参赛学生的平均成绩是 ___ .知识点:数据的集中趋势【答案】95.5【分析】利用加权平均数的定义计算即可.【详解】解:由题意可得:=95.5 ,故答案为:95.5 .【点睛】本题考查了加权平均数的求法,解题的关键是结合统计图,掌握运算法则.20、如图所示是某校初中数学兴趣小组年龄结构条形统计图,该小组年龄最小为11 岁,最大为 15 岁,根据统计图所提供的数据,该小组组员年龄的中位数为 ________ 岁.知识点:数据的集中趋势【答案】13【分析】直接根据中位数定义求解即可.【详解】解:根据题意排列得:11 , 11 , 12 , 12 , 12 , 13 , 13 ,13 , 13 , 13 , 14 , 14 , 14 , 14 , 15 , 15 , 15 , 15 ,个数为偶数,中间的两个数为:13 , 13 ,∴中位数为 13 ,故答案为:13【点睛】本题主要考查中位数的定义,将一组数据按照从小到大( 或从大到小 ) 的顺序排列,如果这组数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.。

抽样调查举例

抽样调查举例

调查 1.我们班级不近视的同学有多少人? 2.我们学校不近视的同学又有多少人? 像这样为一定目的而全面的调查叫做全面调查。例如人口普查;
你愿意采用普查的方式了解一批日光灯管的使用寿命吗?
具有破坏性,最好不要使用全面调查。 的方式。
想一想
要了解全国初中生的视力情况,有人设计了下面三种调查方法: 1、对全国所有的初中生进行视力测试。
数据处理的一般过程
全面调查
收 集 数 据
制表



绘图

描 述 数 据
分 析 数 据
得 出 结 论
抽样调查
再见
统计表和统计图的区别
统计表反映的数据准确且容易查找; 统计图很直观地表示出变化的情况和最大最小值。
在实际问题中常把统计表、统计图结合起来描述数据,要能根据不同问题选择适当的统计图描述数据, 以利于数据的分析,最终做出合理的决策。
同时抽样调查选取的对象数量应合理。
为了了解学生对学校伙食的满意程度,小红访问了50名女生;小聪访问了50名男生;小明访 问了24名男生和24名女生,其中七年级、八年级和九年级的男生和女生各8名。你认为小红、 小聪、小明三人的不同抽样方法那一种最好?为什么?
答:小明的方法最好。小明抽得样本既有男生,又有女生,而均匀分布在各年级,这样的抽样较具 有代表性,反映的情况具有普遍意义。
1希腊奥委会为了防止运动员服用违禁药物从1万多名运动员中抽取了万多名运动员中抽取了3千名运动员进行尿样检验2导弹部队为了了解某种新型导弹的射程而发射了该种型号的一枚导弹作试验导弹部队为了了解某种新型导弹的射程而发射了该种型号的一枚导弹作试验3学校要为同学们订做校服调查了全校888名学生每人的身高名学生每人的身高该校共888名学生4为了了解八年级学生体能情况教育局工作人员在辖区内抽取了教育局工作人员在辖区内抽取了4所中学对其中学号是6的倍数的八年级学生进行的倍数的八年级学生进行400米跑步测试答

河北省唐山市迁安市2023-2024学年八年级下学期期中数学试题

河北省唐山市迁安市2023-2024学年八年级下学期期中数学试题

河北省唐山市迁安市2023-2024学年八年级下学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列调查中,适合采用抽样调查的是( )A .调查本班同学的数学小测成绩B .调查一批学生饮用奶的微量元素的含量C .为保证载人航天器成功发射,对其零部件进行检查D .对乘坐某班次飞机的乘客进行安检2.如图,在平面直角坐标系中,☆盖住的点的坐标可能是( )A .(3,1)-B .(3,1)--C .(3,1)D .(3,1)- 3.在同一平面直角坐标系内,直线3y x =与直线5y kx =-互相平行,则k 的值( ) A .3- B .13 C .3 D .5-4.一根蜡烛原来长cm a ,点燃后燃烧的时间为t min ,剩余蜡烛的长为cm y ,(cm)y 与(min)t 之间的函数图像正确的是( )A .B .C .D .5.下列说法正确的是( )A .在圆的面积公式2S r π=中,常量是π、r ,变量是SB .加工100个零件,工作效率p 与时间t 之间的关系式是100=pt ,p 、t 都是变量C .以固定的速度0v 向上抛一个小球,小球的高度(m)h 与小球运动的时间t (s )之间的关系式是20 4.9h v t t =-,常量是4.9,变量是h 、tD .在匀速运动公式S vt =中,常量是t ,变量是S 、v6.王老师对本班50名学生的年龄进行了统计,列出如下的统计表,则本班13岁的人数是( )A .30人B .25人C .20人D .18人 7.已知一次函数(31)4=-+-y m x m 图像经过原点,则下列结论正确的是( ) A .4m =- B .2m = C .4m =± D .4m =8.为了了解某校初中学生寒假规范书写情况,随机抽取80名学生20天的每日一篇练字纸,在这个问题中,样本容量是( )A .80B .20C .1600D .1600篇的练字纸 9.在画某一次函数的图像时,小红列表如右图,则下列各点不在其图像上的是( )A .(5,8)-B .(3,6)-C .(7,4)-D .(15,13)- 10.若一次函数(2)1y k x =++的函数值y 随x 的增大而减小,则k 的取值范围( )A .2k <-B .2k >-C .0k >D .0k <11.在平面直角坐标系中,已知点(4,0)A -,O 为坐标原点.若要使OAB V 是直角三角形,则点B 的坐标不可能是( )A .(4,2)-B .(0,4)C .(4,2)D .(2,2)-12.直线y kx b =+经过一、二、四象限,则直线y bx k =-的图象只能是图中的( )A .B .C .D . 13.小红、小丽假期在同一超市购买同种水果,付款金额y (元)与购买x (千克)之间的函数图象如图所示,小红一次性购买6千克,小丽每次买3千克,连续买2次,小红比小丽少花几元( )A .4B .3C .2D .114.某校举行规范书写大赛,100名参赛同学最后得分(得分取整数)的频数分布直方图如图所示(频数轴刻度等间隔).根据图中的信息写出频数轴每隔代表人数( )A .5B .10C .15D .无法确定二、填空题15.函数321=-y x 自变量x 的取值范围是 . 16.为了进一步了解八年级学生的身体素质情况,体育老师对八年级(1)班50名学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出不完整的频数分布表(如右图).频数分布表中的组距是 .17.已知y 与x 成正比例函数,当2x =-时,y =-6,当5x =时,y = . 18.在平面直角坐标系中,对于点(,)P x y ,若点Q 的坐标为(,)-+x ay ax y ,则称点Q 是点P 的“a 阶智慧点”(a 为常数,且0a ≠),例如:点(1,3)P 的“2阶智慧点”为点(123,213)-⨯⨯+,即点(5,5)-Q .(1)点(1,2)A --的“3阶智慧点”的坐标为 ;(2)若点(2,13)C m m +-的“5-阶智慧点”到x 轴的距离为1,则m 的值 .三、解答题19.在同一平面直角坐标系内有A 、B 两点.点A 在第二象限,且到x 轴的距离为3,到y 轴的距离为1;点(3,29)--B m m 在第三象限.(1)直接写出点A 的坐标;(2)求m 的取值范围;(3)连接AB ,且AB 垂直于x 轴,求点B 的坐标.20.如图1,在ABC V 中,8BC =,5AD =,动点E 由点C 沿CB 向点B 移动(不与点B 重合),设CE 的长为x ,ABE V 的面积为S .(1)完成表格:(2)在图2所示的平面直角坐标系中画出图像;(3)请写出S 与x 之间的函数关系式;21.某城市部分公共场所位置如图所示,小方格的边长为1个单位长度.已知学校(5,3)A ,体育馆(3,2)B --,火车站O 为坐标原点,文化馆C 与体育馆B 关于x 轴对称,超市D 与点B 关于原点对称.(1)请在图中建立平面直角坐标系,并标出点,O C 的位置;(2)直接写出点D 的坐标;(3)小红从学校出发,先向南走6个单位长度,再向西走3个单位长度,到达图书馆E . ①在图中标出点E ,并写出点E 的坐标________;②连接,,B O E ,则OBE △的面积是________.22.五一黄金周,小红一家驾车出游,出发时油箱内存有一定数量的汽油,行驶若干小时后,到达第一个旅游景点A ,游玩后驾车赶往第二个景点,从第一个景点出发4h 后在途中某一加油站加油,加油5分钟使油箱内汽油的升数与未出发前一致,若汽车从始至终都是以同一速度匀速行驶,图中表示的是该过程中油箱里的剩油量Q (L )与行驶时间t (h )之间的函数关系.(1)油箱内原有汽油________升;在第一个景点游玩________h;(2)A点坐标表示的实际意义________;(3)直接写出C点坐标________;(4)求DC所在直线解析式.23.为了创建书香校园,某校开展“好书伴我成长”的读书活动,为了解全校学生读书情况,随机调查了50名学生读书的册数,并将全部调查结果绘制成三幅不完整的统计图表.请根据图表提供的信息,解答下列问题:a________;(1)表中的(2)请你把条形统计图中“4册”部分补充完整;(3)若该校共有2200名学生,请你根据样本数据,估计该校学生在本次活动中读书不少于3册的人数.24.A,B两地相距48km,甲、乙两车分别从A地和B地同时出发相向而行.他们距A地s和出发后的时间t(h)之间的函数关系的图象如图所示.的路程(km)(1)分别求出甲、乙两车距A地的路程s与时间t的函数关系式;(2)求甲乙两车相遇的时间;(3)直接写出两车相距5千米时t的值;25.一辆中型客车准乘32人(包括一名司机),这辆客车由A地行驶到B地,平均油耗为8升/百公里,现油价7元/升,设乘客有x人,盈利为y元.现有两种路线可供选择路线一:走“国道”全程180公里,每人票价25元,其他运行成本为50元;路线二:走“高速”全程120公里,每人票价30元,高速费60元,其他运行成本50元.(1)分别写出两种路线盈利y(元)与x(人)的函数关系式;(2)应该怎么选择路线,保证盈利最大?。

八年级数学(上)期末测试试卷含答案解析

八年级数学(上)期末测试试卷含答案解析

八年级数学(上)期末测试试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列各实数是无理数的是()A.B.C.3. D.﹣π2.(2分)二元一次方程2y﹣x=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.3.(2分)满足下列条件的三角形中,不是直角三角形的是()A.三个内角之比为1:1:2 B.三条边之比为1:2:C.三条边之比为5:12:13 D.三个内角之比为3:4:54.(2分)下列命题错误的是()A.所有实数都可以用数轴上的点表示B.同位角相等,两直线平行C.无理数包括正无理数、负无理数和0D.等角的补角相等5.(2分)请估计的值在()A.1与2之间B.2与3之间C.3与4之间D.4与5之间6.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF=()度.A.70 B.65 C.60 D.557.(2分)现在父亲的年龄是儿子年龄的3倍,七年前父亲的年龄是儿子年龄的5倍,则父亲和儿子现在的年龄分别是()A.42岁,14岁B.48岁,16岁C.36岁,12岁D.39岁,13岁8.(2分)如果m是任意实数,那么点M(m﹣5,m+2)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.(2分)如图,已知△ABC是等腰直角三角形,∠ACB=90°,P为斜边AB上一点,PF⊥BC于点F,PE⊥AC于点E.若S△APE=7,S△PBF=2,则PC的长为()A.5 B.3C. D.310.(2分)在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A.B.C.D.二、填空题(共8小题,每小题2分,满分16分)11.函数中,自变量x的取值范围是.12.(2分)一组数据﹣1,0,2,4,x的极差为7,则x=.13.(﹣2)2的平方根是.14.直线y=2x+1与y=﹣x+4的交点是(1,3),则方程组的解是.15.(2分)一个两位数,个位数字比十位数字大4,个位数字与十位数字的和为8,则这个两位数是.16.(2分)如图,一长方体底面宽AN=5cm,长BN=10cm,高BC=16cm.D为BC的中点,一动点P从A点出发,在长方体表面移动到D点的最短距离是.17.(2分)若直线y=k x+b平行于直线y=﹣2x+3,且过点(5,9),则其解析式为.18.(2分)如图,在一单位长度为1的方格纸上.△A1A2A3,△A3A4A5,△A5A6A7…都是斜边在x 轴上,斜边长分别为2,4,6…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0).则依图中所示规律,A2016的坐标是.三、解答题(共7小题,满分64分)19.计算:(﹣2)×﹣6(2)解方程组:.20.(8分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣4,1),B(﹣2,1),C(﹣2,3).(1)作△ABC关于y轴对称的图形△A1B1C1;(2)作△ABC向下平移4个单位长度的图形△A2B2C2;(3)如果△ABC与△ABD全等,则请直接写出点D坐标.21.(8分)丽水发生特大泥石流灾害后,某校学生会在全校1900名学生发起了“心系丽水”若捐款活动,为了解捐款情况,学生会随机调查了部分学生捐款情况,并用调查排水数据绘制了如图统计图,根据相关信息解答系列问题:(1)本次接受随机抽样调查的学生人数为人,图①中的值是.(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.22.(10分)某工厂工人的工作时间为每月25天,每天8小时,每名工人每月有基本工资400元.该厂生产A、B两种产品,工人每生产一件A种产品,可得到报酬0.75元;每生产一件B种产品,可得到报酬1.40元,如表记录了工人小王的工作情况:生产A种产品件数生产B种产品件数合计用工时间(分钟)1 1 353 2 85(1)求小王每生产一件A种产品和一件B种产品,分别需要多少时间?(2)求小王每月工资额范围.23.(8分)如图,A、B、C、D四点在同一条直线上,∠AGD=90°,且∠1=∠D,∠2=∠A.求证:FB∥EC.24.(10分)小明和小亮在9:00同时乘坐由甲地到乙地的客车,途经丙地时小亮下车,处理个人事情后乘公交返回甲地;小明乘客车到达乙地;30分钟后乘出租车也返回甲地,两人同时回到甲地,设两人之间的距离为y千米,所用时间为x分钟,图中折线表示y与x之间函数关系图象,根据题中所给信息,解答下列问题:(1)甲、乙两地相距千米,客车的速度是千米/时;(2)小亮在丙地停留分钟,公交车速度是千米/时;(3)求两人何时相距28千米?25.(12分)如图所示,AB∥CD,直线EF与AB相交于点E,与CD相交于点F,FH是∠EFD的角平分线,且与AB相交于点H,GF⊥FH交AB于点G(GF>HP).(1)如图①,求证:点E是GH的中点;(2)如图②,过点E作EP⊥AB交GF于点P,请判断GP2=PF2+HF2是否成立?并说明理由;(3)如图③,在(1)的条件下,过点E作EP⊥EF交GF于点P,请猜想线段GP、PF、HP有怎样的数量关系,请直接写出你猜想的结果.参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列各实数是无理数的是()A.B.C.3. D.﹣π【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=是有理数,故A错误;B、是有理数,故B错误;C、3.是有理数,故C错误;D、﹣π是无理数,故D正确;故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(2分)二元一次方程2y﹣x=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.【考点】二元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把各项中x与y的值代入方程检验即可.【解答】解:A、把x=0,y=﹣代入方程得:左边=﹣1,右边=1,不相等,不合题意;B、把x=1,y=1代入方程得:左边=2﹣1=1,右边=1,相等,符合题意;C、把x=1,y=0代入方程得:左边=﹣1,右边=1,不相等,不合题意;D、把x=﹣1,y=﹣1代入方程得:左边=﹣3,右边=1,不相等,不合题意,故选B.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.(2分)满足下列条件的三角形中,不是直角三角形的是()A.三个内角之比为1:1:2 B.三条边之比为1:2:C.三条边之比为5:12:13 D.三个内角之比为3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据三角形的内角和定理得出A是直角三角形,D不是直角三角形,由勾股定理的逆定理得出B、C是直角三角形,从而得到答案.【解答】解:A、三个内角之比为1:1:2,因为根据三角形内角和定理可求出三个角分别为45°,45°,90°,所以是直角三角形,故正确;B、三条边之比为1:2:,因为12+22=()2,其符合勾股定理的逆定理,所以是直角三角形,故正确;C、三条边之比为5:12:13,因为52+122=132,其符合勾股定理的逆定理,所以是直角三角形,故正确;D、三个内角之比为3:4:5,因为根据三角形内角和公式得三个角中没有90°角,所以不是直角三角形,故不正确.故选:D.【点评】本题考查了勾股定理的逆定理、三角形内角和定理、直角三角形的判定;熟练掌握勾股定理的逆定理和三角形内角和定理是解决问题的关键.4.(2分)下列命题错误的是()A.所有实数都可以用数轴上的点表示B.同位角相等,两直线平行C.无理数包括正无理数、负无理数和0D.等角的补角相等【考点】命题与定理.【分析】利用数轴上的点与实数一一对应可对A进行判断;根据平行线的判定方法对B进行判断;根据无理数的定义对C进行判断;根据补角的定义对D进行判断.【解答】解:A、所有实数都可以用数轴上的点表示,所以A选项为真命题;B、同位角相等,两直线平行,所以B选项为真命题;C、无理数包括正无理数、负无理数,所以C选项为假命题;D、等角的补角相等,所以D选项为真命题.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.(2分)请估计的值在()A.1与2之间B.2与3之间C.3与4之间D.4与5之间【考点】估算无理数的大小.【分析】根据被开方数越大算术平方根越大,可得3<<4,再根据不等式的性质1,可得答案.【解答】解:由被开方数越大算术平方根越大,得<<,即3<<4,都减1,得2<﹣1<3.故选:B.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3<<4是解题关键.6.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF=()度.A.70 B.65 C.60 D.55【考点】平行线的性质.【分析】先由垂直的定义,求出∠PEF=90°,然后由∠BEP=50°,进而可求∠BEF=140°,然后根据两直线平行同旁内角互补,求出∠EFD的度数,然后根据角平分线的定义可求∠EFP的度数,然后根据三角形内角和定理即可求出∠EPF的度数.【解答】解:如图所示,∵EP⊥EF,∴∠PEF=90°,∵∠BEP=50°,∴∠BEF=∠BEP+∠PEF=140°,∵AB∥CD,∴∠BEF+∠EFD=180°,∴∠EFD=40°,∵FP平分∠EFD,∴=20°,∵∠PEF+∠EFP+∠EPF=180°,∴∠EPF=70°.故选:A.【点评】此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.7.(2分)现在父亲的年龄是儿子年龄的3倍,七年前父亲的年龄是儿子年龄的5倍,则父亲和儿子现在的年龄分别是()A.42岁,14岁B.48岁,16岁C.36岁,12岁D.39岁,13岁【考点】一元一次方程的应用.【分析】可设儿子现在的年龄是x岁,则父亲现在的年龄是3x岁,根据等量关系:7年前父亲的年龄=7年前儿子的年龄×5,依此列出方程求解即可.【解答】解:设儿子现在的年龄是x岁,依题意得:3x﹣7=5(x﹣7).解得x=14.则3x=42.即父亲和儿子现在的年龄分别是42岁,14岁.故选:A.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,由年龄的倍数问题找出合适的等量关系列出方程,再求解.8.(2分)如果m是任意实数,那么点M(m﹣5,m+2)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),可得答案.【解答】解:m>5时,m﹣5>0,m+2>0,点位于第一象限,故A不符合题意;m=5时点位于y轴;﹣2<m<5时,m﹣5<0,m+2>0,点位于第二象限,故B不符合题意;m=﹣2时,点位于x轴;m<﹣2时,m﹣5<0,m+2<0,点位于第三象限,故C不符合题意;M(m﹣5,m+2)一定不在第四象限,故D符合题意;故选:D.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.(2分)如图,已知△ABC是等腰直角三角形,∠ACB=90°,P为斜边AB上一点,PF⊥BC于点F,PE⊥AC于点E.若S△APE=7,S△PBF=2,则PC的长为()A.5 B.3C. D.3【考点】等腰直角三角形.【分析】由等腰直角三角形的性质得出∠A=∠B=45°,证出四边形PECF是矩形,得出PF=CE,证出△APE和△BPF是等腰直角三角形,得出AE=PE,BF=PF,再由三角形的面积得出PE2=14,CE2=PF2=4,由勾股定理求出PC的长即可.【解答】解:∵△ABC是等腰直角三角形,∠ACB=90°,∴∠A=∠B=45°,∵PF⊥BC于点F,PE⊥AC于点E,∴∠PFB=∠PEA=90°,四边形PECF是矩形,∴△APE和△BPF是等腰直角三角形,PF=CE,∠PEC=90°,∴AE=PE,BF=PF,∵S△APE=AE•PE=PE2=7,S△PBF=PF•BF=PF2=2,∴PE2=14,CE2=PF2=4,∴PC===3;故选:B.【点评】本题考查了等腰直角三角形的判定与性质、矩形的判定与性质、勾股定理;熟练掌握等腰直角三角形的判定与性质,运用勾股定理求出PC是解决问题的关键.10.(2分)在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A.B.C.D.【考点】一次函数的图象;正比例函数的图象.【分析】根据正比例函数与一次函数的图象性质作答.【解答】解:当k>2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,3象限;当0<k<2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,4象限;当k<0时,正比例函数y=kx图象经过2,4象限,一次函数y=(k﹣2)x+k的图象2,3,4象限;故选B.【点评】此题考查一次函数的图象问题,正比例函数的性质:正比例函数y=kx的图象是过原点的一条直线.当k>0时,直线经过第一、三象限;当k<0时,直线经过第二、四象限.二、填空题(共8小题,每小题2分,满分16分)11.函数中,自变量x的取值范围是x≤2.【考点】函数自变量的取值范围.【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≥0,解得:x≤2.故答案是:x≤2.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.(2分)一组数据﹣1,0,2,4,x的极差为7,则x=6或﹣3.【考点】极差.【分析】分别当x为最大值和最小值时,根据极差的概念求解.【解答】解:当x为最大值时,x﹣(﹣1)=7,解得:x=6,当x为最小值时,4﹣x=7,解得:x=﹣3.故答案为:6或﹣3.【点评】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.13.(﹣2)2的平方根是±2.【考点】平方根.【专题】计算题.【分析】先求出(﹣2)2的值,然后开方运算即可得出答案.【解答】解:(﹣2)2=4,它的平方根为:±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.14.直线y=2x+1与y=﹣x+4的交点是(1,3),则方程组的解是.【考点】一次函数与二元一次方程(组).【分析】利用函数图象交点坐标为两函数解析式组成的方程组的解易得答案.【解答】解:∵直线y=2x+1与y=﹣x+4的交点是(1,3),∴方程组的解为.故答案为.【点评】本题考查了一次函数与一元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.15.(2分)一个两位数,个位数字比十位数字大4,个位数字与十位数字的和为8,则这个两位数是26.【考点】二元一次方程组的应用.【专题】数字问题.【分析】设这个两位数个位数为x,十位数字为y,根据个位数字比十位数字大4,个位数字与十位数字的和为8,列方程组求解.【解答】解:设这个两位数个位数为x,十位数字为y,由题意得,,解得:,则这个两位数为26.故答案为:26.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.16.(2分)如图,一长方体底面宽AN=5cm,长BN=10cm,高BC=16cm.D为BC的中点,一动点P从A点出发,在长方体表面移动到D点的最短距离是cm.【考点】平面展开-最短路径问题.【分析】将图形展开,可得到AD较短的展法两种,通过计算,得到较短的即可.【解答】解:(1)如图1,BD=BC=6cm,AB=5+10=15cm,在Rt△ADB中,AD==3cm;(2)如图2,AN=5cm,ND=5+6=11cm,Rt△ADN中,AD===cm.综上,动点P从A点出发,在长方体表面移动到D点的最短距离是cm.故答案为:cm.【点评】本题考查了平面展开﹣﹣最短路径问题,熟悉平面展开图是解题的关键.17.(2分)若直线y=kx+b平行于直线y=﹣2x+3,且过点(5,9),则其解析式为y=﹣2x+19.【考点】两条直线相交或平行问题.【专题】计算题.【分析】根据两直线平行的问题得到k=﹣2,然后把(5,9)代入y=﹣2x+b,求出b的值即可.【解答】解:根据题意得k=﹣2,把(5,9)代入y=﹣2x+b得﹣10+b=9,所以直线解析式为y=﹣2x+19.故答案为y=﹣2x+19.【点评】本题考查了两直线平行或相交的问题:直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)平行,则k1=k2;若直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)相交,则交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式.18.(2分)如图,在一单位长度为1的方格纸上.△A1A2A3,△A3A4A5,△A5A6A7…都是斜边在x 轴上,斜边长分别为2,4,6…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0).则依图中所示规律,A2016的坐标是(2,1008).【考点】规律型:点的坐标.【分析】由于2016是4的整数倍数,故A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,可见,A2016在x轴上方,横坐标为2,再根据纵坐标变化找到规律即可解答即可.【解答】解:∵2016是4的整数倍数,∴A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2016÷4=504…0,∴A2016在x轴上方,横坐标为2,∵A4、A8、A12的纵坐标分别为2,4,6,∴A2016的纵坐标为2016×=1008.故答案为:(2,1008).【点评】本题考查了等腰直角三角形、点的坐标,主要是根据坐标变化找到规律,再依据规律解答.三、解答题(共7小题,满分64分)19.计算:(﹣2)×﹣6(2)解方程组:.【考点】二次根式的混合运算;解二元一次方程组.【专题】计算题.【分析】(1)先进行二次根式的乘法运算,然后合并即可;(2)利用加减消元法解二元一次方程组.【解答】解:(1)原式=3﹣6﹣3(2),①+②×5得:13y=13,解得y=1,把y=1代入②中得2x﹣1=1,解得x=1,所以原方程组的解是.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解二元一次方程组.20.(8分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣4,1),B(﹣2,1),C(﹣2,3).(1)作△ABC关于y轴对称的图形△A1B1C1;(2)作△ABC向下平移4个单位长度的图形△A2B2C2;(3)如果△ABC与△ABD全等,则请直接写出点D坐标.【考点】作图-轴对称变换;全等三角形的性质;作图-平移变换.【分析】(1)首先确定A、B、C三点关于y轴对称的点的位置,再连接即可;(2)首先确定A、B、C三点向下平移4个单位长度的对应点的位置,再连接即可;(3)首先确定D点位置,然后再写出坐标即可.【解答】解:(1)(2)如图所示:;(3)(﹣4,﹣1);(﹣2,﹣1);(﹣4,3).【点评】此题主要考查了作图﹣﹣平移变换,以及关于坐标轴对称,全等三角形的判定,关键是正确确定对称点和对应点的位置.21.(8分)丽水发生特大泥石流灾害后,某校学生会在全校1900名学生发起了“心系丽水”若捐款活动,为了解捐款情况,学生会随机调查了部分学生捐款情况,并用调查排水数据绘制了如图统计图,根据相关信息解答系列问题:(1)本次接受随机抽样调查的学生人数为50人,图①中的值是12.(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】计算题.【分析】(1)利用条形统计图得各组的频数,然后把它们相加即可得到抽样调查的学生的总数,再用16除以50即可得到m的值;(2)根据众数和中位数的定义求解;(3根据样本估计总体,用样本中捐款10元所占的百分比表示全校捐款10元的百分比,然后计算1900×32%即可.【解答】解:(1)本次接受随机抽样调查的学生人数为4+16+12+10+8=50(人),m%=×100%=32%;故答案为50;32;(2)本次调查获取的样本数据的众数是10元;中位数是15元;(3)1900×32%=608(人),答:估计该校捐款10元的学生人数有608人.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了用样本估计总体、中位数和众数.22.(10分)某工厂工人的工作时间为每月25天,每天8小时,每名工人每月有基本工资400元.该厂生产A、B两种产品,工人每生产一件A种产品,可得到报酬0.75元;每生产一件B种产品,可得到报酬1.40元,如表记录了工人小王的工作情况:生产A种产品件数生产B种产品件数合计用工时间(分钟)1 1 353 2 85(1)求小王每生产一件A种产品和一件B种产品,分别需要多少时间?(2)求小王每月工资额范围.【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设生产一件A种产品需要x分钟,生产一件B种产品需要y分钟,根据等量关系为“1件A,1件B用时35分钟”和“3件A,2件B用时85分钟”,根据这两个等量关系可列方程组,再进行求解即可.(2)求小王每月工资额的范围,需要求助于函数,由(1)知生产A、B的单个时间,又每月工作总时间一定为25×8×60,所以可列一个二元一次方程,又工资计算方法已知,则可利用一个未知量,去表示另一个未知量,得到函数,进行解答.【解答】解:(1)设生产一件A种产品需要x分钟,生产一件B种产品需要y分钟,依题意得:,解得:,答:生产一件A种产品需要15分钟,生产一件B种产品需要20分钟.(2)设小王每月生产A、B两种产品的件数分别为m、n,月工资额为w,根据题意得:,即,因为m,n为非负整数,所以0≤m≤800,故当m=0时,w有最大值为1240,当m=800时,w有最小值为1000,则小王每月工资额最少1000元,每月工资额最多1240元.【点评】此题考查了一次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:“1件A,1件B用时35分钟”和“3件A,2件B用时85分钟”,列出方程组,再求解.23.(8分)如图,A、B、C、D四点在同一条直线上,∠AGD=90°,且∠1=∠D,∠2=∠A.求证:FB∥EC.【考点】平行线的判定.【专题】证明题.【分析】先由∠AGD=90°,根据三角形内角和定理得出∠A+∠D=90°,再由∠1=∠D,∠ABF=∠1+∠D,得出∠ABF=2∠D,同理得出∠DCE=2∠A,那么∠DCE+∠ABF=2(∠A+∠D)=180°,根据邻补角定义得出∠ABF+∠DBF=180°,由同角的补角相等得到∠DCE=∠DBF,根据同位角相等,两直线平行得出FB∥EC.【解答】证明:∵∠AGD=90°,∴∠A+∠D=90°,∵∠1=∠D,∠ABF=∠1+∠D,∴∠ABF=2∠D,同理:∠DCE=2∠A,∴∠DCE+∠ABF=2(∠A+∠D)=180°,又∵∠ABF+∠DBF=180°,∴∠DCE=∠DBF,∴FB∥EC.【点评】本题考查了平行线的判定,三角形内角和定理,三角形外角的性质,邻补角定义,补角的性质,根据条件得出∠DCE=∠DBF是解题的关键.24.(10分)小明和小亮在9:00同时乘坐由甲地到乙地的客车,途经丙地时小亮下车,处理个人事情后乘公交返回甲地;小明乘客车到达乙地;30分钟后乘出租车也返回甲地,两人同时回到甲地,设两人之间的距离为y千米,所用时间为x分钟,图中折线表示y与x之间函数关系图象,根据题中所给信息,解答下列问题:(1)甲、乙两地相距80千米,客车的速度是80千米/时;(2)小亮在丙地停留48分钟,公交车速度是40千米/时;(3)求两人何时相距28千米?【考点】一次函数的应用;一次函数的图象;待定系数法求一次函数解析式.【专题】数形结合;分类讨论;函数思想;待定系数法;一次函数及其应用.【分析】(1)结合图象知,小明乘客车从丙地到乙地用时30分钟,行驶40千米可得客车速度,小明从甲到乙行驶1小时,可得甲乙间距离;(2)小亮在x=30到达丙地,x=78离开丙地,可得停留时间,根据小亮从丙地返回到甲地用时可得公交车速度;(3)两人相距28千米,即y=28,求出AB、DE函数解析式,令y=28可求得.【解答】解:(1)根据题意可知,当x=30时小明、小亮同时到达丙地,小亮停留在丙地;当x=60时y=40,即小明到达乙地,此时两人间的距离为40千米,∴小明乘客车从丙地到乙地用时30分钟,行驶40千米,∴客车的速度为:40÷0.5=80(千米/小时),∵小明乘客车从甲地到乙地用时60分钟,速度为80千米/小时,∴甲、乙两地相距80千米.(2)当x=78时小亮从丙地出发返回甲地,当x=138时小亮乘公交车从丙地出发返回到甲地,∴小亮在丙地停留78﹣30=48(分钟),公交车的速度为:40÷1=40(千米/小时).(3)①设AB关系式为:y1=k1x+b1由图象可得A(30,0)、B(60,40),代入得:则,解得,所以AB关系式为:(30≤x≤60),令y1=28,有,∴x=51.②设DE关系式为:y2=k2x+b2,∵(千米),∴D(90,48),由图象可得E(138,0),所以,解得:,所以DE关系式为:y2=﹣x+138 (90≤x≤138),令y2=28,有﹣x+138=28,∴x=110.所以两人在9:51和10:50相距28千米.故答案为:(1)80,80;(2)48,40.【点评】本题主要考查一次函数图象及待定系数法求一次函数解析式的能力,读懂函数图象各分段实际意义是关键,属中档题.25.(12分)如图所示,AB∥CD,直线EF与AB相交于点E,与CD相交于点F,FH是∠EFD 的角平分线,且与AB相交于点H,GF⊥FH交AB于点G(GF>HP).(1)如图①,求证:点E是GH的中点;(2)如图②,过点E作EP⊥AB交GF于点P,请判断GP2=PF2+HF2是否成立?并说明理由;(3)如图③,在(1)的条件下,过点E作EP⊥EF交GF于点P,请猜想线段GP、PF、HP有怎样的数量关系,请直接写出你猜想的结果.【考点】全等三角形的判定与性质;勾股定理.【分析】(1)根据平行线的性质和角平分线的定义求得∠EHF=∠EFH,证得EF=EH,根据∠EFG+∠EFH=90°,∠EGF+∠EHF=90°,得出∠EFG=∠EGF,根据等角对等边求得EG=EF,即可证得EH=EG,即E为HG的中点;(2)连接PH,根据垂直平分线的性质得出PG=PH,在Rt△PFH中,根据勾股定理得:PH2=PF2+HF2,即可得到GP2=PF2+HF2;(3)延长PE,使PE=EM,连接MH,MF,易证得△GPE≌△HME,从而得出GP=MH,∠1=∠2,进而证得EF垂直平分PM,根据垂直平分线的性质得出PF=MF,在RT△MHF中,MF2=MH2+FH2,即可得到PF2=GP2+FH2.【解答】(1)证明:∵AB∥CD,∴∠EHF=∠HFD,∵FH平分∠EFD,∴∠EFH=∠HFD,∴∠EHF=∠EFH,∴EF=EH,∵∠GFH=90°,∴∠EFG+∠EFH=90°,∠EGF+∠EHF=90°,∴∠EFG=∠EGF,∴EG=EF,∴EH=EG,∴E为HG的中点;(2)连接PH,如图②:∵EP⊥AB,又∵E是GH中点,∴PE垂直平分GH,∴PG=PH,在Rt△PFH中,∠PFH=90°,由勾股定理得:PH2=PF2+HF2,∴GP2=PF2+HF2;(3)如图③,延长PE,使PE=EM,连接MH,MF,在△GPE和△HME中,,∴△GPE≌△HME(SAS),∴GP=MH,∠1=∠2,∵GF⊥FH,∴∠1+∠3=90°,∴∠2+∠3=90°,∵EF⊥PM,PE=EM,∴PF=MF,在RT△MHF中,MF2=MH2+FH2,∴PF2=GP2+FH2.【点评】本题考查了全等三角形的判定和性质,线段的垂直平分线的性质,等腰三角形的判定和性质,勾股定理的应用等,找出辅助线,构建等腰三角形是解题的关键.。

数学中考仿真模拟试题(word版含答案)

数学中考仿真模拟试题(word版含答案)
A. B. C. D.
3.下列计算正确的是( )
A.2A3+3A3=5A6B.(x5)3=x8
C.﹣2m(m﹣3)=﹣2m2﹣6mD.(﹣3A﹣2)(﹣3A+2)=9A2﹣4
4.下列调查中,适宜采用全面调查方式的是()
A.了解一批圆珠笔的使用寿命B.了解全国九年级学生身高的现状
C.考查人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件
【答案】
【分析】
用科学记数法表示较大的数时,一般形式为A×10n,其中1≤|A|<10,n为整数,据此判断即可.
【详解】
580亿=58000000000=5.8×1010.
故答案为:5.8×1010.
【点睛】
此题主要考查了用科学记数法表示较大的数,一般形式为A×10n,其中1≤|A|<10,确定A与n的值是解题的关键.
5.如图,在⊙O中,若∠C D B=60°,⊙O的直径A B等于4,则B C的长为()
A. B.2C.2 D.4
6.我国古代数学名著《算法统宗》中,有一道“群羊逐草”的问题,大意是:牧童甲在草原上放羊,乙牵着一只羊来,并问甲:“你的羊群有100只吗?”甲答:“如果在这群羊里加上同样的一群,再加上半群,四分之一群,再加上你的一只,就是100只.”问牧童甲赶着多少只羊?若设这群羊有x只,则下列方程中,正确的是( )
11.如图:A B∥C D,直线MN分别交A B、C D于点E、F,EG平分∠AEF,EG⊥FG于点G,若∠BEM=50°,则∠CFG= __________.
故选B.
【点睛】
本题考查了由实际问题抽象出一元一次方程的知识,解题的关键是找到等量关系.
7.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长为()

温州市达标名校2021-2022学年中考猜题数学试卷含解析

温州市达标名校2021-2022学年中考猜题数学试卷含解析

2021-2022中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,CE,BF分别是△ABC的高线,连接EF,EF=6,BC=10,D、G分别是EF、BC的中点,则DG的长为()A.6 B.5 C.4 D.32.如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于()A.6 B.63C.33D.93.下列4个点,不在反比例函数图象上的是()A.(2,-3)B.(-3,2)C.(3,-2)D.(3,2)4.如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30°B.35°C.40°D.45°5.如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是()A .B .C .D .6.如图是婴儿车的平面示意图,其中AB ∥CD,∠1=120°,∠3=40°,那么∠2的度数为( )A .80°B .90°C .100°D .102°7.如图,一个几何体由5个大小相同、棱长为1的正方体搭成,则这个几何体的左视图的面积为( )A .5B .4C .3D .2 8.不等式的最小整数解是( ) A .-3 B .-2 C .-1 D .29.一个多边形的每一个外角都等于72°,这个多边形是( ) A .正三角形 B .正方形 C .正五边形 D .正六边形10.安徽省在一次精准扶贫工作中,共投入资金4670000元,将4670000用科学记数法表示为( )A .4.67×107B .4.67×106C .46.7×105D .0.467×107二、填空题(共7小题,每小题3分,满分21分)11.图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙).图乙种,67AB BC ,EF=4cm ,上下两个阴影三角形的面积之和为54cm 2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为___cm12.关于x 的一元二次方程x 2﹣2kx+k 2﹣k=0的两个实数根分别是x 1、x 2,且x 12+x 22=4,则x 12﹣x 1x 2+x 22的值是_____.13.已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,大正方形固定不动,把小正方形向右平移,当两个正方形重叠部分的面积为2平方厘米时,小正方形平移的距离为_____厘米.14.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为.15.函数y=231xx+-中自变量x的取值范围是_____.16.若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为_____.17.用科学计数器计算:2×sin15°×cos15°= _______(结果精确到0.01). 三、解答题(共7小题,满分69分)18.(10分)解方程组:220 7441x yx y++=⎧⎨-=-⎩.19.(5分)(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:根据统计图所提供的信息,解答下列问题:(1)本次抽样调查中的样本容量是;(2)补全条形统计图;(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.20.(8分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.21.(10分)如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).(1)求点B,C的坐标;(2)判断△CDB的形状并说明理由;(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.22.(10分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.(1)求证:DE是⊙O的切线;(2)若AD=16,DE=10,求BC的长.23.(12分)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P.在地面A处测得点M的仰角为58°、点N的仰角为45°,在B处测得点M的仰角为31°,AB=5米,且A、B、P三点在一直线上.请根据以上数据求广告牌的宽MN的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.1,sin31°=0.52,cos31°=0.86,tan31°=0.1.)24.(14分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】连接EG、FG,根据斜边中线长为斜边一半的性质即可求得EG=FG=12BC,因为D是EF中点,根据等腰三角形三线合一的性质可得GD⊥EF,再根据勾股定理即可得出答案.【详解】解:连接EG、FG,EG、FG分别为直角△BCE、直角△BCF的斜边中线,∵直角三角形斜边中线长等于斜边长的一半∴EG=FG=12BC=12×10=5,∵D为EF中点∴GD⊥EF,即∠EDG=90°,又∵D是EF的中点,∴116322DE EF==⨯=,在Rt EDG∆中,2222534DG EG ED=-=-=,故选C.【点睛】本题考查了直角三角形中斜边上中线等于斜边的一半的性质、勾股定理以及等腰三角形三线合一的性质,本题中根据等腰三角形三线合一的性质求得GD⊥EF是解题的关键.2、B【解析】连接DF,根据垂径定理得到DE DF=,得到∠DCF=12∠EOD=30°,根据圆周角定理、余弦的定义计算即可.【详解】解:连接DF,∵直径CD过弦EF的中点G,∴DE DF=,∴∠DCF=12∠EOD=30°,∵CD是⊙O的直径,∴∠CFD=90°,∴CF=CD•cos∠DCF=12×32=63,故选B.【点睛】本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键.3、D【解析】分析:根据得k=xy=-6,所以只要点的横坐标与纵坐标的积等于-6,就在函数图象上.解答:解:原式可化为:xy=-6,A、2×(-3)=-6,符合条件;B、(-3)×2=-6,符合条件;C、3×(-2)=-6,符合条件;D、3×2=6,不符合条件.故选D.4、B【解析】分析:根据平行线的性质和三角形的外角性质解答即可.详解:如图,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故选B.点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.5、C【解析】试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.故选C.考点:三视图6、A【解析】分析:根据平行线性质求出∠A,根据三角形内角和定理得出∠2=180°-∠1−∠A,代入求出即可.详解:∵AB∥CD.∴∠A=∠3=40°,∵∠1=60°,∴∠2=180°-∠1−∠A=80°,故选:A.点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180°.7、C【解析】根据左视图是从左面看到的图形求解即可.【详解】从左面看,可以看到3个正方形,面积为3,故选:C.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图.8、B【解析】先求出不等式的解集,然后从解集中找出最小整数即可.【详解】∵,∴,∴,∴不等式的最小整数解是x=-2.故选B.【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.最后一步系数化为1时,如果未知数的系数是负数,则不等号的方向要改变,如果系数是正数,则不等号的方不变.9、C【解析】任何多边形的外角和是360°,用360°除以一个外角度数即可求得多边形的边数.【详解】360°÷72°=1,则多边形的边数是1.故选C.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.10、B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将4670000用科学记数法表示为4.67×106,故选B.【点睛】本题考查了科学记数法—表示较大的数,解题的关键是掌握科学记数法的概念进行解答.二、填空题(共7小题,每小题3分,满分21分)11、50 3【解析】试题分析:根据67ABBC,EF=4可得:AB=和BC的长度,根据阴影部分的面积为542cm可得阴影部分三角形的高,然后根据菱形的性质可以求出小菱形的边长为256,则菱形的周长为:256×4=503.考点:菱形的性质.12、1【解析】【分析】根据根与系数的关系结合x1+x2=x1•x2可得出关于k的一元二次方程,解之即可得出k的值,再根据方程有实数根结合根的判别式即可得出关于k的一元二次不等式,解之即可得出k的取值范围,从而可确定k的值.【详解】∵x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,∴x1+x2=2k,x1•x2=k2﹣k,∵x12+x22=1,∴(x1+x2)2-2x1x2=1,(2k)2﹣2(k2﹣k)=1,2k2+2k﹣1=0,k2+k﹣2=0,k=﹣2或1,∵△=(﹣2k)2﹣1×1×(k2﹣k)≥0,k≥0,∴k=1,∴x1•x2=k2﹣k=0,∴x12﹣x1x2+x22=1﹣0=1,故答案为:1.【点睛】本题考查了根的判别式以及根与系数的关系,熟练掌握“当一元二次方程有实数根时,根的判别式△≥0”是解题的关键.13、1或5.【解析】小正方形的高不变,根据面积即可求出小正方形平移的距离.【详解】解:当两个正方形重叠部分的面积为2平方厘米时,重叠部分宽为2÷2=1,①如图,小正方形平移距离为1厘米;②如图,小正方形平移距离为4+1=5厘米.故答案为1或5,【点睛】此题考查了平移的性质,要明确,平移前后图形的形状和面积不变.画出图形即可直观解答.14、1.【解析】∵AB=5,AD=12,∴根据矩形的性质和勾股定理,得AC=13.∵BO为Rt△ABC斜边上的中线∴BO=6.5∵O是AC的中点,M是AD的中点,∴OM是△ACD的中位线∴OM=2.5∴四边形ABOM的周长为:6.5+2.5+6+5=1故答案为115、x≥﹣32且x≠1.【解析】根据分式有意义的条件、二次根式有意义的条件列式计算.【详解】由题意得,2x+3≥0,x-1≠0,解得,x≥-32且x≠1,故答案为:x≥-32且x≠1.【点睛】本题考查的是函数自变量的取值范围,①当表达式的分母不含有自变量时,自变量取全体实数.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.16、5由题意得,124x x += ,121x x ⋅=.∴原式1122415x x x x =++=+=17、0.50【解析】直接使用科学计算器计算即可,结果需保留二位有效数字.【详解】用科学计算器计算得0.5,故填0.50,【点睛】此题主要考查科学计算器的使用,注意结果保留二位有效数字.三、解答题(共7小题,满分69分)18、532x y =-⎧⎪⎨=⎪⎩【解析】方程组整理后,利用加减消元法求出解即可.【详解】解:方程组整理得:227441x y x y +=-⎧⎨-=-⎩①②, ①2⨯+②得:9x =-45,即x =-5,把x =-代入①得:522y -+=-,解得:32y = 则原方程组的解为532x y =-⎧⎪⎨=⎪⎩【点睛】本题主要考查二元一次方程组的解法,二元一次方程组的解法有两种:代入消元法和加减消元法,根据题目选择合适的方法.19、(1)100;(2)作图见解析;(3)1.试题分析:(1)根据百分比=所占人数总人数计算即可;(2)求出“打球”和“其他”的人数,画出条形图即可;(3)用样本估计总体的思想解决问题即可.试题解析:(1)本次抽样调查中的样本容量=30÷30%=100,故答案为100;(2)其他有100×10%=10人,打球有100﹣30﹣20﹣10=40人,条形图如图所示:(3)估计该校课余兴趣爱好为“打球”的学生人数为2000×40%=1人.20、解:(1)10,50;(2)解法一(树状图):从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=82 123;解法二(列表法):(以下过程同“解法一”)试题分析:(1)由在一个不透明的箱子里放有4个相同的小球,球上分别标有“0”元,“10”元,“20”元和“30”元的字样,规定:顾客在本商场同一日内,每消费满200元,就可以再箱子里先后摸出两个球(第一次摸出后不放回).即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与顾客所获得购物券的金额不低于30元的情况,再利用概率公式求解即可求得答案.试题解析:(1)10,50;(2)解法一(树状图):,从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=812=23;解法二(列表法):0 10 20 300 ﹣﹣10 20 3010 10 ﹣﹣30 4020 20 30 ﹣﹣5030 30 40 50 ﹣﹣从上表可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=812=23;考点:列表法与树状图法.【详解】请在此输入详解!21、 (Ⅰ)B(3,0);C(0,3);(Ⅱ)CDB ∆为直角三角形;(Ⅲ)22333(0)221933(3)222t t t S t t t ⎧-+<≤⎪⎪=⎨⎪=-+<<⎪⎩. 【解析】(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B ,C 的坐标.(2)分别求出△CDB 三边的长度,利用勾股定理的逆定理判定△CDB 为直角三角形.(3)△COB 沿x 轴向右平移过程中,分两个阶段:①当0<t≤32时,如答图2所示,此时重叠部分为一个四边形; ②当32<t <3时,如答图3所示,此时重叠部分为一个三角形. 【详解】解:(Ⅰ)∵点()1,0A -在抛物线()21y x c =--+上, ∴()2011c =---+,得4c =∴抛物线解析式为:()214y x =--+,令0x =,得3y =,∴()0,3C ;令0y =,得1x =-或3x =,∴()3,0B .(Ⅱ)CDB ∆为直角三角形.理由如下:由抛物线解析式,得顶点D 的坐标为()1,4.如答图1所示,过点D 作DM x ⊥轴于点M ,则1OM =,4DM =,2BM OB OM =-=.过点C 作CN DM ⊥于点N ,则1CN =,1DN DM MN DM OC =-=-=.在Rt OBC ∆中,由勾股定理得:BC ===在Rt CND ∆中,由勾股定理得:CD ==在Rt BMD ∆中,由勾股定理得:BD ===.∵222BC CD BD +=,∴CDB ∆为直角三角形.(Ⅲ)设直线BC 的解析式为y kx b =+,∵()()3,0,0,3B C ,∴303k b b +=⎧⎨=⎩, 解得1,3k b =-=,∴3y x =-+,直线QE 是直线BC 向右平移t 个单位得到,∴直线QE 的解析式为:()33y x t x t =--+=-++;设直线BD 的解析式为y mx n =+,∵()()3,0,1,4B D ,∴304m n m n +=⎧⎨+=⎩,解得:2,6m n =-=, ∴26y x =-+.连续CQ 并延长,射线CQ 交BD 交于G ,则3,32G ⎛⎫ ⎪⎝⎭. 在COB ∆向右平移的过程中:(1)当302t <≤时,如答图2所示:设PQ 与BC 交于点K ,可得QK CQ t ==,3PB PK t ==-.设QE 与BD 的交点为F ,则:263y x y x t =-+⎧⎨=-++⎩. 解得32x t y t =-⎧⎨=⎩, ∴()3,2F t t -. 111222QPE PBK FBE F S S S S PE PQ PB PK BE y ∆∆∆=--=⋅-⋅-⋅ ()221113333232222t t t t t =⨯⨯---⋅=-+. (2)当332t <<时,如答图3所示:设PQ 分别与BC BD 、交于点K 、点J .∵CQ t =,∴KQ t =,3PK PB t ==-.直线BD 解析式为26y x =-+,令x t =,得62y t =-,∴(),62J t t -. 1122PBJ PBK S S S PB PJ PB PK ∆∆=-=⋅-⋅ ()()()211362322t t t =---- 219322t t =-+. 综上所述,S 与t 的函数关系式为:2233302219333222t t t S t t t ⎧⎛⎫-+<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪=-+<< ⎪⎪⎝⎭⎩. 22、(1)证明见解析;(2)15.【解析】(1)先连接OD ,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE ,推出∠EDB=∠EBD ,∠ODB=∠OBD ,即可求出∠ODE=90°,根据切线的判定推出即可.(2)首先证明AC=2DE=20,在Rt △ADC 中,DC=12,设BD=x ,在Rt △BDC 中,BC 2=x 2+122,在Rt △ABC 中,BC 2=(x+16)2-202,可得x 2+122=(x+16)2-202,解方程即可解决问题.【详解】(1)证明:连结OD ,∵∠ACB=90°,∴∠A+∠B=90°,又∵OD=OB ,∴∠B=∠BDO ,∵∠ADE=∠A ,∴∠ADE+∠BDO=90°,∴∠ODE=90°.∴DE 是⊙O 的切线;(2)连结CD ,∵∠ADE=∠A ,∴AE=DE .∵BC 是⊙O 的直径,∠ACB=90°.∴EC 是⊙O 的切线.∴DE=EC .∴AE=EC ,又∵DE=10,∴AC=2DE=20,在Rt △ADC 中,12=设BD=x ,在Rt △BDC 中,BC 2=x 2+122,在Rt △ABC 中,BC 2=(x+16)2﹣202,∴x 2+122=(x+16)2﹣202,解得x=9,∴15=.【点睛】考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题.23、1.8米【解析】设PA =PN =x ,Rt △APM 中求得MP =1.6x , 在Rt △BPM 中tan MP MBP BP ∠=,解得x =3,MN=MP-NP =0.6x =1.8. 【详解】在Rt △APN 中,∠NAP =45°,∴PA =PN ,在Rt △APM 中,tan MP MAP AP ∠=, 设PA =PN =x ,∵∠MAP =58°,∴tan MP AP MAP =⋅∠=1.6x ,在Rt △BPM 中,tan MP MBP BP ∠=, ∵∠MBP =31°,AB =5, ∴ 1.60.65x x=+, ∴ x =3,∴MN=MP-NP =0.6x =1.8(米),答:广告牌的宽MN的长为1.8米.【点睛】熟练掌握三角函数的定义并能够灵活运用是解题的关键.24、(1)50;(2)16;(3)56(4)见解析【解析】(1)用A等级的频数除以它所占的百分比即可得到样本容量;(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.【详解】(1)10÷20%=50(名)答:本次抽样调查共抽取了50名学生.(2)50-10-20-4=16(名)答:测试结果为C等级的学生有16名.图形统计图补充完整如下图所示:(3)700×450=56(名)答:估计该中学八年级学生中体能测试结果为D等级的学生有56名. (4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率=21 126.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.。

7.1 普查和抽样调查同步练习 2022-2023学年苏科版数学八年级下册

7.1 普查和抽样调查同步练习 2022-2023学年苏科版数学八年级下册

八年级数学下册同步练习7.1普查与抽样调查一、选择题1.下列调查中,采用了“抽样调查”方式的是()A.为了了解某次考试试卷的质量,对全班所有学生的试卷进行分析B.调查某品牌5万包袋装鲜奶是否符合卫生标准C.调查我国所有城市中哪些是第一批沿海开放城市D.了解全校学生100米短跑的成绩2.下列调查方式中,采用了“普查”方式的是()A.调查某品牌电视机的市场占有率B.调查某电视连续剧在全国的收视率C.调查七年级每个班的男女同学的比例D.调查某型号炮弹的射程3.下列调查方式中合适的是()A.要了解一批节能灯的使用寿命,采用普查方式B.调查你所在班级同学的身高,采用抽样方式C.环保部门调查沱江某段水域的水质情况,采用抽样调查方式D.调查全市中学生每天的就寝时间,采用普查方式4.下列调查的样本具有代表性的是()A.利用当地的七月份的平均最高气温值估计当地全年的日最高气温B.在农村调查公民的平均寿命C.利用一块实验水稻田的产量估计水稻的实际产量D.为了了解一批洗衣粉的质量情况,从仓库中任意抽取10袋进行检验5.某火车站为了了解某月每天上午乘车人数,抽查了其中10天每天上午的乘车人数,则所抽取的10天中每天上午的乘车人数是这个问题的()A.总体B.个体C.样本D.样本容量6.为了了解某县八年级学生的体重情况从中抽取了200名学生进行体重测试,在这个问题中,下列说法错误的是()A.200名学生的体重是总体B.200名学生的体重是总体的一个样本C.每个学生的体重是个体D.全县八年级所有学生的体重是总体7.下列调查方式中最适合的是( )A.要了解一批节能灯的使用寿命,采用全面调查方式B.调查你所在班级的同学的身高,采用抽样调查方式C.环保部门调查嘉陵江某段水域的水质情况,采用抽样调查方式D.调查全市中学生每天的就寝时间,采用全面调查方式8.当前,“低头族”已成为热门话题之一,小颖为了解路边行人步行边低头看手机的情况,她应采用的收集数据的方式是( )A.对学校的同学发放问卷进行调查B.对在路边行走的学生随机发放问卷进行调查C.对在路边行走的行人随机发放问卷进行调查D.对在图书馆里看书的人发放问卷进行调查9.中学生骑电动车上学给交通安全带来隐患.为了了解某中学2 500个学生家长对“中学生骑电动车上学”的态度,从中随机调查了400个家长,结果有360个家长持反对态度,则下列说法正确的是( )A.调查方式是普查B.该校只有360个家长持反对态度C.样本是360个家长D.该校约有90%的家长持反对态度10.今年我市有4万名考生参加中考,为了了解这些考生的数学成绩,从中抽取2 000名考生的数学成绩进行统计分析,在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2 000名考生是总体的一个样本;④样本容量是2 000,其中说法正确的有( )A.4个B.3个C.2个D.1个二、填空题11.每天你是如何醒来的?某校有4000名学生,从不同班级不同层次抽取了400名学生进行回答下列问题:(1)该问题中总体是____________________________;(2)样本是________________________________;样本容量是______________________________;(3)个体是________________________________;12.为了检测某型号导线的抗拉强度,现随机抽取几段进行检测,在这次调查中,采用的调查方法是_____________。

初中数学八年级下册第二十章数据的分析单元检测练习题三(含答案) (183)

初中数学八年级下册第二十章数据的分析单元检测练习题三(含答案) (183)

初中数学八年级下册第二十章数据的分析单元检测练习题三(含答案)英才中学为了解中考体育科目训练情况从全校九年级学生中随机抽取了部分学生进行一次中考体育科目测试(把测试结果分为四个等级.A级:优秀;B 级:良好;C级:合格;D级:不合格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)求本次抽样测试的学生人数是人.(2)图2中条形统计图C级的人数是人;(3)该校九年级有学生500名,如果全部参加这次中考体育科目测试,请估计不及格的人数约有多少人?【答案】(1)40;(2)14;(3)100人.【解析】【分析】(1)用B级的人数除以B级所占的百分比,可得答案;(2)用抽测总人数乘以C及所占的比例,可得答案;(3)利用样本估计总体的方法知,全校总人数乘以D级所占的比例,可得答案.【详解】(1)本次抽样测试的学生人数是12÷30%=40(人).故答案为:40;(2)C级的人数为40×35%=14(人).故答案为:14;(3)根据题意得:500840⨯=100(人)答:估计不及格的人数约有100人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.112.珠海市水务局对某小区居民生活用水情况进行了调査.随机抽取部分家庭进行统计,绘制成如下尚未完成的频数分布表和频率分布直方图.请根据图表,解答下列问题:(1)b= ,c= ,并补全频数分布直方图;(2)为鼓励节约用水用水,现要确定一个用水量标准P(单位:吨),超过这个标准的部分按1.5倍的价格收费,若要使60%的家庭水费支出不受影响,则这个用水量标准P= 吨;(3)根据该样本,请估计该小区400户家庭中月均用水量不少于5吨的家庭约有多少户?【答案】(1)0.24,0.18;(2)5;(3)160【解析】【分析】(1)根据频数,频率,总人数之间的关系解决问题即可.(2)利用已知条件以及表格中的信息即可解决问题.(3)利用样本估计总体的思想解决问题即可.【详解】解:(1)总人数=4÷0.08=50,∴a=50-4-14-9-6-5=12,b=1250=0.24,c=950=0.18,故答案为:0.24,0.18;(2)50×60%=30,观察表格可知:这个用水量标准P=5吨,故答案为5.(3)400×96550++=160(户),答:估计该小区400户家庭中月均用水量不少于5吨的家庭约有160户.【点睛】本题考查频数分布表和频数分布直方图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.113.学校开展综合实践活动中,某班进行了小制作评比,作品上交时间为5月11日至5月30日,评委们把同学们上交作品的件数按5天一组分组统计,绘制了频数分布直方图如下,小长方形的高之比为:2:5:2:1.现已知第二组的上交作品件数是20件.求:(1)此班这次上交作品共 件;(2)评委们一致认为第四组的作品质量都比较高,现从中随机抽取2件作品参加学校评比,小明的两件作品都在第四组中,他的两件作品都被抽中的概率是多少?(请写出解答过程)【答案】(1)40(2)16【解析】 解:(1)40.(2)第四组的作品的件数为14042+5+2+1⨯=(件).设四件作品编号为1、2、3、4号,小明的两件作品分别为1、2号.从中随机抽取2件作品的所有结果为(1,2);(1,3);(1,4); (2,3);(2,4);(3,4),小明的两件作品都被抽中的情况有1种,∴他的两件作品都被抽中的概率是16.(1)用第二小组的频数除以该小组的份数占总份数的多少即可求得总人数:520402+5+2+1÷=.(2)根据频数、频率和总量的关系求出第四组的作品的件数,分别列举出所有可能结果后用概率的公式即可求解.114.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中,甲,乙两组学生人数都为5人,成绩如下(单位:分):甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:(2)已知甲组学生成绩的方差22=5s甲,计算乙组学生成绩的方差,并说明哪组学生的成绩更稳定.【答案】(1)甲:平均数8;乙:平均数8,中位数9;(2)甲组学生的成绩比较稳定.【解析】【分析】(1)根据平均数和中位数的定义求解可得;(2)根据方差的定义计算出乙的方差,再比较即可得.【详解】(1)甲的平均数:8878985,乙的平均数:59710985,乙的中位数:9;(2) 222222(58)(98)(78(108)(98)1655S -+-+-+-+=-=乙).∵22S S >乙甲,∴甲组学生的成绩比较稳定. 【点睛】本题考查了求平均数,中位数与方差,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.115.杭州市相关部门正在研究制定居民用水价格调整方案.小明想为政府决策提供信息,于是在某小区内随机访问了部分居民,就每月的用水量、可承受的水价调整的幅度等进行调查,并把调查结果整理成图1和图2.已知被调查居民每户每月的用水量在m 3之间,被调查的居民中对居民用水价格调价幅度抱“无所谓”态度的有8户,试回答下列问题:(1)上述两个统计图表是否完整,若不完整,试把它们补全;(2)若采用阶梯式累进制调价方案(如表1所示),试估计该小区有百分之几的居民用水费用的增长幅度不超过50%?来表1:阶梯式累进制调价方案【答案】(1)频数分布直方图见解析;(2)该小区有75%的居民用水费用的增长幅度不超过50%.【解析】【分析】(1)根据扇形统计表中角度的比例关系可得出统计样本的总数,继而可补充完整两个统计表;(2)设每月每户用水量为xm3的居民调价后用水费用的增长幅度不超过50%,由表一可知分x≤15与x>15两部分讨论,再结合图一可得出结论.【详解】(1)频数分布直方图,如图:(2)∵设每月每户用水量为xm3的居民调价后用水费用的增长幅度不超过50%当x≤15时,水费的增长幅度为2.5 1.81.8-×100%<50%,当x>15时,则15 2.5 3.3(15) 1.81.8x xx⨯+--≤50%,解得x≤20,∵从调查数据看,每月的用水量不超过20m3的居民有54户,5472=75%,又∵调查是随机抽取,∴该小区有75%的居民用水费用的增长幅度不超过50%.【点睛】考查了条形和扇形统计图以及解一元一次不等式,解题的关键是:①由样本中某项数据得出样本数;②结合表一得出关于x的一元一次不等式.本题难度不大,属于基础题,解决该类型的题目需要熟悉各种统计表.116.为宣传普及新冠肺炎防治知识,引导学生做好防控.某校举行了主题为“防控新冠,从我做起”的线上知识竞赛活动,测试内容为20道判断题,每道题5分,满分100分.为了解八、九年级学生此次竞赛成绩的情况,分别随机在八、九年级各抽取了20名参赛学生的成绩.已知抽查得到的八年级的数据如下:80,95,75,75,90,75,80,65,80,85,75,65,70,65,85,70,95,80,75,80.为了便于分析数据,统计员对八年级数据进行了整理,得到了表一:八、九年级成绩的平均数、中位数、优秀率如下:(分数80分以上、不含80分为优秀)(1)根据题目信息填空:a=________,c=________,m=________;(2)八年级王宇和九年级程义的分数都为80分,请判断王宇、程义在各自年级的排名哪位更靠前?请简述你的理由;(3)八年级被抽取的20名学生中,获得A 等和B 等的学生将被随机选出2名,协助学校普及新冠肺炎防控知识,求这两人都为B 等的概率.【答案】(1)10a =,77.5c =,25m =;(2)王宇在该年级的排名更靠前,理由见解析;(3)被选中的2人都为B 等的概率为632010=.【解析】【分析】(1)直接根据抽查得到的八年级的数据即可求出a ,c 和m 的值;(2)根据王宇和程义的成绩和所在年级抽查成绩的中位数进行比较即可得出结论;(3)令3名B 等的学生分别为a ,b ,c ,2名A 等的学生分别为m ,n 画树状图为,即可求出被选中的2人都为B 等的概率.【详解】(1)由题意可得:10a =,758077.52c +==, 3b =32%100%25%5m +∴=⨯=∴25m =;(2)王宇在该年级的排名更靠前,∵八年级王宇成绩大于中位数77.5分,名次在该年级抽查的学生数的10名或10名之前,九年级程义成绩小于中位数82.5分,名次在该年级抽查的学生数的10名之后,∴王宇在该年级的排名更靠前.(3)令3名B等的学生分别为a,b,c,2名A等的学生分别为m,n 画树状图为:共有20种等可能的结果数,其中被选中的2人都为B等有6种结果,所以被选中的2人都为B等的概率为63 2010.【点睛】此题考查了频数分布表,列表法或树状图法求概率以及中位数的知识.用到的知识点为:概率=所求情况数与总情况数之比.117.每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.七、八年级抽取的学生的竞赛成绩统计表根据以上信息,解答下列问题:(1)填空:a=,b=,c=;(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.【答案】(1)a=7.5,b=8,c=8;(2)200人;(3)八年级“国家安全法”知识竞赛的学生成绩更优异【解析】(1)根据中位数、众数的定义结合条形统计图及八年级学生成绩即可求解;(2)先算出样本40人中竞赛成绩达到9分及以上的人数所占的百分比,然后用该百分比乘以总体400,即可求解;(3)由八年级的合格率高于七年级的合格率,可得八年级“国家安全法”知识竞赛的学生成绩更优异.【详解】解:(1)由条形统计图可得七年级成绩中最中间的两个人分数为7分和8分,故中位数a=78=7.52+,八年级成绩中最中间的两个人分数为8分和8分,故中位数b=88=82+,八年级成绩出现次数最多的是8分,故c=8,故答案为:7.5,8,8;(2) 40人中竞赛成绩达到9分及以上的人数所占的百分比为(5+5)÷40=25%,∴该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数=800×25%=200(人),故答案为:200(人);(3)∵八年级的合格率高于七年级的合格率,∴八年级“国家安全法”知识竞赛的学生成绩更优异.故答案为:八年级学生成绩更优异.本题考查中位数、众数、平均数的意义和计算方法,理解各个概念的内涵和计算方法是解题的关键.118.为了解2012年全国中学生创新能力大赛中竞赛项目“知识产权”笔试情况,随机抽查了部分参赛同学的成绩,整理并制作图表如下:请根据以上图表提供的信息,解答下列问题:(1)本次调查的样本容量为;(2)在表中:m= .n= ;(3)补全频数分布直方图:(4)参加比赛的小聪说,他的比赛成绩是所有抽查同学成绩的中位数,据此推断他的成绩落在分数段内;(5)如果比赛成绩80分以上(含80分)为优秀,那么你估计该竞赛项目的优秀率大约是【答案】(1)300;(2)120;0.3;(3)答案见解析;(4)80≤x<90;(5)60%【解析】【分析】(1)利用第一组的频数除以频率即可得到样本容量:30÷0.1=300.(2)m=0.4×300=120,n=90÷300=0.3.(3)根据80≤x<90组频数即可补全直方图.(4)根据中位数定义,找到位于中间位置的两个数所在的组即可:中位数为第150个数据和第151个数据的平均数,而第150个数据和第151个数据位于80≤x<90这一组,故中位数位于80≤x<90这一组.(5)将比赛成绩80分以上的两组数的频率相加即可得到计该竞赛项目的优秀率.【详解】解:(1)此次调查的样本容量为30÷0.1=300;故答案为:300;(2)n=90300=0.3;m=0.4×300=120;故答案为:120;0.3;(3)补全频数分布直方图如图:(4)中位数为第150个数据和第151个数据的平均数,而第150个数据和第151个数据位于80≤x<90这一组,故中位数位于80≤x<90这一组;故答案为:80≤x<90(5)将80≤x<90和90≤x≤100这两组的频率相加即可得到优秀率,优秀率为60%.故答案为:60%.【点睛】本题考查频数(率)分布表,频数分布直方图,频数、频率和总量的关系,中位数,用样本估计总体.119.某校对九年级400名学生进行了一次体育测试,并随机抽取甲、乙两个班各50名学生的测试成绩(成绩均为整数,满分50分)进行整理、描述和分析.下面给岀了部分信息.(用x表示成绩,数据分成5组:A:30≤x<34,B:34≤x<38,C:38≤x<42,D:42≤x<46,E:46≤x≤50)乙班成绩在D组的具体分数是:42 42 42 42 42 42 42 42 42 42 43 44 45 45甲,乙两班成绩统计表:根据以上信息,回答下列问题:(1)直接写出m、n的值;(2)小明这次测试成绩是43分,在班上排名属中游略偏上,小明是甲、乙哪个班级学生?说明理由;(3)假设该校九年级学生都参加此次测试,成绩达到45分及45分以上为优秀,估计该校本次测试成绩优秀的学生人数.【答案】(1)m=45,n=42;(2)小明是乙班级学生;理由见解析;(3)该校本次测试成绩优秀的学生人数为188人.【解析】【分析】(1)根据中位数、众数的意义和计算方法分别计算即可,(2)利用中位数的意义进行判断;(3)根据用样本估计总体的方法,估计总体的优秀率,进而计算出优秀的人数.【详解】解:(1)乙班的成绩从小到大排列,处在第25、26位的两个数都是42,因此中位数是42,即n=42,甲班的中位数一定落在D组,而甲班每组人数为:A组2人,B组2人,C 组10人,D组24人,E组12人,甲班的中位数是44.5,而D组:42≤x<46整数,因此排序后处在第25、26位的两个数分别是44,45,于是,可得甲班得45分的学生数为2+2+10+24﹣25=13(人),是出现次数最多的,所以,甲班成绩的众数是45,即m=45,故答案为:m=45,n=42;(2)∵小明的成绩为43分,且在班上排名属中游略偏上,而甲班中位数是44.5,乙班的中位数是42,∴小明是乙班级学生;(3)甲班得45分及45分以上的有:13+12=25(人),而乙班有:2+20=22(人),两个班的整体优秀率为:(25+22)÷100=47%,∴400×47%=188(人),即:该校本次测试成绩优秀的学生人数为188人.【点睛】考查中位数、众数、平均数、方差的意义和计算方法,明确各个统计量的意义是正确解答的前提.120.某校举办了一 次趣味数学竞赛,满分100分,学生得分均为整数,成绩达到60分及以上为合格,达到90分及以上为优秀这次竞赛中,甲、乙两组学生成绩如下(单位:分).甲组:30,60,60,60,60,60,70,90,90,100乙组:50,50,60,70,70,80,80,80,90,90(1)以上成绩统计分析表中a=________分,b=_________分,c=________分;(2)小亮同学说:“这次竞赛我得了70分,在我们小组中排名属中游略偏上!”观察上面表格判断,小亮可能是甲、乙哪个组的学生?并说明理由.(3)如果你是该校数学竞赛的教练员,现在需要你选择一组同学代表学校参加复赛,你会选择哪一组?并说明理由.【答案】(1)60,72,75;(2)小亮属于甲组学生,理由见解析;(3)选甲组同学代表学校参加竞赛,理由见解析【解析】【分析】(1)根据中位数及平均数的定义进行计算即可得解;(2)根据中位数的大小进行判断即可得解;(3)根据数据给出合理建议即可.【详解】(1)∵甲组:30,60,60,60,60,60,70,90,90,100∴6060602a+==;∵乙组:50,50,60,70,70,80,80,80,90,90∴505060707080808090907210b+++++++++==;7080752c +==;(2)小亮属于甲组学生,∵甲组中位数为60,乙组的中位数为75,而小亮成绩位于小组中上游 ∴小亮属于甲组学生;(3)选甲组同学代表学校参加竞赛,由甲组有满分同学,则可选甲组同学代表学校参加竞赛.【点睛】本题主要考查了中位数及平均数的相关概念,熟练掌握中位数及平均数的计算是解决本题的关键.。

湖北省黄冈市2023-2024学年八年级下学期期末数学试题(无答案)

湖北省黄冈市2023-2024学年八年级下学期期末数学试题(无答案)

黄冈市2024年春季八年级期末教学质量监测数学试题(考试时间:120分钟满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试题卷上无效。

3.非选择题的作答:用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。

答在试题卷上无效。

4.考生必须保持答题卡的整洁。

考试结束后,请将答题卡上交。

第Ⅰ卷(选择题 共30分)一、选择题(下列各题的备选答案中,有且仅有一个答案是正确的,每小题3分,共30分)1()A .4B .C.D .82.下列计算正确的是()A .BCD3.为评估一种水稻的种植效果,选了10块水稻田作试验田.这10块试验田的亩产量(单位:kg )分别为,下面给出的统计量中可以用来评估这种水稻亩产量稳定程度的是( )A .这组数据的平均数B .这组数据的方差C .这组数据的众数D .这组数据的中位数4.在下列二次根式中:.其中最大数的是( )A .BC .D .5.在中,的对边分别为a ,b,c ,在下面结论中:①;②;③;④.能判定是直角三角形的是()A .①③B .①③④C .①②③D .①②③④6.下列函数中,y 是x 的一次函数的是()=4±2±2+=-==5÷=1210,,,x x x ABC △,,A B C ∠∠∠90B C ∠+∠=︒B C A ∠-∠=∠222a c b =-111a b c =+ABC △A .B .C .D .7.如图,一架6米长的梯子AB 斜靠在竖直的墙OA 上,OB 在地面上,M 为AB 的中点,当梯子的上端A 沿墙壁下滑时,OM 的长度将( )A .变大B .变小C .不变D .不能确定8.如图,四边形ABCD 为菱形,,延长BC 到E ,在内作射钱CM ,使得,过点D 作,垂足为F .若,则对角线BD 的长为( )A .B .10C .D .9.一次函数的函数值y 随x 的增大而减小,当时,y 的值可以是()A .2B .C .D .10.如图1,将正方形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,其余各边均与坐标轴平行,平行于BD 的直线l 沿x 轴的负方向以每秒1个单位的速度平移,平移过程中,直线l 被正方形ABCD 的边所截得的线段长为m ,平移时间为t (秒),m 与t 的函数图象如图2,依据条件信息,求出图2中a 的值为( ) 图1 图2A .B .C .6D .第Ⅱ卷(非选择题 共90分)二、填空题(共5小题,每小题3分,共15分)11.请写出一个符合条件的实数a在实数范围内有意义,______.12.甲、乙、丙、丁四名同学数学测验成绩分别为90分,90分,x 分,80分,若这组数据的众数与平均数恰(1)(2)y x x =--2y x =4y =-24y x =+80ABC ∠=︒DCE ∠30ECM ∠=︒DF CM ⊥DF =2y kx =-3x =2-1-3-a =好相等,则这组数据的中位数是______分.13.如图,2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图).如果大正方形的面积是15,小正方形的面积是1,直角三角形较短的直角边为a ,较长的直角边为b ,那么的值为______.14.如图,点在第一象限,且,点A 的坐标为,当的面积大于24时,点P 的横坐标x 的取值范围是______.15.如图,在正方形ABCD 中,动点E ,F 分别从D ,C 两点同时出发,以相同的速度在边DC ,CB 上移动,连接AE 和DF 交于点P ,由于点E ,F 的移动,使得点P 也随之运动.若,则线段CP 的最小值是______.三、解答题(本大题共9小题,满分共75分)16.(本题满分6.17.(本题满分6分)已知一次函数的图象过点与,求这个一次函数的解析式.18.(本题满分6分)在四边形ABCD中,,,求四边形ABCD 的面积.19.(本题满分8分)为了解毓秀区九年级学生身体素质情况,从该区九年级学生中随机抽取了部分学生进行()2a b +(),P x y 12x y +=()6,0OPA △4AD =+()4,5()3,9--10,13,12AB BC CD ===5,AD AD CD =⊥了一次体育考试科目测试(测试结果分为四个等级:优秀,良好,及格,不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:图1 图2(1)本次抽样测试的学生人数是______;(2)把图1条形统计图补充完整,图2中优秀的百分数为______;(3)该区九年级有学生5000名,如果全部参加这次体育科目测试,请估计良好及以上人数是多少?20.(本题满分8分)已知:如图,,AC 与BD 相交于点E ,且.求证:四边形BECF 为矩形.21.(本题满分8分)如图1,直线与相交于点,这两条直线与x 轴分别交于点A ,B .图1 图2(1)直接写出______;若的面积为9,则______;(2)依据图象直接写出,当时,x 的取值范围是______;(3)如图2,在图1条件下,连接OP ,x 轴正半轴上有一点C ,,y 轴负半轴有点,求的面积.22.(本题满分10分)快车从甲地驶往乙地,慢车从乙地驶往甲地,两车同时出发并且在同一条公路上匀速行驶,图中折线表示快、慢两车之间的路程y (km )与它们的行驶时间x (h)之间的函数关系,已知慢车途中,AB CD AB AD CD ==∥,90CF BE F ∠=︒∥14y x =-+23(0)y kx k k =+->()1,P m m =PAB △k =12y y >45OCP ∠=︒()0,4D -PCD △只休息了0.5h .(1)甲乙两地相距______km ,快车休息了______h ;(2)慢车的行驶速度为______km/h ,快车的行驶速度______km/h ;(3)求两车相遇后,同时都在路上行驶过程中的函数表达式.23.(本题满分11分)综合与实践课上,老师让同学们以“正方形的折叠”为主题开展数学活动,有一位同学操作过程如下:操作一:对折正方形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平;操作二:在AD 上选一点P ,沿BP 折叠,使点A 落在正方形内部点M 处,把纸片展平,连接PM ,BM ,延长PM 交CD 于点Q ,连接BQ .图1 图2 图3(1)如图1,当点M 在EF 上时,______度;(2)改变点P 在AD 上的位置(点P 不与点A ,D 重合)如图2,判断与的数量关系,并说明理由.(3)如图3,在平面直角坐标系中,正方形OABC 的边OA 在x 轴上,OC 在y 轴上,点B 在第一象限,点D 在边AB 上,,直线OE 交边BC 于E ,,求直线OE 的解析式.24.(本题满分12分)在平面直角坐标系中,直线MN 交x 轴正半轴于点M ,交y 轴负半轴于,作线段MN 的垂直平分线交x 轴于点A ,交y 轴于点B ,交MN 于点E .图1 图2(1)如图1,求A点坐标;EMB ∠=MBQ ∠CBQ ∠5,2OA AD ==45DOE ∠=︒(0,,30N ONM ∠=︒(2)如图1,点G 是y 轴上的一个动点,H 是平面内任意一点,以N ,E ,G ,H 为顶点的四边形是菱形时,请直接写出点H 的坐标;(3)如图2,过点M 作y 轴的平行线l ,连接AN 并延长交直线l 于F 点,P ,Q 分别是直线MN 和直线AB 上的动点,求出的最小周长.FPQ △。

2020年华东师大新版八年级(上)《第15章+数据的收集与表示》常考题套卷(2)【附答案】

2020年华东师大新版八年级(上)《第15章+数据的收集与表示》常考题套卷(2)【附答案】

2020年华东师大新版八年级(上)《第15章数据的收集与表示》常考题套卷(2)一、选择题(共10小题)1.为了解中学生获取资讯的主要渠道,随机抽取50名中学生进行问卷调查,调查问卷设置了“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项),根据调查结果绘制了如下的条形图.该调查的调查方式及图中a的值分别是()A.全面调查;26B.全面调查;24C.抽样调查;26D.抽样调查;242.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁以上的员工C.企业新进员工D.从企业员工名册中随机抽取三分之一的员工3.中考结束后,小明想了解今年杭州各普高的录取分数线,他需要通过什么方法获得这些数据?()A.测量B.查阅文献资料、互联网C.调查D.直接观察4.为了了解2015年我市七年级学生期末考试的数学成绩,从中随机抽取了1000名学生的数学成绩进行分析,下列说法正确的是()A.2015年我市七年级学生是总体B.样本容量是1000C.1000名七年级学生是总体的一个样本D.每一名七年级学生是个体5.小红把一枚硬币抛掷10次,结果有4次正面朝上,那么()A.正面朝上的频数是0.4B.反面朝上的频数是6C.正面朝上的频率是4D.反面朝上的频率是66.一个容量为72的样本最大值是125,最小值是50,取组距为10,则可以分成()A.8组B.7组C.6组D.5组7.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外无任何区别.摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球100次,其中有25次摸到黑球,则估计盒子中大约有白球()A.12个B.16个C.20个D.30个8.如图,是某企业甲、乙两位员工的能力测试结果网状图,以O为圆心的五个同心圆分别代表能力水平的五个等级,由低到高分别赋分1至5分,由原点出发的五条线段分别指向能力水平的五个维度,网状图能够更加直观的描述测试者的优势和不足,观察图形,有以下几个推断:①甲和乙的动手操作能力都很强;②缺少探索学习的能力是甲自身的不足;③与甲相比,乙需要加强与他人的沟通和合作能力;④乙的综合评分比甲要高.其中合理的是()A.①③B.②④C.①②③D.①②③④9.为庆祝建党99周年,某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”:B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是()A.0.25B.0.3C.25D.3010.在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的,且数据有160个,则中间一组的频数为()A.32B.0.2C.40D.0.25二、填空题(共10小题)11.调查一批电视机的使用寿命,适合采用的调查方式是.(填“普查”或“抽样调查”)12.大润发超市对去年全年每月销售总量进行统计,为了更清楚地看出销售总量的变化趋势,应选用统计图来描述数据.13.王老师对本班40个学生所穿校服尺码的数据统计如下:尺码S M L XL XXL XXXL频率0.050.10.20.3250.30.025则该班学生所穿校服尺码为“L”的人数有个.14.为统计了解某市4万名学生平均每天读书的时间,有以下步骤:①得出结论,提出建议;②分析数据;③从4万名学生中随机抽取400名学生,调查他们平均每天读书的时间;④利用统计图表将收集的数据整理和表示,请您对以上步骤进行合理排序.(只填序号)15.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是10,频率是0.2,那么该班级的人数是人.16.某校有3000名学生,随机抽取300名学生进行体重调查,该问题中,样本的容量为.17.新冠肺炎疫情爆发后,学生上学检测体温采用的调查方式是.(填“普查”或“抽样调查”)18.某中学新建食堂正式投入使用,为提高服务质量,食堂管理人员对学生进行了“最受欢迎菜品”的调查统计.以下是打乱了的调查统计顺序,请按正确顺序重新排序(只填番号):.①绘制扇形图;②收集最受学生欢迎菜品的数据;③利用扇形图分析出最受学生欢迎的菜品;④整理所收集的数据.19.甲、乙两家汽车销售公司根据近几年的销售量分别制作统计图如图:从2009~2013年,这两家公司中销售量增长较快的是公司.20.电影公司随机收集了2000部电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.20.150.250.20.1好评率是指一类电影中获得好评的部数与该类电影的部数的比值.电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么第类电影的好评率增加0.1,第类电影的好评率减少0.1,可以使获得好评的电影总部数与样本中的电影总部数的比值达到最大.三、解答题(共10小题)21.为迎接2019年中考,对道里区西部优质教育联盟九年级学生进行了一次数学期中模拟考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请你根据统计图中提供的信息解答下列问题:(1)这次被调查的学生共有多少人,并将条形统计图补充完整:(2)在扇形统计图中,求出“优”所对应的圆心角度数;(3)若该联盟九年级共有1050人参加了这次数学考试,估计九年级这次考试共有多少名学生的数学成绩可以达到优秀?22.某市教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随机抽样调查了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图)请你根据图中提供的信息,回答下列问题:(1)扇形统计图中a的值为,“活动时间为4天”的扇形所对圆心角的度数为°,该校初一学生的总人数为;(2)补全频数分布直方图;(3)如果该市共有初一学生6000人,请你估计“活动时间不少于4天”的大约有多少人?23.某校计划开设美术、书法、体育、音乐兴趣班,为了解学生报名的意向,随机调查了部分学生,要求被调查的学生必选且只选一项,根据调查结果绘制出如下不完整的统计图表:兴趣班人数百分比美术1010%书法30a体育b40%音乐20c根据统计图表的信息,解答下列问题:(1)直接写出本次调查的样本容量和表中a,b,c的值;(2)将折线图补充完整;(3)该校现有2000名学生,估计该校参加音乐兴趣班的学生有多少人?24.某校七、八、九年级共有1000名学生.学校统计了各年级学生的人数,绘制了图①、图②两幅不完整的统计图.(1)将图①的条形统计图补充完整.(2)图②中,表示七年级学生人数的扇形的圆心角度数为°.(3)学校数学兴趣小组调查了各年级男生的人数,绘制了如图③所示的各年级男生人数占比的折线统计图(年级男生人数占比=×100%).请结合相关信息,绘制一幅适当的统计图,表示各年级男生及女生的人数,并在图中标明相应的数据.25.某校团委为了解该校七年级学生最喜欢的课余活动情况,采用随机抽样的方法进行了问卷调查,被调查学生必须从“运动、娱乐、阅读、其他”四项中选择其中的一项,以下是根据调查结果绘制的统计图表的一部分,活动类型频数(人数)频率运动20娱乐40阅读其他0.1根据以上图表信息,解答下列问题:(1)在被调查的学生中,最喜欢“运动”的学生人数为人,最喜欢“娱乐”的学生人数占被调查学生人数的百分比为%.(2)本次调查的样本容量是,最喜欢“其他”的学生人数为人.(3)若该校七年级共有360名学生,试估计最喜欢“阅读”的学生人数.26.某市在九年级“线上教学”结束后,为了解学生的视力情况,抽查了部分学生进行视力检测.根据检测结果,制成下面不完整的统计图表.被抽样的学生视力情况频数表组别视力段频数A 5.1≤x≤5.325B 4.8≤x≤5.0115C 4.4≤x≤4.7mD 4.0≤x≤4.352(1)求组别C的频数m的值.(2)求组别A的圆心角度数.(3)如果视力值4.8及以上属于“视力良好”,请估计该市25000名九年级学生达到“视力良好”的人数.根据上述图表信息,你对视力保护有什么建议?27.为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<4040≤x<5050≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100人数133815m6根据以上图表信息,完成下列问题:(1)m=;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有人,至多有人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.28.下表是某校七~九年级某月课外兴趣小组活动时间统计表,其中各年级同一兴趣小组每次活动时间相同,文艺小组每次活动时间比科技小组每次活动时间多0.5小时.设文艺小组每次活动时间为x小时,请根据表中信息完成下列解答.(1)科技小组每次活动时间为小时(用含x的式子表示);(2)求八年级科技小组活动次数a的值;(3)直接写出m=,n=.课外小组活动总时间(小时)文艺小组活动次数科技小组活动次数七年级12.543八年级10.53a九年级7m n29.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外其它都相同,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复这一过程,共摸球400次,其中100次摸到黑球,则估计盒子中大约有白球多少个?30.为了考察某市1万名初中生视力情况,从中抽取1000人进行视力检测,这个问题中总体、个体、样本、样本容量分别是什么?2020年华东师大新版八年级(上)《第15章数据的收集与表示》常考题套卷(2)参考答案与试题解析一、选择题(共10小题)1.为了解中学生获取资讯的主要渠道,随机抽取50名中学生进行问卷调查,调查问卷设置了“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项),根据调查结果绘制了如下的条形图.该调查的调查方式及图中a的值分别是()A.全面调查;26B.全面调查;24C.抽样调查;26D.抽样调查;24【解答】解:本次调查方式为抽样调查,a=50﹣6﹣10﹣6﹣4=24,故选:D.2.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁以上的员工C.企业新进员工D.从企业员工名册中随机抽取三分之一的员工【解答】解:为调查某大型企业员工对企业的满意程度,样本最具代表性的是:用企业人员名册,随机抽取三分之一的员工.故选:D.3.中考结束后,小明想了解今年杭州各普高的录取分数线,他需要通过什么方法获得这些数据?()A.测量B.查阅文献资料、互联网C.调查D.直接观察【解答】解:想了解今年杭州各普高的录取分数线,只要到各个高中学校进行调查即可,故选:C.4.为了了解2015年我市七年级学生期末考试的数学成绩,从中随机抽取了1000名学生的数学成绩进行分析,下列说法正确的是()A.2015年我市七年级学生是总体B.样本容量是1000C.1000名七年级学生是总体的一个样本D.每一名七年级学生是个体【解答】解:A、2015年我市七年级学生期末考试的数学成绩是总体,故A不符合题意;B.样本容量是1000,故B符合题意;C、从中随机抽取了1000名学生的数学成绩是一个样本,故C不符合题意;D、每一名学生的数学成绩是个体,故D不符合题意;故选:B.5.小红把一枚硬币抛掷10次,结果有4次正面朝上,那么()A.正面朝上的频数是0.4B.反面朝上的频数是6C.正面朝上的频率是4D.反面朝上的频率是6【解答】解:小红做抛硬币的实验,共抛了10次,4次正面朝上,6次反面朝上,则正面朝上的频数是4,反面朝上的频数是6,故选:B.6.一个容量为72的样本最大值是125,最小值是50,取组距为10,则可以分成()A.8组B.7组C.6组D.5组【解答】解:在样本数据中最大值为125,最小值是50,它们的差是125﹣50=75,已知组距为10,那么由于75÷10=7.5,故可以分成8组.故选:A.7.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外无任何区别.摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球100次,其中有25次摸到黑球,则估计盒子中大约有白球()A.12个B.16个C.20个D.30个【解答】解:∵共摸了100次,其中25次摸到黑球,∴有75次摸到白球,∴摸到黑球与摸到白球的次数之比为1:3,∴口袋中黑球和白球个数之比为1:3,盒子中大约有白球3×4=12个.故选:A.8.如图,是某企业甲、乙两位员工的能力测试结果网状图,以O为圆心的五个同心圆分别代表能力水平的五个等级,由低到高分别赋分1至5分,由原点出发的五条线段分别指向能力水平的五个维度,网状图能够更加直观的描述测试者的优势和不足,观察图形,有以下几个推断:①甲和乙的动手操作能力都很强;②缺少探索学习的能力是甲自身的不足;③与甲相比,乙需要加强与他人的沟通和合作能力;④乙的综合评分比甲要高.其中合理的是()A.①③B.②④C.①②③D.①②③④【解答】解:由图形可知:甲和乙的动手操作能力都是5分,即最高等级,故①合理;甲的探索学习的能力为1分,故缺少探索学习的能力是甲自身的不足,故②合理;甲与他人的沟通和合作能力为5分,乙与他人的沟通和合作能力为3分,故乙与他人的沟通和合作能力弱于甲,故③合理;甲的各项得分为5,5,4,4,1;乙的各项得分为5,5,4,4,3,乙的综合评分比甲要高2分,故④合理.综上,合理的选项有①②③④.故选:D.9.为庆祝建党99周年,某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”:B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是()A.0.25B.0.3C.25D.30【解答】解:由图知,八年级(3)班的全体人数为:25+30+10+20+15=100(人),选择“5G时代”的人数为:30人,∴选择“5G时代”的频率是:;故选:B.10.在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的,且数据有160个,则中间一组的频数为()A.32B.0.2C.40D.0.25【解答】解:由于中间一个小长方形的面积等于其它10个小长方形面积的和的,则中间一个小长方形的面积占总面积的=,即中间一组的频率为,且数据有160个,∴中间一组的频数为=32.故选:A.二、填空题(共10小题)11.调查一批电视机的使用寿命,适合采用的调查方式是抽样调查.(填“普查”或“抽样调查”)【解答】解:调查一批电视机的使用寿命,调查具有破坏性,适合采用的调查方式是抽样调查,故答案为:抽样调查12.大润发超市对去年全年每月销售总量进行统计,为了更清楚地看出销售总量的变化趋势,应选用折线统计图来描述数据.【解答】解:根据题意,得要求清楚地表示销售总量的总趋势是上升还是下降,结合统计图各自的特点,应选用折线统计图,故答案为:折线.13.王老师对本班40个学生所穿校服尺码的数据统计如下:尺码S M L XL XXL XXXL频率0.050.10.20.3250.30.025则该班学生所穿校服尺码为“L”的人数有8个.【解答】解:由表可知尺码L的频率为0.2,又因为班级总人数为40,所以该班学生所穿校服尺码为“L”的人数有40×0.2=8.故答案是:8.14.为统计了解某市4万名学生平均每天读书的时间,有以下步骤:①得出结论,提出建议;②分析数据;③从4万名学生中随机抽取400名学生,调查他们平均每天读书的时间;④利用统计图表将收集的数据整理和表示,请您对以上步骤进行合理排序③④②①.(只填序号)【解答】解:调查的一般步骤:先随机抽样,再收集整理数据,然后分析数据,最后得出结论.故答案为:③④②①.15.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是10,频率是0.2,那么该班级的人数是50人.【解答】解:该班级的人数:10÷0.2=50,故答案为:5016.某校有3000名学生,随机抽取300名学生进行体重调查,该问题中,样本的容量为300.【解答】解:样本的容量为300.故答案是:300.17.新冠肺炎疫情爆发后,学生上学检测体温采用的调查方式是普查.(填“普查”或“抽样调查”)【解答】解:新冠肺炎疫情爆发后,学生上学检测体温采用的调查方式是普查.故答案为:普查.18.某中学新建食堂正式投入使用,为提高服务质量,食堂管理人员对学生进行了“最受欢迎菜品”的调查统计.以下是打乱了的调查统计顺序,请按正确顺序重新排序(只填番号):②④①③.①绘制扇形图;②收集最受学生欢迎菜品的数据;③利用扇形图分析出最受学生欢迎的菜品;④整理所收集的数据.【解答】解:②收集最受学生欢迎菜品的数据;④整理所收集的数据;①绘制扇形图;③利用扇形图分析出最受学生欢迎的菜品;故答案为:②④①③.19.甲、乙两家汽车销售公司根据近几年的销售量分别制作统计图如图:从2009~2013年,这两家公司中销售量增长较快的是甲公司.【解答】解:从折线统计图中可以看出:甲公司2009年的销售量约为100辆,2013年约为500多辆,则从2009~2013年甲公司增长了400多辆;乙公司2009年的销售量为100辆,2013年的销售量为400辆,则从2009~2013年,乙公司中销售量增长了400﹣100=300辆;则甲公司销售量增长的较快.故答案为:甲.20.电影公司随机收集了2000部电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.20.150.250.20.1好评率是指一类电影中获得好评的部数与该类电影的部数的比值.电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么第五类电影的好评率增加0.1,第二类电影的好评率减少0.1,可以使获得好评的电影总部数与样本中的电影总部数的比值达到最大.【解答】解:根据题意得:只要第五类电影的好评率增加0.1,第二类电影的好评率减少0.1,可使改变投资策略后总的好评率达到最大;故答案为:五,二,可使改变投资策略后总的好评率达到最大.三、解答题(共10小题)21.为迎接2019年中考,对道里区西部优质教育联盟九年级学生进行了一次数学期中模拟考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请你根据统计图中提供的信息解答下列问题:(1)这次被调查的学生共有多少人,并将条形统计图补充完整:(2)在扇形统计图中,求出“优”所对应的圆心角度数;(3)若该联盟九年级共有1050人参加了这次数学考试,估计九年级这次考试共有多少名学生的数学成绩可以达到优秀?【解答】解:(1)22÷44%=50,所以这次被调查的学生共有50人;成绩为中的人数为50﹣10﹣22﹣8=10,补图条形统计图为:(2)360°×=72°,答:“优”所对应的圆心角度数72°;(3)1050×=210,答:估计九年级这次考试共有210名学生的数学成绩可以达到优秀.22.某市教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随机抽样调查了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图)请你根据图中提供的信息,回答下列问题:(1)扇形统计图中a的值为25%,“活动时间为4天”的扇形所对圆心角的度数为108°,该校初一学生的总人数为200;(2)补全频数分布直方图;(3)如果该市共有初一学生6000人,请你估计“活动时间不少于4天”的大约有多少人?【解答】解:(1)活动的总天数为20÷10%=200(天),活动6天的百分比为×100%=15%,a=1﹣30%﹣15%﹣10%﹣15%﹣5%=25%;“活动时间为4天”的扇形所对圆心角的度数=360°×30%=108°;该校初一学生的总人数=20÷10%=200(人)故答案为25%;108;200;(2)“活动时间为5天”的人数为200×25%=50(人),频数分布直方图如图:(3)6 000×(30%+25%+15%+5%)=4500(人)答:该市活动时间不少于4天的人数约是4500人.23.某校计划开设美术、书法、体育、音乐兴趣班,为了解学生报名的意向,随机调查了部分学生,要求被调查的学生必选且只选一项,根据调查结果绘制出如下不完整的统计图表:兴趣班人数百分比美术1010%书法30a体育b40%音乐20c根据统计图表的信息,解答下列问题:(1)直接写出本次调查的样本容量和表中a,b,c的值;(2)将折线图补充完整;(3)该校现有2000名学生,估计该校参加音乐兴趣班的学生有多少人?【解答】解:(1)本次调查的样本容量10÷10%=100,b=100﹣10﹣30﹣20=40(人),a=30÷100=30%,c=20÷100=20%;(2)折线图补充如下:(3)估计该校参加音乐兴趣班的学生2000×20%=400(人)答:估计该校参加音乐兴趣班的学生400人.24.某校七、八、九年级共有1000名学生.学校统计了各年级学生的人数,绘制了图①、图②两幅不完整的统计图.(1)将图①的条形统计图补充完整.(2)图②中,表示七年级学生人数的扇形的圆心角度数为144°.(3)学校数学兴趣小组调查了各年级男生的人数,绘制了如图③所示的各年级男生人数占比的折线统计图(年级男生人数占比=×100%).请结合相关信息,绘制一幅适当的统计图,表示各年级男生及女生的人数,并在图中标明相应的数据.【解答】解:(1)八年级人数:1000×25%=250(人),七年级人数:1000﹣250﹣350=400(人),补全条形统计图如图所示:(2)360°×=144°.故答案为:144;(3)七年级:男生400×60%=240(人),女生400×(1﹣60%)=160(人),八年级:男生250×50%=125(人),女生250×(1﹣50%)=125(人),九年级:男生350×60%=210(人),女生350×(1﹣60%)=140(人),用条形统计图表示如下:25.某校团委为了解该校七年级学生最喜欢的课余活动情况,采用随机抽样的方法进行了问卷调查,被调查学生必须从“运动、娱乐、阅读、其他”四项中选择其中的一项,以下是根据调查结果绘制的统计图表的一部分,活动类型频数(人数)频率运动20娱乐40阅读其他0.1根据以上图表信息,解答下列问题:(1)在被调查的学生中,最喜欢“运动”的学生人数为20人,最喜欢“娱乐”的学生人数占被调查学生人数的百分比为40%.(2)本次调查的样本容量是100,最喜欢“其他”的学生人数为10人.(3)若该校七年级共有360名学生,试估计最喜欢“阅读”的学生人数.【解答】解:(1)从统计图表中,可得最喜欢“运动”的有20人,最喜欢“娱乐”的学生人数占被调查学生人数的百分比为40%,故答案为:20,40;(2)40÷40%=100(人),100×0.1=10(人),故答案为:100,10;。

八年级上册数学单元测试题ess 第4章 样本与数据分析初步

八年级上册数学单元测试题ess 第4章 样本与数据分析初步

八年级上册数学单元测试题第4章样本与数据分析初步一、选择题1.某班50名学生右眼视力的检查结果如下表所示:那么该班学生右眼视力的众数和中位数分别是()A.4.9和4.8 B. 4.9和4.7 C.4.9和4.6 D.4.8和4.7答案:B2.为了调查某校八年级学生的身高情况,现在对该校八年级(1)班的全班学生进行调查.下列说法中,正确的是()A.总体是该校八年级学生B.总体是该校八年级学生的身高C.样本是该校八年级(1)班学生D.个体是该校八年级的每个学生答案:B3.有下列三个调查:①了解杭州市今年夏季冷饮市场冰琪淋的质量;②调查八年级(1)班50名学生的身高;③了解一本300页的书稿的错别字个数.其中不适合采用普查而适合采用抽样调查方式的有()A.3个B.2个C.1个D.0个答案:C4.10名工人某天生产同一种零件,生产的件数分别是:15,17,14,10,15,17,17,16,14,12.若其平均数为a,中位数为 b,众数为c,则有()A.a>b>c B.b>c>a C. c>a>b D.c>b>a答案:D5.若干名工人某天生产同一种零件,生产的零件数整理成条形图(如图),设他们生产零件的平均数为a,中位数为b,众数为c,则有()A.b>a>c B.c>a>b C.a>b>c D.b>c>a答案:A6.已知某样本的方差是4,则这个样本的标准差是()A.2 B.4 C.8 D.16答案:A7.小勇投镖训练的结果如图所示,他利用所学的统计知识对自己10次投镖的成绩进行了评价,①平均数是(10+8×4+7×2+6×2+5)÷10=7.3(环),②众数是8环,打8环的次数占40%,③中位数是8环,比平均数高0.7环.上述说法中,正确的个数有()A. 0个B.l个C.2个D.3个答案:C8.一组数据方差的大小,可以反映这组数据的()A.分布情况B.平均水平C.波动情况D.集中程度答案:C9.学校举行歌咏比赛,由7位评委为每名参赛选手打分,评分方法是:去掉一个最高分和一个最低分,将其余分数的平均分作为这名选手的最后得分,评委为某选手打分(单位:分)如下:9.64,9.73,9.72,9.77,9.73,9.68,9.70,则这名选手的最后得分是()A.9.71分B.9.712分C.9.72分D.9.73分答案:B10.甲、乙两个学生在一年里学科平均分相等,但他们的方差不相等,正确评价他们的学习情况是()A.因为他们的平均分相等,所以学习水平一样B.成绩虽然一样,方差较大的,说明潜力大,学习态度踏实C.表面上看这两个学生平均成绩一样,但方差小的学习成绩稳定D.平均分相等,方差不等,说明学习水平不一样,方差较小的同学,学习成绩不稳定,答案:C11.为了了解全世界每天婴儿出生的情况,应选择的调查方式是( ) A .普查B .抽样调查C .普查,抽样调查都可以D .普查,抽样调查都不可以答案:B12.今年某市有800名八年级学生参加了省数学竞赛,为了了解这800名学生的成绩,从中抽取了100名学生的考试成绩进行分析,以下说法中,正确的是( ) A .800名学生是总体 B .每个学生是个体C .100名学生的数学成绩是一个样本D .800名学生是样本容量答案:C13.数据0,-1,6,1,x 的众数为-l ,则这组数据的方差是( )A.2 B .345 C .265答案:B14.数学老师对小明在参加中考前的5次数学模拟考试进行统计分析,判断小明的数学成绩是否稳定,于是老师需要知道小明这5次数学成绩的( ) A .平均数或中位数B .方差或标准差C .众数或平均数D .众数或中位数答案:B15.要比较两位同学在上次数学测验中谁的成绩比较稳定,应选用的统计量是( ) A .平均数B .中位数C .众数D .方差答案:D16.学校快餐店有2元,3元,4元三种价格的饭菜供师生选择(每人限购一份).右图是某月的销售情况统计图,则该校师生购买饭菜费用的平均数和众数是( ) A .2.95元,3元 B .3元,3元 C .3元,4元 D .2.95元,4元答案:A17.如果1x 与2x 的平均数是6,那么11x +与23x +的平均数是( ) A .4B .5C .6D .818.在方差的计算公式222222123451[(10)(10)(10)(10)(10)]5S x x x x x =-+-+-+-+-中,数字5和10分别表示的意义是( )A .数据的个数和方差B .平均数和数据的个数C .数据组的方差和平均数D .数据的个数和平均数答案:D19.某居民区月底统计用电情况,其中用电45度的有3户,用电50度的有5户,用电42度的有6户,则平( )答案:C20.校七年级有 13名同学参加百米竞赛,预赛成绩各不相同,要取前 6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( ) A . 中位数B .众数C .平均数D .方差答案:A21.对于数据3,3,2,3,6,3,10,3,6,3,2. 有以下结论:①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位教与平均数的数值相等;④这组数据的平均数与众数的数值相等.其中正确的有( ) A .1个B . 2个C .3个D .4个答案:A22.要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,40是( )A.个体B.总体 C .样本容量 D .总体的一个样本答案:C23.在国家实行一系列“三农”优惠政策后,农民收入大幅度增加.某乡所辖村庄去年年人均收入(单位:元)的情况如下表.该乡去年人均收入的中位数是( )A.3700元 B .3800元C .3850元D .3900元答案:B24.下列调查方式合适的是( )A .为了了解炮弹的杀伤力,采用普查的方式B .为了了解全国中学生的睡眠状况,采用普查的方式C 为了了解人们保护水资源的意识,采用抽样调查方式D .对载人航天器“神舟六号”零部件的检查,采用抽样调查的方式二、填空题25.在航天知识竞赛中包括甲同学在内的6名同学的平均分为74分,其中甲同学考了89分,则除甲以外的5名同学的平均分为分.解析:7126.为了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下:则这个抽样调查的总体是,个体是,样本是.解析:该小区居民的月用水情况,每户家庭的月用水情况,该小区l0户家庭的月用水情况27.一射击运动员连续射靶10次,其中2次命中10环,3次命中9环,5次命中8环,则他平均每次命中环.解析:8.728.八年级学生小方的数学平时成绩为84分,期中成绩为80分,学校按平时、期中、期末之比为3:3:4的比例计算学期的总评成绩,他计划总评成绩要达到85分,则期末考试他应得分.解析:89.529.在某次数学测验中,为了解某班学生的数学成绩情况,从该班测试试卷中随机抽取了10份试卷,其成绩如下:85,81,89,81,72,82,77,81,79,83在这个问题中,总体是,样本是,样本平均数是分,估计该班的平均成绩是分.解析:该班学生的数学成绩,10名学生的数学成绩,81,8130.为了缓解旱情,某市发射增雨火箭,实施增雨作业.在一场降雨中,某县测得l0个面积相等区域的降雨量如下表:则该县这l0个区域降雨量的众数为 mm,平均降雨量为 mm.解析:14,1431.某市为一个景区改造的多种方案公开向市民征求意见,在考虑选择哪一种方案时,有关部门统计了各方案投案结果的平均数,中位数和众数,主要参考的应是.解析:众数32.甲种糖果每千克l0元,乙种糖果每千克8元,现把甲、乙两种糖果混合制成什锦糖,若要使什锦糖的单价为每千克9元,则100元的甲种糖果应与元的乙种糖果混合.33.为了了解某所初级中学学生对2008年6月1日起实施的“限塑令”是否知道,从该校全体学生1200名中,随机抽查了80名学生,结果显示有2名学生“不知道”.由此,估计该校全体学生中对“限塑令”约有名学生“不知道”.解析:3034.从甲、乙两块棉花新品种对比试验地中,各随机抽取8株棉苗,量得高度的数据如下(单位:cm):甲:l0.2,9.5,10,10.5,10.3,9.8,9.6,10.1;乙:l0.3,9.9,10.1,9.8,10,10.4,9.7,9.8.经统计计算得2S甲= ,2S乙= .这说明甲块试验地的棉苗比乙块试验地的棉苗长得.解答题解析:0.105,0.055,不整齐35.已知一组数据:11,15.13,12.15,15.16.15.令这组数据的众数为a,中位数为b,则a b(填“>”、“<”或“=”).解析:=36.如右统计图显示的是绵阳某商场日用品柜台10名售货员4月份完成销售额(•单位:千元)的情况,根据统计图,我们可以计算出该柜台的人均销售额为________千元.解析:6.737.为了解一批节能灯的使用寿命,宜采用的方式进行调查.(填:“全面调查”或“抽样调查”)解析:抽样调查38.在10000株樟树苗中,任意测量20株的苗高,这个问题中,样本容量是.解析:2039.2007年10月1日是中华人民共和国成立58周年纪念日,要在某校选择256名身高基本相同的女同学组成表演方体,在这个问题中我们最值的关注的是该校所有女生身高的(填“平均数”或“中位数”或“众数”).解析:众数40.在一次体育测试中,10名女生完成仰卧起坐的个数如下:48,52,47,46,50,50,51,50,45,49,则这次体育测试中仰卧起坐个数的众数是.解析:5041.洋洋有5位好朋友,他们的年龄(单位:岁)分别为15,l5,16,l7,17,其方差为0.8,则三年后,这五位好朋友年龄的方差为 .解析:0.842.为美化校园,某班三个劳动小组在劳动课上栽花的株数分别为:10、x,8. 已知这组数据只有一个众数且众数等于中位数,那么这组数据的平均数是 .解析:283株或263株43.已知,n个数据的和为l28,它的平均数为l6,则n= .解析:844.从某鱼塘里捕上l50条鱼做上标记,然后放回鱼塘里去,经过一段时间,待带标记的鱼完全混合于鱼群中后,再捕第二次样品鱼200条,若其中带标记的鱼有10条,可估计鱼塘里有条鱼.解析:3000三、解答题45.为了了解用电量的多少,某家庭在6月初连续几天观察电表的读数,显示如下表:则请你估计这个家庭六月份的总用电量是千瓦时.解析:120度46.经市场调查,某种质量为(50.5±)kg的优质西瓜最为畅销.为了控制西瓜的质量.农科所分别采用A、B两种种植技术进行试验.现从这两种技术种植的西瓜中各随机抽取20个,记录它们的质量(单位:kg)如下:A:4.1,4.8,5.4.4.9,4.7,5.0.4.9,4.8,5.8.5.2,5.0.4.8,5.2,4.9,5.2,5.0,4.8.5.2,5.1,5.O.B:4.5,4.9,4.8,4.5,5.2,5.1.5.0,4.5,4.7,4.9,5.4,5.5,4.6,5.3,4.8,5.0,5.2,5.3,5.0,5.3.(1)若质量为(50.25±)kg的优质西瓜为优等品,根据以上信息完成表3.表3(2)请分别从优等品数量、平均数与方差三方面对A 、B 两种技术作出评价;从市场销售的角度看,你认为推广哪种种植技术较好?解析:(1)表中所填数据从上到下依次为16,10.(2)从优等品数量的角度看,∵A 种技术种植的西瓜优等品数量较多,∴A 种技术较好; 从平均数的角度看,∵A 种技术种植的西瓜质量的平均数更接近5妇.∴A 种技术较好; 从方差的角度看,∵B 种技术种植的西瓜质量的方差较小,∴曰种技术种植的西瓜 质量更为稳定;从市场销售的角度看,∵优等品更畅销,A 种技术种植的西瓜优等品数量 更多,且平均质量更接近5 kg ,因而更适合推广A 种种植技术.47.“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做些力所能及的家务.王刚同学对部分同学暑假在家做家务的时问进了抽样调查(时间取整上数),所得数据统计如表2: 表2(1)抽取样本的容量是 ;(2)样本的中位数所在时间段的范围是 ;(3)若该学校有学生1260人,那么大约有多少学生在暑假做家务的时间在40.5~100.5小时之间?解析:(1)100; (2)40.5~60.5小时; (3)∵3015101260693100++⨯=,∴大约有693名学生在暑假做家务的时间在40.5~100.5小时之间.48.某校要从小王和小李两名同学中挑选一人参加全国数学竞赛,在最近的五次选拔测试中,他俩的成绩如表l : 表 1根据表1解答下列问题:(1)完成表2:表2(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(舍80分)的成绩视为优秀,则小王、小李在这五次测试中的优秀率各是多少?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖.那么你认为应选谁参加比赛比较合适?说明你的理由.解析:(1)表中依次填:80,80,80,40.(2)在这五次考试中,成绩比较稳定的是小李;小王的优秀率为40%,小李的优秀率为80%.(3)有两种方案,即:(方案一)我选小李去参加比赛,∵小李的优秀率高,有4次得80分以上(含80分),成绩比较稳定,获奖机会大.(方案二)我选小王去参加比赛,∵小王的成绩获得一等奖的机率较高,有2次90分以上(含90分):因此有可能获得一等奖.49.第一组数据8,8,8,第二组数据8,9,9,10,第三组数据l5,20,25.(1)每一组数据的平均数分别是多少?(2)如果将这三组数组成一组新数,新数的平均数是多少?中位数与众数是多少?解析:(1)第一组:8,第二组:9,第三组:20 (2)平均数为12,中位数为9,众数为8 50.机关作风整顿领导小组为了了解某单位早上8点准时上班情况,随机调取了该单位某天早上10人的上班时间,得到如下数据:7∶508∶008∶008∶028∶047∶568∶008∶028∶038∶03请回答下列问题(1)该抽样调查的样本容量是_______. (2)这10人的平均上班时间是________. (3)这组数据的中位数是_________.(4)如果该单位共有50人,请你估计有________人上班迟到.解析:(1)10;(2)8:00;(3)8:01;(4)10.51.据资料记载,位于意大利的比萨余塔在1918~1958年这41年间,平均每年倾斜1.1 mm ;1959~1969年这ll 年间,平均每年倾斜1.26 mm .那么1918~1969年这52年间,比萨斜塔平均每年倾斜约多少mm (精确到0.01mm)?解析:1.13 mm52.甲、乙两人参加某体育训练项目,近期的五次测试成绩得分情况如图. (1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价.解析:(1)13.5x =甲,21S =甲;13.5x =乙,20S =乙.2;(2)乙较为稳定53.从甲、乙两名工人做出的同一种零件中,各抽出4个,量得它们的直径(单位:mm)如下:甲生产零件的尺寸:9.98,10.00,10.02,10.00. 乙生产零件的尺寸:10.00,9.97,10.03,10.00.(1)分别计算甲、乙两个样本的平均数;(2)分别求出它们的方差,并说明在使零件的尺寸符合规定方面谁做得较好?解析:(1)10.00x=甲mm,10.00x=乙mm;(2)200002S=甲.mm2,2000045S=乙.mm2,甲做得较好54.某公司销售部有营销人员l5人,销售部为了制定某种商品的月销售定额,统计这15人某月的销售量如下:(1)求这l5位营销人员该月销售量的平均数,众数,中位数;(2)假设销售部负责人把每位营销人员的月销售额定为320件,你认为是否合理,为什么?如果不合理,请你制定一个合理的销售定额,并说明理由.解析:(1)平均数:320件,众数:210件,中位数:210件;(2)不合理,理同略55.一天,爸爸叫儿子去买一盒火柴,临出门前,爸爸嘱咐儿子要买能划燃的火柴.儿子拿着钱出门了,过了很久,儿子回到了家.“火柴能划燃吗?”爸爸问.“都能划燃.”“你这么肯定?”儿子递过一盒划过的火柴,兴奋地说:“我每根都试过啦.”(1)在这则笑话中,儿子采用的是什么调查方式?这种调查方式好不好?(2)应采用什么方法调查比较合理?(3)请你谈谈什么情况下应进行抽样调查(至少讲出两点以上).解析:(1)普查,不合适;(2)抽样讽查;(3)不唯一,如:①当调查数量特别大或调查范围特别广时应选用抽样调查;②当调查的事件具有危险性或破坏性时应选用抽样调查。

八年级地理二摸检测质量分析

八年级地理二摸检测质量分析

第二学期八年级地理二摸检测质量分析(抽样分析试卷90份均分38.7)一、选择题1.选择3得分率低。

反映学生没有认真阅读题中材料。

材料中明确指出北京时间11日零时55分。

2.选择14得分率低。

说明部分学生不知道海湾地区是哪个地区。

也反映教师在教学中对第50页活动没有认真对待。

3.选择16得分率低。

有学生选择全国政治中心,也有学生选择全国文化中心,说明学生对北京的城市职能只是机械记忆,没有理解政治中心、文化中心和国际交往中心的涵义。

4.选择17得分率低。

反映学生对“地上河”理解不透。

二、判断题典型错误及分析:判断题的得分率是正常的,均分为3.86,正确率为77.1%。

各题的得分率均在70%以上。

第22题要明确苏伊士运河和巴拿马运河的地理位置,不能混淆;第23题要明确“西气”来源塔里木盆地,不能与柴达木盆地混淆;第25题要明确青藏地区、新疆、内蒙古各自的牧场类型,不能混淆。

典型错误及分析:1、29(3)得分率低。

此题正确答案是南京,学生回答宁波、深圳、武汉、重庆等,说明部分学生对沪宁杭工业区的中心城市没有真正掌握,回答深圳、武汉、重庆的同学说明对沪宁杭工业区的地理位置都没有掌握。

2、27(3)(4)得分率低。

27(3)应是理解性记忆,体现人文环境与自然环境的关系。

台湾西部是因为地形平坦,所以人口才众多、开发历史才悠久、交通才便利,所以工业、城市才主要集中在西部。

也反映教师在教学中对教材中第38—39页的活动分析不到位。

27(4)反映学生的读图能力,不知道从图中提取信息,没有从图中提取信息的习惯。

3、26(3)、28(3)、得分率也较低。

26(3)答案有东、南、西南等。

28(3)第一空错的多,答案有旅游业、赌博、服务业等。

4、此外在其它题目中“香港”写成“港澳”、“玉山”写成“玉峰”、“纽带”写成“枢纽”、“洪涝”写成“旱涝”等。

四、教学建议1.加强学生对文字材料、地理图表阅读的训练,进一步培养学生提取信息的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三闸中学八年级数学抽样检测试卷
班级:__________ 姓名:__________
一、选择题(每题4分,共20分):
1、下列各数组中,不能作为直角三角形三边长的是( )
A .9,12,15
B .7,24,25
C .6,8,1O
D .3,5,7
2、一等腰三角形底边长为10cm ,腰长为13cm ,则腰上的高为( )
A .12cm
B .
C .
D . 3、在()02-,38,0,9,0.010010001……,2
π,-0.333…,5, 3.1415, 2.010101…(相邻两个1之间有1个0)中,无理数有( )
A.1个
B.2个 C .3个 D.4个
4、下列说法:①-64的立方根是4,②49的算数平方根是±7 , ③271的立方根是31④161的平方根是4
1 。

其中正确说法的个数是 ( ) A.1 B.
2 C .
3 D.4
5、如图,一架梯子长25米,斜靠在一面墙上,梯子顶端离地面15米,要使梯子顶端离地24米,则梯子的底部在水平方向上应滑动( )
A . 11米
B . 12米
C . 13米
D . 14米
二、填空题(每题4分,共20分):
6、81的平方根是__________。

7、直角三角形两条直角边的长分别为5、12,则斜边上的高为__________.
8、比较下列实数的大小(在 填上 > 、< 或 =)
①-2; ②215- 21; ③112 53 9、若03)2(12=-+-+-z y x ,则z y x ++=
10、以直角三角形的三边为边向形外作正方形P 、Q 、K ,若=4,=9,则=__________. 三、解答题:(11题每小题5分,12-15题每题10分)
11、化简:(1)123127+-
(2)0)01.0()1(100
101.023+--+-
(3)2)62(+ (4))
12、如图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段。

请在图中画出1352===EF CD AB 、、这样的线段,并选择其中的一个说明这样画的道理。

13、已知2b+1的平方根为±3,3a+2b-1的算术平方根为4,求a+2b 的平方根。

14、甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?
15、探索题
细心观察右图,认真分析各式,然后解答问题: O .....S 5
S 4
S 3S 2S 1
111111A 6
A 5A 4A 3A 2A 1
21
,2)2(1)1(122===+S ;22
,3)3(1)2(222===+S ;
2
3,4)4(1)3(322===+S ;…….,…… (1)请用含n(n 为正整数)的等式表示上述变化规律
(2)观察总结得出结论:三角形两条直角边与斜边的关系,用一句话概括为:_________ 。

相关文档
最新文档