GaussianmixturePHDfilterforjumpMarkovmodelsbasedonbestfittingGaussianapproximation
slam 高斯牛顿法
slam 高斯牛顿法
高斯牛顿法(Gauss-Newton Method)是一种用于求解非线性最小二乘问题的迭代算法。
在SLAM(Simultaneous Localization and Mapping)中,高斯牛顿法常用于估计机器人的位姿和环境地图。
高斯牛顿法通过对非线性函数进行一阶泰勒展开来近似线性化问题,然后使用牛顿法求解线性化后的方程。
在每次迭代中,高斯牛顿法计算当前估计值的导数,并构建一个雅可比矩阵(Jacobian Matrix)来表示函数的线性化。
通过求解雅可比矩阵的逆,高斯牛顿法可以得到一个修正向量,用于更新估计值。
这个修正向量使得函数值在当前点处最小化。
然后,估计值被更新,并重复该过程直到满足收敛条件。
在SLAM 中,高斯牛顿法用于估计机器人的位姿和环境特征的位置。
通过最小化传感器测量数据与预测数据之间的误差,高斯牛顿法可以提供准确的位姿估计和地图构建。
然而,高斯牛顿法在应用中存在一些限制,例如当雅可比矩阵接近奇异时可能导致不收敛。
因此,在实际应用中,可能需要使用其他改进的算法,如Levenberg-Marquardt 方法,来克服这些问题。
高斯牛顿法是一种在SLAM 中常用的有效算法,用于估计机器人的位姿和环境地图。
高斯辅助粒子算法
高斯辅助粒子算法高斯辅助粒子算法(Gaussian Process Particle Filter,GPPF)是一种基于高斯过程的粒子滤波算法,其主要应用在非线性系统的状态估计和滤波问题中。
该算法融合了高斯过程的非参数建模和粒子滤波的优点,能够提高滤波的准确性和鲁棒性。
本文将对GPPF 算法的原理、优势以及应用进行详细介绍与分析。
一、GPPF算法的原理1.1 高斯过程高斯过程是一种用来描述随机函数的工具,其能够通过有限数据对一个未知函数进行建模和预测。
在GPPF算法中,高斯过程被用来对系统的状态进行建模,将状态空间映射到一个高维的特征空间中。
高斯过程的非参数性质使得其能够灵活地适应复杂的系统动态,并且能够提供对未知函数的不确定性估计。
1.2 粒子滤波粒子滤波是一种适用于非线性、非高斯系统的状态估计方法,其基本思想是通过一组随机样本(粒子)来近似表示系统的后验概率分布。
通过对粒子的重采样和更新,可以逐步优化对系统状态的估计。
普通的粒子滤波在处理高维状态空间和复杂系统动态时面临着计算复杂度和采样效率的挑战。
1.3 GPPF算法GPPF算法将高斯过程和粒子滤波相结合,通过将高斯过程的非参数建模引入到粒子滤波的采样和更新过程中,能够有效地提高滤波算法的准确性和鲁棒性。
具体来说,GPPF算法首先使用高斯过程对系统状态进行建模,并从该模型中生成粒子的初始化状态。
然后,在每次更新过程中,通过高斯过程的模型进行状态更新和观测值的更新,并对粒子进行重采样,从而逐步优化对系统状态的估计。
2.3 对系统动态的适应性由于高斯过程能够灵活地适应复杂的系统动态和非线性关系,GPPF算法能够在处理各种不确定性和复杂背景下,依然能够提供可靠的状态估计和滤波结果。
这使得GPPF算法在实际应用中更加具有优势。
3.1 无人车辆定位与导航在无人车辆的定位与导航中,由于环境的复杂性和传感器数据的不确定性,传统的滤波算法往往难以满足实际需求。
高斯随机过程超参数
高斯随机过程超参数
高斯过程(Gaussian Processes)是概率论和数理统计中随机过程的一种,是多元高斯分布的扩展,被应用于机器学习、信号处理等领域。
在高斯过程中,超参数是指控制模型复杂性和行为的参数,这些参数在模型训练过程中需要进行优化。
高斯过程的超参数通常包括特征长度尺度(characteristic length-scale)和噪声水平(noise level)等。
特征长度
尺度用于控制高斯过程的平滑程度,而噪声水平则用于控制模型对数据的拟合程度。
在贝叶斯优化框架中,高斯过程的超参数可以通过最大化边缘似然函数(marginal likelihood function)来进行估计。
边缘似然函数是将超参数
与数据联系起来的关键,通过最大化该函数可以找到最优的超参数值,从而使得高斯过程模型能够最好地拟合给定的数据。
常用的核函数包括平方指数核(squared exponential kernel)和马顿核(Matern kernel)。
平方指数核的超参数包括特征长度尺度和噪声水平,而马顿核则还包括一个额外的超参数,用于控制核函数的形状。
总的来说,高斯过程的超参数对于模型的性能至关重要,需要通过优化算法进行仔细调整,以获得最佳的预测和泛化性能。
以上内容仅供参考,如需更专业的解释,建议咨询统计学或机器学习领域的专家,或查阅相关领域的专业书籍和文献。
多目标跟踪中一种改进的高斯混合PHD滤波算法
多目标跟踪中一种改进的高斯混合PHD滤波算法胡玮静;陈秀宏【摘要】The Gaussian mixture probability hypothesis density filter is an algorithm for estimating multiple target states in clutter. An improved algorithm is proposed to resolve the missed detection problem and enhance the accuracy of the fil-ter while tracking close proximity targets. Under Gaussian mixture assumptions, the predication and update equations of the PHD filter are modified, which effectively solve the information loss problem of missed true targets. And then depend-ing on the weights of Gaussian components which decide whether the components can be utilized to extract states, the pro-posed algorithm avoids the components which have higher weights are merged and improves the tracking performance when the targets move closely. Simulation results show that the new algorithm has advantages over the ordinary one in both the aspects of filter precision and multi-target number estimation.%高斯混合概率假设密度(GM-PHD)滤波是一种杂波环境下多目标跟踪问题算法,针对算法中存在的目标漏检和距离相近时精度下降的问题,提出一种改进的高斯混合PHD滤波算法。
基于星-凸形随机超曲面模型的扩展目标GM-PHD滤波器
基于星-凸形随机超曲面模型的扩展目标GM-PHD滤波器魏帅;冯新喜;王泉【摘要】A Gaussian mixture PHD filter for extended target tracking based on star-convex random hypersurface model was proposed for the problem of joint estimation of the extended target shape and motion state.The proposed algorithm modelled the diffusion degree of measuration by using the star-convex random hypersurface model.Then,the extended targets were tracked by calculating and updating the measurement likelihood and innovation under the Gaussian mixture probability hypothesis density framework.The simulation results showed that the proposed method could guarantee the tracking availability and feasibility and improve the estimated accuracy of extended target motion state as well as the target shape.%针对扩展目标联合估计运动状态和目标外形的问题,提出一种基于星-凸形随机超曲面模型的扩展目标高斯混合概率密度滤波算法.该算法利用星-凸随机超曲面模型对量测的扩散程度进行建模,在高斯混合概率假设密度的框架下,通过求解、更新递推量测模型下的量测似然、新息等参数来实现对扩展目标的跟踪.仿真实验表明,该算法在保证跟踪有效性和可行性的同时,提高了对扩展目标运动状态和目标外形的估计精度.【期刊名称】《弹箭与制导学报》【年(卷),期】2017(037)001【总页数】6页(P147-152)【关键词】星-凸形;随机超曲面模型;扩展目标;高斯混合概率密度【作者】魏帅;冯新喜;王泉【作者单位】空军工程大学信息与导航学院,西安 710077;空军工程大学信息与导航学院,西安 710077;空军工程大学信息与导航学院,西安 710077【正文语种】中文【中图分类】TN953近年来,随着传感器分辨率的不断提高以及目标与传感器距离的不断缩小,扩展目标的跟踪问题已成为跟踪领域的研究热点[1-4]。
Gaussian简介
Gaussian简介Gaussian简介Gaussian是做半经验计算和从头计算使用最广泛的量子化学软件,可以研究:分子能量和结构,过渡态的能量和结构化学键以及反应能量,分子轨道,偶极矩和多极矩,原子电荷和电势,振动频率,红外和拉曼光谱,NMR,极化率和超极化率,热力学性质,反应路径。
计算可以模拟在气相和溶液中的体系,模拟基态和激发态。
Gaussian 03还可以对周期边界体系进行计算。
Gaussian是研究诸如取代效应,反应机理,势能面和激发态能量的有力工具。
功能①基本算法②能量③分子特性④溶剂模型Gaussian03新增加的内容①新的量子化学方法②新的分子特性③新增加的基本算法④新增功能(1)基本算法可对任何一般的收缩gaussian函数进行单电子和双电子积分。
这些基函数可以是笛卡尔高斯函数或纯角动量函数多种基组存储于程序中,通过名称调用。
积分可储存在内存,外接存储器上,或用到时重新计算对于某些类型的计算,计算的花费可以使用快速多极方法(FMM)和稀疏矩阵技术线性化。
将原子轨(AO)积分转换成分子轨道基的计算,可用的方法有in-core(将AO积分全部存在内存里),直接(不需储存积分),半直接(储存部分积分),和传统方法(所有AO 积分储存在硬盘上)。
(2)能量使用AMBER,DREIDING和UFF力场的分子力学计算。
使用CNDO, INDO, MINDO/3, MNDO, AM1,和PM3模型哈密顿量的半经验方法计算。
使用闭壳层(RHF),自旋非限制开壳层(UHF),自旋限制开壳层(ROHF) Hartree-Fock 波函数的自洽场SCF)计算。
使用二级,三级,四级和五级Moller-Plesset微扰理论计算相关能。
MP2计算可用直接和半直接方法,有效地使用可用的内存和硬盘空间用组态相互作用(CI)计算相关能,使用全部双激发(CID)或全部单激发和双激发(CISD)。
双取代的耦合簇理论(CCD),单双取代耦合簇理论(CCSD),单双取代的二次组态相互作用(QCISD), 和Brueckner Doubles理论。
基于高斯混合PHD滤波的多目标状态提取方法
基于高斯混合PHD滤波的多目标状态提取方法刘益;王平;高颖慧【期刊名称】《计算机应用与软件》【年(卷),期】2016(033)011【摘要】Gaussian mixture probability hypothesis density (GM-PHD)filter can effectively solve the problem of multi-target tracking un-der the condition of linear Gaussian model,while estimating the number of targets it also extracts the states of multi-target.The state extrac-tion precision of GM-PHD filter will drop down when it comes to the situation of closely spaced targets and too high clutter rate.In light of the performance degradation of GM-PHD in complex environments,we proposed an improved multi-target state extraction method of GM-PHD fil-ter.By modifying the update weight of Gaussian component and enhancing the merging criterion it reduces the interference caused by intensive targets and clutters.Simulation experimental results showed that the propose method is able to raise the precision of multi-target state estima-tion in different clutter environments.%高斯混合概率假设密度滤波(GM-PHD)方法可有效解决线性高斯模型下的多目标跟踪问题,在估计目标个数的同时提取多目标状态。
高斯滤波函数
高斯滤波函数高斯滤波函数是一种常见的图像处理方法,它在图像处理领域具有广泛的应用。
它的原理是利用高斯函数对图像进行平滑处理,从而达到去除噪声、模糊图像或者边缘检测的效果。
高斯滤波函数的核心思想是使用高斯函数对图像进行卷积操作。
高斯函数是一种平滑曲线,具有中心对称性和正态分布特性。
通过调整高斯函数的参数,可以改变平滑程度,从而适应不同的图像处理需求。
高斯滤波函数在图像处理中起到了平滑图像的作用,使得图像中的噪声得到抑制,同时保留图像的细节信息。
高斯滤波函数的应用非常广泛,例如在计算机视觉中,可以利用高斯滤波函数进行图像降噪,提高图像的质量。
在图像处理中,高斯滤波函数还可以用于图像的模糊处理,使得图像变得柔和,更适合一些特殊效果的呈现。
此外,高斯滤波函数还可以用于图像的边缘检测,通过调整滤波器的参数,可以突出图像中的边缘信息,从而达到图像增强的效果。
在实际应用中,高斯滤波函数的实现可以通过卷积操作实现。
首先,将高斯函数定义为一个滤波器的模板,然后将该滤波器对图像进行卷积操作,即将滤波器的每个元素与图像中对应位置的像素值相乘,并将所有结果进行求和得到卷积结果,最后将卷积结果赋值给对应位置的像素,从而得到处理后的图像。
需要注意的是,高斯滤波函数的平滑程度取决于高斯函数的标准差。
标准差越大,平滑程度越高,图像的细节信息也会相应丢失得越多。
因此,在实际应用中,需要根据具体的需求来选择合适的标准差,以达到最佳的平衡效果。
高斯滤波函数是一种常见的图像处理方法,通过利用高斯函数对图像进行卷积操作,可以达到平滑、模糊或者边缘检测的效果。
它在计算机视觉、图像处理等领域具有广泛的应用。
在实际应用中,需要根据具体需求选择合适的参数,以达到最佳的处理效果。
高斯滤波函数的应用可以提高图像的质量,使得图像更加清晰、细腻,为后续的图像处理任务提供更好的基础。
卡梅伦液压数据手册(第 20 版)说明书
iv
⌂
CONTENTS OF SECTION 1
☰ Hydraulics
⌂ Cameron Hydraulic Data ☰
Introduction. . . . . . . . . . . . . ................................................................ 1-3 Liquids. . . . . . . . . . . . . . . . . . . ...................................... .......................... 1-3
4
Viscosity etc.
Steam data....................................................................................................................................................................................... 6
1 Liquid Flow.............................................................................. 1-4
Viscosity. . . . . . . . . . . . . . . . . ...................................... .......................... 1-5 Pumping. . . . . . . . . . . . . . . . . ...................................... .......................... 1-6 Volume-System Head Calculations-Suction Head. ........................... 1-6, 1-7 Suction Lift-Total Discharge Head-Velocity Head............................. 1-7, 1-8 Total Sys. Head-Pump Head-Pressure-Spec. Gravity. ...................... 1-9, 1-10 Net Positive Suction Head. .......................................................... 1-11 NPSH-Suction Head-Life; Examples:....................... ............... 1-11 to 1-16 NPSH-Hydrocarbon Corrections.................................................... 1-16 NPSH-Reciprocating Pumps. ....................................................... 1-17 Acceleration Head-Reciprocating Pumps. ........................................ 1-18 Entrance Losses-Specific Speed. .................................................. 1-19 Specific Speed-Impeller. .................................... ........................ 1-19 Specific Speed-Suction...................................... ................. 1-20, 1-21 Submergence.. . . . . . . . . ....................................... ................. 1-21, 1-22 Intake Design-Vertical Wet Pit Pumps....................................... 1-22, 1-27 Work Performed in Pumping. ............................... ........................ 1-27 Temperature Rise. . . . . . . ...................................... ........................ 1-28 Characteristic Curves. . ...................................... ........................ 1-29 Affinity Laws-Stepping Curves. ..................................................... 1-30 System Curves.. . . . . . . . ....................................... ........................ 1-31 Parallel and Series Operation. .............................. ................. 1-32, 1-33 Water Hammer. . . . . . . . . . ...................................... ........................ 1-34 Reciprocating Pumps-Performance. ............................................... 1-35 Recip. Pumps-Pulsation Analysis & System Piping...................... 1-36 to 1-45 Pump Drivers-Speed Torque Curves. ....................................... 1-45, 1-46 Engine Drivers-Impeller Profiles. ................................................... 1-47 Hydraulic Institute Charts.................................... ............... 1-48 to 1-52 Bibliography.. . . . . . . . . . . . ...................................... ........................ 1-53
一种改进的高斯混合概率假设密度滤波器
一种改进的高斯混合概率假设密度滤波器
高斯混合概率假设密度滤波器(Gaussian Mixture Probability Hypothesis Density Filter,GM-PHD Filter)是一种用于目标跟踪的概率滤波器,可用于估计多目标系统的状态和运动。
GM-PHD滤波器是在传统概率假设密度滤波器(PHD Filter)的基础上进行改进的。
传统的PHD滤波器假设目标的运动是线性高斯过程,但实际上目标的运动可能是非线性的。
这导致传统PHD滤波器的精度和鲁棒性不足。
为了解决这个问题,改进的GM-PHD滤波器引入了高斯混合模型(Gaussian Mixture Model,GMM)来建模多目标系统的状态和运动。
GMM是多个高斯分布的混合,每个高斯分布表示系统中一个目标的状态。
在GM-PHD滤波器中,每个目标的状态由一个高斯分布表示,其中包括目标的位置、速度和运动模型等信息。
每个高斯分布的权重表示该目标存在的概率。
与传统PHD滤波器相比,GM-PHD滤波器能够更准确地建模多目标系统的状态和运动。
这是因为GMM能够适应多种目标运动模型,并且能够对目标的不确定性进行更好的建模。
GM-PHD滤波器还能够处理目标的生成和消失问题。
生成和消失是指目标从场景中出现或消失的情况,这在实际应用中经常发生。
GM-PHD滤波器通过估计目标的生成和消失的概率,能够更好地对目标进行跟踪。
改进的高斯混合概率假设密度滤波器是一种可以更准确地估计多目标系统状态和运动的概率滤波器。
它能够适应多种目标运动模型,并能够处理目标的生成和消失问题。
GM-PHD滤波器在目标跟踪领域具有广泛的应用前景。
高斯过程回归超参数自适应选择粒子群优化算法
高斯过程回归超参数自适应选择粒子群优化算法
高斯过程回归(Gaussian process regression, GPR)是一种高效的机器学习技术,可以有效应用于大规模未标记数据。
它提供了一种基于后验概率的模型建立方法,可以有效地识别研究问题背后的未知模式,并合理估计未观测变量。
然而,GPR模型直接估计的参数(超参数)通常是离散的,可损失信息量,可能无法有效识别模型。
为了克服这一情况,有必要开发一种自适应选择GPR模型超参数的有效计算方法,以提高预测能力。
针对这一问题,可以提出一种基于粒子群优化的GPR超参数自适应选择方法,即粒子群优化GPR模型超参数自适应选择(PO-GPRMIP)。
PO -GPRMIP是一种改进的粒子群优化技术,其基本思路是使用粒子群,搜索优化GPR模型超参数自适应空间,以寻找最佳超参数值。
它可以有效地解决GPR模型中存在的超参数离散性问题,改善预测精度和拟合能力,并可以有效解决九边形状中存在的最优解。
PO -GPRMIP涉及两个主要过程,即参数自适应优化和预测模型求解。
首先,基于粒子群优化技术,对GPR模型超参数进行自适应优化,其次,根据优化得到的超参数,求解GPR模型的预测模型。
PO -GPRMIP的最终目标是最小化预测模型的负对数似然函数,以获得最佳的超参数值。
基于PO -GPRMIP方法,可以有效解决GPR模型超参数离散性问题,有效提高预测精度和拟合能力,从而使GPR模型更加有效和准确地应用于实际问题中。
The Gaussian Mixture PHD Filter:混合高斯PHD滤波器-PPT精选文档
state space
xk
pk-1(xk-1| z1:k-1) fk|k-1(xk| xk-1) dxk-
1
K-1 gk(zk| xk) pk|k-1(xk| z1:k-1)
Bayes filter
pk-1(xk-1 |z1:k-1) prediction pk|k-1(xk| z1:k-1) data-update pk(xk| z1:k)
posterior (filtering) pdf of the state measurement histe-target) Filter
zk-1
xk-1 state-vector
observation space
zk
target motion
gk(Zk|X)pk|k1(X|Z1:k1)ms(dX )
Computationally intractable in general No closed form solution Particle or SMC implementation
[Vo, Singh & Doucet 03, 05, Sidenbladh 03, Vihola 05, Ma et al. 06]
the gaussian mixture phd filter:混合高斯phd滤波器 eeedepartment eee department uni versi ty melbourne uni versi ty melbourne austral .au/staff/bv/samsi, rtp, nc, usa, september2008 collaborators particularorder): mahler ma.w.k., panta vob.t., cantoni tuanh.d., baddeley bayes(single-target) filter bayes(single-target) filter multi-target tracking multi-target tracking system representation system representation random finite set bayesianmulti-target filtering random finite set bayesianmulti-target filtering tractable multi-target filters tractable multi-target filters probability hypothesis density (phd) filter probability hypothesis density (phd) filter cardinalized phd filter cardinalized phd filter multi-bernoulli filter multi-bernoulli filter conclusions conclusions outline outline bayes(single-target) filter bayes(single-target) filter state-vector target motion state space observation space markovtransition density measurement likelihood objectivemeasurement history posterior(filtering) pdf
高斯辅助粒子算法
高斯辅助粒子算法高斯辅助粒子算法(Gaussian Auxiliary Particle Filter,GAPF)是一种使用高斯辅助粒子的滤波算法,它在目标跟踪、定位和导航等领域有着广泛的应用。
与传统的粒子滤波算法相比,GAPF具有更高的精度和更快的计算速度,因此备受研究者和工程师的青睐。
本文将从算法原理、应用领域和发展趋势等方面对GAPF进行详细介绍,以帮助读者更好地理解这一重要的滤波算法。
一、算法原理GAPF算法是基于粒子滤波算法的一种改进算法,它通过引入高斯辅助粒子来提高滤波的精度和速度。
在传统的粒子滤波中,通过随机采样的方式来估计目标的状态,然后通过权重重新采样来更新粒子的分布。
这种方法在理论上是可行的,但由于需要大量的粒子来保证估计精度,导致计算量非常大,因此无法满足实时性要求。
GAPF算法通过引入高斯辅助粒子来解决这一问题。
具体来说,它利用高斯分布来表示目标的状态空间,并通过多元高斯分布的参数来表示目标的状态。
这样一来,就可以用较少的粒子来表示目标的状态分布,从而降低了计算复杂度。
GAPF算法通过引入高斯辅助粒子的方法来提高对目标状态的估计精度,使得估计结果更加准确和可靠。
二、应用领域GAPF算法在目标跟踪、定位和导航等领域有着广泛的应用。
在目标跟踪方面,由于GAPF算法具有更高的估计精度和更快的计算速度,因此可以更准确地跟踪目标的运动轨迹,从而提高了目标跟踪的效果。
在定位和导航方面,GAPF算法可以通过对目标的多元高斯分布进行估计,来实现对目标位置的准确估计,从而提高了定位和导航的精度和可靠性。
GAPF算法还可以应用在无人机、自动驾驶车辆、智能机器人等领域,通过对目标状态进行估计,来实现对目标的精确定位和跟踪,从而为这些领域的发展提供了重要的技术支持。
三、发展趋势随着计算机技术和人工智能技术的不断发展,GAPF算法也在不断进行改进和完善。
未来,GAPF算法有望在以下几个方面得到进一步的发展。
基于无迹变换的多目标高斯混合粒子PHD滤波
基于无迹变换的多目标高斯混合粒子PHD滤波刘欣;冯新喜;孔云波;王兢【摘要】针对在杂波环境下,一般的高斯混合粒子PHD出现滤波精度不高、滤波发散的问题,提出了一种基于无迹变换的高斯混合粒子PHD.该算法在高斯混合粒子PHD预测的基础之上,采用无迹变换进行重要性采样,结合观测值对采样粒子进行更新,获得重要性密度函数,然后对PHD进行更新.最后,将该算法与高斯混合粒子PHD进行比较;仿真结果表明,该算法在有效提高高斯混合粒子PHD精度的同时,还能提高系统的稳定性.【期刊名称】《弹箭与制导学报》【年(卷),期】2015(035)005【总页数】5页(P17-21)【关键词】多目标跟踪;概率假设密度滤波;无迹变换;高斯混合粒子PHD【作者】刘欣;冯新喜;孔云波;王兢【作者单位】空军工程大学信息与导航学院,西安710077;空军工程大学信息与导航学院,西安710077;空军工程大学信息与导航学院,西安710077;94969部队,上海200400【正文语种】中文【中图分类】TN953在多目标跟踪问题中,由于各目标的状态、目标的数目以及杂波的产生等都是随着时间的变化而变化的,传统的方法一般都是运用关联算法,将传感器与目标对应起来,例如最近邻算法、PDA、JPDA算法以及多假设跟踪算法等,但是这些算法中会存在计算量过大、关联不精确等问题,这一直是学术界和工程应用领域的一个热点问题。
1997年Mahler首次系统地在随机集理论框架下将多传感器多目标的跟踪问题描述为贝叶斯估计问题,并给出了相应的递推公式,开辟了基于随机集理论目标跟踪问题[1]。
为降低算法的复杂度,Mahler通过一些智能的方法得到了概率假设密度滤波器[2]以及势概率假设密度滤波器[3]。
与传统的关联算法相比较,基于随机集的多目标跟踪算法不仅避免了复杂的数据关联过程,而且大大的提高了跟踪的速度与精度。
目前,PHD算法有两种实现方式[4]:一种是高斯混合PHD[5],另外一种是粒子PHD[6]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fast communicationGaussian mixture PHD filter for jump Markov models based on best-fitting Gaussian approximationWenling Li a ,Ã,Yingmin Jia a ,ba The Seventh Research Division and the Department of Systems and Control,Beihang University (BUAA),Beijing 100191,ChinabKey Laboratory of Mathematics,Informatics and Behavioral Semantics (LMIB),Ministry of Education,SMSS,Beihang University (BUAA),Beijing 100191,Chinaa r t i c l e i n f oArticle history:Received 11June 2010Received in revised form 17July 2010Accepted 9August 2010Available online 12August 2010Keywords:Multiple maneuvering targets tracking Probability hypothesis density filter Jump Markov systemBest-fitting Gaussian approximationa b s t r a c tA new Gaussian mixture probability hypothesis density (PHD)filter is developed for tracking multiple maneuvering targets that follow jump Markov models.This approach is based on the best-fitting Gaussian approximation which has been shown to be an accurate predictor of the interacting multiple model (IMM)pared with the existing Gaussian mixture multiple model PHD filter without interacting,simulations show that the proposed filter achieves better results with much less computational expense.&2010Elsevier B.V.All rights reserved.1.IntroductionThe random finite set (RFS)approach to multi-target tracking has received considerable attention in recent years.By representing the multi-target state and multi-target measurement as random finite sets (RFSs),the finite set statistics (FISST)provides a rigorous Bayesian framework for multi-target tracking [1–3].Compared with the traditional association-based techniques [4–6],the difficulty caused by data association is avoided in the RFS formulation.However,the optimal multi-target Bayes filter is generally intractable due to the combinatorial nature of the multi-target densities and multiple set integrals.The probability hypothesis density (PHD)filter,which aims to recursively propagate the first order moment or the intensity function associated with the multi-targetposterior density,provides a computationally tractable alternative.Recently,two implementations of the PHD filter including the sequential Monte Carlo PHD (SMC-PHD)[7–10]and the Gaussian mixture PHD (GM-PHD)[11–16]have been developed.An added advantage of the GM-PHD filter is that it allows the state estimates to be extracted from the posterior intensity in a much more efficient and reliable manner than the SMC-PHD filter [13].For tracking maneuvering targets,the jump Markov model or the switching multiple model approach has shown to be highly effective [17].Multiple model PHD filters,which can be considered as natural extensions of the SMC-PHD and the GM-PHD have been proposed [18–20].It should be mentioned that the existing Gaussian mixture multiple model PHD filters are not interacting [18].In other words,the elemental filters for different models work independently which is similar to the mechanism of the autonomous multiple model approach [17].As stated in [18],how the PHD filter approach can be extended to the interacting multiple model (IMM)remains an interesting and challenging problem in both theory and practice.In this work,thisContents lists available at ScienceDirectjournal homepage:/locate/sigproSignal Processing0165-1684/$-see front matter &2010Elsevier B.V.All rights reserved.doi:10.1016/j.sigpro.2010.08.004ÃCorresponding author.Tel.:+861082338683;fax:+861082316100.E-mail addresses:lwlmath@ (W.Li),ymjia@ (Y.Jia).Signal Processing 91(2011)1036–1042difficulty is circumvented by using the best-fitting Gaussian(BFG)approximation since it has been shown to be an accurate predictor of the IMM performance[21].In this paper,we propose a novel Gaussian mixture implementation to the PHDfilter that accommodates jump Markov models.The basic idea of this approach is to approximate the multi-model prior probability density function with a BFG distribution at each recursion.Thus, the multiple model estimation for jump Markov linear system(JMLS)is reverted to the single model estimation for a linear Gaussian system.Then the GM-PHDfilter can be directly applied to the approximated linear Gaussian system.The key advantages of the proposed algorithm over the existing Gaussian mixture multiple model PHD filter are twofold.First,more accurate estimates can be expected since the BFG approximation is in close agree-ment with the performance of the IMM estimator.Second, much less computational expense is consumed as the resultingfilter requires single model estimation.Simula-tion results are presented to illustrate the performance of the proposed approach in terms of tracking accuracy and computational cost.The rest of this paper is organized as follows.Section2 gives a brief review of the multi-target tracking model and the PHDfilter.Section3introduces the BFG approximation and summarizes the proposed GM-PHD filter.The performance of the proposedfilter is evaluated by a numerical example in Section4.Conclusion is drawn in Section5.2.Multi-target tracking with the PHDfilterIn the multi-target tracking scenario,the aim involves the joint estimation of an unknown and time-varying number of targets as well as their individual states from a sequence of noise-corrupted measurements.In addition, the number of measurements may also vary as not all targets generate measurements and the existence of clutter.More importantly,the orders of the states and the measurements bear no significance.Thus,it is natural to represent the multi-target state and multi-target measurement as two RFSs[1]X k9f x k,1,...,x k,nkg&Xð1ÞZ k9f z k,1,...,z k,mkg&Zð2Þwhere x k,1,...,x k,nk2X are the target states,z k,1,...,z k,mk 2Z are the received measurements.X&R n and Z&R pdenote the state and observation space,respectively.n k and m k denote the number of targets and the number of received measurements at time k,respectively.From the FISST theory,thefirst order moment of an RFS X on X is a non-negative function nðxÞwith the property that for any measurable subset S&XZSnðxÞdx¼Zj X\S j PðdXÞð3Þwhere PðdXÞis the probability distribution of X,and nðxÞis called as the PHD or the intensity function.Moreover,theNomenclatureBFG best-fitting GaussianEKF extended KalmanfilterFISSTfinite set statisticsGM Gaussian mixtureIMM interacting multiple modelOSPA optimal subpattern assignmentPHD probability hypothesis densityRFS randomfinite setSMC sequential Monte CarloUKF unscented Kalmanfilterc cut-off of OSPACov covariance operatorE expectation operatorf single-target transition densityF k r,G k r system transition matrices of model r h single-target measurement likelihood J k number of Gaussian terms for n kJ kþ1j k number of Gaussian terms for n kþ1j k J max maximum number of Gaussian terms m k number of measurements at time k M number of target motion modelsM k+1r event that model r is effect at[k,k+1) n k number of targets at time kp order of OSPAp k+1,r probability of the event M k+1rp D,k detection probability at time kp S,k target-survival probability at time k Q k r covariance matrix of w k for model rr k discrete-time Markov chainR k covariance matrix of measurement noise S measurable subsetT Th pruning thresholdU Th merging thresholdv k measurement noise at time kw k process noise at time kw Th weight thresholdx k,i i th target state at time kX k multi-target state at time kz k,j j th measurement at time kZ k multi-target measurement at time kbk j kÀ1intensity of the spawned RFS at time k gkintensity of the birth RFS at time ke k expectation of the state vector x kk k intensity of the clutter RFS at time kl c average number of clutter pointsp ij transition probability of Markov chainn k j kÀ1predicted intensity at time kÀ1n k posterior intensity at time kY k covariance matrix of the state vector x k S k covariance matrix of w k for BFG model F k system transition matrix of BFG modelA jump Markov modelB BFG modelP probability measureX,Z randomfinite setsW.Li,Y.Jia/Signal Processing91(2011)1036–10421037integral yields an expected number of elements in X that present in S and the corresponding highest peaks give the state estimates of the elements.The PHD filter propagates the intensity functions of multi-target RFSs recursively under the following as-sumptions [13]:(1)Each target evolves and generates measurementsindependently of one another.(2)The clutter RFS is Poisson and is independent of targetgenerated measurements.(3)The predicted multi-target RFSs are Poisson.An RFS X is Poisson means that the distribution of thecardinality of X is Poisson with mean N ¼Rn ðx Þdx and the elements in X are independent and identically distributed with probability density n ðx Þ=N .It can be seen that the statistics of the Poisson RFS can be completely characterized by its first order moment or the intensity function n ðx Þ.To be specific,given the posterior intensity n k À1ðx Þat time k À1,the predicted intensity n k j k À1ðx Þis calculated byn k j k À1ðx Þ¼Z½p S ,k ðx Þf ðx j x Þþb k j k À1ðx j x Þ n k À1ðx Þd x þg k ðx Þð4Þand the posterior intensity n k ðx Þis updated asn k ðx Þ¼½1Àp D ,k ðx Þ n k j k À1ðx ÞþXz 2Z p D ,k ðx Þh ðz j x Þn k j k À1ðx Þk kðz ÞþR p D ,k ðx Þh ðz j x Þn k j k À1ðx Þd x ð5Þwhere f ðÁjÁÞand h ðÁjÁÞare the single-target transitiondensity and likelihood function,respectively.k k ðÁÞdenotes the intensity of the clutter RFS,b k j k À1ðÁj x Þdenotes the intensity of the spawned target RFS,and g k ðÁÞdenotes the intensity of the spontaneously birth target RFS.p S ,k (x )and p D ,k (x )are the probabilities of the target-survival and the detection given a state x ,respectively.3.GM-PHD filter based on BFG approximation 3.1.JMLS with BFG approximationConsider the following target motion model with Markovian switching:x k þ1¼F k ðr k þ1Þx k þG k ðr k þ1Þw k ðr k þ1Þð6Þwhere x k 2R n is the target state at time k ,F k (r k +1)and G k (r k +1)denote the transition matrices of model r k +1.r k +1specifies the target motion model which is in effect during the time interval [k ,k +1).w k (r k +1)is the additive zero-mean white Gaussian noise with covariance Q k (r k +1).We assume that the target motion can switch between M models.The evolution of motion models follows a discrete-time homogeneous Markov chain with known transition probability p ij ¼Pr f r k þ1¼j j r k ¼i g .The objective is to express the dynamics of the JMLS (6)with the BFG approximation x k þ1¼F k x k þw kð7Þwhere w k is a zero-mean white Gaussian random vectorwith covariance matrix S k ,i.e.,w k $N ð0,S k Þ.In other words,we want to replace the JMLS (given by (6)and referred to as ‘‘A ’’)with a single BFG distribution (given by (7)and referred to as ‘‘B ’’).F k and S k are determined such that the distribution of x k has the same mean and covariance under each model,i.e.,E f x k j A g ¼E f x k j B g ð8ÞCov f x k j A g ¼Cov f x k j B gð9ÞSimilar to the calculation in [21],the system matrix F k and the covariance matrix S k of w k can be determined as follows.For simplicity,we denote F k (r ),G k (r )and Q k (r )byF k r ,G k r and Q k r,respectively.First,using the total probability theorem,we have E f x k þ1j A g ¼X M r ¼1E f x k þ1j M r k þ1,A g Pr f M r k þ1j A g¼X M r ¼1p k þ1,r F rk E f x k j A gð10Þwhere M r k +1denotes the event that model r is in effectduring the sampling period [k ,k +1)and p k +1,r is the probability of the event M r k +1.On the other hand,it follows from (7)that E f x k þ1j B g ¼F k E f x k j B gð11ÞHence,comparing (10)with (11)yieldsF k ¼X M r ¼1p k þ1,r F rkð12ÞNext,it can be easily shown that [22]Cov f x k þ1j A g ¼E f Cov f x k þ1j M r k þ1,A ggþCov f E f x k þ1j M rk þ1,A ggð13ÞwhereE f Cov f x k þ1j M r k þ1,A gg¼X M r ¼1p k þ1,r ½F r k Cov f x k j A g½F r k T þG r k Q r k ½G r k Tð14ÞCov f E f x k þ1j M rk þ1,A gg ¼X M r ¼1f p k þ1,r F r k E f x k j Ag E f x k j A g T ½F r k TgÀF k E f x k j A g E f x k j A g T F T kð15ÞDefinee k 9Ef x k j A gð16ÞY k 9Cov f x k j A gð17ÞSubstituting (16)and (17)into (14)and (15),we can thenobtainY k þ1¼X M r ¼1p k þ1,r f F r k ½Y k þe k e T k ½F r k T þG r k Q r k ½G r k T gÀF k e k e T k F Tkð18Þe k þ1¼F k e kð19ÞOn the other hand,it follows from (7)that Cov f x k þ1j B g ¼F k Cov f x k j B g F T k þS kð20ÞW.Li,Y.Jia /Signal Processing 91(2011)1036–10421038Hence,comparing(13)with(20)yieldsS k¼Y kþ1ÀF k Y k F Tkð21ÞUp to now,we have obtained the recursive formula for calculating the system matrix F k and the covariance matrix S k.In other words,the multiple model estimation for JMLS(6)can be reverted to the single model estimation for linear Gaussian system(7)by using the BFG approximation.3.2.GM-PHDfilter based on BFG approximationAssume that the state dynamics and measurements of each target can be modeled asfðx k j x kÀ1Þ¼Nðx k;F kÀ1x kÀ1,S kÀ1Þð22Þhðz k j x kÞ¼Nðz k;H k x k,R kÞð23Þwhere F kÀ1¼P Mr¼1p kþ1,r F rkand S kÀ1¼Y kþ1ÀF k Y k F T kare calculated by the above BFG approximation at each stage.H k and R k denote the measurement matrix and the covariance matrix of the measurement noise,respectively. Note that H k and R k do not evolve with time according to the switching parameter r k.This is reasonable since the measurements from the sensors remain the same with respect to the system states.The target-survival probability p S,k and the detection probability p D,k are both state independent,and the intensities of the birth and spawning RFSs are Gaussian mixturesg k ðxÞ¼X J g,kj¼1w j g,kNðx;m j g,k,P j g,kÞð24Þbk j kÀ1ðx j xÞ¼X J b,kl¼1w l b,kNðx;F l b,k xþd l b,k,Q l b,kÞð25Þwhere J g,k,w j g,k ,m j g,kand P j g,kare given parameters thatdetermine the shape of the birth intensity.J b,k,w lb,k ,F lb,k,d lb,kand Q lb,kare given parameters thatdetermine the shape of the spawning intensity.It should be mentioned that these intensities are not assumed to be mode-dependent as in[20]since the JMLS has been replaced by the linear Gaussian system.Based on the PHD recursion(4)and(5),we summarize the proposed algorithm.BFG approximation step:Given the mode probability p k,i,the mean e k and the covariance Y k,determine the matrices F k and S kp kþ1,r¼X Mi¼1p ir p k,ið26ÞF k¼X Mr¼1p kþ1,r F rkð27ÞY kþ1¼X Mr¼1p kþ1,r½F rkðY kþe k e T kÞ½F r k TþG r k Q r k½G r k T ÀF k e k e T k F T kð28ÞS k¼Y kþ1ÀF k Y k F Tkð29Þe kþ1¼F k e kð30ÞPrediction step:Given that the posterior intensity n kðxÞis a Gaussian mixturen kðxÞ¼X J kj¼1w jkNðx;m jk j k,P jk j kÞð31Þwhere J k is the number of Gaussian terms for n kðxÞat time k.Then the predicted intensity is also a Gaussian mixturewith the formn kþ1j kðxÞ¼n S,kþ1j kðxÞþn b,kþ1j kðxÞþgkþ1ðxÞð32Þwhere g kþ1ðxÞis given by(24),andn S,kþ1j kðxÞ¼p S,kþ1X J kj¼1w jkNðx;m jS,kþ1j k,P jS,kþ1j kÞð33Þn b,kþ1j kðxÞ¼X J kj¼1XJ b,kþ1l¼1w jkw l b,kþ1Nðx;m j,l b,kþ1j k,P j,lb,kþ1j kÞð34Þm jS,kþ1j k¼F k m jk j kð35ÞP jS,kþ1j k¼F k P jk j kF TkþS kð36Þm j,lb,kþ1j k¼F l b,kþ1m jk j kþd l b,kþ1ð37ÞP j,lb,kþ1j k¼F l b,kþ1P jk j k½F l b,kþ1TþQ l b,kþ1ð38ÞUpdate step:Given that the predicted intensity can berepresented as the form ofn kþ1j kðxÞ¼XJ kþ1j ki¼1w ikþ1j kNðx;m i kþ1j k,P i kþ1j kÞð39Þwhere J kþ1j k is the number of Gaussian terms for n kþ1j kðxÞat time k.Then the posterior intensity is updated asn kþ1ðxÞ¼ð1Àp D,kþ1Þn kþ1j kðxÞþXz2Z kþ1n D,kþ1ðx;zÞð40Þwheren D,kþ1ðx;zÞ¼XJ kþ1j ki¼1w ikþ1ðzÞNðx;m ikþ1j kþ1ðzÞ,P ikþ1j kþ1Þð41Þw ikþ1ðzÞ¼p D,kþ1w ikþ1j kq ikþ1ðzÞk kþ1ðzÞþp D,kþ1P J kþ1j kl¼1w lkþ1j kq lkþ1ðzÞð42Þq ikþ1ðzÞ¼Nðz;^z ikþ1j k,H kþ1P ikþ1j kH Tkþ1þR kþ1Þð43Þm ikþ1j kþ1ðzÞ¼m ikþ1j kþK ikþ1ðzÀ^z ikþ1j kÞð44Þ^z ikþ1j k¼H kþ1m ikþ1j kð45ÞP ikþ1j kþ1¼ðIÀK ikþ1H kþ1ÞP ikþ1j kð46ÞK ikþ1¼P ikþ1j kH Tkþ1ðH kþ1P ikþ1j kH Tkþ1þR kþ1ÞÀ1ð47ÞRemark1.It is worthwhile here to compare the proposedalgorithm with the GM-PHDfilter.The prediction step and W.Li,Y.Jia/Signal Processing91(2011)1036–10421039the update step are the same as those of the GM-PHD filter[13,20].The main difference lies in the fact that the system matrix and the noise covariance matrix are computed recursively by using the BFG approximation. As the number of Gaussian components increases without bound,the pruning and merging scheme is required,see [13]for more details.Remark2.Note that the BFG approximation is restricted to the linear dynamic models but places no such requirement on the measurement equation.Thus it is possible to handle nonlinear measurements by using nonlinearfilters such as the extended Kalmanfilter (EKF)or the unscented Kalmanfilter(UKF).Indeed,in the target tracking community,the target dynamics are often described by a linear kinematics model,and measurements are nonlinear with respect to the system states.4.SimulationsThis section presents a numerical example to compare the performance and the computational cost of the proposedfilter with that of the Gaussian mixture multiple model PHDfilter without interacting.Tracking model:Consider a two-dimensional scenario with an unknown and time-varying number of targets, which is similar to the example provided in[20].The state x k¼½p x,k_p x,k p y,k_p y,k T of each target consists of position (p x,k p y,k)and velocityð_p x,k_p y,kÞcomponents.The target dynamics is described by the following coordinated turn model:x k¼1sinðo TÞo0À1Àcosðo TÞo0cosðo TÞ0Àsinðo TÞ1Àcosðo TÞo1sinðo TÞo0sinðo TÞ0cosðo TÞ266666664377777775x kÀ1þT22T0T20T2666666437777775w kÀ1ð48Þwhere o denotes the turn rate and T=1is the sampling time period.Three models corresponding to different turn rates are used.Model1is a coordinated turn model with a turn rate of01/s and the standard deviation of noise is5m/s2. Model2is a coordinated turn model with a clockwise turn rate of31/s and the standard deviation of noise is20m/s2. Model3is a coordinated turn model with a counter-clockwise turn rate of31/s and the standard deviation of noise is20m/s2.The switching between three models is governed by afirst order Markov chain with known transition probability matrixP¼0:80:10:10:10:80:10:10:10:8264375ð49ÞThe measurement consisting of range and bearing is given byy k¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp x,kÀs xÞ2þðp y,kÀs yÞ2qarctan½ðp x,kÀs xÞ=ðp y,kÀs yÞ2435þv kð50Þwhere[s x,s y]is the location of the sensor,and themeasurement noise v k is assumed to be zero-mean whiteGaussian with R¼diag f1002ðp=180Þ2g.The sensor islocated at[35,À60]km.The average number of clutterreturns per unit volume is taken as l c¼0:347ðrad kmÞÀ1over the region½Àp=2,p=2 rad½0,22 km,which gives anaverage of24clutter points per scan.In this work,the UKFis used to handle the nonlinearity of the measurement.It is assumed that targets can appear or disappear inthe scene at any time.The spontaneous birth RFS isPoisson with the following intensity:gkðxÞ¼0:1½Nðx;m1g,P gÞþNðx;m2g,P gÞ ð51Þwherem1g¼½40,0,À50,0 Tm2g¼½30,0,À40,0 TP g¼diag f106,104,106,104gThe intensity of the Poisson RFS of spawn births isgiven bybk j kÀ1ðx j xÞ¼0:05Nðx;x,Q bÞð52Þwhere Q b¼diag f104,400,104,400g.Simulation results:In our simulations,the survival andthe detection probabilities are set to p S,k=0.99andp D,k=0.98,respectively.The pruning threshold has beentaken as T Th=10À7,the merging threshold U Th=5,theweight threshold w Th=0.5and the maximum number ofGaussian terms J max=10(see[13]for the meanings ofthese parameters).The criterion known as optimalsubpattern assignment(OSPA)metric is used for perfor-mance evaluation.The OSPA metric has been consideredas a much more natural and intuitive interpretation fordemonstrating the localization and cardinality errors inthe multi-target tracking community.Readers are referredto[23]for more details on the definition of the OSPAmetric.Fig.1shows the true trajectories of four targets with atypical frame of cluttered measurements.Target1startsat time k=1with initial position at[40,À50]km and endsat time k=100;Target2is spawned from target1at time50and ends at time90;Target3starts at time k=5withinitial position at[30,À40]km and ends at time k=85;Target4is spawned from target3at time25and ends attime60.To verify the performance of the proposedfilter,100Monte Carlo runs are performed with independentlygenerated clutter and measurements for each trial.Theposition estimates of the proposedfilter for one trialshown in Fig.2indicate that thefilter provides accuratetracking performance.The OSPA distance for p=2andc=200is shown in Fig.3,which suggests that theproposedfilter gives more reliable estimates thanthe existing Gaussian mixture multiple model PHDfilter without interacting.To assess the computationalrequirements of the proposed method,we compute theaveraged CPU time in MATLAB7.1on a2.80GHz4CPUPentium-based computer operating under Windows XP(Professional).The proposedfilter consumed approxi-mately4.5s per sample run over100time steps,while theW.Li,Y.Jia/Signal Processing91(2011)1036–10421040Gaussian mixture multiple model PHD filter consumed 48.8s.From the above comparisons,a modest conclusion can be drawn that the proposed tracking algorithm can achieve better performance with much less computa-tional expense.5.ConclusionA novel Gaussian mixture PHD filter for tracking multiple maneuvering targets with Markovian switching dynamics is developed by employing the BFG approximation approach.2.62.833.2 3.4 3.6 3.844.2−5.2−5−4.8−4.6−4.4−4.2−4−3.84x104X coordinate (m)Y c o o r d i n a t e (m )Fig.1.Measurement data (projected on the x -and y -axes)and target trajectories:‘‘3’’locations of target birth;‘‘&’’locations of target death.2.62.833.2 3.4 3.6 3.844.2−5.2−5−4.8−4.6−4.4−4.2−4−3.84x 104X coordinate (m)Y c o o r d i n a t e (m )Fig.2.Position estimates of the PHD-BFGUKF.W.Li,Y.Jia /Signal Processing 91(2011)1036–10421041The BFG approximation gives a measure that is in close agreement with the performance of the IMM estimator,which suggests that the proposed filter achieves more accurate results than the Gaussian mixture multiple model PHD filter without interacting.Moreover,the multiple model estimation is avoided and a low computational cost is expected.Simulations are presented to verify the theoretical results.AcknowledgementsThis work was jointly supported by the NSFC (60727002,60774003,60921001,90916024),the MOE (20030006003),the COSTIND (A2120061303),and the National 973Program (2005CB321902).References[1]R.Mahler,Statistical Multisource–Multitarget Information Fusion,Artech House,Norwood,MA,2007.[2]R.Mahler,Multitarget bayes filtering via first-order multitargetmoments,IEEE Transactions on Aerospace and Electronic Systems 39(4)(2003)1152–1178.[3]R.Mahler,PHD filters of higher order in target number,IEEETransactions on Aerospace and Electronic Systems 43(4)(2007)1523–1543.[4]Y.Bar-Shalom,T.E.Fortmann,Tracking and Data Association,Academic Press,New York,1988.[5]C.Hue,J.P.Lecadre,P.Perez,Sequential Monte Carlo methods formultiple target tracking and data fusion,IEEE Transactions on Signal Processing 5(2)(2002)309–325.[6]S.Blackman,Multiple hypothesis tracking for multiple target tracking,IEEE Aerospace and Electronic Systems Magazine 19(1)(2004)5–18.[7]H.Sidenbladh,Multi-target particle filtering for the probabilityhypothesis density,in:Proceedings of the International Conference on Information Fusion,Cairns,Australia,2003,pp.800–806.[8]B.N.Vo,S.Singh, A.Doucet,Sequential Monte Carlo methodsfor multi-target filtering with random finite sets,IEEE Transactions on Aerospace and Electronic Systems 41(4)(2005)1224–1245.[9]K.Panta,B.N.Vo,S.Singh,Novel data association schemes for theprobability hypothesis density filter,IEEE Transactions on Aero-space and Electronic Systems 43(2)(2007)556–570.[10]M.Vihola,Rao–Blackwellised particle filtering in random setmultitarget tracking,IEEE Transactions on Aerospace and Electronic Systems 43(2)(2007)689–705.[11]H.Zhang,Z.Jing,S.Hu,Gaussian mixture CPHD filter with gatingtechnique,Signal Processing 89(8)(2009)1521–1530.[12]H.Zhang,Z.Jing,S.Hu,Localization of multiple emitters based onthe sequential PHD filter,Signal Processing 90(1)(2010)34–43.[13]B.N.Vo,W.K.Ma,The Gaussian mixture probability hypothesisdensity filter,IEEE Transactions on Signal Processing 54(11)(2006)4091–4104.[14]B.T.Vo, B.N.Vo, A.Cantoni,Analytic implementations of thecardinalized probability hypothesis density filter,IEEE Transactions on Signal Processing 55(7)(2007)3553–3567.[15]B.T.Vo,B.N.Vo,A.Cantoni,Bayesian filtering with random finite setobservations,IEEE Transactions on Signal Processing 56(4)(2008)1313–1326.[16]K.Panta,D.E.Clark,B.N.Vo,Data association and track manage-ment for the Gaussian mixture probability hypothesis density filter,IEEE Transactions on Aerospace and Electronic Systems 45(3)(2009)1003–1016.[17]X.R.Li,V.P.Jilkov,Survey of maneuvering target tracking.Part V:multiple-model methods,IEEE Transactions on Aerospace and Electronic Systems 41(4)(2005)1255–1321.[18]B.N.Vo,A.Pasha,H.D.Tuan,A Gaussian mixture PHD filter fornonlinear jump Markov models,in:Proceedings of the 45th IEEE Conference on Decision and Control,San Diego,CA,USA,December,2006,pp.6063–6068.[19]K.Punithakumar,T.Kirubarajan,A.Sinha,Multiple model probabilityhypothesis density filter for tracking maneuvering targets,IEEE Transactions on Aerospace and Electronic Systems 44(1)(2008)87–98.[20]S.A.Pasha,B.N.Vo,H.D.Tuan,W.K.Ma,A Gaussian mixture PHDfilter for jump Markov system models,IEEE Transactions on Aerospace and Electronic Systems 45(3)(2009)919–936.[21]M.L.Hernandez, B.Ristic, A.Farina,T.Sathyan,T.Kirubarajan,Performance measure for Markovian switching systems using best-fitting Gaussian distributions,IEEE Transactions on Aerospace and Electronic Systems 44(2)(2008)724–747.[22]G.R.Grimmett, D.R.Stirzaker,One Thousand Exercises in Prob-ability,Oxford University Press,London,2001.[23]D.Schuhmacher, B.T.Vo, B.N.Vo,A consistent metric forperformance evaluation of multi-object filters,IEEE Transactions on Signal Processing 56(8)(2008)3447–3457.01020304050607080901008090100110120130140150160170180Time (s)O S P A (c =200, p =2)Fig.3.OSPA distances for the PHD-MMUKF and the PHD-BFGUKF.W.Li,Y.Jia /Signal Processing 91(2011)1036–10421042。