第三章栈和队列

合集下载

数据结构-Java语言描述 第三章 栈和队列

数据结构-Java语言描述 第三章 栈和队列

System.exit(1);
}
栈顶指针top的初始值决
top=-1;
定了后续其他方法的实现
stackArray=(T[])new Object[n];
}
【算法3-2】入栈
public void push(T obj)
{
if(top==stackArray.length-1){
T []p=(T[])new Object [top*2];
(b)元素a2入栈
an … … a2 a1
(c)元素an入栈
an-1 … a2 a1
(d)元素an出栈
a2 a1
(e)元素a3出栈
a1
(f)元素a2出栈
【例3-1】一个栈的输入序列是1、2、3、4、5,若在 入栈的过程中允许出栈,则栈的输出序列4、3、5、1、 2可能实现吗?1、2、3、4、5的输出呢?
型 正序遍历:依次访问栈中每个元素并输出
3.1.2 顺序栈
顺序栈泛型类的定义如下:
public class sequenceStack<T> {
顺序栈中一维数组 的初始长度
final int MaxSize=10;
private T[] stackArray; 存储元素的数组对象
private int top;
public void nextOrder() {
for(int i=top;i>=0;i--) System.out.println(stackArray[i]);
}
【算法3-8】清空栈操作
public void clear() {
top=-1; }
3.1.3 链栈
栈的链接存储结构称为链栈。结点类的定义,同 第二章Node类。

数据结构(C语言)第3章 栈和队列

数据结构(C语言)第3章 栈和队列

Data Structure
2013-8-6
Page 13
栈的顺序存储(顺序栈)
利用一组地址连续的存储单元依次存放自栈底到栈顶的数 据元素。 结构定义: #define STACK_INIT_SIZE 100; // 存储空间初始分配量 #define STACKINCREMENT 10; // 存储空间分配增量 typedef struct { SElemType *base; // 存储空间基址 SElemType *top; // 栈顶指针 int stacksize; // 当前已分配的存储空间,以元素位单位 } SqStack;
解决方案2:
顺序栈单向延伸——使用一个数组来存储两个栈
Data Structure 2013-8-6 Page 21
两栈共享空间 两栈共享空间:使用一个数组来存储两个栈,让一个 栈的栈底为该数组的始端,另一个栈的栈底为该数组 的末端,两个栈从各自的端点向中间延伸。
Data Structure
2013-8-6
链栈需要加头结点吗? 链栈不需要附设头结点。
Data Structure
2013-8-6
Page 27
栈的链接存储结构及实现
Data Structure
2013-8-6
Page 11
GetTop(S, &e) 初始条件:栈 S 已存在且非空。 操作结果:用 e 返回S的栈顶元素。 Push(&S, e) 初始条件:栈 S 已存在。 操作结果:插入元素 e 为新的栈顶元素。 Pop(&S, &e) 初始条件:栈 S 已存在且非空。 操作结果:删除 S 的栈顶元素,并用 e 返回其值。
Data Structure

大学数据结构课件--第3章 栈和队列

大学数据结构课件--第3章 栈和队列
top top 栈空 F E D C B A
栈满 top-base=stacksize
top
F
E
D C B
top top top top top top base
入栈PUSH(s,x):s[top++]=x; top 出栈 POP(s,x):x=s[--top]; top
base
4
A
3.1 栈
例1:一个栈的输入序列为1,2,3,若在入栈的过程中 允许出栈,则可能得到的出栈序列是什么? 答: 可以通过穷举所有可能性来求解:
3.2 栈的应用举例
二、表达式求值
“算符优先法”
一个表达式由操作数、运算符和界限符组成。 # 例如:3*(7-2*3) (1)要正确求值,首先了解算术四则运算的规则 a.从左算到右 b.先乘除后加减 c.先括号内,后括号外 所以,3*(7-2*3)=3*(7-6)=3*1=3
9
3.2 栈的应用举例
InitStack(S); while (!QueueEmpty(Q))
{DeQueue(Q,d);push(S,d);}
while (!StackEmpty(S)) {pop(S,d);EnQueue(Q,d);} }
第3章 栈和队列
教学要求:
1、掌握栈和队列的定义、特性,并能正确应用它们解决实 际问题;
用一组地址连续的存储单元依次存放从队头到队尾的元素, 设指针front和rear分别指示队头元素和队尾元素的位置。
Q.rear 5 4 Q.rear 3 2 3 2 5 4 Q.rear 3 3 5 4 5 4
F E D C
C B A
Q.front
2 1 0
C B
Q.front 2 1 0

第三章 栈和队列

第三章 栈和队列

栈和队列的基本操作是线性表操作的子集,是限定性(操作受限制)的数据结构。

第三章栈和队列数据结构之栈和队列23. 1 栈¾定义:是限定仅在表尾进行插入或删除操作的线性表。

(后进先出线性表LIFO)¾栈底指针(base) :是线性表的基址;¾栈顶指针(top):指向线性表最后一个元素的后面。

¾当top=base 时,为空栈。

¾基本操作:InitStack(&S), DestroyStack(&S),StackEmpty(S) , ClearStack(&S),GetTop(S ,&e), StackLength(S) ,Push(&S, e): 完成在表尾插入一个元素e.Pop(&S,&e): 完成在表尾删除一个元素。

数据结构之栈和队列3¾栈的表示和实现¾顺序栈:是利用一组地址连续的存储单元依次存放自栈底到栈顶的数据元素;栈满之后,可再追加栈空间即为动态栈。

¾顺序栈的结构类型定义:typedef int SElemType;typedef struct{SElemType *base; /* 栈底指针*/SElemType *top; /* 栈顶指针*/int stacksize; /* 栈空间大小*/ }SqStack;数据结构之栈和队列4¾基本算法描述¾建立能存放50个栈元素的空栈#define STACK_INIT_SIZE 50#define STACKINCREMENT 10Status InitStack_Sq(Stack &S){S.base=(SET*)malloc(STACK_INIT_SIZE *sizeof(SET)); /*为栈分配空间*/if(S.base==NULL)exit(OVERFLOW); /*存储分配失败*/ S.top=S.base;S.stacksize = STACK_INIT_SIZE;return OK; }数据结构之栈和队列5¾出栈操作算法void pop(Sqstack s,SElemType e){if(s.top= = s.base)return ERROR;else{s.top--;e= *s.top;}return OK;}出栈操作topABY topABYbase base数据结构之栈和队列6¾压栈操作算法void Push(SqStack s,SElemType e)if(s.top-s.base>= S.stacksize;) {S.base=(SET*)realloc(S,base,(S.stacksize+STACKINCREMEN T) *sizeof(SET)); /*为栈重新分配空间*/if(!S.base)exit(OVERFLOW);S.top=S.base+S.stacksize;S.stacksize+=STACKINCREMENT;}*S.top=e;S.top++;}return OK; }topAB压栈操作topABebase base数据结构之栈和队列7¾栈的销毁void DestroyStack_Sq(Stack &S){ if (S.base) free(S.base);S.base=NULL;S.top=NULL;S.stacksize=0;}¾栈的清除void ClearStack_Sq(Stack &S){ S.top = S.base ;}数据结构之栈和队列8¾判断栈是否为空栈Status StackEmpty_Sq(Stack S){ if(S.top==S.base) return TRUE;else return FALSE;}¾获得栈的实际长度int StackLength_Sq(Stack S){return(abs(S.top-S.base));}数据结构之栈和队列9¾多个栈共享邻接空间两个栈共享一空间::::::top1top21m中间可用空间栈1栈2地址Base1Base 2……数据结构之栈和队列103. 3 栈与递归¾递归函数:一个直接调用自己或通过一系列的调用语句间接地调用自己的函数。

第3章栈和队列-数据结构与算法(第2版)-汪沁-清华大学出版社

第3章栈和队列-数据结构与算法(第2版)-汪沁-清华大学出版社

an
队头
队尾
队列示意图
入队
13
2、队列的基本运算
初始化队列 INIQUEUE(&Q)
将队列Q设置成一个空队列。
入队列
ENQUEUE(&Q,X)
将元素X插入到队尾中,也称“进队” ,“插入”。
出队列
DLQUEUE(&Q)
将队列Q的队头元素删除,也称“退队”、“删除”。
取队头元素 GETHEAD(Q)
也就是说,栈是一种后进先出(Last In First Out)的线性表,简称为LIFO表。
3
2、栈的运算
初始化栈:INISTACK(&S)
将栈S置为一个空栈(不含任何元素)。
进栈:PUSH(&S,X)
将元素X插入到栈S中,也称为 “入栈”、 “插入”、 “压 入”。
出栈: POP(&S)
删除栈S中的栈顶元素,也称为”退栈”、 “删除”、 “弹 出”。
9
三、链栈
typedef struct Lsnode { ElemType data;
struct Lsnode *next; } Lsnode *top;
一个链表栈由ቤተ መጻሕፍቲ ባይዱ顶指针top唯一确定。
10
1、链栈的主要运算
进栈操作 void Push(Lsnode *top; ElemType x)
{ p=(Lsnode *)malloc(sizeof(Lsnode)); p->data=x; p->next=top->next; top->next=p; }/*Push*/
第3章 栈和队列
1
栈和队列是二种特殊的线性表。是操作受 限的线 性表。 一、栈

第三章 栈

第三章 栈

S
∧ base
进栈算法
int lpush(Lstack s, int e)
{
S
e P
p=(Lstack)malloc(sizeof(lnode));
p->data=e; p->next=s; s=p; return (1); }
S
∧ base
2.3.1.3 栈的应用
(1) 过程的嵌套
主 程 序 r 子 程 序 1 s r 子 程 序 2
S
∧ base
进栈算法
int lpush(Lstack s, int e)
{
P p=(Lstack)malloc(sizeof(lnode));
p->data=e; S
p->next=s;
s=p; return (1); }
∧ base
进栈算法
int lpush(Lstack s, int e)
4 3 2
栈s
top a4 a3 a2 a1
else { - -top;
*py=s[top]; /*返回出栈元素*/
1
0
*ptop=top;
return(1);}}
(2)链栈
用指针来实现的栈叫链栈。栈的容量事先不能 估计时采用这种存储结构。 链栈的类型说明如下:
Typedef struct lnode
(c) 7,5,9,3 (d) 9,5,7,3
A[T]是栈顶元素
P76#15 用一维数组设计栈,初态是栈空, top=0。现有输入序列是 a、b、c、d,经过 push 、push、pop、push、pop、push操作后,输出 序列是( b、c ),栈顶指针是( 2 )

《数据结构(C语言)》第3章 栈和队列

《数据结构(C语言)》第3章 栈和队列
Data structures

❖ 栈的顺序存储与操作 ❖ 1.顺序栈的定义
(1) 栈的静态分配顺序存储结构描述 ② top为整数且指向栈顶元素 当top为整数且指向栈顶元素时,栈空、入栈、栈满 及出栈的情况如图3.2所示。初始化条件为 S.top=-1。
(a) 栈空S.top==-1 (b) 元素入栈S.stack[++S.top]=e (c) 栈满S.top>=StackSize-1 (d) 元素出栈e=S.stack[S.top--]
/*栈顶指针,可以指向栈顶
元素的下一个位置或者指向栈顶元素*/
int StackSize; /*当前分配的栈可使用的以 元素为单位的最大存储容量*/
}SqStack;
/*顺序栈*/
Data structures

❖ 栈的顺序存储与操作 ❖ 1.顺序栈的定义
(2) 栈的动态分配顺序存储结构描述 ① top为指针且指向栈顶元素的下一个位置 当top为指针且指向栈顶元素的下一个位置时,栈空 、入栈、栈满及出栈的情况如图3.3所示。初始化条 件为S.top=S.base。
…,n-1,n≥0} 数据关系:R={< ai-1,ai>| ai-1,ai∈D,i=1,2
,…,n-1 } 约定an-1端为栈顶,a0端为栈底 基本操作:
(1) 初始化操作:InitStack(&S) 需要条件:栈S没有被创建过 操作结果:构建一个空的栈S (2) 销毁栈:DestroyStack(&S) 需要条件:栈S已经被创建 操作结果:清空栈S的所有值,释放栈S占用的内存空间
return 1;
}
Data structures

第三章栈和队列

第三章栈和队列
西南交通大学信息科学与技术学院软件工程系‐赵宏宇
续8
//循环队列实现方案二 在SqQueue结构体中增设计数变量c,记录队列中当前 元素个数 void clearQueue(SqQueue &q) { q.r=q.f=-1; q.c=0; //r=f=-1~n-1区间任意整数均可 } int empty(SqQueue &q) { return q.c==0; } int full(SqQueue &q) { return q.c==q.n; } //队空、队满时q.f==q.r均为真 //优点:队满时没有空闲元素位置(充分利用了空间)
西南交通大学信息科学与技术学院软件工程系‐赵宏宇 数据结构A 第3章‐19
西南交通大学信息科学与技术学院软件工程系‐赵宏宇
数据结构A 第3章‐20
3.3 栈的应用
续1
3.3 栈的应用
续2
2. 栈与递归 (1) 递归程序的存储空间消耗 由于函数调用的指令返回地址、形式参数以及断 点状态均用系统堆栈实现存储,因此递归调用的层次 数(深度)决定了系统堆栈必须保留的存储空间容量大小。 例1 以下函数用递归法实现n元一维数组元素逆序存储, 试分析所需栈的深度。 void reverse(ElemTp a[], int i, int j) //数组a下标范围i..j实现元素逆序存储 { if(i<j) { a[i]a[j]; reverse(a, i+1, j-1); } }
西南交通大学信息科学与技术学院软件工程系‐赵宏宇 数据结构A 第3章‐7
3. 堆栈习题举例 例1 若元素入栈次序为ABC,写出所有可能的元素出栈 次序。 答: 所有可能的元素出栈次序共5种,即 ABC 操作PXPXPX (P表示入栈,X表示退栈) ACB PXPPXX BAC PPXXPX BCA PPXPXX CBA PPPXXX

第3章_栈和队列

第3章_栈和队列
第三章 栈和队列
(Chapter 3. பைடு நூலகம்tack and Queue)
栈的概念、存储结构及其基本操作
栈的应用举例 队列的概念、存储结构及其基本操作
§3.1 栈
3.1.1 栈的定义及基本运算
• 定义:只能在表尾(栈顶)进行插入和删除操 作进行的线性表。 • 特点: 后进先出(LIFO—Last In First Out )
top 栈顶
an an-1
. . .
a1 ∧
栈底
空栈: top == NULL
16

入栈
LinkStack Push_LS (LinkStack top,datatype x) { StackNode *p ; top p = (StackNode *) malloc (sizeof( StackNode)); p->data = x; top p->next = top; top = p; return top; }
23
2
括号匹配的检验:
问题:两种括号,可以嵌套使用,但不能重叠 解决:使用栈。 {([ ][ ])} 左括号进栈, 右括号就从栈顶出栈一个左括号, 检查是否能够匹配。 算法开始和结束时,栈都应该是空的。
匹配一个字符串中的左、右括号。如
[ a * ( b + c ) + d ]
( 出栈
( )匹配
[ 出栈
3.1.2 栈的存储及运算实现

顺序栈 -- 栈的顺序存储表示 链栈 -- 栈的链式存储表示

4
1 顺序栈
顺序栈类型的定义 – 本质 顺序表的简化,唯一需要确定的是栈顶、栈底。 – 通常 栈底:下标为0的一端 栈顶:由top指示,空栈时top=-1

第3章 栈和队列

第3章 栈和队列

例五、 表达式求值 例五、
限于二元运算符的表达式定义:
操作数) 运算符 运算符) 操作数 操作数) 表达式 ::= (操作数 + (运算符 + (操作数 操作数 操作数 ::= 简单变量 | 表达式 简单变量 :: = 标识符 | 无符号整数
表达式的三种标识方法: 表达式的三种标识方法: 设 Exp = S1 + OP + S2 则称 OP + S1 + S2 S1 + OP + S2 S1 + S2 + OP 为前缀表示法 前缀表示法 为中缀表示法 中缀表示法 为后缀表示法 后缀表示法
例如:(1348)10 = (2504)8 ,其 例如: 运算过程如下:
计 算 顺 序
N N div 8 N mod 8 1348 168 4 168 21 0 21 2 5 2 0 2
输 出 顺 序
void conversion () { InitStack(S); scanf ("%d",&N); while (N) { Push(S, N % 8); N = N/8; } while (!StackEmpty(S)) { Pop(S,e); printf ( "%d", e ); } } // conversion
栈和队列是两种常用的数据类型
3.1 栈的类型定义 3.2 栈的应用举例 3.3 栈类型的实现 3.4 队列的类型定义 3.5 队列类型的实现
3.1 栈的类型定义
ADT Stack { 数据对象: 数据对象 D={ ai | ai ∈ElemSet, i=1,2,...,n, n≥0 } 数据关系: 数据关系 R1={ <ai-1, ai >| ai-1, ai∈D, i=2,...,n } 约定an 端为栈顶,a1 端为栈底。 基本操作: 基本操作: } ADT Stack

数据结构课件第3篇章栈和队列

数据结构课件第3篇章栈和队列

循环队列实现原理
01
循环队列定义
将一维数组看作首尾相接的环形结构,通过两个指针(队头和队尾指针)
在数组中循环移动来实现队列的操作。当队尾指针到达数组末端时,再
回到数组起始位置,形成循环。
02
判空与判满条件
在循环队列中,设置一个标志位来区分队列为空还是已满。当队头指针
等于队尾指针时,认为队列为空;当队尾指针加1等于队头指针时,认
栈在函数调用中应用
函数调用栈
在程序执行过程中,每当发生函数调用时,系统会将当前函数的执行上下文压入一个专门的栈中,称为函数调用 栈。该栈用于保存函数的局部变量、返回地址等信息。当函数执行完毕后,系统会从函数调用栈中弹出相应的执 行上下文,并恢复上一个函数的执行状态。
递归调用实现
递归调用是一种特殊的函数调用方式,它通过在函数调用栈中反复压入和弹出同一函数的执行上下文来实现对问 题的分解和求解。在递归调用过程中,系统会根据递归深度动态地分配和管理函数调用栈的空间资源。
栈和队列的应用
栈和队列在计算机科学中有着广泛的应用,如函数调用栈、表达式求 值、缓冲区管理等。
常见误区澄清说明
误区一
栈和队列的混淆。虽然栈和队列都是线性数据结构,但它们的操作方式和应用场景是不同的。栈是后进先出,而队列 是先进先出。
误区二
认为栈和队列只能通过数组实现。实际上,栈和队列可以通过多种数据结构实现,如链表、循环数组等。具体实现方 式取决于应用场景和需求。
后缀表达式求值
利用栈可以方便地实现后缀表达式的求值。具体步骤 为:从左到右扫描表达式,遇到数字则入栈,遇到运 算符则从栈中弹出所需的操作数进行计算,并将结果 入栈,最终栈中剩下的元素即为表达式的结果。
中缀表达式转换为后缀表达式

第3章 限定性线性表——栈和队列

第3章  限定性线性表——栈和队列

两栈共享技术(双端栈):
主要利用了栈“栈底位置不变,而栈顶位置动态变
化”的特性。首先为两个栈申请一个共享的一维数 组空间S[M],将两个栈的栈底分别放在一维数组的 两端,分别是0,M-1。
共享栈的空间示意为:top[0]和top[1]分别为两个 栈顶指示器 。
Stack:0
M-1
top[0]
top[1]
(1)第i号栈的进栈操作 int pushi(LinkStack top[M], int i, StackElementType x) { /*将元素x进入第i号链栈*/
LinkStackNode *temp; temp=(LinkStackNode * )malloc(sizeof(LinkStackNode)); if(temp==NULL) return(FALSE); /* 申请空间失败 */ temp->data=x; temp->next=top[i]->next; top[i]->next=temp; /* 修改当前栈顶指针 */ return(TRUE); }
case 1:if(S->top[1]==M) return(FALSE);
*x=S->Stack[S->top[1]];S->top[1]++;break;
default: return(FALSE);
}
return(TRUE);
返回主目录
}
【思考题】
说明读栈顶与退栈顶的处理异同,并标明将已知 的退栈顶算法改为读栈顶算法时应做哪些改动。
返回主目录
链栈的进栈操作
int Push(LinkStack top, StackElementType x)

数据结构实用教程(C语言版) 第3章 栈和队列

数据结构实用教程(C语言版)  第3章 栈和队列
返回到本节目录
3.1.1 栈的概念
假设有一个栈S=(a1,a2,…,an),栈 中元素按a1,a2,…,an的次序进栈后, 进栈的第一个元素a1为栈底元素,出栈的第 一个元素an为栈顶元素,也就是出栈的操作 是按后进先出的原则进行的,其结构如图31所示。
图3-1栈结构示意图
返回到本节目录
3.1.2栈的基本操作
3.1.3顺序栈
由于栈是操作受限制的线性表,因此与线性表类似,栈也 有两种存储结构,即顺序存储结构和链式存储结构。 1. 顺序栈的定义 栈的顺序存储结构称为顺序栈。类似于顺序表的类型定义,顺 序栈是用一个预设的足够长度的一维数组和一个记录栈顶元素 位置的变量来实现。顺序栈中栈顶指针与栈中数据元素的关1.3顺序栈
3. 顺序栈的基本操作实现
(3)进栈操作 进栈操作的过程如图3-3所示。先判断栈S如图3-3(a) 是否为满,若不满再将记录栈顶的下标变量top加1如 图3-3(b),最后将进栈元素放进栈顶位置上如图33(c)所示,算法描述见算法3.3。
图3-3 进栈操作过程图
返回到本节目录
栈除了在栈顶进行进栈与出栈外,还有初始化、判空 等操作,常用的基本操作有: (1)初始化栈InitStack(S)。其作用是构造一个空 栈 S。 (2)判断栈空EmptyStack(S)。其作用是判断是 否是空栈,若栈S为空,则返回1;否则返回0。 (3)进栈Push(S,x)。其作用是当栈不为满时,将 数据元素x插入栈S中,使其为栈S的栈顶元素。 (4)出栈Pop(S,x)。其作用是当栈S不为空时,将 栈顶元素赋给x,并从栈S中删除当前栈顶元素。 (5)取栈顶元素GetTop(S,x)。其作用是当栈S不 为空时,将栈顶元素赋给x并返回,操作结果只是 读取栈顶元素,栈S不发生变化。 返回到本节目录

第3章栈和队列

第3章栈和队列
第3章栈和队列

3.1.2 栈的表示和算法实现
1.顺序栈 2.链栈
第3章栈和队列
1. 顺序栈 顺序栈是用顺序存储结构实现的栈,即利 用一组地址连续的存储单元依次存放自栈 底到栈顶的数据元素,同时由于栈的操作 的特殊性,还必须附设一个位置指针top( 栈顶指针)来动态地指示栈顶元素在顺序 栈中的位置。通常以top=-1表示空栈。
第 3 章 栈和队列
3.1 栈 3.2 队列 3.3 栈和队列的应用
第3章栈和队列
3.1 栈
3.1.1 栈的抽象数据类型定义 3.1.2 栈的表示和算法实现
第3章栈和队列
3.1.1 栈的定义
1.栈的定义 栈(stack)是一种只允许在一端进行插入和删除的线 性表,它是一种操作受限的线性表。在表中只允许进
行插入和删除的一端称为栈顶(top),另一端称为 栈 底 (bottom) 。 栈 的 插 入 操 作 通 常 称 为 入 栈 或 进 栈 (push),而栈的删除操作则称为出栈或退栈(pop)。 当栈中无数据元素时,称为空栈。
栈是按照后进先出 (LIFO)的原则组 织数据的,因此, 栈也被称为“后进 先出”的线性表。
第3章栈和队列
(2)入栈操作
Status Push(SqStack &S, Elemtype e)
【算法3.2 栈的入栈操作】
{ /*将元素e插入到栈S中,作为S的新栈顶*/
if (S->top>= Stack_Size -1) return ERROR;
else { S->top++;
S->elem[S->top]=e;
return OK;}
Push(S,’you’)

数据结构(C语言版)第3章 栈和队列

数据结构(C语言版)第3章 栈和队列

typedef struct StackNode {
SElemType data;
S
栈顶
struct StackNode *next;
} StackNode, *LinkStack;
LinkStack S;

栈底
链栈的初始化
S

void InitStack(LinkStack &S ) { S=NULL; }
top
C
B
base A
--S.top; e=*S.top;
取顺序栈栈顶元素
(1) 判断是否空栈,若空则返回错误 (2) 否则通过栈顶指针获取栈顶元素
top C B base A
Status GetTop( SqStack S, SElemType &e) { if( S.top == S.base ) return ERROR; // 栈空 e = *( S.top – 1 ); return OK; e = *( S.top -- ); ??? }
目 录 导 航
Contents
3.1 3.2 3.3 3.4 3.5
栈和队列的定义和特点 案例引入 栈的表示和操作的实现 栈与递归 队列的的表示和操作的实现
3.6
案例分析与实现
3.2 案例引入
案例3.1 :一元多项式的运算
案例3.2:号匹配的检验
案例3.3 :表达式求值
案例3.4 :舞伴问题
目 录 导 航
top B base A
清空顺序栈
Status ClearStack( SqStack S ) { if( S.base ) S.top = S.base; return OK; }

第3章数据结构栈和队列

第3章数据结构栈和队列

第3章数据结构栈和队列数据结构是计算机科学中重要的基础知识之一,它是用于组织和管理数据的方法。

栈和队列是其中两种常见的数据结构,它们分别以后进先出(Last In First Out,LIFO)和先进先出(First In First Out,FIFO)的方式操作数据。

本文将详细介绍栈和队列的概念、特点以及应用。

一、栈栈是一种限制仅在表尾进行插入和删除操作的线性表。

插入和删除操作称为入栈和出栈,即数据项的入栈相当于把数据项放入栈顶,而数据项的出栈相当于从栈顶移除数据项。

栈具有后进先出的特点,即后入栈的数据项先出栈,而最先入栈的数据项最后出栈。

类比现实生活中的例子就是一叠盘子,我们只能从最上面取盘子或放盘子。

栈的实现方式有两种:基于数组和基于链表。

基于数组的栈实现相对简单,通过一个数组和一个指向栈顶的指针来完成栈的操作。

基于链表的栈实现则需要定义一个节点结构,每个节点包含一个数据域和一个指向下一个节点的指针,通过头指针来操作栈。

栈的应用非常广泛,比如浏览器中的返回功能就是通过栈来实现的。

当我们点击浏览器的返回按钮时,当前页面会入栈,点击前进按钮时,当前页面会出栈。

在编程中,栈也被广泛应用,比如函数调用栈用于存储函数调用的上下文信息。

二、队列队列是一种限制仅在表头删除和在表尾插入的线性表。

表头删除操作称为出队列,表尾插入操作称为入队列。

和栈不同,队列采用先进先出的原则,即最先入队列的元素最先出队列。

队列的实现方式也有两种:基于数组和基于链表。

基于数组的队列实现和栈类似,通过一个数组和两个指针(一个指向队头,一个指向队尾)来完成队列的操作。

基于链表的队列实现则需要定义一个节点结构,每个节点包含一个数据域和一个指向下一个节点的指针,通过头指针和尾指针来操作队列。

队列同样具有广泛的应用,比如操作系统中的进程调度就是通过队列来实现的。

CPU会按照进程到达的顺序,依次从队列中取出进程进行执行。

在编程中,队列也常用于解决一些需要按顺序处理数据的问题。

第3章 桟和队列

第3章   桟和队列

第3章桟和队列3.1 选择题1.一个栈的输入序列为123…n,若输出序列的第一个元素是n,输出第i(1≤i≤n)个元素是()A)不确定 B)n-i+1 C)i D)n-i【答案】B【解析】根据栈的性质(LIFO),若输出的第一个元素是n,则表明所有的元素已经入栈,则出栈顺序为n,n-1,…,3,2,1。

2.设栈S和队列Q的初始状态为空,元素e1,e2,e3,e4,e5和e6依次通过栈S,一个元素出栈后即进队列Q,若6个元素出队的序列是e2,e4,e3,e6,e5,e1则栈S的容量至少应该是()A)6 B)4 C)3 D)2【答案】C【解析】根据栈的性质(LIFO)得,e2出栈前,栈中存有e1和e2两个元素,e4出栈前,栈中存有e1、e3和e4三个元素,e4和e3出栈以后,e5和e6入栈,栈中同样存在e1、e5和e6三个元素,然后三个元素依次出栈,所以栈的容量至少应该为3。

3.若一个栈以向量V[1..n]存储,初始栈顶指针top为n+1,则下面x进栈的正确操作是()A)top=top+1; V[top]=x B)V[top]=x; top=top+1C)top=top-1; V[top]=x D)V[top]=x; top=top-1【答案】C【解析】栈式运算受限的线性表,只允许在栈顶进行插入和删除操作。

本题中栈顶指针为n+1,该数组将栈顶放在了下标大的一端,所以在进行入栈操作时top指针应该进行减一操作。

通常元素进栈的操作为:先移动栈顶指针后存入元素。

4.如果我们用数组A[1..100]来实现一个大小为100的栈,并且用变量top来指示栈顶,top的初值为0,表示栈空。

请问在top为100时,再进行入栈操作,会产生()A)正常动作 B)溢出 C)下溢 D)同步【答案】B【解析】当top为100时,表示栈已经满了,此时再进行入栈操作,则会造成溢出。

5.栈在()中应用。

A)递归调用 B)子程序调用 C)表达式求值 D)A,B,C【答案】D7.用链接方式存储的队列,在进行删除运算时()A)仅修改头指针 B)仅修改尾指针C)头、尾指针都要修改 D)头、尾指针可能都要修改【答案】D【解析】若队列中的元素多于一个,删除队列中的队尾元素,只需修改队尾指针;若队列中只有一个元素,删除该元素后,队头队尾指针都需要修改。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若栈不空但栈顶位置的四周均不可通, 则{删去栈顶位置;// 从路径中删去该通道块 若栈不空,则重新测试新的栈顶位置, 直至找到一个可通的相邻块或出栈至栈空; } 若栈空,则表明迷宫没有通路。
例五、 表达式求值
任何一个表达式都是由操作数、运算符
和界限符组成。操作数可以是常量和变量; 运算符可以是算术运算符、关系运算符和逻 辑运算符;基本界限符有左右括号和表达式 结束符等;我们把运算符和界限符统称为算 符,以算术运算符为例。 如:4+2*3-10/5=4+6-10/5=10-10/5=10-2=8 采用算符优先法,算符的优先关系如表3.1
B A
S.stacksize+=stackincrement;}
*S.top++=e; <=>*s.top=e;s.top=s.top+1;
return OK; }
Status Pop (SqStack &S, SElemType &e) { // 若栈不空,则删除S的栈顶元素, // 用 e 返回其值,并返回OK;
通常称,栈和队列是限定插入和删除 只能在表的“端点”进行的线性表。 线性表 栈 队列
Insert(L, i, x) Insert(S, n+1, x) Insert(Q, n+1, x) 1≤i≤n+1 Delete(L, i) Delete(S, n) Delete(Q, 1) 1≤i≤n
栈和队列是两种常用的数据类型
1 1 1 2 2 2 3 3 3 2 1 1
4 5 6 6 5 4 4 3 2 2 2 1
4 3 3 4 1 1 4 1 1 3 2 2 1
求迷宫路径算法的基本思想是:
• 若当前位置“可通”,则纳入路 径,继续前进; • 若当前位置“不可通”,则后退, 换方向继续探索; • 若四周“均无通路”,则将当前 位置从路径中删除出去。
# # # # # # # # # #
# # # # # $ # #
# # # # # $ # $ # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# # $ $ $ $ $ # # #
InitStack(&S)
DestroyStack(&S) StackLength(S) StackEmpty(S) GetTop(S, &e) ClearStack(&S) Push(&S, e) Pop(&S, &e)
StackTravers(S, visit())
InitStack(&S) 操作结果:构造一个空栈 S。
栈s=(a1,a2,……,an)
栈的抽象数据类型定义
ADT Stack { 数据对象: D={ ai | ai ∈ElemSet, i=1,2,...,n, n≥0 } 数据关系: R1={ <ai-1, ai >| ai-1, ai∈D, i=2,...,n } 约定an 端为栈顶,a1 端为栈底。 基本操作: } ADT Stack
if (!S.base) exit (OVERFLOW); //存储分配失败 S.top = S.base; S.stacksize = STACK_INIT_SIZE ; return OK;
}
取栈顶元素
Status GetTop (SqStack s,SELemType & e){
If (S.top==S.base) return ERROR;
例二、 括号匹配的检验 假设在表达式中 ([]())或[([ ][ ])] 等为正确的格式, [( ])或[(( ))或 (( )) ] 均为不正确的格式。
则 检验括号是否匹配的方法可用 “期待的急迫程度”这个概念来描述。
例如:考虑下列括号序列: [ ( [ ] [ ] ) ] 1 2 34 5 6 7 8
e=*(S.top-1);
Return OK;
}
top
D
C
B
Base
A
压栈
Status Push(SqStack &S,SELemType e){ If (S.top-S.base>=S.stacksize){ S.base=(SELemType *)realloc(S.base. If(!S.base)exit(overflow); S.top=S.base+S.stacksize; Base (S.stacksize+stackincrement)*sizeof(SelemType)); top
1) 设立暂存运算符的OPTR栈;
2) 设表达式的结束符为“#‖,
予设运算符栈OPTR的栈底为“#‖ 3) 若当前字符是操作数,
则直接进入OPND 栈;
4) 若当前否则,退出栈顶运算符参与运算; 6) ―(‖ 对它之前后的运算符起隔离
作用,“)‖可视为自相应左括弧开
始的表达式的结束符。
· 表达式的计算:如计算表达式的值:x = 3 × (7-2)
解:( > */ > + -> ) #
如: x = 3 × (7-2)
执行过程:# 3 × (7-2) #
# OPTR栈 OPND栈
· 表达式的计算:如计算表达式的值:x = 3 × (7-2)
解:( > */ > + -> ) #
GetTop(S, &e) 初始条件:栈 S 已存在且非空。 操作结果:用 e 返回 S 的栈顶 元素。
a1 a 2 …… an
ClearStack(&S) 初始条件:栈 S 已存在。 操作结果:将 S 清为空栈。
Push(&S, e) 初始条件:栈 S 已存在。 操作结果:插入元素 e 为新 的栈顶元素。
如: x = 3 × (7-2)
执行过程:# 3 × (7-2) #
# OPTR栈
3 OPND栈
· 表达式的计算:如计算表达式的值:x = 3 × (7-2)
解:( > */ > + -> ) #
如: x = 3 × (7-2)
执行过程:# 3 × (7-2) #
# OPTR栈
3 OPND栈
· 表达式的计算:如计算表达式的值:x = 3 × (7-2)
例三、 行编辑程序问题
例四、 迷宫求解 例五、 表达式求值
例六、 实现递归
例一、 数制转换
算法基于原理: N = (N div d)×d + N mod d
例如:(1348)10 = (2504)8 ,其 运算过程如下:
计 算 顺 序
N N div 8 1348 168 168 21 21 2 2 0
whli##ilr#e(s#*s)
outcha@putchar(*s=#++); 则实际有效的是下列两行:
while (*s)
putchar(*s++);
while (ch != EOF) { //EOF为全文结束符 while (ch != EOF && ch != '\n') { switch (ch) { case '#' : Pop(S, c); break; case '@': ClearStack(S); break;// 重置S为空栈 default : Push(S, ch); break; } ch = getchar(); // 从终端接收下一个字符 } 将从栈底到栈顶的字符传送至调用过程的 数据区; ClearStack(S); // 重置S为空栈 if (ch != EOF) ch = getchar();
例四、 迷宫求解
通常用的是“穷举求解”的方法
# # # # # # # # # # # # # # # # # # # # # $ # # # # $ $ $ # # # # # $ $ # # # # # # # # # # # # # # # # # # # # # $ $ # # # # #
解:( > */ > + -> ) #
如: x = 3 × (7-2)
执行过程:# 3 × (7-2) #
× # OPTR栈
3 OPND栈
· 表达式的计算:如计算表达式的值:x = 3 × (7-2)
解:( > */ > + -> ) #
如: x = 3 × (7-2)
执行过程:# 3 × (7-2) #
DestroyStack(&S) 初始条件:栈 S 已存在。 操作结果:栈 S 被销毁。
StackEmpty(S) 初始条件:栈 S 已存在。 操作结果:若栈 S 为空栈, 则返回 TRUE,否则 FALE。
StackLength(S) 初始条件:栈 S 已存在。 操作结果:返回 S 的元素个 数,即栈的长度。
N mod 8 4 0 5 2
输 出 顺 序
void conversion () { InitStack(S); scanf ("%d",N); while (N) { Push(S, N % 8); N = N/8; } while (!StackEmpty(S)) { Pop(S,e); printf ( "%d", e ); } } // conversion
分析可能出现的不匹配的情况:
• 到来的右括弧非是所“期待”的; • 到来的是“不速之客”; • 直到结束,也没有到来所“期待” 的括弧;
算法的设计思想:
相关文档
最新文档