OIML-R075-3-e06
MT1022-30KG,称重传感器
南创销售工程三部事业部使用资料MT1022-30KG称重传感器MT系列称重传感器产品型号产品描述MT1022-3单点式铝质弯曲梁传感器MT1022,容量3KG,1M电缆MT1022-5单点式铝质弯曲梁传感器MT1022,容量5KG,1M电缆MT1022-7单点式铝质弯曲梁传感器MT1022,容量7KG,1M电缆MT1022-10单点式铝质弯曲梁传感器MT1022,容量10KG,1M电缆MT1022-15单点式铝质弯曲梁传感器MT1022,容量15KG,1M电缆MT1022-20单点式铝质弯曲梁传感器MT1022,容量20KG,1M电缆MT1022-30单点式铝质弯曲梁传感器MT1022,容量30KG,1M电缆MT1022-3,MT1022-5,MT1022-7,MT1022-10,MT1022-15,MT1022-20,MT1022-30 MT1022-30KG称重传感器产品特点:单点式传感器获得荷兰NMI颁发的OIMLR60C3证书防护等级IP67四角偏差已补偿技术指标:额定容量kg3,5,7,10,15,20,30灵敏度mV/V?2±10%精度等级OIML?R60C3零点输出%R.O.≤±10温度补偿范围℃-10~+40工作温度范围℃-20~+65输入阻抗Ω410±10输出阻抗Ω?350±1绝缘电阻MΩ≥5000(直流50V)建议激励电压V(DC/AC)5~15最大激励电压V(DC/AC)20安全过载%R.C.150极限过载%R.C.300防护等IP67最大台面尺寸mm350×350电缆长度m0.5MT1022-30KG称重传感器。
欧勒姆电气(珠海)有限公司 微型空气站说明书
欧勒姆电气(珠海)有限公司Oromë Electrical(Zhuhai)Co.,Ltd.微型空气站说明书目录一、系统概述 (1)二、主要技术参数 (2)1、微型空气站 (2)2、气体传感器 (2)3、风速传感器 (3)4、风向传感器 (4)5、气象多要素百叶箱 (4)三、产品说明 (5)1、产品结构示意图 (5)2、产品特点 (6)3、风速监测单元 (6)4、风向监测单元 (8)5、气象多要素百叶箱 (9)四、设备操作说明 (10)1、设备启动 (10)2、传感器参数设置 (11)3、MN号更改操作方法 (12)五、云平台操作方法 (13)六、设备维护 (16)七、故障处理 (16)1 / 16欧勒姆电气(珠海)有限公司Oromë Electrical (Zhuhai )Co.,Ltd.一、系统概述微型空气站是一款用于提供室外空气污染物实时监测的产品。
微型空气站是针对大气环境中常见的指数(一氧化碳、二氧化硫、二氧化氮、臭氧、PM2.5、PM10、温度、湿度、风速、风向、大气压等)进行实时数据采集, 支持 24 小时在线监测,选用当前先进的高精度四电极电化学及光学技术原理,具有响应速度快、可靠性强,维护成本低、使用寿命长等特点。
现场采集的数据发送至数据汇总云服务平台。
图 1-1 微型空气站采用节能供电,降低能耗,也可选择市电。
集成“四气两尘”(SO2、NO2、CO 、O3、PM2.5、PM10)传感器结合无线通讯技术,实现实时数据监测,将环境大数据汇集到“云平台”,为网格化平台提供数据基础;此设备体积轻小,外形美观,安装方便,可根据现场进行校准,确保其具有最佳的可追溯性。
用户可根据实地情况选择太阳能板供电或采用市电供电。
可根据自身需求对所测量的参数自定义,可选项包括:标准污染物臭氧(O3)、二氧化氮(NO2)、氮氧化物(NOx)、一氧化碳(CO)、二氧化硫(SO2)、颗粒物(PM10、PM2.5);以及温度、湿度、风速、风向、大气压等气象参数。
SL5200单阶紧急氧气供应连接器系列说明书
Porting Configuratione2PW3PWwq wq q IN w OUT e Gauge port(Outlet)¡For UHP gas delivery¡Flow capacity Standard:to 30slpmHF (option):to 130slpm¡Body material:316L SS secondary remelt¡Hastelloy internals available for corrosion resistanceSeries SL5200Single Stage Compact Regulator for Ultra High PurityConnections (Inlet q ,Outlet w )FV4MV4TW4FV6MV6TW6Connections1/4inch face seal (Female)1/4inch face seal (Male)1/4inch tube weld3/8inch face seal (Female)3/8inch face seal (Male)3/8inch tube weldCodeHow to OrderSL52S MFV4FV4022PW Surface finishM V XSurface finish Ra max 10µin.(0.25µm)Standard7µin.(0.18µm)5µin.(0.13µm)CodePorts2PW 3PWPorts 2ports 3portsCode Range options ∗1)No code A Specification Standard Sub-atmosphericCode∗1)Only available with SL5201.Port NumberqweMaterialS SH Body Poppet 316L SS Hastelloy ®C-22Diaphragm316L SSCode Seat materialNo code VS Material PCTFE (Standard)Vespel ®∗4)Code∗4)Not available with SHmaterial.Delivery pressure01020610Delivery pressure0.5to 30psig (0.0034 to 0.2 MPa)1to 60psig (0.007to 0.4 MPa)1to 100psig (0.007 to 0.7 MPa)Code 0.5to 10psig (0.0034to 0.07MPa)Sub-atmospheric (A):100mm Hg absolute to 10 psig(-88kPa to 0.07MPa)316L SSsecondary remelt Operating ParametersDelivery pressureGasSource pressureProof pressure (Inlet)Burst pressureAmbient and operating temperatureCvLeak rate Across the seat leakSurface finishConnectionsSupply pressure effectInstallationInternal volumeMassSL5201२२A100mm Hg absolute to 10 psig (-88kPa to 0.07MPa)Select compatible materials of construction for the gas Vacuum to 150psig (1.0 MPa)500psig (3.4MPa)1000psig (6.9MPa)–40to 160°C (–40 to 71°C)(No freezing) ∗1)0.072x 10-11 Pa·m 3/sec 2x 10-10Pa·m 3/sec ∗2)4x 10-9 Pa·m 3/sec ∗2)Ra max 10µin.(0.25µm)Option:7µin.(0.18µm),5µin.(0.13µm)Face seal, Tube weld 0.20psig (0.0014MPa)rise in delivery pressure per 20psig (0.14MPa) source pressure drop Bottom mount 0.19in 3(3.1cm 3)0.99lbs (0.45kg) ∗3)SL52010.5to 10 psig(0.0034to 0.07 MPa)SL52020.5to 30 psig (0.0034 to 0.2 MPa)SL52101to 100 psig (0.007 to 0.7 MPa)SL52061to 60 psig (0.007 to 0.4 MPa)SpecificationsOption Other Parameters HFCvSupply pressure effect0.150.50psig (0.0035MPa)rise in delivery pressure per 20psig (0.14MPa) source pressure drop OptionHigh flowHigher flow capacity with internal changes only, no change in external dimensions.Changes from the standard type are:SL5201२२A SL5201SL5202SL5210SL5206OptionNo codeHFSpecification High flow(Cv: 0.15)Standard(Cv: 0.07)Code∗1)14to 194°F (–10to 90°C)for Vespel ®seat.∗2)Tested with Helium gas inlet pressure 100 psig (0.7MPa).∗3)Mass,including individual boxed weight, may vary depending on connections or options.Inboard leakageOutboard leakageGauge port (Outlet e )No codeFV4V3L1Connections or Pressure gauge ∗2)psig/bar unit MPa unit No gauge port 1/4inch face seal (Male)1/4 inch face seal (Female)No pressure gauge Withpressure gauge -30in.Hg to 30psig -30in.Hg to 60psig -30in.Hg to 100psig -0.1to 0.2MPa -0.1to 0.4MPa -0.1to 0.7MPa Code∗2)Refer to gauge guide (P.94)for gauge specifications.Pressure gauge unit ∗3)No code MPAUnit psig/barMPa Code ∗3)Pressure gauge unit MPaor psig/bar selectable.However under Japanese regulation, only MPa is available in Japan.¡Sub-atmospheric pressure delivery option ¡Springless design (No poppet spring in the wetted area)24。
Guidance document on pesticide residue
EUROPEAN COMMISSION12Directorate General Health and Consumer Protection345SANCO/825/00 rev. 8.1 616/11/2010 78Guidance document on pesticide residue 9analytical methods10111213141516[Revision 8 is the version of this guidance document that is currently valid. It is, however, under1718continuous review and will be updated when necessary. The document is aimed at 19manufacturers seeking pesticides authorisations and parties applying for setting or modification 20of an MRL. It gives requirements for methods that would be used in post-registration 21monitoring and control by the competent authorities in Member States in the event that 22authorisations are granted. For authorities involved in post-registration control and monitoring, the document may be considered as being complementary to the documents: Method Validation2324and Quality Control Procedures for Pesticide Residues Analysis in Food and Feed (for the valid revision visit http://ec.europa.eu/food/plant/protection/resources/publications_en.htm) and the2526OECD document “Guidance Document on pesticide residue analytical methods”, 2007.27(ENV/JM/ ENV/JM/MONO(2007)17).1Preamble (4)28292General (5)302.1Good Laboratory Practice (5)312.2Selection of analytes for which methods are required (5)322.3Description of an analytical method and its validation results (5)332.4Hazardous reagents (6)342.5Acceptable analytical techniques considered commonly available (6)352.6Multi-residue methods (7)362.7Single methods and common moiety methods (7)372.8Single methods using derivatisation (7)382.9Method validation (8)392.9.1Calibration (8)2.9.2Recovery and Repeatability (9)40412.9.3Selectivity (11)422.10Confirmation (11)432.10.1Confirmation simultaneous to primary detection (11)442.10.2Confirmation by an independent analytical technique (12)452.11Independent laboratory validation (ILV) (12)2.12Availability of standards (13)46472.13Extraction Efficiency (13)483Analytical methods for residues in plants, plant products, foodstuff (of plant origin),feedingstuff (of plant origin) (Annex IIA Point 4.2.1 of Directive 91/414/EEC; Annex Point IIA,4950Point 4.3 of OECD) (14)513.1Purpose (14)523.2Selection of analytes (14)533.3Commodities and Matrix Groups (14)543.4Limit of quantification (15)553.5Independent laboratory validation (ILV) (15)564Analytical methods for residues in foodstuff (of animal origin) (Annex IIA Point 4.2.1 of 57Directive 91/414/EEC; Annex Point IIA, Point 4.3 of OECD) (16)584.1Purpose (16)594.2Selection of analytes (16)604.3Commodities (16)614.4Limit of quantification (16)4.5Independent laboratory validation (ILV) (16)62635Analytical methods for residues in soil (Annex IIA, Point 4.2.2 of Directive 91/414/EEC;64Annex Point IIA, Point 4.4 of OECD) (17)655.1Purpose (17)665.2Selection of analytes (17)675.3Samples (17)685.4Limit of quantification (17)696Analytical methods for residues in water (Annex IIA, Point 4.2.3 of Directive 91/414/EEC;70Annex Point IIA; Point 4.5 of OECD) (19)716.1Purpose (19)726.2Selection of analytes (19)736.3Samples (19)746.4Limit of quantification (19)756.5Direct injection (20)767Analytical methods for residues in air (Annex IIA, Point 4.2.4 of Directive 91/414/EEC; 77Annex Point IIA; Point 4.7 of OECD) (21)7.1Purpose (21)78797.2Selection of analytes (21)807.3Samples (21)7.4Limit of quantification (21)81827.5Sorbent characteristics (22)837.6Further validation data (22)7.7Confirmatory methods (22)84858Analytical methods for residues in body fluids and tissues (Annex IIA, Point 4.2.5 of86Directive 91/414/EEC; Annex Point IIA Point 4.8 of OECD) (23)8.1Purpose (23)87888.2Selection of analytes (23)898.3Samples (23)908.4Sample set (23)918.5Limit of quantification (23)929Summary - List of methods required (24)10Abbreviations (25)939411References (27)951Preamble96This document provides guidance to applicants, Member States and EFSA on the data 97requirements and assessment for residue analytical methods for post-registration control and 98monitoring purposes. It is not intended for biological agents such as bacteria or viruses. It 99recommends possible interpretations of the provisions of section 3.5.2 of Annex II of 100Regulation (EC) No 1107/2009 [1] and of the provisions of section 4, part A of Annex II and 101section 5, part A of Annex III of Council Directive 91/414/EEC [2]. It also applies to 102applications for setting or modification of an MRL within the scope of Regulation (EC) No 103396/2005 [3]. It has been elaborated in consideration of the ‘Guidance Document on pesticide 104residue analytical methods’ of the OECD [4] and SANCO/10684/2009 “Method validation 105and quality control procedures for pesticide residue analysis in food and feed” [5].106This document has been conceived as an opinion of the Commission Services and elaborated 107in co-operation with the Member States. It does not, however, intend to produce legally 108binding effects and by its nature does not prejudice any measure taken by a Member State nor 109any case law developed with regard to this provision. This document also does not preclude 110the possibility that the European Court of Justice may give one or another provision direct 111effect in Member States.112This guidance document must be amended at the latest if new data requirements as referred to 113in Article 8 (1)(b) and 8 (1)(c) of Regulation (EC) No 1107/2009 will have been established 114in accordance with the regulatory procedure with scrutiny referred to in Article 79 (4).1152General1162.1Good Laboratory Practice117According to Guidance Document 7109/VI/94-Rev. 6.c1 (Applicability of Good Laboratory 118Practice to Data Requirements according to Annexes II, Part A, and III, Part A, of Council 119Directive 91/414/EEC) [6] the development and validation of an analytical method for 120monitoring purposes and post-registration control is not subject to GLP. However, where the 121method is used to generate data for registration purposes, for example residue data, these 122studies must be conducted to GLP.1232.2Selection of analytes for which methods are required124The definition of the residues relevant for monitoring in feed and food as well as in 125environmental matrices and air is not the subject matter of this document. Criteria for the 126selection of analytes in case that no legally binding definition is available are given in the 127respective sections 3 - 8. In addition, sections 5.2, 6.2, 7.2 and 8.2 clarify under which 128circumstances analytical methods for residues may not be necessary.1292.3Description of an analytical method and its validation results130Full descriptions of validated methods shall be provided. The submitted studies must include 131the following points:132•Itemisation of the fortified compounds and the analytes, which are quantified133•Description of the analytical method134•Validation data as described in more detail below135•Description of calibration including calibration data136•Recovery and Repeatability137•Data proving the selectivity of the method138•Confirmatory data, if not presented in a separate study139•References (if needed)140141The following information should be offered in the description of the analytical method:142•An introduction, including the scope of the method143•Outline/summary of method, including validated matrices, limit of quantification (LOQ), 144range of recoveries, fortification levels and number of fortifications per level145•Apparatus and reagents146•instrument parameters used as example if appropriate147•Description of the analytical method, including extraction, clean-up, derivatisation (if148appropriate), chromatographic conditions (if appropriate) and quantification technique149•Hazards or precautions required150•Time required for one sample set151•Schematic diagram of the analytical method152•Stages where an interruption of the method is possible153•Result tables (if results are not presented in separate studies)154•Procedure for the calculation of results from raw data155•Extraction efficiency of solvents used156•Important points and special remarks (e.g. volatility of analyte or its stability with regard 157to pH)158•Information on stability of fortified/incurred samples, extracts and standard solutions (If 159the recoveries in the fortified samples are within the acceptable range of 70-120 %,160stability is sufficiently proven.)161Sometimes it may be necessary for other information to be presented, particularly where 162special methods are considered.1632.4Hazardous reagents164Hazardous reagents (carcinogens category I and II [7]) shall not be used. Among these 165compounds are diazomethane, chromium (VI) salts, chloroform and benzene.1662.5Acceptable analytical techniques considered commonly available167Analytical methods shall use instrumentation regarded as "commonly available":168•GC detectors: FPD, NPD, ECD, FID, MS, MS n (incl. Ion Traps and MS/MS), HRMS169•GC columns: capillary columns170•HPLC detectors: MS, MS/MS, HRMS, FLD, UV, DAD171•HPLC columns: reversed phase, ion-exchange, normal phase172•AAS, ICP-MS, ICP-OES173Other techniques can be powerful tools in residue analysis, therefore the acceptance of 174additional techniques as part of enforcement methods should be discussed at appropriate 175intervals. Whilst it is recognised that analytical methodology is constantly developing, some 176time elapses before new techniques become generally accepted and available.1772.6Multi-residue methods178Multi-residue methods that cover a large number of analytes and that are based on GC-MS 179and/or HPLC-MS/MS are routinely used in enforcement laboratories for the analysis of plant 180matrices. Therefore, validated residue methods submitted for food of plants, plant products 181and foodstuff of plant origin (Section 3) should be multi-residue methods published by an 182international official standardisation body such as the European Committee for 183Standardisation (CEN) (e.g. [8 - 12]) or the AOAC International (e.g. [13]). Single residue 184methods should only be provided if data show and are reported that multi-residue methods 185involving GC as well as HPLC techniques cannot be used.186If validation data for the residue analytical method of an analyte in at least one of the 187commodities of the respective matrix group have been provided by an international official 188standardisation body and if these data have been generated in more than one laboratory with 189the required LOQ and acceptable recovery and RSD data (see Section 2.9.2), no additional 190validation by an independent laboratory is required.1912.7Single methods and common moiety methods192Where a pesticide residue cannot be determined using a multi-residue method, one or where 193appropriate more alternative method(s) must be proposed. The method(s) should be suitable 194for the determination of all compounds included in the residue definition. If this is not 195possible and an excessive number of methods for individual compounds would be needed, a 196common moiety method may be acceptable, provided that it is in compliance with the residue 197definition. However, common moiety methods shall be avoided whenever possible.1982.8Single methods using derivatisation199For the analysis of some compounds by GC, such as those of high polarity or with poor 200chromatographic properties, or for the detection of some compounds in HPLC, derivatisation 201may be required. These derivatives may be prepared prior to chromatographic analysis or as 202part of the chromatographic procedure, either pre- or post-column. Where a derivatisation 203method is used, this must be justified.204If the derivatisation is not part of the chromatographic procedure, the derivative must be 205sufficiently stable and should be formed with high reproducibility and without influence of 206matrix components on yield. The efficiency and precision of the derivatisation step should be 207demonstrated with analyte in sample matrix against pure derivative. The storage stability of 208the derivative should be checked and reported. For details concerning calibration refer to 209Section 2.9.1.210The analytical method is considered to remain specific to the analyte of interest if the 211derivatised species is specific to that analyte. However, where – in case of pre-column 212derivatisation – the derivative formed is a common derivative of two or more active 213substances or their metabolites or is classed as another active substance, the method should be 214considered non-specific and may be deemed unacceptable.2152.9Method validation216Validation data must be submitted for all analytes included in the residue definition for all 217representative sample matrices to be analysed at adequate concentration levels.218Basic validation data are:219•Calibration data220•Concentration of analyte(s) found in blank samples221•Concentration level(s) of fortification experiments222•Concentration and recovery of analyte(s) found in fortified samples223•Number of fortification experiments for each matrix/level combination224•Mean recovery for each matrix/level combination225•Relative standard deviation (RSD) of recovery, separate for each matrix/level combination 226•Limit of quantification (LOQ), corresponding to the lowest validated level227•Representative clearly labelled chromatograms228•Data on matrix effects, e.g. on the response of the analyte in matrix as compared to pure 229standards230.Further data may be required in certain cases, depending on the analytical method used, and 231the residue definition to be covered.2322.9.1Calibration233The calibration of the detection system shall be adequately demonstrated at a minimum of 3 234concentration levels in duplicate or (preferably) 5 concentration levels with single 235determination. Calibration should be generated using standards prepared in blank matrix 236extracts (matrix matched standards) for all sample materials included in the corresponding 237validation study (Sections 3 - 8). Only, if experiments clearly demonstrate that matrix effects 238are not significant (i.e. < 20 %), calibration with standards in solvent may be used. Calibration 239with standards in solvent is also acceptable for methods to detect residues in air (Section 7). 240In case that aqueous samples are analysed by direct injection HPLC-MS/MS calibration shall 241be performed with standards in aqueous solution.242The analytical calibration must extend to at least the range which is suitable for the 243determination of recoveries and for assessment of the level of interferences in control 244samples. For that purpose a concentration range shall be covered from 30 % of the LOQ to 24520 % above the highest level (Section 2.9.2).246All individual calibration data shall be presented together with the equation of the calibration. 247Concentration data should refer to both, the mass fraction in the original sample (e.g. mg/kg) 248and to the concentration in the extract (e.g. µg/L). A calibration plot should be submitted, in 249which the calibration points are clearly visible. A plot showing the response factor1 versus the 250concentration for all calibration points is preferred over a plot of the signal versus the 251concentration.252Linear calibrations are preferred if shown to be acceptable over an appropriate concentration 253range. Other continuous, monotonically increasing functions (e.g. exponential/power, 254logarithmic) may be applied where this can be fully justified based on the detection system 255used.256When quantification is based on the determination of a derivative, the calibration shall be 257conducted using standard solutions of the pure derivative generated by weighing, unless the 258derivatisation step is an integral part of the detection system. If the derivative is not available 259as a reference standard, it should be generated within the analytical set by using the same 260derivatisation procedure as that applied for the samples. Under these circumstances, a full 261justification should be given.2622.9.2Recovery and Repeatability263Recovery and precision data must be reported for the following fortification levels, except for 264body fluids and body tissues (Section 8):265•LOQ 5 samples266•10 times LOQ, or MRL (set or proposed) or other relevant level (≥ 5 x LOQ)2675 samples268Additionally, for unfortified samples residue levels must be reported:269samples•blankmatrix 2270According to the residue definition the LOQ of chiral analytes usually applies to the sum of 271the two enantiomers. In this case it is not necessary to determine the enantiomers separately. 2721 The response factor is calculated by dividing the signal area by the respective analyte concentration.Enantioselective methods would only be required if a single enantiomer is included in the 273residue definition.274In cases of complex residue definitions (e.g. a residue definition which contains more than 275one compound) the validation results shall be reported for the single parts of the full residue 276definition, unless the single elements cannot be analysed separately.277The mean recovery at each fortification level and for each sample matrix should be in the 278range of 70 % - 120 %. In certain justified cases mean recoveries outside of this range will be 279accepted.280For plants, plant products, foodstuff (of plant and animal origin) and in feeding stuff recovery 281may deviate from this rule as specified in Table 1.2282Table 1: Mean recovery and precision criteria for plant matrices and animal matrices [4]283Concentration level Range of mean recovery(%)Precision, RSD(%)> 1 µg/kg ≤ 0.01 mg/kg 60 - 120 30> 0.01 mg/kg ≤ 0.1 mg/kg 70 - 120 20> 0.1 mg/kg ≤ 1.0 mg/kg 70 - 110 15> 1 mg/kg 70 - 110 10284If blank values are unavoidable, recoveries shall be corrected and reported together with the 285uncorrected recoveries.286The precision of a method shall be reported as the relative standard deviation (RSD) of 287recovery at each fortification level. For plants, plant products, foodstuff (of plant and animal 288origin) and feeding stuff the RSD should comply with the values specified in Table 1. In other 289cases the RSD should be ≤ 20 % per level. In certain justified cases, e.g. determination of 290residues in soil lower than 0.01 mg/kg, higher variability may be accepted.291When outliers have been identified using appropriate statistical methods (e.g. Grubbs or 292Dixons test), they may be excluded. Their number must not exceed 1/5 of the results at each 293fortification level. The exclusion should be justified and the statistical significance must be 2942 According to Annex IIA 4.2 of Directive 91/414/EEC the mean recovery should normally be 70 % - 110 % andthe RSD should preferably be ≤ 20 %.clearly indicated. In that case all individual recovery data (including those excluded) shall be 295reported.2962.9.3Selectivity297Representative clearly labelled chromatograms of standard(s) at the lowest calibrated level, 298matrix blanks and samples fortified at the lowest fortification level for each analyte/matrix 299combination must be provided to prove selectivity of the method. Labelling should include 300sample description, chromatographic scale and identification of all relevant components in the 301chromatogram.302When mass spectrometry is used for detection, a mass spectrum (in case of MS/MS: product 303ion spectrum) should be provided to justify the selection of ions used for determination.304Blank values (non-fortified samples) must be determined from the matrices used in 305fortification experiments and should not be higher than 30 % of the LOQ. If this is exceeded, 306detailed justification should be provided.3072.10Confirmation308Confirmatory methods are required to demonstrate the selectivity of the primary method for 309all representative sample matrices (Sections 3 – 8). It has to be confirmed that the primary 310method detects the right analyte (analyte identity) and that the analyte signal of the primary 311method is quantitatively correct and not affected by any other compound.3122.10.1Confirmation simultaneous to primary detection313A confirmation simultaneous to the primary detection using one fragment ion in GC-MS and 314HPLC-MS or one transition in HPLC-MS/MS may be accomplished by one of the following 315approaches:316•In GC-MS, HPLC-MS, by monitoring at least 2 additional fragment ions (preferably317m/z > 100)for low resolution system and at least 1 additional fragment ion for high318resolution/accurate mass system319•In GC-MS n (incl. Ion Traps and MS/MS), HPLC-MS/MS, by monitoring at least 1320additional SRM transition321The following validation data are required for the additional fragment ions (MS and HRMS) 322or the additional SRM transition (MS n and MS/MS): calibration data (Section 2.9.1), recovery 323and precision data according to Section 2.9.2 for samples fortified at the respective LOQ (n = 3245) and for 2 blank samples.325For all mass spectrometric techniques a mass spectrum (in case of single MS) or a product ion 326spectrum (in case of MS n) should be provided to justify the selection of the additional ions. 3272.10.2Confirmation by an independent analytical technique328Confirmation can also be achieved by an independent analytical method. The following are 329considered sufficiently independent confirmatory techniques:330•chromatographic principle different from the original method331• e.g. HPLC instead of GC332•different stationary phase and/or mobile phase with significantly different selectivity333•the following are not considered significantly different:334•in GC: stationary phases of 100 % dimethylsiloxane and of 95 % dimethylsiloxane 335+ 5 % phenylpolysiloxane336•in HPLC: C18- and C8-phases337•alternative detector338• e.g. GC-MS vs. GC-ECD, HPLC-MS vs. HPLC-UV/DAD339•derivatisation, if it was not the first choice method340•high resolution/accurate mass MS341•in mass spectrometry an ionisation technique that leads to primary ions with different m/z 342ratio than the primary method (e.g. ESI negative ions vs. positive ions)343It is preferred that confirmation data are generated with the same samples and extracts used 344for validation of the primary method.345The following validation data are required: calibration data (Section 2.9.1), recovery and 346precision data (Section 2.9.2) for samples fortified at the respective LOQ (n ≥ 3) and of a 347blank sample and proof of selectivity (Section 2.9.3).3482.11Independent laboratory validation (ILV)349A validation of the primary method in an independent laboratory (ILV) must be submitted for 350methods used for the determination of residues in plants, plant products, foodstuff (of plant 351and animal origin) and in feeding stuff. The ILV shall confirm the LOQ of the primary 352method, but at least the lowest action level (MRL).353The extent of independent validation required is given in detail in sections 3 and 4.354In order to ensure independence, the laboratory chosen to conduct the ILV trials must not 355have been involved in the method development and in its subsequent use. In case of multi-356residue methods it would be accepted if the ILV is performed in a laboratory that has already 357experience with the respective method.358The laboratory may be in the applicant’s organisation, but should not be in the same location. 359In the exceptional case that the lab chosen to conduct the ILV is in the same location, 360evidence must be provided that different personnel, as well as different instrumentation and 361stocks of chemicals etc have been used.362Any additions or modifications to the original method must be reported and justified. If the 363chosen laboratory requires communication with the developers of the method to carry out the 364analysis, this should be reported.3652.12Availability of standards366All analytical standard materials used in an analytical method must be commonly available. 367This applies to metabolites, derivatives (if preparation of derivatives is not a part of the 368method description), stable isotope labelled compounds or other internal standards.369If a standard is not commercially available the standard should be made generally available by 370the applicant and contact details be provided.3712.13Extraction Efficiency372The extraction procedures used in residue analytical methods for the determination of residues 373in plants, plant products, foodstuff (of plant and animal origin) and in feeding stuff should be 374verified for all matrix groups for which residues ≥ LOQ are expected, using samples with 375incurred residues from radio-labelled analytes.376Data or suitable samples may be available from pre-registration metabolism studies or 377rotational crop studies or from feeding studies. In cases where such samples are no longer 378available to validate an extraction procedure, it is possible to "bridge" between two solvent 379systems (details in [4]). The same applies if new matrices are to be included.3803Analytical methods for residues in plants, plant products, foodstuff (of 381plant origin), feedingstuff (of plant origin)382(Annex IIA Point 4.2.1 of Directive 91/414/EEC; Annex Point IIA, Point 3834.3 of OECD)3843.1Purpose385•Analysis of plants and plant products, and of foodstuff and feeding stuff of plant origin for 386compliance with MRL [3].3873.2Selection of analytes388The selection of analytes for which methods for food and feed are required depends upon the 389definition of the residue for which a maximum residue level (MRL) is set or is applied for 390according to Regulation (EC) No 396/2005.3913.3Commodities and Matrix Groups392Methods validated according to Section 2.9 and 2.10 must be submitted for representative 393commodities (also called “matrices” by analytical chemists) of all four matrix groups in 394Table 2.395396Table 2: Matrix groups and typical commoditiesMatrix group Examples for commoditiesbarley, rice, rye, wheat, dry legume vegetables dry commodities (high protein/highstarch content)commodities with high water content apples, bananas, cabbage, cherries, lettuce, peaches,peppers, tomatoescommodities with high oil content avocados, linseed, nuts, olives, rape seedcommodities with high acid content grapefruits, grapes, lemons, oranges397Important Note: This list of commodities is not a comprehensive list of commodities/matrices.398Applicants may consult regulatory authorities for advice on the use of other commodities.If samples with high water content are extracted at a controlled pH a particular method or 399validation for commodities with high acid content is not required.400Where a previously validated method has been adopted to a new matrix group, validation data 401must be submitted for representative matrices of this group.402。
OMRON MOS FET Relay数据手册说明书
1G 3V M 41P R 5I Smallest 40V MOS FET Relay In The Market (USOP Package Size); Designed to exhibit Low Output Capacitance and On Resistance (CxR=10pF·Ω)•Specifically Designed to low ON Resistance 1Ω (typ.)•Dielectric strength of 500Vrms between I/O.■Application Examples■■List of Models*The AC peak and DC value are given for the load voltage.■Absolute Maximum Ratings (Ta = 25°C)Note: The actual product is marked differently from theimage shown here.RoHS CompliantRefer to "Common Precautions ".•Semiconductor test equipment•Test & measurement equipment•Communication equipment •Data loggersNote: The actual product is marked differently from the image shown here.Package type Contact form TerminalsLoad voltage (peak value) *ModelMinimum package quantity Number per tape & reelUSOP41a(SPST-NO)Surface-mounting terminals40VG3VM-41PR5−G3VM-41PR5 (TR05)500ItemSymbol Rating Unit Measurement conditionsI n p u tLED forward currentI F 50mANote:1. The dielectric strength betweenthe input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.LED forward current reduction rate ∆I F /°C −0.5 mA/°C Ta ≥25°C LED reverse voltage V R 5 V Connection temperature T J 125 °C O u t p u tLoad voltage (AC peak/DC)V OFF 40V Continuous load current (AC peak/DC)I O 300mA ON current reduction rate ∆I O /°C −3mA/°C Ta ≥25°CPulse ON currentlop 900mA t=100ms, Duty=1/10Connection temperature T J 125°C Dielectric strength between I/O (See note 1.)V I-O 500Vrms AC for 1 minAmbient operating temperature Ta −40~+85°CWith no icing or condensation Ambient storage temperature Tstg −40~+125°C With no icing or condensation Soldering temperature−260 °C10s2G3VM-41PR5MOS FET RelaysG 3V M 41P R 5I U S O P ■Recommended Operating ConditionsUse the G3VM under the following conditions so that the Relay will operate properly.■Engineering Data■Safety Precautions•Refer to "Common Precautions " for all G3VM models.ItemSymbol MinimumTypical MaximumUnit Load voltage (AC peak/DC)V DD −−32V Operating LED forward current I F 57.520mA Continuous load current (AC peak/DC)I O −−300mA Ambient operating temperatureTa−20−65°CLED forward current vs.Ambient temperatureContinuous load current vs.Ambient temperatureLED forward current vs.LED forward voltageContinuous load current vs.On-state voltageOn-state resistance vs.Ambient temperatureTrigger LED forward current vs.Ambient temperatureTurn ON, Turn OFF time vs.LED forward currentTurn ON, Turn OFF time vs.Ambient temperatureCurrent leakage vs. Load voltageOutput terminal capacitanceCOFF/COFF(0v) vs. Load voltageI F - TaAmbient temperature Ta (°C)L E D f o r w a r d c u r r en t I F (m A )102030405060-4020-204060801000I O - TaAmbient temperature Ta (°C)C o n t i n u o us l o a d c u r r e n t I O (m A )-40-20204060801000100200300400I F - V FLED forward voltage V F (V)L E D f o r w a r d c u r r e nt I F (m A )0.11101000.81 1.2 1.4 1.6I O - V ONOn-state voltage V ON (V)C o n t i n u o u s l o a d c u r r e n t I O (m A)-0.40.4-0.20.20-400-300-200-1000100200300400R ON - TaAmbient temperature Ta (°C)O n -s t a t e r e s i s t a n c e R O N (Ω)-40-200204060801000123I FT - TaAmbient temperature Ta (°C)T r i g g e r L E D f o r w a r d c u r r e n t I F T (m A )0123-40-2020406080100t ON , t OFF - I FLED forward current I F (mA)T u r n O N , T u r n O F F t i m e t O N , t O F F (µs )101001000110100t ON , t OFF - TaAmbient temperature Ta (°C)T u r n O N , T u r n O F F t i m e t O N , t O F F (µs)101001000-40-2020406080100I LEAK - V OFFLoad voltage V OFF (V)C u r r e n t l e a k a g e I L E A K (p A)10203040051015C OFF - V OFFLoad voltage V OFF (V)O u t p u t t e r m i n a l c a p a c i t a n c e C O F F /C O F F (0v )102030405000.20.40.60.81■Dimensions(Unit: mm)Note: The actual product is marked differently from the image shown here.Actual Mounting Pad Dimensions(Recommended Value, Top View)Note: The actual product is marked differently from the image shown here.Surface-mounting TerminalsWeight: 0.03g• Application examples provided in this document are for reference only. In actual applications, confirm equipment functions and safety before using the product.• Consult your OMRON representative before using the product under conditions which are not described in the manual or applying the product to nuclear control systems, railroad systems, aviation systems, vehicles, combustion systems, medical equipment, amusement machines, safety equipment, and other systems or equipment that may have a serious influence on lives and property if used improperly. Make sure that the ratings and performance characteristics of the product provide a margin of safety for the system or equipment, and be sure to provide the system or equipment with double safety mechanisms.Cat. No. K201-E1-010114(0114)(O)Note: Do not use this document to operate the Unit.OMRON CorporationELECTRONIC AND MECHANICAL COMPONENTS COMPANYContact: /ecb。
RC-系列温湿度记录仪产品目录
温湿度记录仪
型号:RC-HT701A
1,测量范围:温度-20~+70℃,湿度0~100%RH
2,测量精度:温度±0.5℃,湿度±3%RH
3,分辨率:温度0.1℃,湿度0.1%RH
4,规格:双路液晶显示
5,传感器:温度PT1000,湿度HIH4000(霍尼威尔)
6,记录容量:30000个记录
7,记录间隔:1秒-10小时连续可调
接,下载数据及报表曲线
15,外接温湿度探头,无报警
型号:RC-DT618B
1,测量范围:温度-40〜+100℃
2,测量精度:温度±0.5℃
3,分辨率:温度0.1℃
4,规格:双路液晶显示
双温度记录仪
5,传感器:温度NTC
6,记录容量:30000个记录
7,记录间隔:1秒-10小时连续可调
8,计算机接口:PC机RS-232(同时RS-232转USB线)
型号:RC-T701A
1,测量范围:温度-20〜+70℃
2,测量精度:温度±0.5℃
3,分辨率:温度0.1℃
4,规格:单路液晶显示
5,传感器:温度PT1000
单温度记录仪
6,记录容量:30000个记录
7,记录间隔:1秒-10小时连续可调
8,计算机接口:PC机RS-232(同时RS-232转USB线)
4,规格:无液晶显示
5,传感器:温度NTC
6,记录容量:30000个记录
7,记录间隔:1秒-10小时连续可调
8,计算机接口:PC机RS-232(同时RS-232转USB线)
9,电源:3.0V锂电池,典型使用寿命3年
10,尺寸:55X33x10mm
11,材质:灌封树脂
Omega FL-1500流量计说明书
B-45e Exatidão de ±2% do Fundo de Escala e R epetibilidade de Fundo de Escala de ±1⁄2%e C onstrução em Vidro e Aço Inoxidável Proporcionando Compatibilidade com Vários Meios e E quações de Correlação para Uso com Diversos Fluidose Construção com Chapa Laterale Escala de 250 mm (9,85")e Escala de Fluxo de 10 a 100%e B lindado para Uso em Sistemas Pressurizados e Somente para Montagem VerticalOs medidores de vazão FL-1500 da OMEGA™ combinam exatidão de 2% e construção com chapalateral. Estes medidores apresentam construção em vidro e açoinoxidável 316, com chapas lateraisde alumínio e proteções de plástico acrílico. O desenho do flutuador oferece alta imunidade à variação de viscosidade e as conexões de rosca NPT facilitam a instalação emsistemas industriais e laboratoriais.ROTÂMETROS DE ALTA EXATIDÃOCAPACIDADES: 0,078 a 6,28 GPM para Água,FL-1501A-B, mostrado com conexões terminais de latão opcionais (o padrão é aço inox 316), em tamanho menorque o real.Vem completo, com manual do usuário.Para modelos com conexões terminais de latão, adicione o sufixo “-B” ao código do produto; consulte a engenharia de fluxos.Exemplos de Pedido: rotâmetros FL-1503A-B com conexão terminal de latão; 1,045 a 10,45 SCFM, 0,253 a 2,53 GPM.FL-1501A, conexão terminal de aço inoxidável 316, 0,317 a 3,17 SCFM, 0,078 a 0,78 GPM.ESPECIFICAÇÕESEscala: fundida no tubo medidor, 10 a 100% da escala do fluxoTubo Medidor: vidro borossilicato Flutuador e Limitadores: aço inoxidável 316Conexões Terminais:Padrão: aço inoxidável 316 Opcional: latãoAnel de Vedação: FKM-A Estrutural:Chapa Lateral: proteções de alumínio; de plástico acrílico, na frente e atrásPressão Máxima:FL-1501 e FL-1502: 20,68 bar (300 psig)FL-1503: 12,06 bar (175 psig) FL-1504: 6,9 bar (100 psig)Temperatura Máxima: 121°C (250°F)Exatidão: ±2% do fundo de escala Repetibilidade: ±0,5% do fundo de escalaSérie FL-1500A。
奥索凌阳方案适用屏编码和驱动对照
奥索凌阳方案适用屏编码和驱动对照奥索凌阳方案适用屏编码和驱动对照2011-10-4 08:27阅读(26)转载自风的味道2.8寸屏:5408B----FPCHL2401 07CV05408------H2801 FPCHL2401.14A SXD0017 2401QQ AO24QN029325------12N 17N 154000 SAT28S01A05 SXD0002 SAT24000 37H 12A05 2803 HW240320F-2L-0A-20 HJ2810AO-AOFPC 0000000024-0019325C----3225LS2088A SAT28009A05 DST280AU006 4N 88N V029325B----LS24XD 22N 17N9320------19E TS028HA 1N 07N 9N SR779028-AO DST28014L037 CMS21019331-----FTM280F17N 17E FTM280F6W 7N 6E FTM280F10E 7NV 8Q 8A18 21N FPC2802-VO TTPHJ07NVO1289-----JS28ND603C-FPC WST240320S280AV02 1298-----SK001V02 HL2802 36B 10N M30111A197 CMS2101-03A SX2.8C98-4_3-37C T28-A T28-B FPC4218-V0123225-----AU28 036 SXD0006 001 7C SAT2400 12A FPC2803-VO 28A03-VO 12A05 KK240037 0039-C 280NP04-04 3728E SX2.8T28-4_3-37H SXD0001PNL9328------T-0028-A61505V---LS28XD 21N 21E 07NVO A18 FPC1A0027-01-A SYM280T01-A093116----15400053909335IH----24008C18 0367781-----21VO 24N 11N 4N 10N 18V2 FPC-TTHJ07CVO CM012 81-36A 8B26 SY280CM0204535-----SXD00179331LG----Q365205----17V0 YSD FPC 28A03-V0 18V21505C----2.4TE8347-----46E FPC-FTM280C05N 61N 80E TP65K9320LG----SAT28008A18 8K1304 KFM529B21 SR7790928-A061505W----SAT28008A18-Q337502----16N 13N 16E 17E 13E 12N SXD00651297----SAT28009A1161505U-FTM----B21 FPA-SH9873-01A_56-PCB RO61505R(3062主控上用)S6D04M0----TF28001A68070-----NT4PTM3728B MHJ101V1 ZBH028GT-01 SXD00688347D-----ZBH028GT-06 FPC-FTM280C58W-008367-----ZBH028GT-02V18230----XY-2405-HSD10-V2 LC2803.1R61509----QXD028-1000-FB9328LG----07V9338-----91N TFT028E001 EY028CMIL-001-V029335LG----LS28003ILI9320----826709341-----T-280A03-B-16 YQ24TM41-36CLCM0154------2805-PR112-V22.4屏5408-----A024QN025408B----FPCHL2401 SAT24001005 NOATS-V019325-----FPC-S2 TM240320C1NFWCWC FP-29325C----25N3225----Q36 154002660 FTP240F17N FTP240F22N 8C 24N 25W V1 66N 3624A9328----SPT-024-0061298----SK001V02 10N M30111A1978347----FTP240C61N 46E 5N FTP240C65N 3624F 240C29N 240C09N M403A1079325B----22N LS24XD FPC-JTBJ05JUO1505C----XY-2.4TE-V161580----FTP240H25N FTO240HO 32N 04N 25N9335HY----AST24011C19 091110S61505BOE----AST24011C19L LS-100810背面7781----24N 11N 81-36A61505W----LS24Q35 24036095205----53F F240253F 17V09320----01-1D FPC-FTS240W01 JC T24-E T24-A29340----T24BDHJ71V1 240A28-A-16 40-36A 134 240A37-A FPC-FTM240C179N-00S6D04H0----36PIN SXD0066HX8230------LC32002.1 XY-2405 HSDIO-V34535------SXD00249341-----YQ24TM41-36C T-240A82-D-16261卡屏的屏驱动----32063.5寸ST2102----KR035PA5S VT320240S70-A350TMT035---15400T4500 HW320 158000300 S805037535C R0HS 3.5_FPC_10FTS350----735M2 SN570 FMFU-2F 413450017002 513450006002LQ035----8501显示屏编号与屏驱动对应表1 排线丝印侧面丝印驱动IC2 024-22V1 93203 24WIT36-FPC01 93204 1540001660 TS024HAADD04-00 5408B5 1540002660 9325C6 24008C05-V1 93257 AF240B-36B V1.0 AL240EI-3501 77878 AF-240B-2V4.1 AL-240B-S1 77879 AF283E1-37A V1.2 9320-2.810 AF240E1-36C V1.0 778511 AF240E1-36C V2.0 778512 AF283P3-37A V1.0 9325-2.813 CMS2101-03A 080815 080918-2801A背光片 540814 CMS2101-03A 080815 CMS2101 HCT003-280-41F背光片1298CMT304-1(1)-08 8 30 5408B15 CMS2101-3 932516 FPC-FTS240F01 FTS240H03 150517 FPC-FTS240D03 129818 FPC-FTS240D14 129819 FPC-FTP240CO9N FTS240B03 834720 FPC-FTS240W01 FTP240W47N 129821 FPC-FTM280P04N M30111A150 9325C-2.822 FPC-FTM280C05N 8347-2.823 FPC-FTM280F01N FTM280F01N-00 9320-2.824 FPC-FTM280F06W FPC-FTM280F06N-00 090313(背面)933125 FPC-FTM280F07N R61505-2.826 FPC-FTM280C13N 932527 FPC-FTM280P05N M403A486 9325C28 FPC-Y80032 V01 N0711-14-04 9325-2.829 FTP240D10N-01 0703 129830 FTP240D24N-00 090307 778131 FPC-FTP280P05N FTP280P14N-01背面 778132 FTP240W17N-03 080807 9325B33 FG0280FLW-0802-1 8347-2.834 FPC_HL_2401 540835 HL2801 5408-2.836 HL2402B 5408B CMO37 HL2402A 5409B CMO38 LDH240*320F08M 778539 LS2288A 6813-2.840 M30111A116 129841 M30111A059 932542 MFC-S07024 V02 834743 MT321TLLKJ-13 排线接口不同 9320B-2.844 SX-2.4CPT-9325 9325B45 SAT28009A5 9325C-2.846 STA28008A18 9331-2.847 XJ2402-V01 834748 XD028-V01 9325-2.849 XSY LL240-003-081024 R61505(2.4)50 ZCT-24FPC-S1 778551 ZCT-24FPC-S2 9325xp024cp25-36v0 9325hw240320f-0j-0c-10 9325m403a545 1298hw240400f-3a 5420ygg000240ns04-03 9325zc24t04m 9320kfm281e01 9320truly-c tft8k1081fpc-a1-e 9320cf024lgg31-36av1 9320huaruit-0033-a-fpc 9325huaruit-0012-b 9325af240B-36b 7787af-283e1-37av1.2 9320GIANTPLUS KFM281E01-1D 9320 GIANTPLUS KFM281E01-1B 9320CF024LGG31-36AV1 9320 GIANTPLUS KFM281101-1A 9320JLST24PV25-36A 9325ZC24T02 9325DST280CPT003 9325 2.8寸 13SX-2.8CPT-932502 9325 2.8寸 13BX280V003(B0XIANTICH) 9325 2.8寸 13NT4SGP3T28A 5408B 2.8寸 10NT4SGP3T28A AU9325 2.8寸 17NT4PC36728A-BL AU9325 2.8寸 17FPC-TGG000280NP04-07 9325 2.8寸 24LEB-DO428000028C1 9325 2.8寸 24CMS210-03 9325 2.8寸 12HW240320F-2D-0B-10 9325 2.8寸 12HW240320F-2D-0B-20 9325 触摸 13SAT28009A05 9325 2.8寸 13LS2288A 9325 2.8寸 13LS2289A 1505 2.8C寸 9LS2288A 9328 2.8寸 13FPC-FTP280P04N-00 9325 2.8C寸 13FPC-FTM280F0TN-00 61505 2.8寸 27FPC-FTPM280F09N-01、FTM240D17N-00 61505 2.8寸 27 FPC-FTM280F06W-00(FTM280F06N-00) 9331 2.8寸 32NTSAU3624A 5408B 2.4寸 10NT4SHY3624A 3225+HY 2.4寸 35024HAADD04 9325 2.4寸 13FPC-T240BQC 9325 2.4寸 13AF240E3-36D 9325 2.4寸 13(AL240E1-3S01) 9325 2.4寸SX-TGS240STCPYB00-00 7785 2.4寸 15(TGS240STCP-8V1,LDH240X320F008M)SX-2.4CPT-9325 9325 2.4寸 18(SX-TGS2.4CPT)FPC-FTS240D03-02 1298 2.4寸 6(FTP240D10N-02) 9325 2.4寸 13SX-TGS24C98-4:3-36B 1298 2.4寸 6FPC-BKS2401 1298 2.4寸 6SAT24009C05 9325 2.4寸 13SAT24009C05L 9325 2.4寸 13(18)KTM377A01-1A 1298 2.4寸 6SAT24009C05 9325 2.4寸 13TGG000240NS04-03 9325 2.4寸 18(13)(LCM-TGG000240NS04-03)FPC-TTHJ05E00XA 9325 2.4寸 27 (FECHTKONCPT24-9325)24008CIT-Q29 1505 2.4寸 37 1540003250(FMARK) 9325 2.4寸 26 T-0033-B(HUARUI) 9325 2.4寸 26T-0053-A 1297 2.4寸 30T-0033-B 68B(CPT) 2.4寸 26T-0012-B(T-0024-A) 9325 2.4寸 18 (T-0059-A)T-0028-A(HUARUI) 9325 2.8寸2X-GT009BL 7783 2.4寸 25JLST24IH81-36A 7781 2.4寸 25JST24TM25-36A 9328 2.4寸 13SX24C98-413-36B 1298 2.4寸 6(SX-TGS240SDCPET00-00)CF024LCD87-36AVO 7787 2.4寸 4AF240B-36B V1.0 7787 2.4寸 4凌达所有屏 9320 1T-0030 9320 2.4寸 1KT240FC-003B 9320 2.4寸 1FPC-FTS240W01 9320 2.4寸 1FPC1032 9320 2.4寸 124WIT36-FPC01 9320 2.4寸 1FPC-FTS240F01 1505 2.4寸PF240320F-2C-OA-30 8347 2.4寸FPC24T49-A1 9325 2.4寸FPC-TGG000280NP04-07 9325 2.8寸TSA24002C05 9325 2.4寸ST24TM25-36A V1.0 9325 2.4寸FPC-0047A2 9320 2.4寸排线丝印侧面丝印驱动ICAF240B-36B V1.0 :AL240EI-3501 7787AF-240B-2V4.1 : AL-240B-S1 7787AF283E1-37A V1.2 9320-2.8AF240E1-36C V1.0 7785AF240E1-36C V2.0 7785AF283P3-37A V1.0 9325-2.8FPC-FTS240F01 FTS240H03 1505FPC-FTS240D03 1298FPC-FTS240D14 1298FPC-FTP240CO9N FTS240B03 8347FPC-FTM280C05N 8347-2.8FPC-FTM280F01N FTM280F01N-00 9320-2.8 FPC-Y80032 V01 N0711-14-04 9325-2.8 FTP240D10N-01 0703 1298FTP240W17N-03 080807 9325BJLST24PV25-36A V1.0 9325T-0033-B 9325024-22V1 9320FPC_HL_2401 5408HL2801 5408-2.8MFC-S07024 V02 8347MFC-S07001 V04 932024WIT36-FPC01 9320MFC-M240702-A 9320XJ2402-V01 8347XD028-V01 9325-2.8ZCT-24FPC-S1 7785ZCT-24FPC-S2 9325LDH240*320F08M 77851540001660 TS024HAADD04-00 5408B1540002660 9325C24008C05-V1 9325MT321TLLKJ-13 排线接口不同 9320B-2.8SX-2.4CPT-9325 9325BCMS2101-3 9325CMS2101-03A 080815 080918-2801A背光片 540834 M30111A116 1298HW240320F-oj-oc-10 9325FPC24T49-A1 9325ZCT-24FPC-S2 9325NOAIS NT4SAU3624A V01 5408CMS057-2 @ HX(8347)T028 0741Z HL240HYF 0803 7787Hantech HR24F11#02 7787JYD-G5060 GWIL36S03240A-A恻边号GXBL240-019LL240-003 08031141 9325FPC-Y80030 V01 恻边号yxd02436l09 je-c068(b) 9320FPC-Y80030 V01 9320M30111A055 8347M403A107 8347DM2432003-001 这个是2.8的,37线,驱动9320FPC24T49-A1 2.4 9325AF240E1-36B V2.0 7785FPC-Q90044-1 2.8 9325QD -24034Bo-1 2.4 9325NOAIS NT4SAU36 24A V01JLST24CP25-36A 2.4 9325板号:MP-763C-SL V1.1 2005.12.16上位屏CM50011ACT6-01AL 2006/03/06 20针1.5寸元件排列:由上到下整齐一行:C11-C7-C5-C12-R1-R2-C1-C6-C2-C3-C21-C22-C23-C31-C4-C0-D1可代换下位屏:CD50006ACT6-27PIN 2005/10/24 27针元件排列:由上到下整齐一行:RL-CVLCD-CVB0A-CVB1A(这是个利用同尺寸不同针数进行的代换)板号:SD008-V2 2006-07-25-MDLU (ROCKCHIPS 2606A)原屏:CMT027 V1.0 2006-08-09 29针可用屏:FPC-S95012-1 V01 SZSUCCESS 06.01 29针板号:JR040_MAIN_V3.1 2007.04.17 (2608a JXD858)原屏:TFT-2.4-S3D 36PIN IL9320可用屏:DZX2.4-S2 V06 (2608A JXD859)资源:GAUO GASP29P03200-002-A-FPC SA VER 1.3(即屏侧边的标记)板号:SG243 V2 0703140941P2原屏:GIANTPLUS KFM281E01-1D可用:CF024LGG31-36AV1(36P,2.4')可用:GIANTPLUS KFM281E01-1B可用:TRULY-C TFT8K1081FPC-A1-E适用机型:纽曼K8 (2.0版)-ANYKA-AK3225。
艾顿摩尔系列PKZM0电缆接线模块说明书
Eaton 112119Eaton Moeller® series PKZM0 Wiring module, for DILM7-M15General specificationsEaton Moeller® series PKZM0 Accessory Wiring module1121194015081116799PKZM0-XM12DE 67 mm 54 mm 45 mm 0.032 kgCSA ULUL Category Control No.: NLRV CSA-C22.2 No. 14 CSA Class No.: 3211-05 CSA File No.: 165628 CEIEC/EN 60947-4-1 UL 508UL File No.: E36332Product NameCatalog Number EANModel Code Product Length/Depth Product Height Product Width Product Weight CertificationsDirect circuit Accessories-25 °C55 °C415 VAC1.5 W0 W0.5 W15.5 A0 WMeets the product standard's requirements.Meets the product standard's requirements.Meets the product standard's requirements.Meets the product standard's requirements.Meets the product standard's requirements.Does not apply, since the entire switchgear needs to be evaluated.Does not apply, since the entire switchgear needs to be evaluated.Meets the product standard's requirements.Model Product category Ambient operating temperature - min Ambient operating temperature - max Rated operational voltage (Ue) - max Equipment heat dissipation, current-dependent Pvid Heat dissipation capacity Pdiss Heat dissipation per pole, current-dependent Pvid Rated operational current for specified heat dissipation (In)Static heat dissipation, non-current-dependent Pvs 10.2.2 Corrosion resistance10.2.3.1 Verification of thermal stability of enclosures 10.2.3.2 Verification of resistance of insulating materials to normal heat10.2.3.3 Resist. of insul. mat. to abnormal heat/fire by internal elect. effects10.2.4 Resistance to ultra-violet (UV) radiation 10.2.5 Lifting10.2.6 Mechanical impact10.2.7 InscriptionsDoes not apply, since the entire switchgear needs to be evaluated.Meets the product standard's requirements.Does not apply, since the entire switchgear needs to be evaluated.Does not apply, since the entire switchgear needs to be evaluated.Is the panel builder's responsibility.Is the panel builder's responsibility.Is the panel builder's responsibility.Is the panel builder's responsibility.Is the panel builder's responsibility.The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.Is the panel builder's responsibility. The specifications for the switchgear must be observed.Is the panel builder's responsibility. The specifications for the switchgear must be observed.The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.Motor Starters in System xStart - brochureSave time and space thanks to the new link module PKZM0-XDM32MESwitching and protecting motors - catalogProduct Range Catalog Switching and protecting motorsDA-DC-00004892.pdfDA-DC-00004921.pdfDA-DC-00004890.pdfDA-DC-00004886.pdfDA-DC-00004915.pdfeaton-manual-motor-starters-module-pkzm0-wiring-module-3d-drawing.epsDA-CE-ETN.PKZM0-XM12DEWIN-WIN with push-in technologyeaton-cadenas-path-01-geo-0_xm12de.3dbDA-CD-0_xm12deDA-CS-0_xm12de10.3 Degree of protection of assemblies10.4 Clearances and creepage distances10.5 Protection against electric shock10.6 Incorporation of switching devices and components 10.7 Internal electrical circuits and connections10.8 Connections for external conductors10.9.2 Power-frequency electric strength10.9.3 Impulse withstand voltage10.9.4 Testing of enclosures made of insulating material 10.10 Temperature rise10.11 Short-circuit rating10.12 Electromagnetic compatibility10.13 Mechanical function BrochuresCatalogsDeclarations of conformityDrawingseCAD modelInstallation videosmCAD modelEaton Corporation plc Eaton House30 Pembroke Road Dublin 4, Ireland © 2023 Eaton. All Rights Reserved. Eaton is a registered trademark.All other trademarks areproperty of their respectiveowners./socialmedia。
电感全型号尺寸封装
1.75
1.5
HSM43
4.5±0.3
4.0±0.3
3.2±0.3
4.5
1.75
1.5
HSM52A
5.8±0.3
5.2±0.3
2.5±0.3
5.5
2.15
1.7
HSM52B
5.8±0.3
5.2±0.3
3.0±0.3
5.5
2.15
1.7
HSM53A
5.8±0.3
5.2±0.3
3.0±0.3
5.5
2.15
0.95
HSM32-6R8M
6.8
0.181
0.95
HSM32-8R2M
8.2
0.195
0.92
HSM32-100M
10.0
0.234
0.90
HSM32-120M
12.0
0.228
0.85
HSM32-150M
15.0
0.332
0.75
HSM32-180M
18.0
0.408
0.70
HSM32-220K
67-73 74-80 81-88 89-95 96-101 102-108 109-118 119-122 123-129 130-133 134-141 142-144
HSM TYRE
PART NUMBERING SYSTEM(品名系列)
HSM 54 -101 K –T/B
② ③ ① ② ③ ④⑤
①.产品类型:产品代码。 ②.产品尺寸:外围×高度。 ③.电感值:前两位为有效值,第三位表零的个数。 ④.电感公差: J;5℅,K:±10℅,L:±15℅,M:±20℅,P:±25℅,N:±30℅。 ⑤.包装方式:〝T”:载带盘装,B:散装
油研型号对照表
DG5V-7-2C
DSHG-01-3C3
4WEH16H51
DG5V-7-OC
DSHG-01-3C3
4WEH16J51
DG5V-7-6C
DSHG-01-3C40
4WEH16Q51
DG5V-7-33C
DSHG-01-3C5
4WEH16F51
DG5V-7-1C
Dห้องสมุดไป่ตู้HG-01-3C60
4WEH16G51
4WE10A21
DG4V-5-22A
DSG-03-2B2-L
4WE10Y21
DG4V-5-2A-LH
DSG-031-2B3-L
DG4V-5-OA-LH
DSG-03-2B8-L
4WE10B21
DG4V-5-22A-LH
DSG-03-2D2
4WE10D/OF
DG4V-5-2N
十六通径电磁换向阀
DSHG-01-3C2
4WE6B51
DG4V-3-22A-LH
DSG-01-2D2
4WE6-D/OF
DG4V-3-2N
十通径电磁换向阀
DSG-03-3C2
4WE10E21
DG4V-5-2C
DSG-03-3C3
4WE10H21
DG4V-5-OC
DSG-03-3C3
4WE106J21
DG4V-5-6C
DSG-03-3C40
4WE10Q21
DG5S-H8-6B-LH
DSHG-06-2B40-L
4WEH25WB51
DG5S-H8-33B-LH
DSHG-10
4WEH30
DG5S4-10
叠加式单向阀
穆勒电气产品选型指南
- = 3极 -4 = 4极
框架尺A
分断能力:
B = 基本(50; 55kA) N = 标准(65; 80kA) H = 高(100kA)
产品名称:
IZM = 断路器 IN = 隔离开关
3
格维科技 0871-5386909
IZ M 1,2,3 空气断路器控制回路端子分配图
LED显示 LED显示 LED显示 LED显示 LED显示(详见以上保护功能 L, S, I, N, G) LED显示 (标准配置) 需显示器:+IZM-XAMG
目 录
空气断路器和塑壳断路器选型指南
空气断路器IZ M 1,2,3
空气断路器IZ M 58
低压终端配电产品选型指南 工控产品选型指南
塑壳断路器N Z M 1-4 E 系列产品 X p o le系列产品 接触器和继电器 电动机起动器
按钮、指示灯 凸轮开关和负荷隔离开关
电子时间继电器 限位开关
热记忆
故障脱扣显示
短路延时保护 S 电流整定 Isd (A ) 延时 tsd 延时 tsd
0.5 - 1 x ln
10 s -
-
lsd=12 x ln ,延时整定按l2tsd时 故障脱扣显示 短路瞬时保护 I 电流整定 Ij
2 - 8 x ln
故障脱扣显示
可选保护功能
中性线保护 N N 极电流整定 lN
D:
900A 1000A
E:
1200A 1200A
IZ M 1,2,3空气断路器脱扣单元-功率、谐波测量,通讯功能,显示功能1 )
测量功能
“功率”测量 测量 I, U, P, cosO, W, f
-
-
“谐波”测量 通讯功能
敏芯微选型表
类型 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 硅麦克风 压力传感器 压力传感器 压力传感器 压力传感器 压力传感器
MSPD100-ASC MSPD100-ASO MSPD200-ASO MSPD200-DSO MSPD350-ASO MSPD350-DSO MSPD40-DSO MSPD700-ASO SK5117 SK3520
敏芯微 敏芯微 敏芯微 敏芯微 敏芯微 敏芯微 敏芯微 敏芯微 洺太 洺太
规格型号 品牌 MSM261D3526Z1A 敏芯微 MSM261D4030H1AP 敏芯微 MSM261D4030H1R 敏芯微 MSM261D4030Z1A 敏芯微 MSM261S3526Z0A 敏芯微 MSM261S4030H0R 敏芯微 MSM26D3526Z1A 敏芯微 MSM26D4030H1AP 敏芯微 MSM26D4030H1R 敏芯微 MSM26D4030Z1A 敏芯微 MSM26S3526Z0A 敏芯微 MSM26S4030H0R 敏芯微 MSM321A3729H9HP-C 敏芯微 MSM32A3729H9HP-C 敏芯微 MSM381A2718Z9A 敏芯微 MSM381A2718Z9A-E 敏芯微 MSM381A3526H9AP-E 敏芯微 MSM381A3526H9HP-E 敏芯微 MSM381A3526Z9A-E 敏芯微 MSM381A3526Z9AH 敏芯微 MSM381A3526Z9H-E 敏芯微 MSM381A3729H9AP-C 敏芯微 MSM381A3729H9HP-C 敏芯微 MSM381A3729Z9A-C 敏芯微 MSM381A3729Z9AH-C 敏芯微 MSM381A3729Z9A718Z9A-E 敏芯微 MSM38A3526H9AP-E 敏芯微 MSM38A3526H9HP-E 敏芯微 MSM38A3526Z9A-E 敏芯微 MSM38A3526Z9AH 敏芯微 MSM38A3526Z9H-E 敏芯微 MSM38A3729H9AP-C 敏芯微 MSM38A3729H9HP-C 敏芯微 MSM38A3729Z9A-C 敏芯微 MSM38A3729Z9AH-C 敏芯微 MSM38A3729Z9AM-C 敏芯微 MSM421A3125H9R-E 敏芯微 MSM421A3125H9R-L 敏芯微 MSM421A3729H9-C 敏芯微 MSM421A3729H9R-C 敏芯微 MSM42A3125H9R-E 敏芯微 MSM42A3125H9R-L 敏芯微 MSM42A3722H9 敏芯微 MSM42A3722H9R 敏芯微 MSM42A3729H9-C 敏芯微 MSM42A3729H9R-C 敏芯微 MSP40-GDF 敏芯微 MSP40-GDR 敏芯微 MSP40-GSF 敏芯微 MSPC0x-AAL2 敏芯微 MSPC0x-GAO3 敏芯微
美国OMEGA钨铼热电偶
OMEGA钨铼热电偶
分度号同等产品
分度号G和C
WM26Re(G型)和W5ReM26Re(C型)热电偶相对于温度值的标称电动势由五次多项式定义。
以绝对毫伏值(IPTS68)表示的电动势使用以下所示的等式和系数确定,温度以华氏温度表示。
常规形式:EMF = AT + BT2+ CT3+ DT4 + ET5+ K
温度范围: 32°F ~ 4200°F (0 ~ 2315°C)
热电偶线识别指南
分度号D
类似的等式用于生成W3ReM25Re热电偶相对于温度值的电动势。
但是,对于这种组合,曲线被分成两种功能,并且温度以摄氏度表示。
常规形式:EMF = AT + BT2 + CT3 + DT4 + ET5
温度范围:32 ~ 4208°F (0 ~ 2320°C)
经许可转载,出自ASTM标准年鉴,版权所有美国材料与试验协会,1916 Race Street, Philadelphia, PA 19103
热电偶线识别指南
W-26%
0 ~ 260°C
铼W-26%
铼W-56%。
E+E温湿度传感器
E+E温湿度传感器广州南创蔡工奥地利E+E温湿度传感器公司是世界上最大的温度测试仪器及相关附件制造商,生产适合各种温度测试要求的热电偶及其插头,产品使用广泛,可用于炉温曲线测试仪、测温仪、返修工作站、回流炉工业用变送器。
奥地利E+E温湿度传感器的产品在30多个国家设立了国外办事处及售后服务中心,并在中国设立了广州南创传感事业部,为奥地利E+E温湿度传感器提供最佳的服务与解决方案。
EE06 系列是一款性价比很高的变送器,提供湿度测量和温湿度一体化测量。
是OEM 应用的理想选择,可选择带外壳或不带外壳。
利用合适的过滤器,EE06 甚至可以成功应用于恶劣的环境。
相对湿度和温度的模拟输出信号都是0 – 1V。
温度输出信号可以是主动的,也可以是被动的。
尺寸小、能耗低以及低至4.5V 的供电使变送器更具有经济、易安装的特点。
以上内容技术参数以《OIML60号国际建议》92年版为基础,最新具体变化可查看《JJG669—12 E+E广州南创传感事业部检定规程以上内容技术参数以《OIML60号国际建议》92年版为基础,最新具体变化可查看《JJG669—12 E+E广州南创传感事业部检定规程》奥地利E+E温湿度传感器EE33系列EE33-MFTA5ND05SW/BC3-T02-Td07 EE33-MFTC5025ND05SW/BC3-T02-Td07EE33-MFTB5ND05SW/BC3-T02-Td07 EE33-MFTD5025ND05SW/BC3-T02-Td07EE33-MFTE5025HA03ND05SW/BC3-T02-Td07 EE33-MFTI5025HA07ND05SW/BC3-T02-T d07EE33-MFTJ5025ND05SW/BC3-T02-Td07 EE33-MFTK5025ND05SW/BC3-T02-Td07……奥地利E+E温湿度传感器EE31系列EE31-MFTA5SW/BC2-T07-Td03 EE31-MFTB55SW/BC2-T07-Td03EE31-MFTD5025SW/BC2-T07-Td03 EE31-PFTA5SW/BC2-T07-Td03EE31-PFTB55SW/BC2-T07-Td03 EE31-PFTC5055SW/BC2-T07-Td03EE31-PFTD5105SW/BC2-T07-Td03……奥地利E+E温湿度传感器EE30EX系列EE30EX-A3P02/BC3-T05-Td14-60m EE30EX-A3P02/BC3-T05-Td14-60mEE30EX-D5056HA03P02/BC3-T05-Td14-60m EE30EX-D3056HA03P02/BC3-T05-Td14-60m EE30EX-E3056HA03P02/BC3-T05-Td14-60m EE30EX-E5056HA03P02/BC3-T05-Td14-60m EE30EX-E6056HA03P02/BC3-T05-Td14-60m……奥地利E+E温湿度传感器EE23系列EE23-MFTA3025D03/AC2-Td04-M01 EE23-MFTA5025D03/AC2-Td04-M01EE23-MFTB6025D03/AC2-Td04-M01 EE23-PFTB3025D03/AC2-Td04-M01EE23-PFTC5025D03/AC2-Td04-M01 EE23-PFTA6025D03/AC2-Td04-M01EE23-PFTC6025D03/AC2-Td04-M01EE23-PFTC3-02-5C11-AB6-T10EE23-PFTC3-02-5C11/HC01-AB6-T10奥地利E+E温湿度传感器EE22系列EE22-MFT1A11D07/T07 EE22-MFT3F13C03/T07EE22-MFT6A26C03/T07 EE22-PFT1F11C03/T07EE22-PFT3F15C03/T07 EE22-PFT3A26C03/T07EE22-PFT6A29C03/T07……奥地利E+E温湿度传感器暖通空调用变送器EE16系列 EE16-FT3A21 EE16-FT6A21 EE16-F3B21 EE16-F3A21 EE16-F6A21EE16-FP3A21 EE16-FP6A21EE16-FT3B53 EE16-FT6B53 EE21-T6A23/T03EE10-FT6D04奥地利E+E温湿度传感器EE08系列EE08-PFT1D602T02 EE08-PFT2E602T22 EE08-PFT7D602T22 EE08-PFP1E602T22EE08-PFP2D602T22 EE08-PFP7E602T22 EE08-PFP2E602T22……奥地利E+E温湿度传感器湿度开关(loadcells)EE14-A11 EE14-A16 EE14-A51-SWO1 EE14-A56-SWO1 EE14-B11EE14-B16 EE14-B56-SWO1 EE14-B51-SWO1 EE45-K500……奥地利E+E温湿度传感器手持表HUMIPORT 05 HUMIPORT 05 IR HUMIPORT 10 HUMIPORT 20 OMNIPORT20奥地利E+E温湿度传感器温湿度计EE02-FT01 EE02-FT01-L01奥地利E+E温湿度传感器高精度湿度发生器HUMOR 20奥地利E+E温湿度传感器温度系列EE10-T3-E01-T04 EE10-T3-D04-T31 EE10-T3-D04-T04EE10-T6-E01-T04 EE10-T6-E01-T55 EE10-T6-D04-T04EE10-PA EE10-PB EE10-PC EE10-PD……EE16-T3A21 EE16-T6A24 EE16-T6A24 EE16-T3B21 EE16-T3B51 EE16-T6B54EE16-PAA21 EE16-PBA24 EE16-PCB21 EE16-PDB51……奥地利E+E温湿度传感器露点紧凑型露点温度变送器及开关EE372-TEHA03D08/CD2-Td03 EE372-TEHA07D08/CD2-Td03EE372-TIHA03D08/CD3-Td03 EE372-TIHA07D08/CD2-Td03EE372-SEHA03D08/CD2-Td03 EE372-SIHA07D08/CD2-Td03EE372-SEHA07D08/CD2-Td03……EE375-TEHA03/C3-Td03 EE375-TEHA03/C6-Td03 EE375-TEHA07/D3-Td03 EE375-TEH A07/D6-Td03EE375-TEHA07/P3-Td03 EE375-TEHA08/P3-Td03 EE375-TEHA08/P6-Td03奥地利E+E温湿度传感器HUMIPORT系列:手持式温湿度表HUMIMAP 20系列:多通道相对湿度、温度、露点、绝对湿度…测量设备HUMLOG10系列:温湿度数据记录仪HUMOR20系列:高精度湿度发生器OMNIPORT系列:多功能手持表THERMOPORT 20系列:手持式温度表VELOPORT 20系列:手持式风速表。
Rosemount
产品数据表00813-0106-5900, Rev CC2021 年 11 月Rosemount™ 5900S 雷达液位计用于储罐计量系统的高性能液位测量■获取经认证的 0.5 mm 贸易交接高精度,精准监测散装流体存储资产■经第三方认证的 IEC 61508 SIL 2 或 SIL3 能力,增加安全性■利用创新型二合一功能实现独立备份液位测量和防溢出保护■可通过 2 线制 IS 总线电源方便安全地安装■包含有线和/或无线数据传输■适用于为各种类型的散装储罐和液化气、轻质产品、原油和沥青等介质提供卓越的测量提高安全性和测量精度出色的散装流体储罐液位精度Rosemount5900S雷达液位计凭借 0.5mm 的仪表精度,可尽可能降低液位测量不确定性。
它通过以下能力提高您的存储操作:■经 OIML 及其他法定计量权威机构认证的贸易交接精度■更优的库存管理■可靠的损失控制数据Rosemount5900S通常与高精度多点温度传感器结合使用。
这将实现 API 和其他标准下的精确净体积计算。
使操作更有效率■无可移动部件,且不与液体接触,因此可靠性更高,中断更少■多数 Rosemount 5900S天线类型可在储罐运行时安装■艾默生无线解决方案可以大幅缩减安装成本,并是您可以访问远程储罐■Rosemount 5900S液位计提供用于各类散装流体存储应用和储罐类型的天线提高防溢出安全等级■创新性的二合一特性,两个雷达液位计置于一个外壳内,可分别进行液位和溢出测量■根据 IEC 61508,通过 SIL 2 和 SIL 3 安全认证■符合 API 2350 的解决方案内容提高安全性和测量精度 (2)获取完整的液位和库存信息 (3)订购信息 (6)技术规格 (28)产品认证 (42)尺寸图 (55)Rosemount 5900S2021 年 11 月获取完整的液位和库存信息Rosemount5900S 是一款优质的非接触式雷达液位计,适用于储罐终端和炼油厂。
欧姆龙枚举类型举例 -回复
欧姆龙枚举类型举例-回复欧姆龙作为一家领先的工业自动化公司,致力于提供全方位、全面的解决方案。
在产品线中,欧姆龙提供了丰富多样的枚举类型产品,以满足不同行业和应用的需求。
在本文中,我将以中括号内的内容为主题,为您一步一步地介绍欧姆龙枚举类型举例。
[欧姆龙枚举类型举例]是一个广泛的主题,它将引领我们探索欧姆龙的枚举类型产品以及它们在市场和应用领域中的具体应用。
我们将深入了解欧姆龙的不同产品系列,包括温湿度传感器、压力传感器、流量传感器、光传感器等。
让我们开始这个令人兴奋的旅程吧!首先,让我们介绍欧姆龙的温湿度传感器。
这类传感器被广泛应用于空调、供暖、通风系统以及冷链物流等领域,目的是监测环境中的温度和湿度变化。
个别的产品例如E5CWL-R1TC,采用数字式温度控制器,可实现精确的温度控制,其广泛应用于冰箱、炉灶等家用电器。
此外,欧姆龙的温湿度传感器还可以用于农业温室、实验室和生物制药行业中的温度和湿度监测。
接下来是压力传感器。
这些传感器广泛应用于工业自动化过程中,包括汽车制造、航空航天、仪器仪表等行业。
欧姆龙的压力传感器凭借其高精度和可靠性而备受市场肯定。
比如,E8F2-B10B具有高达10MPa的测量范围,适用于需要监测高压力的应用场景。
此类传感器的应用领域包括金属加工、油压机械和液压设备等。
流量传感器也是欧姆龙的一个枚举类型产品系列。
这些传感器广泛应用于工业自动化、流体力学研究、水处理、医疗设备等领域。
一款典型的产品是E8F2-A10C。
这款流量传感器采用涡轮式测量原理,可以精确测量液体的流量。
它的无动力传感器设计确保了长时间的稳定性和可靠性,适用于食品和饮料、化工和制药等领域。
光传感器则是欧姆龙枚举类型产品系列中的另一个重要成员。
这些传感器通过感知光线的强度和频率来提供关键的数据信息。
典型的光传感器产品包括E3JK-R4M1、E3AS-R221MP4等。
这些产品被广泛应用于自动包装机械、智能门禁、机器人控制等领域。
Aqara空调伴侣 P3 使用说明书
保修声明Aqara空调伴侣 P3售后服务严格依据《中华人民共和国消费者权益保护 法》、《中华人民共和国产品质量法》实行售后三包服务,服务内容如下:基本参数产品型号:KTBL12LM产品尺寸:65×65×56mm技术规格:4000W-16A MAX,250V~工作温度:-10℃-+40℃工作湿度:0-95%RH,无冷凝无线协议:Wi-Fi IEEE 802.11 b/g/n 2.4GHz,Zigbee3.0 IEEE 802.15.4执行标准:GB/T 1002-2008,GB/T 2099.1-2008 , GB/T 2099.3-2015,Q/QLML006温湿度传感器电池型号:CR2032温度检测范围和精度:-20℃-+60℃,±0.3℃湿度检测范围和精度:0-100%RH,±3%气压检测范围和精度:30KPa-110KPa,±120Pa*本产品的无线电发射设备型号核准代码印于产品机身。
空调伴侣指示灯黄色闪烁待连入Wi-Fi网络蓝色/白色闪烁正在接入Wi-Fi网络已接入Wi-Fi网络接通电源功率或温度异常指示灯状态空调伴侣状态蓝色亮起5秒红色快闪熄灭长按10秒重置网络连按十下恢复出厂设置产品中有害物质的名称及含量塑胶件五金件PCB 电子元器件O O O OO O O OO O O OO O O OO O O OO O O O有害物质铅(Pb)汞(Hg)镉(Cd)六价铬(Cr(VI))多溴联苯(PBB)多溴二苯醚(PBDE)本表格依据SJ/T 11364的规定编制。
O:表示该有害物质在该部件所有均质材料中的含量均在GB/T26572规定的限量要求以下。
X:表示该有害物质至少在该部件的某一均质材料中的含量超出GB/ T 26572规定的限量要求。
部件名称在三包有效期内,您可以依照本规定免费享受退货、换货、维修的服务,退货、换货、维修应当凭发票办理。
Omega CL-355A 电子温度计说明书
K-31U 可提供10种插块样式U 内含1件多插孔插块(1⁄8、3⁄16、 1⁄4、5⁄16、3⁄8")U 最高工作温度400°C(752°F)U 独立过热切断保护功能U 温度传感器开路保护U 附带NIST 可溯源校准证书U 附带肩带、电源电缆和插块拆卸工具CL-355A 是一款体积小、重量轻的便携式干体式校准器,它加热和冷却时间短,在宽泛的工作温度范围内具有卓越的性能规格。
无论是用于标准实验室工作台工作还是作为便携式现场设备,它都是一种理想的选择。
该设备的工作温度范围是环境温度+5°C (9°F) ~ 400°C (752°F),使用多插孔机加工铝质大插块作为测试中传感器的传热介质。
CL-355A 使用与CL-740A 校准器相同的铝质插块。
参见/ cl-700a 上的CL-700A系列,了解各种插块的信息。
该校准器设计用于在下列条件下安全工作: 环境温度范围: 5 ~ 40°C(9 ~ 104°F),最大相对湿度95%,无冷凝。
规格最低温度:高于环境温度5°C (9°F)最高温度:400°C (752°F)冷却速度,400 ~ 100°C (752 ~ 212°F):21 min 加热速度,20 ~ 400°C (68 ~ 752°F): 12 min 独立过热切断保护功能: 约450°C (842°F)风扇冷却:自动显示屏分辨率: 0.1°重量:4 kg (9 lb)插块插入深度:114 mm (4.5") 外形尺寸: 222.25(高)x 203.2(宽)x 203.2 mm (厚)(8.8 x 7.9 x 7.9")15分钟后的稳定性:±0.15°C (0.27°F )CL-355ANIST 8 m (6')订购示例:CL-355A ,便携式干体校准器,120 Vac 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Heat metersPart 3: Test Report FormatCompteurs d’énergie thermique Partie 3: Format du rapport d’essaiO I M L R 75-3 E d i t i o n 2006 (E )OIML R 75-3Edition 2006 (E)I NTERNATIONAL R ECOMMENDATIONContentsIntroduction (4)Explanatory notes to the Test Report Format (4)Note concerning the numbering of the following pages (4)REPORT (5)EVALUATIONI. TYPE1Information concerning the type (5)2Summary of the tests (13)3Performance tests (14)4 Dry heat (24)5 Cold (25)6 Variations in supply voltage and frequency (26)7 Durability test (34)8 Damp heat cyclic (38)9 Short time mains voltage reduction (39)10 Electrical transients (41)11 Electromagnetic field (44)12 Electrostatic discharge (47)13 Static magnetic field (48)14 Electromagnetic field at mains frequency (50)15 Internal pressure (51)16 Pressure loss (52)II. INITIAL VERIFICATION REPORT (53)1 Information concerning the EUT verified (53)2 Initial verification tests (60)ForewordThe International Organization of Legal Metrology (OIML) is a worldwide, intergovernmental organization whose primary aim is to harmonize the regulations and metrological controls applied by the national metrological services, or related organizations, of its Member States. The main categories of OIML publications are:International Recommendations (OIML R), which are model regulations that establish the metrological characteristics required of certain measuring instruments and which specify methods and equipment for checking their conformity. OIML Member States shall implement these Recommendations to the greatest possible extent;International Documents (OIML D), which are informative in nature and which are intended to harmonize and improve work in the field of legal metrology;International Guides (OIML G), which are also informative in nature and which are intended to give guidelines for the application of certain requirements to legal metrology; andInternational Basic Publications (OIML B), which define the operating rules of the various OIML structures and systems.OIML Draft Recommendations, Documents and Guides are developed by Technical Committees or Subcommittees which comprise representatives from the Member States. Certain international and regional institutions also participate on a consultation basis. Cooperative agreements have been established between the OIML and certain institutions, such as ISO and the IEC, with the objective of avoiding contradictory requirements. Consequently, manufacturers and users of measuring instruments, test laboratories, etc. may simultaneously apply OIML publications and those of other institutions. International Recommendations, Documents, Guides and Basic Publications are published in English (E) and translated into French (F) and are subject to periodic revision.Additionally, the OIML publishes or participates in the publication of Vocabularies (OIML V) and periodically commissions legal metrology experts to write Expert Reports (OIML E). Expert Reports are intended to provide information and advice, and are written solely from the viewpoint of their author, without the involvement of a Technical Committee or Subcommittee, nor that of the CIML. Thus, they do not necessarily represent the views of the OIML.This publication - reference OIML R 75-3, Edition 2006 - was developed by Technical Committee TC 11 Instruments for measuring temperature and associated quantities.It was approved for final publication by the International Committee of Legal Metrology in 2006.OIML Publications may be downloaded from the OIML web site in the form of PDF files. Additional information on OIML Publications may be obtained from the Organization’s headquarters:Bureau International de Métrologie Légale11, rue Turgot - 75009 Paris - FranceTelephone: 33 (0)1 48 78 12 82Fax: 33 (0)1 42 82 17 27E-mail: biml@Internet: OIML R 75: Heat metersPart 3: Test Report FormatIntroductionHeat meters and sub-assemblies which comply with the general requirements of OIML R 75-1 and which are submitted for type approval and for initial verification shall comply with the relevant tests specified in R 75-2.Implementation of this Test Report Format is informative with regard to the implementation of R 75-1 and R 75-2 in national regulations; however, its implementation for the Type Evaluation Report is mandatory within the framework of the OIML Certificate System for Measuring Instruments. Note: For terms and definitions, refer to R 75-1.Explanatory notes to the Test Report FormatSection I includes the required format of a Type Evaluation Report and Section II includes a recommended format of an Initial Verification Report for a complete heat meter, a calculator, a flow sensor, a temperature sensor pair or a combined sub-assembly.The symbols used in the tables are:MPE ........................ Maximum Permissible ErrorEUT ........................ Equipment Under TestRVM ....................... Reference Values for the Measurand (5.3 in R 75-2)n/a ........................... not applicableThe summary tables of tests and the tables for each test shall be completed according to this example: Pass × Fail___When the EUT passes the testPass ___ Fail ×When the EUT fails the testPass n/a Passn/a Not applicableNote concerning the numbering of the following pagesIn addition to the sequential numbering at the bottom of the pages of this Publication, a special place is left at the top of each page (starting with the following page) for numbering the pages of reports established following this model. For a given report, it is advisable to complete the sequential numbering of each page by the indication of the total number of pages of the report.I. TYPE EVALUATION REPORT1 Information concerning the type1.1 General informationTesting Authority Name:......................................................................................................................................................................... Address:..................................................................................................................................................................... Accredited laboratory: Yes No Accreditation No.: ………….. By company: ......................... Test No.: …………… Declaration of expanded uncertainty of test equipment No.: ............................................. Contact information: ................................................................................................................................................. Date of beginning and end of tests: ........................................................................................................................... Name(s) of test engineer(s): ...................................................................................................................................... Applicant/manufacturer informationApplication No.:......................................................................................................................................................... Application date:........................................................................................................................................................ Model designation:..................................................................................................................................................... Applicant:................................................................................................................................................................... Address:..................................................................................................................................................................... Manufacturer:............................................................................................................................................................. Address:..................................................................................................................................................................... Representative:........................................................................................................................................................... (Name, telephone)......................................................................................................................................................1.2 Information concerning the typeInstrument category:instrument Documentation No.: …….. Serial No.: …….. Year of manufacture: ……..CompleteCalculatorDocumentation No.: …….. Serial No.: ……..Year of manufacture: ……..Documentation No.: …….. Serial No.: …….. Year of manufacture: ……..sensorFlowTemperature sensor pair Documentation No.: …….. Serial No.: …….. Year of manufacture: ……..Combined sub-assemblies Documentation No.: …….. Serial No.: …….. Year of manufacture: ……..Short description of the principle of measurement (measuring method): ................................................................. ................................................................................................................................................................................... List of documents provided by the manufacturer: ..................................................................................................... All values in this table are taken from documentation pages: ................................................................................... ...................................................................................................................................................................................Additional qualifying information supplied: Yes No Remarks: ......................................................... ................................................................................................................................................................................... Completeness and correctness of instruction manual, marking, assembly instructions, installation instructions, security sealing plan, initial functionality check and operation instruction submitted for type evaluation (requirements of sections 11 and 12 in R 75-1 and 8.1 in R 75-2):Pass Fail Remarks: .............................................................................................................................. ...................................................................................................................................................................................1.2.1 Complete instrument specificationsAccuracy class: Class 1 Class 2 Class 3Heat conveying liquid: Water Water-glycol solution Mixing: ___/___Environmental class: A B CType of temperature sensors: Pt 100 Pt 500 Pt 1000 Pt 10000 other Indication if shielding: Yes NoFlow sensor to be operated: In the flow In the returnLimits of temperature: θmin = ______ °C θmax = ______ °CLimits of temperature difference: Δθmin = ______ K Δθmax = ______ KDisplay unit options: GJ MJ kWhMaximum value of thermal power (P s): ______ MWOutput signal for testing: Type: ______ Level: ______ VCorresponding factor for test output: ______ Wh/pulseDisplay unit options for testing: MJ kWh WhDynamic behavior (circumstances of temperature measurement and integration): .................................................. Other functions in addition to heat indication: ..........................................................................................................For the flow sensor:Physical dimensions (length, thread/flange specification): ....................................................................................... Installation conditions (e.g. straight sections of piping): .......................................................................................... Upstream/downstream, vertical/horizontal position: ................................................................................................. Maximum admissible working pressure (PN-class): ................................................................................................. Maximum pressure loss at q p: ______ bar ______ PaTemperature sensor installed: Yes NoFilter installed: Yes NoStraightener installed: Yes NoRange of electrical conductivity of water (if necessary): ______ µS/cm to ______ µS/cmLength of the connection cable to the electrodes(if the electronic part is separated from the sensor head): ______ mResponse time (for fast response meters): ______ sLimits of flowrate: q p = ______ m³/h q i = ______ m³/h q s= ______ m³/h Low flow threshold value: ______ m³/hLimits of temperature (heat conveying liquid): θmin = ______ °Cθmax = ______ °CNominal meter factor: ______ litres/pulseOutput signal for testing: Type: ______ Level: ______ VCorresponding factor for test output: ______ litres/pulse1.2.2 Calculator specificationsType of temperature sensors: Pt 100 Pt 500 Pt 1000 Pt 10000(or declaration of sensor coefficients: R0: _______Ω A: _______ B: _______)Wiring of sensors: 4-wire3-wire2-wireIndication if shielding: Yes NoFlow sensor to be operated: In the flow In the returnEnvironmental class: A B CHeat conveying liquid: Water Water-glycol solution Mixing: ___/___ Limits of temperature: θmin = ____ °Cθmax = ____ °CLimits of temperature difference: Δθmin = ____ KΔθmax = ____ KDisplay unit options: GJ MJ kWhMWMaximum value of thermal power (P s): ______RMS value of temperature sensor current: ______ mARequired input signal from the flow sensor:Nominal meter factor: ______ litres/pulse (or corresponding factor for test input)Input signal for testing, type: ______ level: ______ VMaximum frequency of flow sensor signal: For testing: ______ Hz In normal use: ______ HzOutput signal for testing: Type: ______ level: ______ VCorresponding factor for test output: ______ Wh/pulseDisplay unit options for testing: MJ kWh WhDynamic behavior (circumstances of temperature measurement and integration): .................................................. Other functions in addition to heat indication: ..........................................................................................................1.2.3 Flow sensor specificationsAccuracy class: Class 1 Class 2 Class 3Environmental class: A B CHeat conveying liquid: Water Water-glycol solution Mixing: ___/___Physical dimensions (length, thread/flange specification): ....................................................................................... Installation conditions (e.g. straight sections of piping): .......................................................................................... Upstream/downstream, vertical/horizontal position: ................................................................................................. Maximum admissible working pressure (PN-class): ................................................................................................. Maximum pressure loss at q p: ____ bar ____ PaTemperature sensor installed: Yes NoFilter installed: Yes NoStraightener installed: Yes NoLimits of temperature (heat conveying liquid): θmin = ______ °Cθmax = ______ °CRange of electrical conductivity of water (if necessary): ___ µS/cm to ___ µS/cmLength of the connection cable to the electrodes(if the electronic part is separated from the sensor head): ______ mResponse time (for fast response meters): ______ sLimits of flowrate: q p = ______ m³/h q i = ______ m³/h q s= ______ m³/h Low flow threshold value: ______ m³/hNominal meter factor: ______ litres/pulseCorresponding factor for test output: ______ litres/pulseOutput signal for testing, type: ______ level: ______ V1.2.4 Temperature sensor pair specificationsType identification: Pt 100Pt 500Pt 1000Pt 10000 (or declaration of sensor coefficients: R0: ______ Ω A: ______ B: ______ )Wiring of sensors: 4-wire3-wire2-wireTotal resistance of a 2-cable wire: ____ Ω/m Cross section of a wire: ____ mm2Maximum length of a cable for: Pt 100 _____ m, Pt 500 _____ m, Pt 1000 _____ m, other _____ m Indication if shielding Yes NoLimits of temperature: θmin = ______ °C θmax = ______ °CLimits of temperature difference: Δθmin = ______ K Δθmax = ______ KInstallation requirements (pocket mounting): Yes NoPhysical dimensions: Length: ______ mm Diameter: ______ mmMinimum immersion depth: ______ mmMaximum liquid velocity for sensors over 200 mm length: ______ m/sMaximum admissible working pressure for direct mounted sensors (PN-class): ______τ0.5 response time: ______ sIdentification of flow and return temperature sensors (if needed): At the flow At the return Maximum RMS value of sensor current: ______ mA1.2.5 Combined sub-assemblies specifications (calculator + temperature sensor pair) Type of temperature sensors: Pt 100 Pt 500 Pt 1000 Pt 10000(or declaration of sensor coefficients: R0: ______ A: ______ B: ______)Wiring of sensors: 4-wire3-wire 2-wire Indication if shielding: Yes No Environmental class: A B CHeat conveying liquid: Water Water-glycol solution Mixing: ___/___Flow sensor to be operated: In the flow In the returnLimits of temperature: θmin = ______ °Cθmax = ______ °CLimits of temperature difference: Δθmin = ______ KΔθmax = ______ KInstallation requirements (pocket mounting): Yes NoPhysical dimensions: Length: ______ mm Diameter: ______ mmMinimum immersion depth: ______ mmMaximum liquid velocity for sensors over 200 mm length: ______ m/sMaximum admissible working pressure for direct mounted sensors (PN-class): ______τ0.5 response time: ______ sDisplay unit options: GJ MJ kWhMWMaximum value of thermal power (P s): ______Output signal for testing: Type: ______ Level: ______ VCorresponding factor for test output: ______ Wh/pulseDisplay unit options for testing: MJ kWh WhRequired input signal from the flow sensor:Input signal for testing: Type: ______ Level: ______ VNominal meter factor: ______ litres/pulse (or corresponding factor for test input) Maximum frequency of flow sensor signal: For testing: ______ Hz In normal use: ______ HzDynamic behavior (circumstances of temperature measurement and integration): .................................................. Other functions in addition to heat indication: .......................................................................................................... Correctness of identification of flow and return temperature sensors: Yes No1.2.6 Combined sub-assemblies specifications (calculator + flow sensor)Accuracy class: Class 1 Class 2 Class 3Environmental class: A B CType of temperature sensors: Pt 100 Pt 500 Pt 1000 Pt 10000Wiring of sensors: 4-wire 3-wire 2-wire Indication if shielding: Yes No Heat conveying liquid: Water Water-glycol solution Mixing: ___/___Flow sensor to be operated: In the flow I n the returnLimits of temperature: θmin = ____ °Cθmax = ____ °CLimits of temperature difference: Δθmin = ____ KΔθmax = ____ KDisplay unit options (MJ, kWh): ______Maximum value of thermal power (P s): ______ MWOutput signal for testing: Type:______ Level: ______ VCorresponding factor for test output: ______ Wh/pulseDisplay unit options for testing: MJ kWh WhDynamic behavior (circumstances of temperature measurement and integration): .................................................. Other functions in addition to heat indication: .......................................................................................................... For the flow sensor:Physical dimensions (length, thread/flange specification): ....................................................................................... Installation conditions (e.g. straight sections of piping): .......................................................................................... Upstream/downstream, vertical/horizontal position: ................................................................................................. Maximum admissible working pressure (PN-class): ______Maximum pressure loss at q p: ______ bar ______ PaTemperature sensor installed: Yes NoFilter installed: Yes NoStraightener installed: Yes NoRange of electrical conductivity of water (if necessary): ______ µS/cm to ______ µS/cmLength of the connection cable to the electrodes (if the electronic part is separated from the sensor head): ____ m Response time (for fast response meters): ______ sLimits of flowrate: q p = ______ m³/h q i = ______ m³/h q s= ______ m³/hLow flow threshold value: ______ m³/hLimits of temperature (heat conveying liquid): θmin = ______ °Cθmax = ______ °CNominal meter factor: ______ litres/pulseCorresponding factor for test output: ______ litres/pulseOutput signal for testing: Type: ______ Level: ______ V1.3 Rated operating conditionsComplete instrument, (combined) sub-assembliesGeneral information concerning ambient test conditionsTest No.: .................................................................................................................................................................... Application No.:......................................................................................................................................................... Ambient temperature: ______ °C Relative humidity: ______ %Barometric pressure: ______ kPa2 Summary of the tests (Ref.: 6.2, Table 2 in R 75-2)3 Performance tests3.1 Flow sensorTest results: Flow sensorTable 1: Performance test (Ref.: 6.4.1 in R 75-2)Initial intrinsic error at RVM-conditions: ____ %K = (q S /q i ) ¼ = ____ Electrical conductivity of water (if necessary): ____ µS/cmTestnum-berTest point flowrate m³/h Temperature of liquid °C Flow sensor output signal volume m 3 Conven-tional true volume m 3Error % MPE%Calculated Actual Level Measured 1 q 1 (θmin + 5) 2 q 2 (θmin + 5) 3 q 3 (θmin + 5) 4 q 4 (θmin + 5) 5 q 5 (θmin + 5) 6 q 1 (50 ± 5) 7 q 2 (50 ± 5) 8 q 3 (50 ± 5) 9 q 4 (50 ± 5) 10 q 5 (50 ± 5) 11 q 1 (85 ± 5) 12 q 2 (85 ± 5) 13 q 3 (85 ± 5) 14 q 4 (85 ± 5) 15 q 5 (85 ± 5)Markings: Pass: _____ Fail: _____ Signature: ______________________________3.1.1 Electromagnetic type flow sensors (Ref.: 6.4.1.2 in R 75-2)The test results have to be noted according to Table 1. The electrical conductivity of water and the length of the connecting cable to the electrodes shall be noted in the type test report.3.1.2 Fast response meters (Ref.: 6.4.1.3 in R 75-2)Test results: Flow sensorTable 2: Performance test - fast response meters(Ref.: 6.4.1.3 in R 75-2)Initial intrinsic error at RVM-conditions: ____ %In the case of a complete instrument or combined sub-assemblies:Temperature difference: ____ KCycle No. Test pointflowrateq sm3/hTemperature of liquid°CLevel | MeasuredFlow sensoroutput signalvolumem3Conventionaltrue volumem3Error%MPE%1 θmin to (θmin + 5)2 θmin to (θmin + 5)3 θmin to (θmin + 5)4 θmin to (θmin + 5)5 θmin to (θmin + 5)6 θmin to (θmin + 5)7 θmin to (θmin + 5)8 θmin to (θmin + 5)9 θmin to (θmin + 5)10 θmin to (θmin + 5)Markings: Pass: _____ Fail: _____ Signature: ______________________________3.2 Calculator (Ref.: 6.4.2 in R 75-2)Test results: CalculatorTable 3: Performance test (Ref.: 6.4.2 in R 75-2)Initial intrinsic error at RVM-conditions: ____ %Simulated volume: ____ m³Simulated flowrate: ____ m³/hTest point °CTemperature difference ΔθKΔθmin *) 5 *) 20 *)ΔθRVM *)Δθmax *) Test No. θreturn ==θmin *) Error % MPE % Error % MPE % Error % MPE % Error % MPE % Error % MPE % 1 2 3Δθmin *) 5 *) 20 *)ΔθRVM *)Test No. θreturn = =θRVM*)Error % MPE % Error % MPE % Error % MPE % Error % MPE % 4 5 620 *) ΔθRVM *)Δθmax *)Test No. θflow = =θmax *) Error % MPE % Error % MPE % Error % MPE%7 8 9*)Test points are measured values.Errors calculated from (pulse) output signalor display indicationMarkings: Pass: _____ Fail: _____ Signature: ______________________________3.3 Temperature sensors (Ref.: 6.4.3 in R 75-2)Test results: Temperature sensorsTable 4: Minimum immersion depth, single sensors (Ref.: 4.16 in R 75-1 and6.4.3.1 in R 75-2) Temperature sensor serial No: _________________Temperature of water bath: ____ °CMaximum permissible change of the output value < 0.1 KImmersion depthmm Measured resistanceΩCalculated temperature *)°C101520253035404550*) using standard IEC 60751 constantsNote: Values of immersion depths are examples.Minimum immersion depth specified by measurements: ____ mmMinimum immersion depth specified by the supplier: ____ mmMarkings: Pass: _____ Fail: _____ Signature: ______________________________ Table 5a: Thermal response time, single sensors are not installed in pockets(Ref.: 4.1 in R 75-1 and6.4.3.2 in R 75-2)Water bath temperature: ____ °CThermal response time specified by the supplier: ____ sTemperature sensor type, serial number Measured response 50 % timeτ0.5sSpecified response 50 % timeτ0.5sMarkings: Pass: _____ Fail: _____ Signature: ______________________________ Note: Repeat the measurements with sensors in pockets, if the tolerated gap between the sensor and the pocket is more than 0.125 mm or the immersion depth of the pocket is less than 70 mm.Table 5b: Thermal response time, single sensors are installed in pockets (Ref.: 4.1 in R 75-1 and 6.4.3.2 in R 75-2)Water bath temperature: ____ °CThermal response time specified by the supplier: ____ sTemperature sensor serial number Measured response 50 % timeτ0.5sSpecified response 50 % timeτ0.5sMarkings: Pass: _____ Fail: _____ Signature: ______________________________ Table 6a: Calculation of constants of the temperature/resistance equation of IEC 60751.Sensors are tested without pockets (Ref.: 9.2.2.2 in R 75-1 and 6.4.3.3 in R 75-2, IEC 60751) Sensor pair serial No.: ______________Temperature range specified by the supplier from ____ °C to ____ °CTemperature difference for the pair specified by the supplier from ____ K to ____ KType of temperature sensors: Pt 100 Pt 500 Pt 1000 Pt 10000Sensors are intended to be installed in pockets: Yes NoTemperature°C Measured resistanceΩLevel *)Measured Sensor 1 (flow) Sensor 2 (return)(5 ± 5)(40 ± 5)(70 ± 5)(90 ± 5)(130 ± 5)(160 ± 10)*) The temperature sensors shall be tested at least at three temperature levels. Temperature levels shall be chosen to optimize the spread of temperature over the temperature range specified by the supplier.Constants of sensor 1 calculated according to IEC 60751:R0: __________ Ω A: _________ B: ________Constants of sensor 2 calculated according to IEC 60751:R0: __________ Ω A: _________ B: ________Markings: Pass: _____ Fail: _____ Signature: ______________________________。