初一数学上册有理数的认识及加减法计算题精选203

合集下载

七年级有理数的加减法计算题

七年级有理数的加减法计算题

七年级有理数的加减法计算题第一篇:七年级有理数的加减法计算题有理数的加减法——计算题练习1、加法计算(直接写出得数,每小题1分):(1)(-6)+(-8)=(4)(-7)+(+4)=(7)-3+2=(10)(-4)+6=(2)(-4)+2.5=(5)(+2.5)+(-1.5)=(8)(+3)+(+2)=(3)(-7)+(+7)=(6)0+(-2)=(9)-7-4=(11)(-3)+1=(12)a+(-a)=2、减法计算(直接写出得数,每小题1分):(1)(-3)-(-4)=(4)1.3-(-2.7)=(7)13-(-17)=(10)0-6=(2)(-5)-10=(5)6.38-(-2.62)=(8)(-13)-(-17)=(11)0-(-3)=(3)9-(-21)=(6)-2.5-4.5=(9)(-13)-17=(12)-4-2=1⎫⎛1⎫(15)⎛1⎫(13)(-1.8)-(+4.5)=(14)⎛(-6.25)----= -3⎪= ⎪⎪43⎝4⎭⎝⎭⎝⎭3、加减混合计算题(每小题3分):(1)4+5-11;(2)24-(-16)+(-25)-15(3)-7.2+3.9-8.4+12(4)-3-5+7(5)-26+43-34+17-48(6)91.26-293+8.74+191(7)12-(-18)+(-7)-15(8)(-83)+(+26)+(-41)+(+15)(9)(-1.8)+(+0.7)+(-0.9)+1.3+(-0.2)(10)(-40)-(+28)-(-19)+(-24)-(32)(11)(+4.7)-(-8.9)-(+7.5)+(-6)(12)-6-8-2+3.54-4.72+16.46- 5.284、加减混合计算题:⎛1⎫5⎫⎛3⎫⎛1⎫⎛4⎫⎛1⎫(1)15-⎛(2)(- 1.5)++(+ 3.75)++3+5-+3+-2-+6 ⎪-4⎪ ⎪⎪⎪⎪⎝6⎭⎝7⎭⎝6⎭⎝7⎭⎝4⎭⎝2⎭2⎫⎛1⎫⎛1⎫22⎫⎛2⎫⎛3⎫⎛1⎫⎛(3)⎛-5⎪-+⎪+-⎪+(+5)--1⎪(4)4+8-+3⎪+-1⎪+-2⎪3⎭⎝4⎭⎝3⎭13⎝⎝4⎭⎝13⎭⎝5⎭⎝5⎭2⎫⎛3⎫⎛2⎫(5)⎛-3⎪--2⎪--1⎪-(+1.75)(6)3⎭⎝4⎭⎝3⎭⎝⎛7⎫⎛1⎫⎛1⎫⎛1⎫-4⎪--5⎪+-4⎪-+3⎪⎝8⎭⎝2⎭⎝4⎭⎝8⎭1⎫⎛5⎫1⎫⎛1⎫⎛1⎫⎛3⎫⎛1⎫(8)⎛(7)⎛-1.2+2-1++1+-2--3-+1 ⎪⎪⎪⎪⎪⎪--5⎪--3.4-(-1.2)6⎭⎝6⎭2⎭⎝4⎭⎝4⎭⎝⎝2⎭⎝4⎭⎝(9)11++1⨯22⨯3+1111+++(10)8⨯99⨯101⨯33⨯5+11+97⨯9999⨯101第二篇:有理数加减法计算题3有理数的加减混合运算练习(一)有理数的加减法 1.有理数的加法法则⑴同号两数相加,取相同的符号,并把绝对值相加;⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;⑶互为相反数的两数相加,和为零;⑷一个数与零相加,仍得这个数。

初一有理数加减混合运算100道题

初一有理数加减混合运算100道题

初一有理数加减混合运算百题第一部分一、有理数加法运算基础题1、(—2.2)+3.82、(—6)+8+(—4)+123、0.36+(—7.4)+0.3+(—0.6)+0.64二、有理数减法运算基础题1、(-52)-(-53)2、(-21)-(-21)3、(-17)-(-8)-(-9)-(+6)-(-14);4、(-32)-(+21)-(-65)-(-31)5、3-[(-3)-10]三、有理数加减混合运算基础题1、(-7)-(+5)+(-4)-(-10)2、-4.2+5.7-8.4+103、12-(-18)-(-7)-154、4.7-(-8.9)-7.5+(-6)5、-41+65-43+616、-70-28-(-19)+24-(-12)7、-3.3+5.4-2.8-(-7.5)8、(+23)+(-27)+(+9)+(-5)9、(-20)+(+3)-(-5)-(+7)10、-23+50+(-37)+20四、有理数加减混合运算过关题1、(0.7)+(-0.9)+(-1.8)+1.3+(-0.2)2、(-0.5)+343+2.75+(-521)3、-3.3+4.6-6.5+104、-0.6+1.8-5.4+4.25、(-2521)+14+25.5+(-14)6、16-(-865)-(+465)+27、-9+(—343)+3438、-4.2+5.7-8.4+10五.列式计算(1)、什么数减去544-的差是313的相反数?(2)、从–4中减去41与-31的和,其差是多少?(3)、什么数与-7的和等于-11?第二部份1、(-9)-(-13)+(-20)+(-2)2、3+13-(-7)÷63、(-2)-8-14-134、(-7)×(-1)÷7+85、(-11)×4-(-18)÷186、4+(-11)-1÷(-3)7、(-17)-6-16÷(-18)8、5÷7+(-1)-(-8)9、(-1)×(-1)+15+110、3-(-5)×3÷(-15)11、6×(-14)-(-14)+(-13)13、(-20)÷13÷(-7)+1114、8+(-1)÷7+(-4)15、(-13)-(-9)×16×(-12)16、(-1)+4×19+(-2)17、(-17)×(-9)-20+(-6)18、(-5)÷12-(-16) ×(-15)19、(-3)-13×(-5)×1320、5+(-7)+17-1021、(-10)-(-16)-13×(-16)22、(-14)+4-19-1223、5×13÷14÷(-10)24、3×1×17÷(-10)25、6+(-12)+15-(-15)26、15÷9÷13+(-7)27、2÷(-10)×1-(-8)28、11÷(-19)+(-14)-529、19-16+18÷(-11)30、(-1)÷19+(-5)+131、(-5)+19÷10×(-5)32、11÷(-17)×(-13)×1233、(-8)+(-10)÷8×1734、7-(-12)÷(-1)+(-12)35、12+12-19+2037、17÷(-2)-2×(-19)38、1-12×(-16)+(-9)39、13×(-14)-15÷2040、(-15)×(-13)-6÷(-9)41、15×(-1)÷12+742、(-13)+(-16)+(-14)-(-6)43、14×12×(-20)×(-13)44、17-9-20+(-10)45、12÷(-14)+(-14)+(-2)46、(-15)-12÷(-17)-(-3)47、6-3÷9÷(-8)48、(-20)×(-15)×10×(-4)49、7÷(-2)×(-3)÷(-14)50、13÷2×18×(-7)答案:1、-182、103÷63、-374、95、-436、-(20÷3)7、-(199÷9)8、54÷79、1710、211、-8312、21613、1021÷9114、27÷715、-174116、7317、12718、-(2885÷12)19、84220、521、21422、-4123、-(13÷28)24、-(51÷10)25、2426、-(268÷39)27、39÷528、-(372÷19)29、15÷1130、-(77÷19) 31、-(29÷2)32、1716÷1733、-(117÷4)34、-1735、2536、285637、59÷238、18439、-(731÷4)40、587÷341、23÷442、-3743、4368044、-2245、-(118÷7)46、-(192÷17)47、145÷2448、-1200049、-(3÷4)50、-819(一)计算题:(1)23+(-73)(2)(-84)+(-49)(3)7+(-2.04)(4)4.23+(-7.57)(5)(-7÷3)+(-7÷6)(6)9÷4+(-3÷2)(7)3.75+(2.25)+5÷4(8)-3.75+(+5÷4)+(-1.5)(二)用简便方法计算:(1)(-17÷4)+(-10÷3)+(+13÷3)+(11÷3)(2)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)(3)若a-b>a,则b是_____________数;(4)从-3.14中减去-π,其差应为____________;(5)被减数是-12(4÷5),差是4.2,则减数应是_____________;(6)若b-a<-,则a,b的关系是___________,若a-b<0,则a,b的关系是______________;(7)(+22÷3)-()=-7(三)判断题:(1)一个数减去一个负数,差比被减数小。

人教版七年级数学上册有理数加减法练习

人教版七年级数学上册有理数加减法练习

人教版七年级数学上册有理数加减法练习(含答案)(总7页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--有理数加减法知识要点: 1.有理数的加法加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。

加法运算律:①交换律 a +b =b +a ; ②结合律 (a +b )+c =a +(b +c )。

2.有理数的减法减法法则:减去一个数,等于加这个数的相反数。

即:a -b = a +(-b )。

一、单选题1.﹣2﹣1的结果是( ) A .﹣1 B .﹣3 C .1 D .3【答案】B2.计算:1﹣(﹣13)=( )A .23B .﹣23C .43D .﹣43【答案】C3.下列运算中,正确的是:( ) A .(3)(4)34-+-=-+- B .-7-2×5=-9×5C .(3)(4)34---=-+D .5252()7777-+=-+ 【答案】C4.把前2018个数1,2,3,4,…,2018的每一个数的前面任意填上“+”号或“﹣”号,然后将它们相加,则所得之结果为()A.偶数B.奇数C.正数D.有时为奇数,有时为偶数【答案】B5.若aa≠0,a=|a|a +|a|a+|aa|aa,则a的值是()A.3B.−3C.3或−1D.3或−3【答案】C6.蜗牛在井里距井口18米处,它每天白天向上爬行6米,但每天晚上又下滑3米.蜗牛爬出井口需要的()天数是天天天天【答案】B7.1+(−2)+3+(−4)+⋯+2017+(−2018)的结果是()【答案】C8.下列算式中正确的是()A.(−5)−6=−1B.0−(−5)=5C.5−(−5)=−10D.|8−3|=−(8−3)【答案】B9.下列交换加数位置的变形中正确的是()A.−7−4+6−2=−7−4+2−6B.−3−2+3−5=2+3+ 5−3C.4−1−2+3=4−2+3−1D.−13+34−16−14=14+34−13−16【答案】C10.如果|a|=3,|b|=1,且 a b ,那么 a b 的值是()C. 4 或2【答案】D11.计算111111261220309900+++++⋅⋅⋅⋅⋅⋅+的值为()A.1100B.10099C.199D.99100【答案】D二、填空题12.一架直升机从高度为450m的位置开始,先以20m/s的速度上升60s,然后以12m/s的速度下降120s,这时,直升机的高度是_____.【答案】210m.13.气象部门测定高度每增加1km,气温约下降5℃,现在地面气温是15℃,那么4km高空的气温是__________.【答案】5-℃14.已知|a|=2 019,|b|=2 018,且a>b,则a+b的值为__________.【答案】4037或115.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S 都相等,那么S 的最大值是___________【答案】1216.数轴上100个点所表示的数分别为123100,,,,a a a a ,且当i 为奇数时,12i i a a +-=,当i 为偶数时,11i i a a +-=,①51a a -=________,②若11001a a m -=,则m =________. 【答案】6; 13417.北京与纽约的时差为13h -(负号表示同一时刻纽约时伺比北京时间晚),如果现在是北京时间16:00,那么纽约时间是________. 【答案】3:00三、解答题18.某检修小组乘汽车检修供电线路,向南记为正,向北记为负.某天自A 地出发,所走路程(单位:千米)为: +22,-3,+4,-2,-8,+17,-2,+12,+7,-5.问:(1)最后他们是否回到出发点若没有,则在A 地的什么地方距离A 地多远(2)若每千米耗油升,则今天共耗油多少升?【答案】(1)他们没有回到出发点,在A地的南方,距离A地42千米;(2)升19.“滴滴”司机沈师傅从上午8:00~9:15在东西方向的江东大道上营运,共连续运载十批乘客.若规定向东为正,向西为负,沈师傅营运十批乘客里程如下:(单位:千米)+8,-6,+3,-7,+8,+4,-9,-4,+3,+3.(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面距离多少千米(2)上午8:00~9:15沈师傅开车的平均速度是多少?(3)若“滴滴”的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午8:00~9:15一共收入多少元?【答案】(1)东面,距离是3千米;(2)44千米/小时;(3)130元.20.计算:(1)25−(+214)−|−25|−(−2.75);(2)0.25+(−318)+(−14)+(−534);(3)(−14)+(+56)+(−12)+(−13);(4)338+(−1.75)+258+(+1.75).【答案】(1)12(2)−878(3)−14(4)621.阅读下面文字:对于(556-)+(293-)+1734+(132-),可以按如下方法计算:原式=[(-5)+(56-)]+[(-9)+(23-)]+(3174+)+[(-3)+(12-)]=[(-5)+(-9)+17+(-3)]+[(56-)+(23-)+34+(12-)]=0+(1 14 -)=-11 4 .上面这种方法叫拆项法.仿照上面的方法,请你计算:(-201856)+(-201723)+(-112)+4036.【答案】-2.。

初一有理数加减法30道

初一有理数加减法30道

初一有理数加减法30道1. 加法1.计算(3+5)+(−7)。

2.计算(−4)+(−6)+2。

3.计算(−8)+(−3)+(−10)+7。

4.计算(2.5)+(−1.8)+(−2.7)。

5.计算(−9)+6.7+(−2.5)+(−3.5)。

2. 减法1.计算(−8)−3。

2.计算(5)−6−(−2)。

3.计算(−4)−(−9)−(−7)。

4.计算(12.5)−(−3.6)−(−2.5)。

5.计算(−5)−2.7−(−3.8)−(−1.3)。

3. 综合加减法1.计算(5)+(−2)−(−6)。

2.计算(6)+(−4)−(−8)+3。

3.计算(−9)−3+5−(−4)。

4.计算(−2)−(−7)+4−(−5)+(−3)。

5.计算(3)+(−2)−(−5)+7−(−9)。

4. 混合计算1.计算 $(6 \\times 2) + 9 - (-4)$。

2.计算 $(-7 \\times 3) - 5 + (-2)$。

3.计算 $(8 \\div 2) - 6 - (-3)$。

4.计算 $(-9 \\div 3) + (-5) \\times (-2)$。

5.计算 $(-3 \\times 4) + (-2) - (-6) \\div (-3)$。

5. 拓展题1.一个积极数加一个负数是否一定是负数?请举例说明。

2.两个负数相加,结果的符号一定是负数吗?请说明理由。

3.两个正数相减的结果一定是正数吗?请举例说明。

4.一个正数减去一个负数,结果的符号是什么?为什么?5.两个负数相乘,结果是正数还是负数?请说明理由。

以上为初一有理数加减法的30道题目,希望对您的学习有帮助!。

七年级数学上册有理数的加减法知识点及典型例题练习

七年级数学上册有理数的加减法知识点及典型例题练习

有理数的加法知识点:1、两个有理数相加有以下几种情况:①两个正数相加;(﹢5)+(﹢6)=②两个负数相加;(﹣5)+(﹣6)=③异号两数相加;(﹣5)+(﹣6)=④正数或负数或零与零相加.(﹣5)+0=2、有理数的加法法则:(1)同号两数相加,取相同的符号,并把相加.(2)异号两数相加,绝对值相等时和为;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.(3)一个数同0相加,仍得.3、有理数加法的运算律(1)加法交换律:a+b=b+a;(2)加法结合律:(a+b)+c=a+(b+c).4、有理数的减法法则:减去一个数等于加上这个数的相反数.5.、有理数的加减混合运算对于加减混合运算,可以根据有理数的减法法则,将加减混合运算转化为有理数的加法运算。

然后可以运用加法的交换律和结合律简化运算。

【练一练】例1.计算:(1)(-2)+(-5)(2)(-6)+4(3)(-3)+0 (4)-3-(-5)例2.计算(-20)+(+3)-(-5)+(-7).例3.有10名学生参加数学竞赛,以80分为标准,超过80分记为正,不足80分记为负,评分记录如下:+10,+15,-10,-9,-8,-1,+2,-3,-2,+1,问这10名同学的总分比标准超过或不足多少分?总分为多少?例4、计算(﹢6)+(﹣)-11例5.已知︱a+5︱=1,︱b-2︱=3,求a-b的值.例6. 依次排列4个数:2,11,8,9.对相邻的两个数,都用右边的数减去左边的数,所得之差排在这两个数之间得到一串新的数:2,9,11,-3,8,1,9.这称为一次操作,作二次操作后得到一串新的数:2,7,9,2,11,-14,-3,11,8,-7,1,8,9.这样下去,第100次操作后得到的一串数的和是()A. 737B. 700C. 723D. 730基础检测1、计算:(1)15+(-22)(2)(-13)+(-8)(3)(-0.9)+1.512、计算:(1)23+(-17)+6+(-22)(2)(-2)+3+1+(-3)+2+(-4)3、计算:(1))1713(134)174()134(-++-+-(2))412(216)313()324(-++-+-拓展提高4.(1)绝对值小于4的所有整数的和是________;(2)绝对值大于2且小于5的所有负整数的和是________。

人教版数学七年级上册《有理数加减法》练习题(3套)(附答案)

人教版数学七年级上册《有理数加减法》练习题(3套)(附答案)

人教版数学七年级上册《有理数加减法》练习题(一)一、单选题:1. 计算:13-12正确的结果是( )A.15 B .-15 C.16 D .-162.计算|-13|-23的结果是( )A .-13 B.13 C .-1 D .13.下列计算正确的是( )A .(-15)-(+5)=-10B .0-(+3)=3C .(-9)-(-9)=-18D .0-(-6)=64. 比-5小-2的数是( )A .-7B .7C .-3D .35.在(-5)- =-6中的方框里应填( )A .-1B .+1C .-11D .+116.下列运算结果为1是( )A .|+3|-|+4|B .|(-3)-(-4)|C .|-2|-|-4|D .|+3|-|-4|7.下列说法正确的是( )A .减去一个数等于加上这个数的相反数B .互为相反数的两数之差为0C .零减任何有理数,差为负数D .减去一个正数,差大于被减数8. 若x 是2的相反数,|y|=3,则x -y 的值是( )A.-5 B.1 C.-1或5 D.1或-59.a,b在数轴上的位置如图,下列结论不正确的是( )A.a+b<0 B.a-b<0 C.-a-b>0 D.-a+b<0二、填空题:10. 计算:(-5)-(-3)=-5+____11. 计算: (-6)-4=-6+________12. 计算: 0-(+5)=0+_________13. 计算:8-(+2 016)=8+________14. 下列说法中:①一个数减去零仍得这个数;②零减去一个数等于这个数的相反数;③一个数减去它的相反数得零;④两个有理数之差不一定小于这两数之和.其中正确的是___________.(填序号)15. 扬州市某天最高气温是6 ℃,最低气温是-2 ℃,那么当日的温差是____℃.16.数轴上表示-3的点与表示-7的点之间的距离是____.17.某粮店出售的3种品牌的面粉袋上,分别标有质量为(25±0.2) kg,(25±0.3) kg,(25±0.4) kg的字样,从中任意拿出两袋,它们的质量最多相差______kg.18.-8与3的差的绝对值是_______.19.在数5,-2,7,-6中,任意两个数相减差最大是______,最小是_________.20.数字解密:第一个数是3=2-(-1);第2个数是5=3-(-2);第三个数是9=5-(-4);第四个数是17=9-(-8)……第六个数是___________________.21.小亮做这样一道计算题:|(-3)+|,其中“”表示被污染看不清的一个数,他翻开答案,知道该题的结果是6,那么“”表示的数是__________.22.已知x是5的相反数,y比x小-7,则x与-y的差是______.三、计算题:23. 计算:(1)(-5)-(-23);(2)(-9.25)-(-414 ).24.已知|a|=5,|b|=4,且a+b<0,求a-b的值.四、解答题:25. 世界上最高的山峰是珠穆朗玛峰,其海拔高度是8 844 m,吐鲁番盆地的海拔是-155 m,两处的海拔高度相差多少米?26. 符号“f”表示一种运算,它的一些运算结果如下:①f(1)=0,f(2)=1,f(3)=2,f(4)=3…②f(12)=2,f(13)=3,f(14)=4,f(15)=5…利用上述规律求:(1)f(10)-[-f(110 )];(2)f(2 015)-f(12 016).人教版数学七年级上册《有理数加减法》练习题(一)答案:一、单选题1-9. DADCB BADB10. 311. (-4)12. (-5)13. (-2016)14. ①②④15. 816. 417. 0.818. 1119. 13 -1320. 65=33-(-32)21. 9或-322. -323. (1)解:原式=18(2)解:原式=-524. 解:a-b的值为-9或-125. 解:8 999米26. (1)解:原式=19(2)解:原式=-2人教版数学七年级上册《有理数加减法》练习题(二)一、单选题1. 某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( )A.10℃B.6℃C.﹣6℃D.﹣10℃2. 在-2,0,1,3这四个数中,最大的数和最小的数的和是( )A.1B.0C.2D.33. 5的相反数与-2的差是( )A.3B.-3C. 7D.-74. 下列表示某地区早晨、中午和午夜的温度(单位:℃),则下列说法正确的是( )A.午夜与早晨的温差是11℃B.中午与午夜的温差是0℃C.中午与早晨的温差是11℃D.中午与早晨的温差是3℃5. 若|a|=2,|b|=3,且0>a>b,则a+b=( )A.5B.﹣5C.﹣1D.﹣36. 比-6的一半大2的数是( )A.2B.0C.﹣1D.﹣37. 温度由﹣4℃上升7℃是( )A.3℃B.﹣3℃C.11℃D.﹣11℃8. 绝对值大于1且小于5的所有的整数的和是( )A.9B.-9C.6D.09. 计算:-2+3=( )A.1B.-1C.-5D.-610. 已知3x=,2y=,且0xy>,则x y-的值等于( )A.5或-5B.1或-1C.5或1D.-5或-111. 下面说法中正确的是( )A.-2-1-3可以说是-2,-1,-3的和B.-2-1-3可以说是2,-1,-3的和C.-2-1-3是连减运算不能说成和D.-2-1-3=-2+3-112. 计算﹣(﹣1)+|﹣1|,其结果为( )A.﹣2B.2C.0D.﹣113. 若x的相反数是5,|y|=8,且x+y<0,那么x-y的值是( )A.3B.3或-13C.-3或-13D.-13二、填空题14. 比最大的负整数大2的数是_____.15. 比-5大-6的数是____.16. 小怡家的冰箱冷藏室温度是4℃,冷冻室的温度是-2℃,则冷藏室温度比冷冻室温度______℃。

初一数学第一学期第一章第3节:有理数的加减法练习题

初一数学第一学期第一章第3节:有理数的加减法练习题

一、以考查知识为主试题【容易题】1.计算:(1)(-3)+(-9);(2)(-4.7)+3.9答案:(1)(-3)+(-9)=-(3+9)=-12(2)(-4.7)+3.9= -(4.7-3.9)=-0.82.下列运算中,正确的个数有()①(-5)+5=0 ②(-10)+(+7)=-3 ③0+(-4)=-4 ④(-3)+2=-1 ⑤(-1)+(+2)=-1.A.1个 B.2个 C.3个 D.4答案:D.3.如果2010个不都相等的有理数的和为0,那么下列说法中,正确的是()A.其中至少有一个是负数B.其中正数与负数各占一半C.其中正数不能少于1005个D.其中必须有一个数是0答案:A.【中等题】答案:∵比5的相反数小7为-5-7=-12,∴其中的一个数为-12,∵两个数的和是-25,∴另一个数是-13,故答案为-13.5.某仓库第一天运进+100箱水果,第二天运进-70箱,第三天运进+55箱,第四天运进64箱,四天共运进仓库多少箱水果?答案:100+(-70)+55+64=149(箱),答:四天共运进仓库149箱水果.6. 计算下列各题:(1)(+3)+(-12)=________;(2)(+20)+(+32)=________;(3)(-312)+(-23)=_______;(4)(-20072006)+0=________.答案:根据有理数的加法法则进行. (1)(+3)+(-12)=-(12-3)=-9;(2)(+20)+(+32)=+(20+32)=52;(3)(-312)+(-23)=-(312+23)=-416;(4)(-20072006)+0=-20072006.7. 判断题:(1)两个有理数的和为正数时,这两个数都是正数;()(2)两个数的和的绝对值一定等于这两个数绝对值的和;()(3)如果两个数的和为负,那么这两个加数中至少有一个是负数;()(4)两数之和必大于任何一个加数;()(5)如果两个有理数的和比其中任何一个加数都大,那么这两个数都是正数. ()答案:(1)×(2)×(3)√(4)×(5)√8. 计算:(1)(-718)+(-16);(2)(-1.13)+(+1.12);(3)(-237)+237;(4)0+(-4).答案:利用有理数的加法法则进行有理数的加法的基本步骤:第一步要判断是同号两数相加还是异号两数相加;第二步要判断结果是正号还是负号;第三步要判断用绝对值的和算还是用绝对值的差算(1)-5/9 (2)-0.01 (3)0 (4)-49. 8袋大米,以每袋50千克为准,超过的千克数记作正数,分别为-2,+1,+5,+6,-3,-5,+5,-3.问8袋大米总共重多少千克.若每千克大米1.9元,这8袋大米值多少元?答案:注意这里以每袋50千克为准,故共重:50×8+(-2)+1+5+6+(-3)+(-5)+5+(-3)=404(千克),价值为404×1.9=767.6(元).10. 某产粮专业户出售余粮20袋,每袋重量如下:(单位千克)199、201、197、203、200、195、197、199、202、196、203、198、201、200、197、196、204、199、201、198.用简便方法计算出售的余粮总共多少千克?答案:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这20个数的差的累计是:(-1)+(+1)+(-3)+(+3)+0+(-5)+(-3)+(-1)+(+2)+(-4)+(+3)+(-2)+(+1)+0+(-3)+(-4)+(+4)+ (-1)+(+1)+(-2)=-14.200×20+(-14)=4 000-14=3 986(千克)答:余粮总共有3 986千克.二、以考查技能为主试题【中等题】11.若x的相反数是3,y的绝对值是4,则x+y的值是()A.-1 B.7 C.7或-1 D.-7或1答案:D.12.绝对值大于3且小于4的所有的整数的和是()A.7 B.-7 C.3 D.0答案:D.13.小于2011大于-2012的所有整数的和是()A.-1 B.-2011 C.-2010 D.2010答案:B.14.已知|a|=3,|b|=4,求:答案:∵a|=3,|b|=4∴a=3,或a=-3,b=4,或b=-4,(1)a,b异号时:a=3,b=-4,a-b=3-(-4)=7,a=-3,b=4时,a-b=-3-4=-7;(2)a,b同号时:a=3,b=4时,a+b=3+4=7,a=-3,b=-4时,a+b=-3+(-4)=-7.15.规定扑克牌中的黑色数字为正数,红色数字为负数,且J为11,Q为12,K为13,A为1,如图计算下列各组两张牌面数字之和.答案:根据题意得,四张扑克的数字为:-11,-13,-13,+5,故-11-13=-24-13+5=-8,故各组两张牌面数字之和分别为-24和-8.16.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,a,b,c三个数的和为()A.-1 B.0 C.1 D.不存在答案:A.【较难题】17.小红和小丽做游戏,每人抽4张扑克牌,红色为正,黑色为负,结果大则胜.小红抽到的是:红桃4,方块5,梅花3,黑桃7.小丽抽到的是:方块6,梅花J,黑桃A.红桃9.问:小红和小丽谁获胜?(说明:J为11,A为1)答案:小红:+4+(+5)+(-3)+(-7)=-1,小丽:(+6)+(-11)+(-1)+(+9)=3,3>-1,∴小丽获胜.18.请把1-8个数字分别填入正方体顶点处的圆圈内,如图,使各个面上的四个数字之和相等,并求出这个和.答案:如图所示19. 下表为某公司股票在本周内每日的涨跌情况(股价上涨记为“+”,下跌记为“-”):星期一二三四五每股涨跌+4.35 -3.20 -0.35 -2.75 +1.15 计算本周内该公司股票总的变化是上涨还是下降,上涨或下降的值是多少元?答案:把每日涨跌值相加即可,注意若和为正,则为上涨,反之为下跌,本周该公司股票下跌0.80元.20.一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?答案:(1)若两次都是向东走,则一共向东走了50米,表示:(+20)+(+30)=+50;(2)若两次都是向西走,则一共向西走了50米,表示:(-20)+(-30)= -50;(3)若第一次向东走20米,第二次向西走30米,则最后位于原来位置的西方10米,表示:(+20)+(-30)= -10;(4)若第一次向西走20米,第二次向东走30米,则最后位于原来位置的东方10米,表示:(- 20)+(+30)= +10有理数的减法一、以考查知识为主试题【容易题】11-3-524=-3+5=2)11113 -3-5=-3+-5=-8 242442. 已知x=4,|y|=5且x>y,则2x-y的值为()A.13 B.3 C.13或3 D.-13或-3答案:A.3.北京与巴黎两地的时差是-7小时(带正号的数表示同一时间比北京早的时间数),如果现在北京时间是7:00,那么巴黎的时间是()A.0:00 B.7:00 C.14:00 D.21:00答案:A.4.数-4与-3的和比它们的绝对值的和()A.大7 B.小7 C.小14 D.相等答案:C【中等题】5.今年11月份甲、乙、丙三个城市的平均气温分别为-5℃、-1℃、15℃,那么最高的平均气温比最低的平均气温高()A.10℃ B.14℃ C.16℃ D.20℃答案:D.6.若|a|=8,|b|=3,且a<b,则a-b的值()A.-11 B.-5 C.-5或5 D.-11或-5答案:D.7. 填空题:(1)3-(-3)=_______; (2)(-11)-2=_______;(3)0-(-6)=_______; (4)(-7)-(+8)=_______;(5)-12-(-5)=________; (6)3比5大_________;(7)-8比-2小_________; (8)-4-(______)=10.答案:利用减法法则把减法运算转化成加法运算.(1)6 (2)-13 (3)6 (4)-15 (5)-7 (6)-2 (7)6 (8)-148. 我市2012年的最高气温为39 ℃,最低气温为零下7 ℃,则计算2012年温差列式正确的是()A.(+39)-(-7)B.(+39)+(+7)C.(+39)+(-7)D.(+39)-(+7)答案:A9. (1)某冷库温度是零下10 ℃,下降-3 ℃后又下降5 ℃,两次变化后冷库温度是多少?(2)零下12 ℃比零上12 ℃低多少?(3)数轴上A、B两点表示的有理数分别是-612和734,求A、B两点的距离.答案:(1)(-10)-(-3)-(+5)=(-10)+(+3)+(-5)=(-15)+(+3)=-12. (2)(-12)-(+12)=(-12)+(-12)=-24.(3)|734-(-612)|=|734+612|=1414.10. 判断题:(1)两个数相减,就是把绝对值相减; ()(2)若两数的差为0,则这两数必相等; ()(3)两数的差一定小于被减数; ()(4)两个负数之差一定是负数; ()(5)两个数的和一定大于这两个数的差; ()(6)任意不同号的两个数的和一定小于它们的差的绝对值. ()答案:按减法法则和加法法则判断.(1)× (2)√ (3)× (4)× (5)× (6)√11. 计算:(1)7.21-(-9.35); (2)(-19)-(+9.5);(3)(+538)-(+734); (4)(-413)-(-425);(5)(-6.79)-(-6.79); (6)(-347)-(+347).答案:按减法法则,把减法转化为加法计算.(1) 16. 56 (2) -28.5 (3)-238(4)115(5)0 (6)-717二、以考查技能为主试题【中等题】12.两个数的差是负数,则这两个数一定是()A.被减数是正数,减数是负数B.被减数是负数,减数是正数C.被减数是负数,减数也是负数D.被减数比减数小答案:D.13.甲、乙、丙三家商场都以8万元购进了同一种货物,一周后全部销售完.结果甲、乙、丙收回资金分别为10万元、7.8万元、8.2万元,若记盈利为“+”,(1)分别用“+”“-”数表示三家的盈利情况;(2)哪家商场的效益最好?哪家最差?差距是多少万元?答案:“正”和“负”相对,所以,若高于8万元,记作“+”,那么低于8万元,应记作“-”.则10万元、7.8万元、8.2万元分别记作甲:+2万元、乙:-0.2万元、丙:+0.2万元.可以看出甲商场的效益最好,乙商场的最差,相差2.2万元,故(1)甲:+2万元、乙:-0.2万元、丙:+0.2万元;(2)甲商场的效益最好,乙商场的最差,相差2.2万元.14.北京等5个城市的国际标准时间(单位:小时)可在数轴上表示如下:如果将两地国际标准时间的差简称为时差,那么()A.汉城与纽约的时差为13小时B.汉城与多伦多的时差为13小时C.北京与纽约的时差为14小时D.北京与多伦多的时差为14小时答案:B.15.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.4)kg的字样,从中任意拿出两袋,它们的质量最多相差 kg.答案:质量最小值是25-0.4=24.6,最大值是25+0.4=25.4,∴25.4-24.6=0.8.故答案为:0.8.16. 计算:(1)(-1.5)-(-9.4)-(+3.6)+(-4.3)-(+5.2);(2)0-(+12)-(-13)-(-14)-(+16);(3)0-(-2.75)-(+0.71)-(-4);(4)(-323)-(-234)-(-123)-(+1.75).答案:(1)原式=-1.5-3.6-4.3-5.2+9.4=-5.2;(2)原式=-12-16+13+14=-46+712=-112;(3)原式=2.75+4-0.71=6.04;(4)原式=-323+123+234-134=-2+1=-1.17. 如下图:(1)A,B两点间的距离是多少?(2)B,C两点间的距离是多少?答案:(1)|AB|=|2-(-113)|=|2+113|=313;(2)|BC|=|-113-(-3)|=|-113+3|=132.18. 要使下列各式成立,有理数x应取什么值?(1)-[-(-7)]+x=0;(2)x+(-512)=2.5;(3)x+[-(-1113)]=1113.答案:应先移项,将数字合并.或已知两个数的和与一个加数,求另一个加数,用减法. (1)x=7 (2)x=8 (3)x=0【较难题】19. 若a、b为数轴上的有理数,用小于号把b+a,b-a,a-b,-a-b连起来.答案:∵a<b<0,∴b-a>0,-a-b>0,a+b<0,a-b<0.又∵|b-a|>|-a-b|且|b+a|>|a-b|,∴b+a<a-b<b-a<-a-b.20. 如图是南宁冬季某一天的气温随时间变化的情况图,请你来观察:(1)当天什么时间气温最低,最低气温是多少?(2)当天什么时间气温最高,最高气温是多少?(3)这一天的温差是多少?(结果都取整数)答案:(1)当天4时气温最低,最低气温是约零下1℃;(2)当天16时气温最高,最高气温是约10℃;(3)这一天的温差是约11℃.21. 识图与理解:请认真观察如图给出的未来一周某市的每天的最高气温和最低气温,直接回答后面提出的问题:(1)这一周该市的最高气温和最低气温分别是多少?(2)这一周中,星期几的温差最大是多少?答案:(1)如图可知最高气温和最低气温分别是9℃和-4℃.(2)这一周中,星期四的温差最大,温度在-4℃到4℃之间,故温差是4-(-4)=8℃.有理数的加法运算律一、以考查知识为主试题【容易题】1.计算16+(-25)+24+(-32).答案:16+(-25)+24+(-32)=16+24+(-25)+(-32) (加法交换律)=[16+24]+[(-25)+(-32)] (加法结合律) (同号相加法则) =40+(-57) (异号相加法则) =-17.2.计算:18.56+(-5.16)+(-1.45)+(+5.16)+(-18.56)答案:原式=[18.56+(-18.56)]+[(-5.16)+5.16]+(-1.45)=-1.45.计算:5116 +5+-3+-6+-15 6767答案:原式=511111 5-6+-3+-15=-+-19=-19 6677333.足球循环赛中,红队胜黄队4:1,蓝队胜黄队3:2,蓝队胜红队1:0,三个队分别计算净胜球,其中净胜球数最多的是个.答案:红队的净胜球数=4+0-1-1=2;蓝队的净胜球数=3+1-2=2;黄队的净胜球数=1+2-4-3=-4.故净胜球最多2个.故答案为:2.【中等题】4. 10袋小麦称后记录如图所示(单位:千克).10袋小麦一共多少千克?如果每袋小麦以90千克为标准,10袋小麦总计超过多少千克或不足多少千克?答案:解法1:先计算10袋小麦一共多少千克:91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1=905.4再计算总计超过多少千克:905.4-90×10=5.4解法2:每袋小麦超过90千克的千克数记作正数,不足的千克数记作负数;以90千克为标准,10袋小麦的记录如下:+1、+1、+1.5、-1、+1.2、+1.3、-1.3、-1.2、+1.8、+1.1,(+1)+(+1)+(+1.5)+(-1)+(+1.2)+(+1.3)+(-1.3)+(-1.2)+(+1.8)+(+1.1)=(+1)+(-1)+(+1.2)+(-1.2)+(+1.3)+(-1.3)+(+1)+(+1.5)+(+1.8)+(+1.1)=5.4千克.答:10袋小麦总计超过5.4千克.5. 10箱苹果,如果每箱以30千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,+1,0,-1,-1.5,-2,+1,-1,-1,-0.5.这10箱苹果的总质量是多少千克?答案:这10箱苹果与标准质量的差值的和为(+2)+(+1)+0+(-1)+(-1.5)+(-2)+(+1)+(-1)+(-1)+(-0.5)=-3(千克).因此,这10箱苹果的总质量为30×10=300-3=297(千克).答:10箱苹果的总质量为297千克.6. 计算:(1)(+17)+(-32)+(-16)+(+24)+(-1);(2)(+653)+(-523)+(+425)+(-113).答案:运用有理数加法的运算律可以简化运算,在多个有理数相加时,往往实际运用交换律,又运用结合律.(1)原式=(+17)+(+24)+(-32)+(-16)+(-1)=(+41)+(-49)=-8;(2)原式=(+635)+(+425)+(-523)+(-113)=11-7=47. 计算:88+95+92+89+86+91+90+88+92+90+86+92+87+89+91+93+88+94+91+87.答案:注意到数字都在90左右波动,可将之两两组合,或取整数90的20倍,再将差数求和.原式=90×2+(-2+5+2-1-4+1-2+2-4+2-3-1+1+3-2+4+1-3)=1 7998. 小学里学过的加法交换律、结合律在有理数运算中仍然适用.利用加法运算律可以使运算简便.(1)同号结合法:先把正数与负数分别结合以后再_______.(2)凑整结合法:先把某些加数结合凑为_______再相加.(3)相反数结合法:先把互为________的数结合起来.(4)同分母结合法:遇有分数,先把_______结合起来.答案:利用运算法,把数的加法、进行分类运算、简化计算.(1)相加(2)整数(3)相反数(4)同分母分数9. 计算:5116 +5+-3+-6+-15 6767答案:原式=511111 5-6+-3+-15=-+-19=-19 66773310. 足球循环赛中,红队胜黄队4:1,蓝队胜黄队3:2,蓝队胜红队1:0,三个队分别计答案:红队的净胜球数=4+0-1-1=2;蓝队的净胜球数=3+1-2=2;黄队的净胜球数=1+2-4-3=-4.故净胜球最多2个.故答案为:2.二、以考查技能为主试题【中等题】11. 从-30起,逐次加2,得到一列整数:-28,-26,-24,-22,…(1)第30个整数是多少?(2)计算这30个整数的和.答案:(1)∵第n个数为-30+2×(n-1),∴第30个数为-30+2×29=-30+58=28;(2)根据题意得:-30-28-26-24-…+24+26+28=-30.12. 出租车司机小李某天下午运营全是在东西方向的大衔上进行的.如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15,-8,+5,-10,+12,-7,+9,-12,-8,+11(1)将最后一名乘客送到目的地时,小李距离下午出车时的出发点多远?(2)若汽车耗油量为0.1升/千米,这天下午小李共耗油多少升?答案:(1)+15-8+5-10+12-7+9-12-8+11=7千米.即将最后一名乘客送到目的地时,小李距下午出车时的出发点7千米,此时在出车点的东边.(2)由题意得每千米耗油0.06升;耗油量=每千米的耗油量×总路程=0.1×(|+15|+|-8|+|+5|+|-10|+|+12|+|-7|+|+9|+|-12|+|-8|+|+11|)=9.7升.答:若汽车耗油量为0.1升/千米,这天下午小李共耗油9.7升13.计算3+5+7+9+…+195+197+199的值是()A.9699 B.9999 C.9899 D.9799答案:B.9. 1+(-2)+3+(-4)+…+99+(-100).答案:1+(-2)+3+(-4)+…+99+(-100)=[1+(-2)]+[3+(-4)]+…+[99+(-100)]=-1+(-1)+(-1)+…+(-1)=-50.14. 一口水井,水面比井口低3米,一只蜗牛从水面沿着井壁往井口爬,第一次往上爬了0.5米,却下滑了0.1米;第二次往上爬了0.47米后又往下滑了0.15米;第三次往上爬了0.6米又下滑了0.15米;第四次往上爬了0.8米又下滑了0.1米,第五次往上爬了0.55米,没有下滑.问:它能爬出井口吗?如果不能,第六次它至少要爬多少米?答案:根据题意,蜗牛前5次向井口爬行的距离为:0.5+(-0.1)+0.47+(-0.15)+0.6+(-0.15)+0.8+(-0.1)+0.55,=0.5+0.47+0.6+0.8+0.55+(-0.1)+(-0.15)+(-0.15)+(-0.1),=2.92-0.5,=2.42米,∵2.42<3,∴它不能爬出井口,3-2.42=0.58米,第六次它至少要爬0.58米.15. 计算下列各式:(1)(-7)+512+(-312)+4;(2)(-5)+223+(-12)+(-223).答案:应根据数字的特征,利用加法的交换律来解之.(1)原式=(-7)+4+512+(-312)-3+2=-1;(2)原式=(-5)+(-12)+223+(-223)=-512.16. 计算下列各式:(1)(-557)+(-612)+(-1427)+(+16.5);(2)(-423)+38+(-56)+(-58)+(334).答案:先进行合理分组.即同分母的数分为一组.(1)-10 (2)-217. 若|y-3|+|2x-4|=0,求3x+y的值.答案:根据绝对值的性质可以得到|y-3|≥0,|2x-4|≥0,所以只有当y-3=0且2x-4=0时,|y-3|+|2x-4|=0才成立.由y-3=0得y=3,由2x-4=0,得x=2.则3x+y易求.18. 我国古代有一道有趣的数学题:“井深十米,一只小蜗牛从井底向上爬,白天向上爬2米,夜间又掉下1米,问小蜗牛几天可爬出深井?”你能用有理数加法的知识解决这个古老的问题吗?千万别落入陷阱哦!答案:这里注意最后一个白天蜗牛已经爬上井口,夜间就不会掉下了!8[(+2)+(-1)+[(+2)+(-1)]++[(+2)+(-1)] 天+(+2)=10(米).【较难题】19. 从-55起逐次加1得到一连串整数,-54,-53,-52,…请问:(1)第100个整数是什么?(2)这100个整数的和是什么?答案:(1)第100个整数为-55+100=45;(2)这100个整数和为(-54)+(-53)+(-52)+(-1)+0+1+…+(45)=-(1+2+...+54)+(1+2+ (45)=-(46+47+48+49+50+51+52+53+54)=-450.20. 某检修小组从A 地出发,在东西方向的公路上检修线路.如果规定向东行驶为正,向西行驶为负,这个检修小组一天中行驶的距离记录如下(单位:千米):-4,+7,-9,+8,+6,-4,-3.(1)求收工时检修小组距A 地多远?(2)距A 地最远时是哪一次?(3)若检修小组所乘汽车每千米耗油0.5升,则从出发到收工时共耗油多少升?答案:(1)-4+7+(-9)+8+6+(-4)+(-3)=1(千米).答:收工时检修小组在A 地东面1千米处.(2)第一次距A地|-4|=4千米;第二次:|-4+7|=3千米;第三次:|-4+7-9|=6千米;第四次:|-4+7-9+8|=2千米;第五次:|-4+7-9+8+6|=8千米;第六次:|-4+7-9+8+6-4|=4千米;第七次:|-4+7-9+8+6-4-3|=1千米.所以距A地最远的是第5次.(3)从出发到收工汽车行驶的总路程:|-4|+|+7|+|-9|+|+8|+|+6|+|-4|+|-3|=41;从出发到收工共耗油:41×0.5=20.5(升).答:从出发到收工共耗油20.5升.一、以考查知识为主试题【容易题】1.计算:(1)(-3)+(-9);(2)(-4.7)+3.9答案:(1)(-3)+(-9)=-(3+9)=-12(2)(-4.7)+3.9= -(4.7-3.9)=-0.82.下列运算中,正确的个数有()①(-5)+5=0 ②(-10)+(+7)=-3 ③0+(-4)=-4 ④(-3)+2=-1 ⑤(-1)+(+2)=-1.A.1个 B.2个 C.3个 D.4答案:D.3.如果2010个不都相等的有理数的和为0,那么下列说法中,正确的是()A.其中至少有一个是负数B.其中正数与负数各占一半C.其中正数不能少于1005个D.其中必须有一个数是0答案:A.4.计算16+(-25)+24+(-32).答案:16+(-25)+24+(-32)=16+24+(-25)+(-32) (加法交换律)=[16+24]+[(-25)+(-32)] (加法结合律) (同号相加法则)=40+(-57) (异号相加法则) =-17.5.计算:18.56+(-5.16)+(-1.45)+(+5.16)+(-18.56)答案:原式=[18.56+(-18.56)]+[(-5.16)+5.16]+(-1.45)=-1.45.计算:5116 +5+-3+-6+-15 6767答案:原式=511111 5-6+-3+-15=-+-19=-19 6677336.足球循环赛中,红队胜黄队4:1,蓝队胜黄队3:2,蓝队胜红队1:0,三个队分别计算净胜球,其中净胜球数最多的是个.答案:红队的净胜球数=4+0-1-1=2;蓝队的净胜球数=3+1-2=2;黄队的净胜球数=1+2-4-3=-4.故净胜球最多2个.故答案为:2.11-3-524答案:(1)(-3)-(-5)=-3+5=2(2)0-7= 0+(-7)= -7(3)7.2-(-4.8)=7.2+4.8=12)11113 -3-5=-3+-5=-8 242448. 已知x=4,|y|=5且x>y,则2x-y的值为()A.13 B.3 C.13或3 D.-13或-3答案:A.9.北京与巴黎两地的时差是-7小时(带正号的数表示同一时间比北京早的时间数),如果现在北京时间是7:00,那么巴黎的时间是()A.0:00 B.7:00 C.14:00 D.21:00答案:A.10.数-4与-3的和比它们的绝对值的和()A.大7 B.小7 C.小14 D.相等答案:C【中等题】答案:∵比5的相反数小7为-5-7=-12,∴其中的一个数为-12,∵两个数的和是-25,∴另一个数是-13,故答案为-13.12.某仓库第一天运进+100箱水果,第二天运进-70箱,第三天运进+55箱,第四天运进64箱,四天共运进仓库多少箱水果?答案:100+(-70)+55+64=149(箱),答:四天共运进仓库149箱水果.13. 计算下列各题:(1)(+3)+(-12)=________;(2)(+20)+(+32)=________;(3)(-312)+(-23)=_______;(4)(-20072006)+0=________.答案:根据有理数的加法法则进行. (1)(+3)+(-12)=-(12-3)=-9;(2)(+20)+(+32)=+(20+32)=52;(3)(-312)+(-23)=-(312+23)=-416;(4)(-20072006)+0=-20072006.14. 判断题:(1)两个有理数的和为正数时,这两个数都是正数;()(2)两个数的和的绝对值一定等于这两个数绝对值的和;()(3)如果两个数的和为负,那么这两个加数中至少有一个是负数;()(4)两数之和必大于任何一个加数;()(5)如果两个有理数的和比其中任何一个加数都大,那么这两个数都是正数. ()答案:(1)×(2)×(3)√(4)×(5)√15. 计算:(1)(-718)+(-16);(2)(-1.13)+(+1.12);(3)(-237)+237;(4)0+(-4).答案:利用有理数的加法法则进行有理数的加法的基本步骤:第一步要判断是同号两数相加还是异号两数相加;第二步要判断结果是正号还是负号;第三步要判断用绝对值的和算还是用绝对值的差算(1)-5/9 (2)-0.01 (3)0 (4)-416. 8袋大米,以每袋50千克为准,超过的千克数记作正数,分别为-2,+1,+5,+6,-3,-5,+5,-3.问8袋大米总共重多少千克.若每千克大米1.9元,这8袋大米值多少元?答案:注意这里以每袋50千克为准,故共重:50×8+(-2)+1+5+6+(-3)+(-5)+5+(-3)=404(千克),价值为404×1.9=767.6(元).17. 某产粮专业户出售余粮20袋,每袋重量如下:(单位千克)199、201、197、203、200、195、197、199、202、196、203、198、201、200、197、196、204、199、201、198.用简便方法计算出售的余粮总共多少千克?答案:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这20个数的差的累计是:(-1)+(+1)+(-3)+(+3)+0+(-5)+(-3)+(-1)+(+2)+(-4)+(+3)+(-2)+(+1)+0+(-3)+(-4)+(+4)+ (-1)+(+1)+(-2)=-14.200×20+(-14)=4 000-14=3 986(千克)答:余粮总共有3 986千克.18. 10袋小麦称后记录如图所示(单位:千克).10袋小麦一共多少千克?如果每袋小麦以90千克为标准,10袋小麦总计超过多少千克或不足多少千克?答案:解法1:先计算10袋小麦一共多少千克:91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1=905.4再计算总计超过多少千克:905.4-90×10=5.4解法2:每袋小麦超过90千克的千克数记作正数,不足的千克数记作负数;以90千克为标准,10袋小麦的记录如下:+1、+1、+1.5、-1、+1.2、+1.3、-1.3、-1.2、+1.8、+1.1,(+1)+(+1)+(+1.5)+(-1)+(+1.2)+(+1.3)+(-1.3)+(-1.2)+(+1.8)+(+1.1)=(+1)+(-1)+(+1.2)+(-1.2)+(+1.3)+(-1.3)+(+1)+(+1.5)+(+1.8)+(+1.1)=5.4千克.答:10袋小麦总计超过5.4千克.19. 10箱苹果,如果每箱以30千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,+1,0,-1,-1.5,-2,+1,-1,-1,-0.5.这10箱苹果的总质量是多少千克?答案:这10箱苹果与标准质量的差值的和为(+2)+(+1)+0+(-1)+(-1.5)+(-2)+(+1)+(-1)+(-1)+(-0.5)=-3(千克).因此,这10箱苹果的总质量为30×10=300-3=297(千克).答:10箱苹果的总质量为297千克.20. 计算:(1)(+17)+(-32)+(-16)+(+24)+(-1);(2)(+653)+(-523)+(+425)+(-113).答案:运用有理数加法的运算律可以简化运算,在多个有理数相加时,往往实际运用交换律,又运用结合律.(1)原式=(+17)+(+24)+(-32)+(-16)+(-1)=(+41)+(-49)=-8;(2)原式=(+635)+(+425)+(-523)+(-113)=11-7=421. 计算:88+95+92+89+86+91+90+88+92+90+86+92+87+89+91+93+88+94+91+87.答案:注意到数字都在90左右波动,可将之两两组合,或取整数90的20倍,再将差数求和.原式=90×2+(-2+5+2-1-4+1-2+2-4+2-3-1+1+3-2+4+1-3)=1 79922. 小学里学过的加法交换律、结合律在有理数运算中仍然适用.利用加法运算律可以使运算简便.(1)同号结合法:先把正数与负数分别结合以后再_______.(2)凑整结合法:先把某些加数结合凑为_______再相加.(3)相反数结合法:先把互为________的数结合起来.(4)同分母结合法:遇有分数,先把_______结合起来.答案:利用运算法,把数的加法、进行分类运算、简化计算.(1)相加(2)整数(3)相反数(4)同分母分数23. 计算:5116 +5+-3+-6+-15 6767答案:原式=511111 5-6+-3+-15=-+-19=-19 66773324. 足球循环赛中,红队胜黄队4:1,蓝队胜黄队3:2,蓝队胜红队1:0,三个队分别计算净胜球,其中净胜球数最多的是个.答案:红队的净胜球数=4+0-1-1=2;蓝队的净胜球数=3+1-2=2;黄队的净胜球数=1+2-4-3=-4.故净胜球最多2个.故答案为:2.25.今年11月份甲、乙、丙三个城市的平均气温分别为-5℃、-1℃、15℃,那么最高的平均气温比最低的平均气温高()A.10℃ B.14℃ C.16℃ D.20℃答案:D.26.若|a|=8,|b|=3,且a<b,则a-b的值()A.-11 B.-5 C.-5或5 D.-11或-5答案:D.27. 填空题:(1)3-(-3)=_______; (2)(-11)-2=_______;(3)0-(-6)=_______; (4)(-7)-(+8)=_______;(5)-12-(-5)=________; (6)3比5大_________;(7)-8比-2小_________; (8)-4-(______)=10.答案:利用减法法则把减法运算转化成加法运算.(1)6 (2)-13 (3)6 (4)-15 (5)-7 (6)-2 (7)6 (8)-1428. 我市2012年的最高气温为39 ℃,最低气温为零下7 ℃,则计算2012年温差列式正确的是()A.(+39)-(-7)B.(+39)+(+7)C.(+39)+(-7)D.(+39)-(+7)答案:A29. (1)某冷库温度是零下10 ℃,下降-3 ℃后又下降 5 ℃,两次变化后冷库温度是多少?(2)零下12 ℃比零上12 ℃低多少?(3)数轴上A、B两点表示的有理数分别是-612和734,求A、B两点的距离.答案:(1)(-10)-(-3)-(+5)=(-10)+(+3)+(-5)=(-15)+(+3)=-12. (2)(-12)-(+12)=(-12)+(-12)=-24.(3)|734-(-612)|=|734+612|=1414.30. 判断题:(1)两个数相减,就是把绝对值相减; ()(2)若两数的差为0,则这两数必相等; ()(3)两数的差一定小于被减数; ()(4)两个负数之差一定是负数; ()(5)两个数的和一定大于这两个数的差; ()(6)任意不同号的两个数的和一定小于它们的差的绝对值. ()答案:按减法法则和加法法则判断.(1)× (2)√ (3)× (4)× (5)× (6)√31. 计算:(1)7.21-(-9.35); (2)(-19)-(+9.5);(3)(+538)-(+734); (4)(-413)-(-425);(5)(-6.79)-(-6.79); (6)(-347)-(+347).答案:按减法法则,把减法转化为加法计算.(1) 16. 56 (2) -28.5 (3)-238(4)115(5)0 (6)-717二、以考查技能为主试题【中等题】32.若x的相反数是3,y的绝对值是4,则x+y的值是()A.-1 B.7 C.7或-1 D.-7或1答案:D.33.绝对值大于3且小于4的所有的整数的和是()A.7 B.-7 C.3 D.0答案:D.34.小于2011大于-2012的所有整数的和是()A.-1 B.-2011 C.-2010 D.2010 答案:B.35.已知|a|=3,|b|=4,求:答案:∵a|=3,|b|=4∴a=3,或a=-3,b=4,或b=-4,(1)a,b异号时:a=3,b=-4,a-b=3-(-4)=7,a=-3,b=4时,a-b=-3-4=-7;(2)a,b同号时:a=3,b=4时,a+b=3+4=7,a=-3,b=-4时,a+b=-3+(-4)=-7.36.规定扑克牌中的黑色数字为正数,红色数字为负数,且J为11,Q为12,K为13,A为1,如图计算下列各组两张牌面数字之和.答案:根据题意得,四张扑克的数字为:-11,-13,-13,+5,故-11-13=-24-13+5=-8,故各组两张牌面数字之和分别为-24和-8.37.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,a,b,c三个数的和为()A.-1 B.0 C.1 D.不存在答案:A.38. 从-30起,逐次加2,得到一列整数:-28,-26,-24,-22,…(1)第30个整数是多少?(2)计算这30个整数的和.答案:(1)∵第n个数为-30+2×(n-1),∴第30个数为-30+2×29=-30+58=28;(2)根据题意得:-30-28-26-24-…+24+26+28=-30.39. 出租车司机小李某天下午运营全是在东西方向的大衔上进行的.如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15,-8,+5,-10,+12,-7,+9,-12,-8,+11(1)将最后一名乘客送到目的地时,小李距离下午出车时的出发点多远?(2)若汽车耗油量为0.1升/千米,这天下午小李共耗油多少升?答案:(1)+15-8+5-10+12-7+9-12-8+11=7千米.即将最后一名乘客送到目的地时,小李距下午出车时的出发点7千米,此时在出车点的东边.(2)由题意得每千米耗油0.06升;耗油量=每千米的耗油量×总路程=0.1×(|+15|+|-8|+|+5|+|-10|+|+12|+|-7|+|+9|+|-12|+|-8|+|+11|)=9.7升.答:若汽车耗油量为0.1升/千米,这天下午小李共耗油9.7升40.计算3+5+7+9+…+195+197+199的值是()A.9699 B.9999 C.9899 D.9799答案:B.41. 1+(-2)+3+(-4)+…+99+(-100).答案:1+(-2)+3+(-4)+…+99+(-100)=[1+(-2)]+[3+(-4)]+…+[99+(-100)]=-1+(-1)+(-1)+…+(-1)=-50.42. 一口水井,水面比井口低3米,一只蜗牛从水面沿着井壁往井口爬,第一次往上爬了0.5米,却下滑了0.1米;第二次往上爬了0.47米后又往下滑了0.15米;第三次往上爬了0.6米又下滑了0.15米;第四次往上爬了0.8米又下滑了0.1米,第五次往上爬了0.55米,没有下滑.问:它能爬出井口吗?如果不能,第六次它至少要爬多少米?答案:根据题意,蜗牛前5次向井口爬行的距离为:0.5+(-0.1)+0.47+(-0.15)+0.6+(-0.15)+0.8+(-0.1)+0.55,=0.5+0.47+0.6+0.8+0.55+(-0.1)+(-0.15)+(-0.15)+(-0.1),=2.92-0.5,=2.42米,∵2.42<3,∴它不能爬出井口,3-2.42=0.58米,第六次它至少要爬0.58米.43. 计算下列各式:(1)(-7)+512+(-312)+4;(2)(-5)+223+(-12)+(-223).答案:应根据数字的特征,利用加法的交换律来解之.(1)原式=(-7)+4+512+(-312)-3+2=-1;(2)原式=(-5)+(-12)+223+(-223)=-512.44. 计算下列各式:(1)(-557)+(-612)+(-1427)+(+16.5);(2)(-423)+38+(-56)+(-58)+(334).答案:先进行合理分组.即同分母的数分为一组. (1)-10 (2)-245. 若|y -3|+|2x -4|=0,求3x +y 的值.答案:根据绝对值的性质可以得到|y -3|≥0,|2x -4|≥0,所以只有当y -3=0且2x -4=0时,|y -3|+|2x -4|=0才成立.由y -3=0得y =3,由2x -4=0,得x =2.则3x +y 易求.46. 我国古代有一道有趣的数学题:“井深十米,一只小蜗牛从井底向上爬,白天向上爬2米,夜间又掉下1米,问小蜗牛几天可爬出深井?”你能用有理数加法的知识解决这个古老的问题吗?千万别落入陷阱哦!答案:这里注意最后一个白天蜗牛已经爬上井口,夜间就不会掉下了!8[(+2)+(-1)+[(+2)+(-1)]++[(+2)+(-1)] 天+(+2)=10(米).47.两个数的差是负数,则这两个数一定是( )E . 被减数是正数,减数是负数F . 被减数是负数,减数是正数G . 被减数是负数,减数也是负数H . 被减数比减数小答案:D .48.甲、乙、丙三家商场都以8万元购进了同一种货物,一周后全部销售完.结果甲、乙、丙收回资金分别为10万元、7.8万元、8.2万元,若记盈利为“+”,(1)分别用“+”“-”数表示三家的盈利情况;(2)哪家商场的效益最好?哪家最差?差距是多少万元?答案:“正”和“负”相对,所以,若高于8万元,记作“+”,那么低于8万元,应记作“-”.则10万元、7.8万元、8.2万元分别记作甲:+2万元、乙:-0.2万元、丙:+0.2万元.可以看出甲商场的效益最好,乙商场的最差,相差2.2万元,故(1)甲:+2万元、乙:-0.2万元、丙:+0.2万元;(2)甲商场的效益最好,乙商场的最差,相差2.2万元.49.北京等5个城市的国际标准时间(单位:小时)可在数轴上表示如下:如果将两地国际标准时间的差简称为时差,那么()A.汉城与纽约的时差为13小时B.汉城与多伦多的时差为13小时C.北京与纽约的时差为14小时D.北京与多伦多的时差为14小时答案:B.50.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.4)kg的字样,从中任意拿出两袋,它们的质量最多相差 kg.答案:质量最小值是25-0.4=24.6,最大值是25+0.4=25.4,∴25.4-24.6=0.8.故答案为:0.8.51. 计算:(1)(-1.5)-(-9.4)-(+3.6)+(-4.3)-(+5.2);(2)0-(+12)-(-13)-(-14)-(+16);(3)0-(-2.75)-(+0.71)-(-4);(4)(-323)-(-234)-(-123)-(+1.75).答案:(1)原式=-1.5-3.6-4.3-5.2+9.4=-5.2;(2)原式=-12-16+13+14=-46+712=-112;(3)原式=2.75+4-0.71=6.04;(4)原式=-323+123+234-134=-2+1=-1.52. 如下图:(1)A,B两点间的距离是多少?(2)B,C两点间的距离是多少?答案:(1)|AB|=|2-(-113)|=|2+113|=313;(2)|BC|=|-113-(-3)|=|-113+3|=132.53. 要使下列各式成立,有理数x应取什么值?(1)-[-(-7)]+x=0;(2)x+(-512)=2.5;(3)x+[-(-1113)]=1113.答案:应先移项,将数字合并.或已知两个数的和与一个加数,求另一个加数,用减法. (1)x=7 (2)x=8 (3)x=0【较难题】54.小红和小丽做游戏,每人抽4张扑克牌,红色为正,黑色为负,结果大则胜.小红抽到的是:红桃4,方块5,梅花3,黑桃7.小丽抽到的是:方块6,梅花J,黑桃A.红桃9.问:小红和小丽谁获胜?(说明:J为11,A为1)答案:小红:+4+(+5)+(-3)+(-7)=-1,小丽:(+6)+(-11)+(-1)+(+9)=3,3>-1,∴小丽获胜.55.请把1-8个数字分别填入正方体顶点处的圆圈内,如图,使各个面上的四个数字之和相等,并求出这个和.答案:如图所示56. 下表为某公司股票在本周内每日的涨跌情况(股价上涨记为“+”,下跌记为“-”):星期一二三四五每股涨跌+4.35 -3.20 -0.35 -2.75 +1.15计算本周内该公司股票总的变化是上涨还是下降,上涨或下降的值是多少元?答案:把每日涨跌值相加即可,注意若和为正,则为上涨,反之为下跌,本周该公司股票下跌0.80元.57. 一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?答案:(1)若两次都是向东走,则一共向东走了50米,表示:(+20)+(+30)=+50;(2)若两次都是向西走,则一共向西走了50米,表示:(-20)+(-30)= -50;(3)若第一次向东走20米,第二次向西走30米,则最后位于原来位置的西方10米,表示:(+20)+(-30)= -10;(4)若第一次向西走20米,第二次向东走30米,则最后位于原来位置的东方10米,表示:(- 20)+(+30)= +1058. 从-55起逐次加1得到一连串整数,-54,-53,-52,…请问:(1)第100个整数是什么?(2)这100个整数的和是什么?答案:(1)第100个整数为-55+100=45;(2)这100个整数和为(-54)+(-53)+(-52)+(-1)+0+1+…+(45)=-(1+2+...+54)+(1+2+ (45)=-(46+47+48+49+50+51+52+53+54)=-450.59. 某检修小组从A地出发,在东西方向的公路上检修线路.如果规定向东行驶为正,向西行驶为负,这个检修小组一天中行驶的距离记录如下(单位:千米):-4,+7,-9,+8,+6,-4,-3.(1)求收工时检修小组距A地多远?(2)距A地最远时是哪一次?(3)若检修小组所乘汽车每千米耗油0.5升,则从出发到收工时共耗油多少升?答案:(1)-4+7+(-9)+8+6+(-4)+(-3)=1(千米).答:收工时检修小组在A地东面1千米处.(2)第一次距A地|-4|=4千米;第二次:|-4+7|=3千米;第三次:|-4+7-9|=6千米;第四次:|-4+7-9+8|=2千米;第五次:|-4+7-9+8+6|=8千米;第六次:|-4+7-9+8+6-4|=4千米;第七次:|-4+7-9+8+6-4-3|=1千米.所以距A地最远的是第5次.(3)从出发到收工汽车行驶的总路程:|-4|+|+7|+|-9|+|+8|+|+6|+|-4|+|-3|=41;从出发到收工共耗油:41×0.5=20.5(升).答:从出发到收工共耗油20.5升.60. 若a、b为数轴上的有理数,用小于号把b+a,b-a,a-b,-a-b连起来.。

专题 有理数的加减法计算题(50题)(原卷版)-2024-2025学年七年级数学上册同步精讲精练(苏

专题 有理数的加减法计算题(50题)(原卷版)-2024-2025学年七年级数学上册同步精讲精练(苏

(苏科版)七年级上册数学《第二章 有理数》专题 有理数的加减法计算题(50题)1.(2021秋•渭滨区月考)计算题:(1)(﹣8)+(﹣9) (2)(−12)+(−13)(3)(﹣2.2)+3 (4)(−215)+(+0.8)(5)−23−(−35) (6)0﹣11(7)(﹣2.4)+3.5+(﹣4.6)+3.5 (8)57−(−134)2.(2022秋•金东区校级月考)计算:(1)(﹣1.25)+(+5.25);(2)(﹣7)+(﹣2);(3)﹣27+(﹣32)+(﹣8)+72;(4)8+(−14)﹣5﹣(﹣0.25).3.(2021秋•利通区校级期末)计算:20+(﹣14)﹣(﹣18)+13.4.(2022秋•济南期末)计算:4﹣(﹣2)+(﹣6)﹣11.5.(2022秋•西城区校级期中)计算:(﹣16)+5﹣(﹣18)﹣(+7).6.(2022秋•天山区校级期末)24﹣(﹣16)+(﹣25)﹣15.7.(2022秋•密云区期末)计算:(﹣20)+(+3)﹣(﹣5)﹣(+7)8.计算:﹣23+(﹣37)﹣(﹣12)+45.9.(2022秋•阳东区期中)计算:4+(﹣2)+|﹣2﹣3|﹣5.10.(2022秋•陈仓区期中)计算:(﹣8)+(−710)+(﹣12)﹣(﹣1.2).11.(2022秋•通州区期中)计算:(−413)+(−517)+413−(+1217).12.(2022•南京模拟)计算:(﹣478)﹣(﹣512)+(﹣414)﹣318.13.计算:225+217+(−517)−(−535).14.(2022秋•甘井子区校级月考)计算:(1)(﹣8)+10+(﹣1)+3;(2)(﹣7)﹣(+5)﹣(﹣10)+(﹣3).15.(2022春•哈尔滨期中)计算:(1)13+(﹣15)﹣(﹣23).(2)﹣17+(﹣33)﹣10﹣(﹣16).16.(2022秋•涪城区期中)计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)﹣24+3.2﹣16﹣3.5+0.3.17.(2022秋•杏花岭区校级月考)计算:(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7;(2)(﹣49)﹣(﹣91)﹣(+51)+(﹣9).18.(2022秋•宁津县校级月考)计算:(1)﹣18+(﹣14)﹣(﹣18)﹣13;(2)﹣17.2+(﹣33.8)﹣(﹣8)+42.19.(2022秋•九龙坡区校级月考)计算:(1)﹣2+(﹣3)﹣(﹣10)﹣(+4);(2)﹣40﹣28﹣(﹣19)+(﹣24)﹣(﹣32).20.(2022秋•香洲区校级月考)计算:(1)12﹣(﹣18)+(﹣12)﹣15;(2)1+(−23)−(−45)−13.21.(2022秋•张店区校级月考)计算:(1)(−35)+15−45;(2)(−5)−(−12)+7−73.22.(2022秋•花垣县月考)计算:(1)14﹣(﹣12)+(﹣25)﹣17;(2)(−56)+(−16)−(−14)−(+12).23.计算:(1)﹣9+5﹣(﹣12)+(﹣3)(2)﹣(+1.5)﹣(﹣414)+3.75﹣(+812)24.(2022秋•九龙坡区校级期中)计算:(1)﹣414+1.5﹣3.75+812; (2)﹣1.25﹣334+|−12−1|.25.(2022秋•丰泽区校级月考)计算:(1)6+(﹣7)﹣(﹣4);(2)0﹣(−23)+(−45)−15+(−23)﹣(﹣1).26.(2022•南京模拟)计算.(1)(−34)−(−12)+(+34)+(+8.5)−13;(2)0−(−256)+(−527)−(−216)−|−657|.27.(2022秋•定远县校级月考)计算:(1)(﹣15)+(+7)﹣(﹣3);(2)(+0.125)﹣(﹣334)+(﹣318)﹣(﹣1023)﹣(+1.25).28.(2022秋•庐阳区校级月考)计算:(1)8+(−114)−5−(−34);(2)34−72+(−16)−(−23)−1.29.(2022秋•宁远县校级月考)计算:(1)(+12)﹣(﹣18)+(﹣7)﹣(+15);(2)213+635+(﹣213)+(﹣525).30.(2022•南京模拟)计算:(1)423+[8.6−(+323)+(−75)+(−235)]; (2)﹣2−(+712)+(−715)−(−14)−(−13)+715.31.(2022秋•二道区校级月考)计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13;(2)3.25﹣[−12−(−52)+(−54)+434].32.(2022秋•冷水滩区月考)计算:(1−12)+(12−13)+(13−14)+……(12005−12006).33.计算下列式子:(1)12﹣(﹣18)+(﹣7)﹣20;(2)+5.7+(﹣8.4)+(﹣4.2)﹣(﹣10);(3)3.14×7﹣(﹣5)+5.4;(4)10+[50+(﹣250)﹣(﹣10)].34.(2022秋•小店区校级月考)计算题:(1)8+(﹣11)﹣|﹣5|;(2)12+(−12)﹣(﹣8)−52;(3)0.125+314−18+523−0.25; (4)(﹣515)﹣(﹣1247)﹣(+345)+(+637).35.(2022秋•文圣区校级月考)计算:(1)﹣3﹣3;(2)﹣0.8﹣5.2+11.6﹣5.6;(3)﹣2+(﹣3)﹣(﹣5);(4)11.125﹣114+478−4.75; (5)﹣165+265﹣78﹣22+65;(6)(﹣7.3)﹣(﹣656)+|﹣3.3|+116.36.(2022秋•昭阳区校级月考)计算下列各题(1)|﹣3|+|﹣10|﹣|﹣5|(2)2﹣(5﹣7)(3)﹣11﹣7+(﹣9)﹣(﹣6)(4)(﹣3.5)+(+823)﹣(﹣5.5)+(﹣223).37.(2022秋•管城区校级月考)计算:(1)﹣7﹣|﹣9|﹣(﹣11)﹣3;(2)5.6+(﹣0.9)+4.4+(﹣8.1);(3)(−16)+(+13)+(−112); (4)25−|﹣112|﹣(+214)﹣(﹣2.75).38.(2022秋•雁塔区校级月考)计算:(1)(+7)+(﹣19)+(+23)+(﹣15);(2)﹣0.5+(﹣314)+(﹣2.75)+(+712); (3)(﹣8)﹣(﹣1.5)﹣9﹣(﹣2.5);(4)15﹣(﹣556)﹣(+337)﹣(﹣216)﹣(+647).39.计算:(1)(﹣3)+(﹣12)﹣(﹣11)﹣(+19);(2)12﹣(﹣18)+(﹣10);(3)(﹣11)﹣(﹣7.5)﹣(+9)+2.5;(4)(−612)−(−414)+(−312)−(−534).40.(2022秋•九龙坡区校级月考)计算题:(1)(﹣83)+(+26)+(﹣41)+15;(2)﹣418+(﹣314)﹣22.75+(﹣1578); (3)|﹣212|﹣(﹣2.5)+1﹣|1﹣212|; (4)﹣556+(﹣923)﹣312+1734.41.(2022秋•张店区校级月考)计算下列各题:(1)(+512)+(﹣734); (2)(+38)﹣(−18);(3)38+(﹣22)+62+(﹣78);(4)1﹣(+112)﹣(−12)﹣(+14).42.(2022秋•新泰市校级月考)计算:(2)(﹣1.24)﹣(+4.76);(3)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(4)4.7﹣(﹣8.9)﹣7.5+(﹣6);(5)(﹣33)+(+48)+(﹣27);(6)(﹣2.8)+(﹣3.6)+3.6.43.(2022秋•张店区校级月考)计算(1)31+(﹣28)+28+69;(2)(﹣423)+(﹣313)+612+(﹣214); (3)(﹣5)﹣(−12)+773; (4)(﹣12)﹣(−65)+(﹣8)−710.44.(2022秋•南江县校级月考)计算(1)﹣5﹣(﹣3)+(﹣4)﹣[﹣(﹣2)];(2)﹣20+(﹣14)﹣(﹣18)﹣1;(3)13﹣[26﹣(﹣21)+(﹣18)];(4)(﹣134)﹣(+613)﹣2.25+103.45.(2022秋•阳谷县校级月考)计算:(2)(﹣3)﹣(﹣17)﹣(﹣33)﹣81;(3)12+(−23)+45+(−12)+(−13); (4)﹣5.5﹣(﹣3.2)﹣(﹣2.5)﹣(﹣4.8).46.(2022秋•乐陵市校级月考)用简便方法计算:(1)(﹣23)+72+(﹣31)+(47);(2)0.85+(0.75)﹣(+234)+(﹣1.85)+(+3);(3)(+145)−(+23)+11012−(﹣0.2)﹣(+1013)﹣110.5.47.(2022秋•越秀区校级期中)阅读下面的解题方法.计算:﹣556+(﹣923)+1734+(﹣312). 解:原式=[(﹣5)+(−56)]+[(﹣9)+(−23)]+(17+34)+[(﹣3)+(−12)] =[(﹣5)+(﹣9)+17+(﹣3)]+[(−56)+(−23)+34+(−12)]=0+(−54)=−54.上述解题方法叫做拆项法,按此方法计算:(﹣202156)+404323+(﹣202223)+156.48.(2022秋•邻水县期末)数学张老师在多媒体.上列出了如下的材料:计算:−556+(−923)+1734+(−312).解:原式=[(−5)+(−56)]+[(−9)+(−23)]+(17+34)+[(−3)+(−12)]=[(−5)+(−9)+(−3)+17]+[(−56)+(−23)+(−12)+34]=0+(−114)=−114.上述这种方法叫做拆项法.请仿照上面的方式计算:(−202127)+(−202247)+4044+17.49.(2022秋•新邵县期中)阅读:对于(−556)+(−923)+1734+(−312),可以按如下方法计算:原式=[(−5)+(−56)]+[(−9)+(−23)]+(17+34)+[(−3)+(−12)]=[(−5)+(−9)+17+(−3)]+[(−56)+(−23)+34+(−12)]=0+(−114)=−114.上面这种方法叫拆项法.仿照上面的方法,请你计算:(−2022724)+(−202158)+(−116)+4044.50.(2022秋•襄汾县期中)阅读下面的计算过程,体会“拆项法”计算:﹣556+(﹣923)+1734+(﹣312) 解:原式=[(﹣5)+(−56)]+[(﹣9)+(−23)]+(17+34)+[(﹣3)+(−12)] =[(﹣5)+(﹣9)+17+(﹣3)]+[(−56)+(−23)+34+(−12)]=0+(﹣114) =﹣114 启发应用用上面的方法完成下列计算:(1)(﹣3310)+(﹣112)+235−(﹣212); (2)(﹣200056)+(﹣199923)+400023+(﹣112).。

七年级数学上册有理数加减法的计算题

七年级数学上册有理数加减法的计算题

七年级数学上册有理数加减法的计算题 ⾟勤做七年级数学练习题的蜜蜂永没有时间的悲哀。

下⾯是店铺为⼤家精⼼推荐的七年级数学上册有理数加减法的计算题,希望能够对您有所帮助。

七年级数学上册有理数的加减法计算题⽬ ⼀、选择题(共13⼩题) 1.计算﹣10﹣8所得的结果是( )A.﹣2B.2C.18D.﹣18 2.(2014•哈尔滨)哈市某天的最⾼⽓温为28℃,最低⽓温为21℃,则这⼀天的最⾼⽓温与最低⽓温的差为( )A.5℃B.6℃C.7℃D.8℃ 3.某地某天的最⾼⽓温是8℃,最低⽓温是﹣2℃,则该地这⼀天的温差是( )A.﹣10℃B.﹣6℃C.6℃D.10℃ 4.⽐1⼩2的数是( )A.3B.1C.﹣1D.﹣2 5.如果崇左市市区某中午的⽓温是37℃,到下午下降了3℃,那么下午的⽓温是( )A.40℃B.38℃C.36℃D.34℃ 6.计算,正确的结果为( ) A. B. C. D. 7.计算:1﹣(﹣ )=( ) A. B.﹣ C. D.﹣ 8.﹣2﹣1的结果是( )A.﹣1B.﹣3C.1D.3 9.计算2﹣3的结果是( )A.﹣5B.﹣1C.1D.5 10.桂林冬季⾥某⼀天最⾼⽓温是7℃,最低⽓温是﹣1℃,这⼀天桂林的温差是( )A.﹣8℃B.6℃C.7℃D.8℃ 11.如图,这是某⽤户银⾏存折中2012年11⽉到2013年5⽉间代扣电费的相关数据,从中可以看出扣缴电费最多的⼀次达到( )A.147.40元B.143.17元C.144.23元D.136.83元 12.五个城市的国际标准时间(单位:时)在数轴上表⽰如图所⽰,我市2013年初中毕业学业检测与⾼中阶段学校招⽣考试于2015年6⽉16⽇上午9时开始,此时应是 A.纽约时间2015年6⽉16⽇晚上22时 B.多伦多时间2015年6⽉15⽇晚上21时 C.伦敦时间2015年6⽉16⽇凌晨1时 D.汉城时间2015年6⽉16⽇上午8时 13.与﹣3的差为0的数是( )A.3B.﹣3C.D. ⼆、填空题(共5⼩题) 14.计算:0﹣7= . 15.)计算:3﹣(﹣1)= . 16.计算:3﹣4= . 17.计算:2000﹣2015= . 18.|﹣7﹣3|= . 七年级数学上册有理数的加减法计算题参考答案 ⼀、选择题(共13⼩题) 1.计算﹣10﹣8所得的结果是( )A.﹣2B.2C.18D.﹣18 【考点】有理数的减法. 【分析】根据有理数的减法运算法则进⾏计算即可得解. 【解答】解:﹣10﹣8=﹣18. 故选D. 【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键. 2.哈市某天的最⾼⽓温为28℃,最低⽓温为21℃,则这⼀天的最⾼⽓温与最低⽓温的差为( )A.5℃B.6℃C.7℃D.8℃ 【考点】有理数的减法. 【专题】常规题型. 【分析】根据有理数的减法,减去⼀个数等于加上这个数的相反数,可得答案. 【解答】解:28﹣21=28+(﹣21)=7, 故选:C. 【点评】本题考查了有理数的减法,减去⼀个数等于加上这个数的相反数. 3.某地某天的最⾼⽓温是8℃,最低⽓温是﹣2℃,则该地这⼀天的温差是( )A.﹣10℃B.﹣6℃C.6℃D.10℃ 【考点】有理数的减法. 【专题】计算题. 【分析】⽤最⾼温度减去最低温度,然后根据有理数的减法运算法则,减去⼀个数等于加上这个数的相反数进⾏计算即可得解. 【解答】解:8﹣(﹣2)=8+2=10(℃). 故选D. 【点评】本题考查了有理数的减法运算法则,熟记减去⼀个数等于加上这个数的相反数是解题的关键. 4.⽐1⼩2的数是( )A.3B.1C.﹣1D.﹣2 【考点】有理数的减法. 【分析】根据有理数的减法运算法则进⾏计算即可得解. 【解答】解:1﹣2=﹣1. 故选C. 【点评】本题考查了有理数的减法,是基础题. 5.如果崇左市市区某中午的⽓温是37℃,到下午下降了3℃,那么下午的⽓温是( )A.40℃B.38℃C.36℃D.34℃ 【考点】有理数的减法. 【专题】应⽤题. 【分析】⽤中午的温度减去下降的温度,然后根据有理数的减法运算法则进⾏计算即可得解. 【解答】解:37℃﹣3℃=34℃. 故选:D. 【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键. 6.计算,正确的结果为( ) A. B. C. D. 【考点】有理数的减法. 【分析】根据有理数的减法运算法则进⾏计算即可得解. 【解答】解:﹣ =﹣ . 故选D. 【点评】本题考查了有理数的减法运算是基础题,熟记法则是解题的关键. 7.计算:1﹣(﹣ )=( ) A. B.﹣ C. D.﹣ 【考点】有理数的减法. 【分析】根据有理数的减法法则,即可解答. 【解答】解:1﹣(﹣ )=1+ = . 故选:C. 【点评】本题考查了有理数的减法,解决本题的关键是熟记有理数的减法法则. 8.﹣2﹣1的结果是( )A.﹣1B.﹣3C.1D.3 【考点】有理数的减法. 【分析】根据有理数的减法法则:减去⼀个数等于加上这个数的相反数把原式化为加法,根据有理数的加法法则计算即可. 【解答】解:﹣2﹣1=﹣2+(﹣1)=﹣3, 故选:B. 【点评】有本题考查的是有理数的减法法则:减去⼀个数等于加上这个数的相反数,掌握法则是解题的关键. 9.计算2﹣3的结果是( )A.﹣5B.﹣1C.1D.5 【考点】有理数的减法. 【分析】减去⼀个数等于加上这个数的相反数,再运⽤加法法则求和. 【解答】解:2﹣3=2+(﹣3)=﹣1. 故选B. 【点评】考查了有理数的减法,解决此类问题的关键是将减法转换成加法. 10.桂林冬季⾥某⼀天最⾼⽓温是7℃,最低⽓温是﹣1℃,这⼀天桂林的温差是( )A.﹣8℃B.6℃C.7℃D.8℃ 【考点】有理数的减法. 【专题】应⽤题. 【分析】根据“温差”=最⾼⽓温﹣最低⽓温计算即可. 【解答】解:7﹣(﹣1)=7+1=8℃. 故选D. 【点评】此题考查了有理数的减法,解题的关键是:明确“温差”=最⾼⽓温﹣最低⽓温. 11.如图,这是某⽤户银⾏存折中2012年11⽉到2013年5⽉间代扣电费的相关数据,从中可以看出扣缴电费最多的⼀次达到( )A.147.40元B.143.17元C.144.23元D.136.83元 【考点】有理数的加减混合运算;有理数⼤⼩⽐较. 【专题】应⽤题. 【分析】根据存折中的数据进⾏解答. 【解答】解:根据存折中的数据得到:扣缴电费最多的⼀次是⽇期为121105,⾦额是147.40元. 故选:A. 【点评】本题考查了有理数⼤⼩⽐较的应⽤.解题的关键是学⽣具备⼀定的读图能⼒. 12.五个城市的国际标准时间(单位:时)在数轴上表⽰如图所⽰,我市2013年初中毕业学业检测与⾼中阶段学校招⽣考试于2015年6⽉16⽇上午9时开始,此时应是( A.纽约时间2015年6⽉16⽇晚上22时 B.多伦多时间2015年6⽉15⽇晚上21时 C.伦敦时间2015年6⽉16⽇凌晨1时 D.汉城时间2015年6⽉16⽇上午8时 【考点】有理数的加减混合运算. 【专题】应⽤题. 【分析】求出两地的时差,根据北京时间求出每个地⽅的时间,再判断即可. 【解答】解:A、∵纽约时间与北京差:8+5=13个⼩时,9﹣13=﹣4, ∴当北京时间2015年6⽉16⽇9时,纽约时间是2015年6⽉15⽇21时,故本选项错误; B、∵多伦多时间与北京差:8+4=12个⼩时,9﹣12=﹣3, ∴当北京时间2015年6⽉16⽇9时,纽约时间是2015年6⽉15⽇22时,故本选项错误; C、∵伦敦时间与北京差:8﹣0=8个⼩时,9﹣8=1, ∴当北京时间2015年6⽉16⽇9时,伦敦时间是2015年6⽉16⽇1时,故本选项正确; D、∵汉城时间与北京差:9﹣8=1个⼩时,9+1=10, ∴当北京时间2015年6⽉16⽇9时,⾸尔时间是2015年6⽉16⽇10时,故本选项错误; 故选C. 【点评】主要考查了数轴,要注意数轴上两点间的距离公式是|a﹣b|.把数和点对应起来,也就是把“数”和“形”结合起来,⼆者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想. 13.与﹣3的差为0的数是( )A.3B.﹣3C.D. 【考点】有理数的减法. 【分析】与﹣3的差为0的数就是﹣3+0,据此即可求解. 【解答】解:﹣3+0=﹣3. 故选B. 【点评】本题考查了有理数的减法运算,正确列出式⼦是关键. ⼆、填空题(共5⼩题) 14.计算:0﹣7= ﹣7 . 【考点】有理数的减法. 【分析】根据有理数的减法法则进⾏计算即可,减去⼀个数等于加上这个数的相反数. 【解答】解:0﹣7=﹣7; 故答案为:﹣7. 【点评】此题考查了有理数的减法运算,熟练掌握减法法则是本题的关键,是⼀道基础题,较简单. 15.计算:3﹣(﹣1)= 4 . 【考点】有理数的减法. 【分析】先根据有理数减法法则,把减法变成加法,再根据加法法则求出结果. 【解答】解:3﹣(﹣1)=3+1=4, 故答案为4. 【点评】本题主要考查了有理数加减法则,能理解熟记法则是解题的关键. 16.计算:3﹣4= ﹣1 . 【考点】有理数的减法. 【分析】本题是对有理数减法的考查,减去⼀个数等于加上这个数的相反数. 【解答】解:3﹣4=3+(﹣4)=﹣1. 故答案为:﹣1. 【点评】有理数的减法法则:减去⼀个数等于加上这个数的相反数. 17.计算:2000﹣2015= ﹣15 . 【考点】有理数的减法. 【专题】计算题. 【分析】根据有理数的减法运算进⾏计算即可得解. 【解答】解:2000﹣2015=﹣15. 故答案为:﹣15. 【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键. 18. |﹣7﹣3|= 10 . 【考点】有理数的减法;绝对值. 【专题】计算题. 【分析】根据有理数的减法运算法则和绝对值的性质进⾏计算即可得解. 【解答】解:|﹣7﹣3|=|﹣10|=10. 故答案为:10. 【点评】本题考查了有理数的减法运算法则和绝对值的性质,是基础题,熟记法则和性质是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、用数轴上的点表示下列各有理数。

-4 ,-4.25 ,2 ,-3.5 ,2
二、4的绝对值是( ),-7.7的相反数是( )。

三、23的绝对值是( ),-3.1的相反数是( ),9.5的倒数是( )。

四、|44.5|=( ),(0)3=( )。

五、计算。

3 4
(-—)+(-—)+(-7) 28×[(-2)3+(-3)]
7 7
1 1 2
—-(-—)-(-—)16-(-21)+10×(-13)
2 4 3
1
(-0.9)×—÷(-80) (-4)4-33(-1)2860 9
1 1 1
(-—)÷(-—+—)×0 15+[(-2)2-(-4]
6 4 6
1 3 1
(—+—)×(-—) 22+(-24)+6×(-12)
6 2 2
1 4
(—-—)×(-20) (-4)2+43(-1)2316
5 3
(-1)÷(-7) 13-(-2) -8+(-0.5)
1 1
(-—)÷(-—) -11+[-1+(-18+4)] (-4)4+42
6 7
-22+4-(-12)+(-29) 7.3-(-8.5)-(-0.6)+5.1
2 1 1
3 8 3 (—-—)-(—+—) 1.9+(-—)-(-5.4)-—
5 2 3 5 5 5
一、用数轴上的点表示下列各有理数。

-3 ,-3.25 ,4 ,0.5 ,8
二、-4的绝对值是( ),-3.4的相反数是( )。

三、42的绝对值是( ),6.8的相反数是( ),-5.5的倒数是( )。

四、|1.5|=( ),(-1)3=( )。

五、计算。

3 2
(-—)+(-—)+(-10) 20÷[(-4)2+(-5)]
7 7
1 1 8
—+(-—)+(-—)16+(-18)+7×(-14)
2 4 9
1
(-0.4)÷—×(-90) (-1)4+53(-1)2388 7
1 1 1
(-—)×(-—-—)×0 6+[(-1)2×(-2]
8 4 7
1 3 6
(—-—)÷(-—) 5+(-24)-8-(-10)
3 4 5
1 1
(—-—)×(-70) (-5)4+53(-1)2825
3 2
(-16)÷(-8) 2+(-7) 6.5+(-2.5)
1 1
(-—)+(-—) 10-[-5-(-16+3)] (-2)3-22
7 9
27-13-(-11)-(-18) -1+(-3.4)+(-2.6)-9.6
2 1 1 2 6 4 (—+—)-(—-—) 7.9-(-—)-(-8.1)+—
5 7 5 5 5 5
一、用数轴上的点表示下列各有理数。

-4.5 ,-4.75 ,7 ,-1.5 ,-1
二、-32.5的绝对值是( ),0.4的相反数是( )。

三、-34的绝对值是( ),-3.7的相反数是( ),2.5的倒数是( )。

四、|7.5|=( ),(-2)4=( )。

五、计算。

6 1
(-—)+(-—)+(-2) 30+[(-4)3+(-5)]
7 7
1 1 10
—+(-—)+(-—)8+(-14)-9×(-20)
2 6 9
1
(-0.3)÷—÷(-1) (-1)2+22(-1)1129 4
1 1 1
(-—)×(-—+—)×0 17×[(-3)2-(-1]
8 7 4
1 7 1
(—+—)÷(-—) 3+(-30)-6+(-15)
6 6 5
7 1
(—+—)×(-60) (-1)3-53(-1)2871
6 6
(-15)×(-19) 1÷(-13) -11.5+(-8)
1 1
(-—)+(-—) 4-[2+(-7+7)] (0)4-33
3 9
7-13+(-1)-(-16) 0.6-(-2.1)+(-1.7)+4.2
2 1 1 1 9 9 (—-—)-(—-—) 5.3+(-—)+(-7.1)+—
3 5 2 7 5 5
一、用数轴上的点表示下列各有理数。

-4.5 ,-4.75 ,2 ,3 ,0
二、-24.5的绝对值是( ),1.6的相反数是( )。

三、47.5的绝对值是( ),-5的相反数是( ),-2的倒数是( )。

四、|-2|=( ),(-2)4=( )。

五、计算。

6 6
(-—)-(-—)+(-9) 5×[(-1)2-(-5)]
7 7
9 1 1
—-(-—)+(-—)9+(-29)+7×(-14)
8 2 7
1
(-0.6)÷—÷(-90) (-5)2-12(-1)2597 5
1 1 1
(-—)×(-—-—)×0 26+[(-1)2÷(-4]
2 6 6
1 9 6
(—+—)-(-—) 10-(-10)-8×(-16)
3 8 5
4 8
(—+—)×(-50) (-1)4-22(-1)1264
5 7
(-4)+(-18) 15÷(-10) 8.5+(-13)
1 1
(-—)×(-—) -20+[4-(-16+7)] (-2)4-53
5 7
8+14-(-15)+(-23) -6.7+(-0.6)+(-4.2)-7.8
2 1 1 2
3 6 (—-—)+(—-—) 5.5+(-—)-(-6.5)-—
5 8 4 5 5 5
一、用数轴上的点表示下列各有理数。

-4.5 ,-4.5 ,4 ,-0.5 ,-8
二、17的绝对值是( ),-6.7的相反数是( )。

三、47的绝对值是( ),6.8的相反数是( ),7.5的倒数是( )。

四、|-26|=( ),(1)4=( )。

五、计算。

3 6
(-—)+(-—)-(-6) 16-[(-1)2÷(-1)]
7 7
6 1 6
—-(-—)+(-—)17+(-23)+7+(-16)
5 8 7
1
(-0.3)×—÷(-500) (-1)2+22(-1)1376 2
1 1 1
(-—)×(-—-—)×0 25×[(-4)2+(-5]
9 7 2
1 1 1
(—+—)-(-—) 1-(-29)+4×(-12)
7 2 6
4 7
(—-—)×(-60) (-4)2+53(-1)1156
3 8
(-14)÷(-12) 2+(-13) 9-(-1.5)
1 1
(-—)÷(-—) -9+[0+(-1+4)] (-3)4+34
6 4
20-11-(-12)+(-20) 4.2-(-0.6)-(-2.1)+4.5
2 1 1 4
3 8 (—-—)-(—-—) 1.3+(-—)-(-4.6)-—
3 9
4
5 5 5。

相关文档
最新文档