八年级数学平面直角坐标系ppt课件
合集下载
苏科版数学八上4.3《平面直角坐标系》课件
以球心为原点,通过球心和任意两点间的 连线与固定平面的夹角和该连线长度来表 示点的位置。
02
CATALOGUE
点的坐标表示与计算
点在平面直角坐标系中的表示
点的坐标
在平面直角坐标系中,一个点由一对 有序实数对表示,称为点的坐标。第 一个数表示点在x轴上的投影,第二个 数表示点在y轴上的投影。
坐标轴
A在x轴上对应的3个单位长度,以及在y轴上对应的4个单位长度。
坐标系的分类
平面直角坐标系
极坐标系
坐标轴互相垂直相交,是常用的坐标系。
以一个固定点为原点,通过该点和固定方 向的射线为极轴,用极角和径长表示点的 位置。
圆柱坐标系
球坐标系
以圆柱的轴线为z轴,与圆柱上任一点到固 定平面的垂线与该点的向径与z轴的夹角和 向径的长度来表示点的位置。
路线规划
使用坐标表示起点和终点 ,进行路线规划。
利用坐标系解决几何问题
距离计算
通过坐标计算两点之间的距离, 如两点间线段的长度。
角度计算
利用坐标计算两线段之间的夹角, 如直线的夹角、线段与坐标轴的夹 角。
面积计算
通过坐标计算多边形的面积,如三 角形、平行四边形等。
平面直角坐标系的应用拓展
函数图像
点的对称
关于x轴对称的点,其横坐标相同,纵坐标互为相反数;关于y轴对称的点,其纵坐标相同 ,横坐标互为相反数。
距离公式
两点间的距离公式为$sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$,用于计算两点间的直线距离。
坐标系的变换
旋转
以原点为中心,将整个坐标系旋 转一定的角度,可以使得图形中 的点旋转到新的位置。旋转时, 点的坐标会发生变化。
北师大八年级数学上册《平面直角坐标系》课件(共18张PPT)
3.2平面直角坐标系
第一课时
什么是数轴?
在直线上规定了原点、正方向、单位长度 就构成了数轴。
单位长度
B
· 原点 A
C
-3 -2 -1 0 1 2 3 4
数轴上的点与实数之间 存在着一一对应关系。
我帮老师解决问题
如果课上老师要点一名同学回答问 题,但不知道同学们的姓名,我想根据同 学们所在的位置来确定,你能帮我解决吗?
3、能适当建立直角坐标系,写出直角坐标 系 中有关点的坐标。
作业:
新课堂 P51 第一课时
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年4月21日星期四2022/4/212022/4/212022/4/21 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年4月2022/4/212022/4/212022/4/214/21/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/4/212022/4/21April 21, 2022
高荣荣
朱奕菲
讲台
行
10
8
m(4,6)
6
·
4
2
0 1 2 3 4 5列
课本58页做一做
情景问题
问题1
问题2
1平. 面平直面角上坐标两系条,互相水垂平直的且数有轴公共叫原x点轴的(数横轴轴组)成, 取向 右为正方向, 铅直的数轴 叫y轴(纵轴), 取向 上为正方向。 两轴的交点是 原点 。 这个平面叫 坐标 平面。
谢谢观赏
You made my day!
我们,还在路上……
第一课时
什么是数轴?
在直线上规定了原点、正方向、单位长度 就构成了数轴。
单位长度
B
· 原点 A
C
-3 -2 -1 0 1 2 3 4
数轴上的点与实数之间 存在着一一对应关系。
我帮老师解决问题
如果课上老师要点一名同学回答问 题,但不知道同学们的姓名,我想根据同 学们所在的位置来确定,你能帮我解决吗?
3、能适当建立直角坐标系,写出直角坐标 系 中有关点的坐标。
作业:
新课堂 P51 第一课时
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年4月21日星期四2022/4/212022/4/212022/4/21 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年4月2022/4/212022/4/212022/4/214/21/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/4/212022/4/21April 21, 2022
高荣荣
朱奕菲
讲台
行
10
8
m(4,6)
6
·
4
2
0 1 2 3 4 5列
课本58页做一做
情景问题
问题1
问题2
1平. 面平直面角上坐标两系条,互相水垂平直的且数有轴公共叫原x点轴的(数横轴轴组)成, 取向 右为正方向, 铅直的数轴 叫y轴(纵轴), 取向 上为正方向。 两轴的交点是 原点 。 这个平面叫 坐标 平面。
谢谢观赏
You made my day!
我们,还在路上……
华师大初中数学八年级下册17.2.1平面直角坐标系课件(17张PPT)
a为点P的横坐标
-3
.
F(-6,-5)
-4
-5 -5为点F的纵坐标
-6
学习反馈1(1)
y
6
5
B
4
· ·3 F
2 1
-6 -5 -4 -3 -2 -1-o1
-2
·C
-3
-4
A
· E · 1 2 3 4 5 6 X
D·
-5 -6
学习反馈1(2)
试在平面内确定点A(3,2)、B(-3,4)、C(-4,-2)、 D(4,-1)、E(-2,0)、F(0,-4)的位置.
1.完成课本第31页练习1:在直角坐标系中描出点P(2,-3), 分别找出它关于x轴、y轴及原点对称点,并写出这些点的坐标
P(x,y) 关于x轴对称 关于y轴对称 关于原点对称
学习要求:
1.独立完成问题3;
2.小组交流讨论;
3.小组展示讨论结果.
2.点P(2,-3)到x轴的距离为
,到y轴的距离为
坐标轴
y
3 2
第二象限
1
第一象限
-3 -2 -1 0 -1
第三象限 -2
-3
12 3 4 x
第四象限
注意:坐标轴不属于任何象限.
y
b为点P的纵坐标 b
.P(a,b)
横坐标在前, 纵坐标在后, 用逗号隔开.
-6为点F的横坐标
原点 1 (0,0)
-6 -5 -4 -3 -2 -1 o
-1 -2
1
a
x
纪念反法西斯战争胜利70周年阅兵仪式
陆海空三军仪仗队
华师大版数学教材八年级下册
平面直角坐标系
学习要求:
1.阅读教材第30-31页,勾画概念,独立完成下列问题. 2.用红笔对照批改并改错.
北师大八年级数学上册 第3章 第2节 平面直角坐标系 课件(共18张PPT)
x
-1
-2
做
· E(-2,-3)
-3
·F(2,-3)
一 做
★请说出点A与点B的位置关系。
★你能从自己画的图形中再找出这样的几组点吗?
· y
(0 , 6) 6
5
A(-4,3)
4
· · C(-2,3)
3
2
1
点A与点B关于 Y轴对称
· ·B(4,3) D(2,3)
-4 -3 -2 -1 o -1
-2
· E(-2,-3)
平面直角坐标系 第二象限
y y轴或纵轴
6
5
4 第一象限
3
2
1 原点
x轴或横轴
-6 -5 -4 -3 -2 -1-o1 1 2 3 4 5 6 X
-2
第三象限 -3
第四象限
-4
注 意:坐标轴上的-5点不属于任何象限。
-6
①两条数轴 ②互相垂直 ③公共原点
叫平面直角坐标系
例题:平面直角坐标系
如下图,某船从O港航行,
-3
1234
x
横坐标互为相反数,
纵坐标相同
·F(2,3)
★请说出点D与点F的位置关系。
★你能从自己画的图形中再找出这样的几组点吗?
· y
(0 , 6) 6
5
A(-4,3)
4
· · C(-2,3)
3
2
1
点D与点F关于 X轴对称
· ·B(4,3) D(2,3)
-4 -3 -2 -1 o -1
-2
· E(-2,-3)
-3
1234
x
横坐标相同,
纵坐标互为相反数
·F(2,-3)
平面直角坐标系(共17张PPT)
先横后纵加括号,
中间不忘加逗号。
1
-3 -2
. N
-1
O -1 -2 -3
1
横坐标
-4
·
Q(0,-4)
N(-1.5,-2)在哪里?
平面直角坐标系的建立,使得平面上的点与有序实数对 一一对应,从而架起了数与形之间的桥梁.
应用新知 例1(1)写出平面直角坐标系中的A、B、O 、P各点的 1
坐标. (2)在平面直角坐标系中画出点E(-5,-5)、F(0,-3)、 G(-4,-3)、H(-2.5,3)
(-,+)
-4 -3
3 2 1 1
第一象限
(+,+)
2 3 4 x
x轴上的点 的纵坐标 为0,表示 为(a,0)
y轴上的 点的横坐 标为0, 表示为 (0,b)
-2 -1 O -1 -2 -3 -4
第三象限
(-,-)
第四象限
(+,-)
应用新知 2 例2 (1)在点A(-2,-4)、B(-2,4)、C(3,-4)、
y
5 4 B 3 2 A G
C
R(-3,0)
-1
1 0 1 2 3 4 5 6
-6 -5 -4 -3 -2
-1 E -2
F -3 -4 D
x
-5 -6
挑战自我
y
2、指出A、B、C、D各点的 坐标
B O
-3
2
ห้องสมุดไป่ตู้
A
x
3 -1
C
D
3.在点M(-1,0)、N(0,-1)、P(-2,-1)、O(5,0)、R(0, -5)、S(-3,2)中,在x轴上的点的个数是( )B A 、1 B 、2 C 、3 D 、4
沪科版数学八年级上册111 平面直角坐标系 课件共26张
有了平面 直角坐标系, 平面内的点就可以用 一对实数来表示了。
如图点P可以这样来表示;由点 P向x轴作垂线,垂足 M在x
轴上的坐标是 -2 ,由点P向y轴作垂线,垂足为 N在y轴上
的坐标为3.则点P的横坐标是- 2,纵坐标是 3。记作
(-2 ,3)叫做点P在平面直角坐标系中的坐标 ,简称点
P的坐标,表示为 P(-2,3)
【发现规律】
根据点所在的位置,用“+”“-”或“0” 填表.
+
+
-
+
-
-
+
-
+
0
-
0
0
+
0
-
0
0
6:知识应用
例1.已知点A(2a+6,a-3)在第四象限,求a 的取值范围。
6:知识应用
例2.如图,正方形 ABCD的边长为6,如果以点 A为
原点,AB所在直线为 x轴,建立平面直角坐标系,那 么y轴是哪条线?写出正方形的顶点 A,B,C,D的坐 标.
的点不属于任何象
限.
Ⅲ 第三象限
第一象限
Ⅰ
第四象限 Ⅳ
(2)从上面的操作可以发现直 角坐标系上每一个点的位置都能用 一对有序实数表示,反之,任何一 对有序实数在直角坐标系上都有唯 一的一个点和它对应.也就是说 直 角坐标系上的点和有序实数对是一
一对应的.
你能说出这句话的 含义吗 ?
5:发现规律
(1)四个象限内点的坐标的符号有什么规律?
问你题的座2 位在吗第第教?第853室列列列里第第第,二六四行你行行能找到
六
行五
四
三 二
一 12
34
56
列
如图点P可以这样来表示;由点 P向x轴作垂线,垂足 M在x
轴上的坐标是 -2 ,由点P向y轴作垂线,垂足为 N在y轴上
的坐标为3.则点P的横坐标是- 2,纵坐标是 3。记作
(-2 ,3)叫做点P在平面直角坐标系中的坐标 ,简称点
P的坐标,表示为 P(-2,3)
【发现规律】
根据点所在的位置,用“+”“-”或“0” 填表.
+
+
-
+
-
-
+
-
+
0
-
0
0
+
0
-
0
0
6:知识应用
例1.已知点A(2a+6,a-3)在第四象限,求a 的取值范围。
6:知识应用
例2.如图,正方形 ABCD的边长为6,如果以点 A为
原点,AB所在直线为 x轴,建立平面直角坐标系,那 么y轴是哪条线?写出正方形的顶点 A,B,C,D的坐 标.
的点不属于任何象
限.
Ⅲ 第三象限
第一象限
Ⅰ
第四象限 Ⅳ
(2)从上面的操作可以发现直 角坐标系上每一个点的位置都能用 一对有序实数表示,反之,任何一 对有序实数在直角坐标系上都有唯 一的一个点和它对应.也就是说 直 角坐标系上的点和有序实数对是一
一对应的.
你能说出这句话的 含义吗 ?
5:发现规律
(1)四个象限内点的坐标的符号有什么规律?
问你题的座2 位在吗第第教?第853室列列列里第第第,二六四行你行行能找到
六
行五
四
三 二
一 12
34
56
列
平面直角坐标系(共16张PPT)
二、新课讲解
例1 如图, 长方形ABCD的长与宽分别是6 , 4 , 建立适当的直角坐标 系,并写出各个顶点的坐标.
二、新课讲解
解: 以点C为坐标原点, 分别以CD , CB所在直线为x轴、y 轴,建立直角坐标系,如图. 此时点C的坐标是(0 ,0) .
由CD=6, CB=4, 可得D , B , A的坐标分别为D(6,
二、新课讲解
解: x BC 在坐标系 中,A点坐标为(4,4),B点坐标为(0,4),C点坐标为(0,0),D点坐标为(4,0);
八年级数学北师大如版·上图册,以边BC所在直线为 轴,以边 的中垂线为y轴建立
直角坐标系. 例1 如图, 长方形ABCD的长与宽分别是6 , 4 , 建立适当的直角坐标系,并写出各个顶点的坐标.
0),B(0,4),A(6,4).
二、新课讲解
在例1中,你还可以怎样建立直角坐标系?与同伴进行交流.
还可以分别以A、B、D为坐标原点建立适当的直角坐标系.如: 以A为坐标原点,则B,C,D的坐标分别为(-6,0),(-6,4),(0,-4).
二、新课讲解
例2 对于边长为4的等边三角形ABC(如图),建立适当的直角坐 标系,写出各个顶点的坐标.
二、新课讲解
在一次“寻宝”游戏中,寻宝人已经找到了A(3,2)和B(3,-2) 两个标志点(如图),并且知道藏宝地点的坐标为(4,4),除此之外 不知道其他信息.如何确定直角坐标系找到“宝藏”?与同伴进行交
流.
二、新课讲解
先根据点A(3,2)、B(3,-2)建立相应的平面直角坐标系, 再由藏宝地点的坐标,即(4,4)确定“宝藏”的位置.
八年级数学北师大版·上册
第三章 位置与坐标
3.2 平面直角坐标系(第3课时)
北师大版数学八上3.2 平面直角坐标系(第2课时)特殊点的横纵坐标关系 课件(共14张PPT)
1.已知点P(m+3,m+1)在平面直角坐标系X轴上, 则m=________.
2.已知线段MN平行于Y轴, 且M,N的坐标分别 为(3,-5) 和(x,2),那么x=_________.
3.平面直角坐标系中,已知点P(1-2a,a-2) 在第三象限角平分线上,求a的值和该点坐 标。
ห้องสมุดไป่ตู้
课后作业:
1.已知A(0,2m)和点B(-1,m+1),且直线AB//X 轴,则m=_________.
2.在直角坐标系XOY中,点P坐标为 (2,2),点Q 在Y轴上,Δ PQO是等腰三角形,则满足条件的Q点 有______个。
3.在直角坐标系XOY中,已知点A(0,8)和点B(6,8)。 ①尺规作图:求作一个点P,使点P到A、B两点的距离 相等,同时使P到两坐标轴的距离也相等。 ②写出点P的坐标。
1.若P(x,y)满足x+y<0,xy>0,则点P在第______象限; 若P(x,y)满足xy<0,则点P在第______象限; 若P(x,y)满足xy=0,则点P在_________位置.
2.直角坐标系中, (1)点M(a,b)在第二象限且点M到X轴和Y轴的距 离分别为3和5,则点M的坐标为_____________; (2)若点M到X轴和Y轴的距离分别为3和5, 则点M的坐标为_____________.
北师大版八年级数学上册第三章第二节
平面直角坐标系中特殊点的 横纵坐标关系
同学们,你们了解自己的 家乡吗?知道自己的学校是在 抚州的什么位置吗?
你还知道学校周边的景点 在哪儿吗?
人民公园
拟砚台
金巢实验学校
名人雕塑园
革命纪念馆
M
《平面直角坐标系》PPT课件教学课件初中数学3
课堂小结
1.平面直角坐标系的概念:在平面内画两条互相垂直、原点 重合的数轴,组成平面直角坐标系。 2.横轴和纵轴:在平面直角坐标系中,水平的数轴称为x轴或 横轴,一般取向右方向为正方向;竖直的数轴称为y轴或纵轴, 一般取向上方向为正方向。 3.坐标原点:在平面直角坐标系中,两坐标轴的交点为平面 直角坐标系的原点,一般用O来表示。
新知讲解
平面直角坐标系的概念
解:A(4,0),B(-2,0),C(0,5),D(0,-3),
平面直角坐标系的概念:在平面内画两条互相垂直、 1.平面直角坐标系的概念:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
平面直角坐标系的概念:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。 D(-1,-4) 注意:表示点的坐标时,必须横坐标在前,纵坐标在后,中间用逗号隔。
ቤተ መጻሕፍቲ ባይዱ
C(4,-3),
两坐标轴的交点为平面直角坐标系的原点。
C(4,-3),
在上面的问题中,点B和点C的坐标之间有什么关系?每一个点的横坐标与纵坐标的符号与什么有关?
平面直角坐标系的概念:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
1.平面直角坐标系的概念:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
A.第一象限
B.第二象限
根据课前查阅的资料,哪位同学能给大家简单介绍平面直角坐标系的产生以及数学家笛卡儿对数学产生的影响?
A.平面内两条互相垂直的数轴就构成了平面直角坐标系
例2:如图,在平面直角坐标系中,点B,C,D的坐标分别是什么?
A(4,0),B(-2,0),
B.平面直角坐标系中两条数轴是互相垂直的
例2:如图,在平面直角坐标系中,点B,C,D的坐标分别是什么?
北师大版八年级数学上册平面直角坐标系课件
若一个点的横坐标为0,纵坐标不为0,则该点在y轴上;若一个点的纵坐标为0,横坐 标不为0,则该点在x轴上。
点在第一象限、第二象限、第三象限、第四象限的判断
第一象限(x>0, y>0);第二象限(x<0, y>0);第三象限(x<0, y<0);第四象限 (x>0, y<0)。
图形在坐标系中的表示与变
综合练习题
总结词
综合应用能力
VS
详细描述
综合练习题难度最高,题目涉及的知识点 较为广泛,需要学生综合运用平面直角坐 标系的相关知识进行解答。这些题目主要 考察学生的综合应用能力和思维能力,如 求曲线方程、判断图形的形状和位置等。 通过这些题目的练习,学生可以提升综合 应用能力,培养数学思维和解决问题的能 力。
基础练习题
总结词
巩固基础知识
详细描述
基础练习题主要针对平面直角坐标系的基本概念和性质,包括坐标表示点的位 置、坐标轴上的点、坐标的加减法等。这些题目难度较低,适合所有学生练习 ,旨在帮助学生掌握平面直角坐标系的基本操作和概念。
提高练习题
总结词
提升解题技巧
详细描述
提高练习题相对于基础练习题难度有所增加,题目涉及的知识点更为深入,需要学生具备一定的解题技巧和思维 能力。这些题目主要考察学生对平面直角坐标系的应用能力,如求点的坐标、判断点的位置等。通过这些题目的 练习,学生可以提升解题技巧,加深对平面直角坐标系的理解。
性质
平面直角坐标系具有唯一性、有序性、平移不变性和旋 转不变性等性质。
坐标系的建立
01 确定坐标轴
选择适当的点作为原点,并确定x轴和y轴的方向 。
02 建立坐标网格
根据坐标轴上的刻度,将平面分成若干个小的正 方形网格,每个小网格代表一个单位长度。
点在第一象限、第二象限、第三象限、第四象限的判断
第一象限(x>0, y>0);第二象限(x<0, y>0);第三象限(x<0, y<0);第四象限 (x>0, y<0)。
图形在坐标系中的表示与变
综合练习题
总结词
综合应用能力
VS
详细描述
综合练习题难度最高,题目涉及的知识点 较为广泛,需要学生综合运用平面直角坐 标系的相关知识进行解答。这些题目主要 考察学生的综合应用能力和思维能力,如 求曲线方程、判断图形的形状和位置等。 通过这些题目的练习,学生可以提升综合 应用能力,培养数学思维和解决问题的能 力。
基础练习题
总结词
巩固基础知识
详细描述
基础练习题主要针对平面直角坐标系的基本概念和性质,包括坐标表示点的位 置、坐标轴上的点、坐标的加减法等。这些题目难度较低,适合所有学生练习 ,旨在帮助学生掌握平面直角坐标系的基本操作和概念。
提高练习题
总结词
提升解题技巧
详细描述
提高练习题相对于基础练习题难度有所增加,题目涉及的知识点更为深入,需要学生具备一定的解题技巧和思维 能力。这些题目主要考察学生对平面直角坐标系的应用能力,如求点的坐标、判断点的位置等。通过这些题目的 练习,学生可以提升解题技巧,加深对平面直角坐标系的理解。
性质
平面直角坐标系具有唯一性、有序性、平移不变性和旋 转不变性等性质。
坐标系的建立
01 确定坐标轴
选择适当的点作为原点,并确定x轴和y轴的方向 。
02 建立坐标网格
根据坐标轴上的刻度,将平面分成若干个小的正 方形网格,每个小网格代表一个单位长度。
3.2平面直角坐标系(第二课时)平面直角坐标系 课件(共17张PPT) 北师大版八年级数学上册
课堂小结
1.坐标轴上点的坐标
坐标轴上的点的坐标中至少有一个是0,即横轴上的点的纵坐标为0,纵轴上 的点的横坐标为0.
2.各个象限内的点的坐标特征:
第一象限(+,+),第二象限(-,+), 第三象限(-,-),第四象限(+,-).
3.平行x轴的直线上的点的 纵坐标相同 ,平行于y轴的直线上的 点的 横坐标相同 .
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.如果点P(x,y)满足xy=0,那么点P必定在( D )
A.原点上 B.x轴上 C.y轴上 D.坐标轴上
4.点P(m+3,m+1)在直角坐标系的x轴上,则点P的坐标为( B )
A.(0,-2) B.(2,0) C.(4,0) D.(0,-4)
探究新知
任务二:利用平面直角坐标系内点的坐标确定字母的值
例3 已知在平面直角坐标系中,点P(m,m-2)在第一象限内,
则m的取值范围是__m__>___2_.
解析:根据第一象限内点的坐标的符号特征,横坐标为正,纵坐
标为正,可得关于m的一元一次不等式组
m 0, m 2 0,
解得m>2.
求点的坐标中字母的取值范围的方法:根据各个象限内点的坐标的符号 特征,列出关于字母的不等式或不等式组,解不等式或不等式组即可求 出相应字母的取值范围.
第三章 位置与坐标
3.2平面直角坐标系(第二课时)
学习目标
3. 进一步体会平面直角坐标系中点与坐标之间 的一一对应关系. 2. 能够分析某些特殊点(坐标轴上的点、与坐 标轴平行的直线上的点等)的特征. 1. 熟练地根据坐标确定点的位置以及写出给定 点的坐标.Fra bibliotek复习导入
1.什么是平面直角坐标系? 2.作平面直角坐标系 3.指出四个象限 4.写出 P 点坐标 P(3,4)
北师大版八年级数学上册课件:3.2 平面直角坐标系(共26张PPT)
2.对于边长为4的正三角形△ABC,建立适当的直角坐标系,
写出各个顶点的坐标.
y A 3
2
B
1
C
- –3–2– O 1 2 3 4 x
4
1–
–1
解:A(0,2 ), B(-2,0) ,C(2,0).
2–3
– 4
3.在一次“寻宝”游戏中,寻宝人已经找到了坐标为(3,2) 和(3,-2)的两个标志点,并且知道藏宝地点的坐标为(4, 4),如何确定直角坐标系找到“宝藏”?
y
5 4
·(4,4)
3 2
·(3,2)
·1
-4 -3 -2 -1-O1 1 -2
2
345 x
· (3,-2)
解:如图所示
-3
课堂 小结
坐标的特征
建立直角坐 标系
建立适当的 直角坐标系
第三章 位置与坐标 3.2 平面直角坐标系 建立平面直角坐标系确定点的坐标
学习目标
1.了解、掌握点的坐标及特殊位置上点的坐标特征;(重点) 2.能建立直角坐标系求点的坐标.(难点)
导入 1.你还记得什么是平面直角坐标系吗? 新课 2.两条坐标轴把平面分成了几部分?(不包括坐标轴)
3.给你平面上的一个点,如何确定它的坐标?
在直角坐标系中,对于平面上任意一点, 都有唯一的一个有序实数对(即点的坐标)与 它对应;
反过来,对于任意的一个有序实数对,都 有平面上唯一一点与之对应.
当堂 练习 1.在 y轴上的点的横坐标是( 0 ),在 x轴上的点的纵坐标是( )0.
2.点 A(2,- 3)关 于 x 轴 对 称 的 点 的 坐 标 是( ()2.,3)
当堂
练习 1. (南通·中考)在平面直角坐标系xOy中,已 知点P(2,2),点Q在y轴上,△PQO是等腰三角形, 则满足条件的点Q共有(B ) A.5个 B.4个 C.3个 D.2个
华东师大版八年级下册数学17.《平面直角坐标系》课件
试一试
1.写出下图中的多边形ABCDEF各个顶点的坐标,并说出各顶点
所在的象限或坐标轴.
【答案】
y 3
F
E
A(-2,0)在x轴上
2
A
1
D
-2 -1 O 1 2 3 4
-1
-2
-3
B
C
B(0,-3)在y轴上 x C(3,-3)在第四象限
D(4,0)在x轴上 E(3,3)在第一象限
F(0,3)在y轴上
时间:5分钟
要求:
1.思考:如何在平面内建立直角坐标系?
2.在课本162页方格图上建立平面直角坐标
系,并指出坐标系各部分的名称(x轴、y轴、原
点及第一、二、三、四象限).
定义: 在平面内画两条互相垂直,并且有公共原点
O的数轴,组成平面直角坐标系
坐标平面
y
6 5 4 3 2 1
纵轴
横轴和纵轴 统称为坐标轴
试一试
2. 在平面直角坐标系中分别描出点P(3,2)、Q(2,3) 、 S(-1,4) 、R(4,-1). 视察:P(3,2)与Q(2,3)是同一个点吗?
S(-1,4)与R(4,-1)是同一个点吗?
平面直角坐标系内的点和有序实数对是一一结对果应这告的里知。得我到们的什 么?
合作探究
写出点A,B,C,D,E,F的坐标.
作业
教材课后练习1、2、3题
我们愈是学习,愈觉得自己的贫乏。 —— 雪莱
【答案】
A(3,3)
B(-5,2)
C(-4,-3)
·F
D(4,-3)
视察各点坐标, 思考: (1)在四个象限内点 的坐标各有什么特征?
(2)两条坐标轴上的 点的坐标各有什么特征?
平面直角坐标系的简单应用—初中数学课件ppt
·
·
···
小明去某地考察环境污染问题,并且他事先知道下面的 信息:“悠悠日用化工品厂”在他现在所在地的北偏东 30度的方向,距离此处3千米的地方; “明天调味品厂” 在他现在所在地的北偏西45度的方向,距离此处2.4千 米的地方;“321号水库”在他现在所在地的南偏东27 度的方向,距离此处1.1千米的地方.根据这些信息可 以画出表示各处位置的一张简图:
小敏家:出校门向南走100米,再向 东走300米,最后向南走75米。
根据以下条件
画一幅示意图,
标出学校和小
刚家、小强家、
小选敏取家的学位校置。 出所校在门小向位刚东家置走: 15为0米原,点再,向北 走并20以0米正。东、 正北小方强家向: 出20为校0米X门,轴向再西、向走y北 走轴35正0米方,向最后 向建东立走5直0米角 出坐校标门小向系敏南家,走: 10并0米取,比再例向东 走尺30为0米,最后 向1南:1走07050米0。
100米,再向东 走300米,最后 向南走75米。
y
(-3,7) 小强家
小刚家
(3,4)
1 学校 O1
X
小敏家 (6,-3.5)
归纳
利用平面直角坐标系绘制区域内一 些地点分布情况的平面图的过程如下:
(1)建立坐标系,选择一个适当的参 照点为原点,确定X轴、y轴的正方向;
(2)根据具体问题确定适当的比例 尺,在坐标轴上标出单位长度;
y
(-150,350) 小强家
小刚家
(150,200)
学校 O 50
X
到更多课件
根据以下条件
画一幅示意图,
标出学校和小
刚家、小强家、 小敏家的位置。
选取小学刚校家:
浙教版初中数学八年级上册平面直角坐标系课件(共17张)
如图 ,在长方形ABCD中,AB=1cm,BC=2cm,请建
立适当的坐标系,在坐标系中画出长方形并标出各个顶点的源自(0,0标) 。(2,0)
(0,1)
(2,1)
A(0,-1)
(2,-1)
(0,0)
D
(2,0)
(-2,1)
B
(-2,0)
(0,1) (0,0)
(-2,0)
(-C2,-1)
(0,0) (0,-1)
在直角坐标系内画出下列各点:A(2,3),B(0,-2)
y
C(-2,-3),D(5,0)
5
4
.P
3
.A
2
1
.D
6 5 4 3 2 1O 1 2 3 4 5 6 7
x
.
.1
2B
3
C
4
5
例2 如图:某公园中有“音乐喷泉”“绣湖”“游乐 场”“蜡像馆”“蝴蝶园”等景点。(记方格的边长为单 位长度1)
你有办法用坐标的情势来确定这五个景点的位置吗? 同桌的合作一下,请在学案上的表格中画画看。
y(cm)
D 3
2
1
A
-1 o
1
-1
单位:mm
D
200
解:建立直角坐标系如图,
选择比例为1:10,取C 点E为
C
直图角中坐的标线系段的AB原在点x ,轴使上15俯。0视
A
E
B
B
则由图可得A,B,C,D
100
200 50
2
3 X(cm各) 点的坐标分别为(-1,0),
(2,0),(2.5,1.5),
(0,3.5).
蝴蝶园
x 绣湖
例2 如图:某公园中有“音乐喷泉”“绣湖”“游乐 场”“蜡像馆”“蝴蝶园”等景点。(记方格的边长为 单位长度1)