大学物理学第9章作业题
习题第9章
第9章 质心运动定理 动量定理
习题
9-1 设质量为m 的质点M 在Oxy 平面内运动,其运动方程为cos x a kt =,sin y b kt =,式中a 、b 及k 都是常数,求作用于质点M 上的力。
答案:力F
的大小:F mk = 力F 的方向:tan y
x F y F x
β== 9-2 设质点M 以初速度0υ从O 点与水平Ox 成α角射出,不计空气阻力,求质
点M 在重力作用下的运动规律。
答案:质点的运动方程:020cos 1sin 2
x t y t gt υαυα=⎧⎪⎨=-⎪⎩ 9-3如图所示,均质杆OA ,长2l ,重为P ,绕O 轴在铅垂面内转动。
杆与水平线成ϕ角时,其角速度和角加速度分别为ω和α,求该瞬时轴O 的约束反力。
答案:
9-4 匀质杆AB 长为l ,质量为m ,匀质圆盘半径5
l r =,质量为2m ,在水平面作纯滚动,当30ϕ=时,杆上B 端沿铅垂方向向下滑的速度为B υ。
试求此瞬时
系统的总动量。
答案:122
x y B B p p m υυ=+=-p i j i j 9-5 物A 质量为5kg ,物B 质量为10kg ,A 、B 与水平面间的摩擦因数为0.25.现A 向右运动而撞击B 。
开始时,B 处于静止状态,撞击后,A 、B 一同向右运动,历时4s 停止。
求撞击前A 的速度,并求撞击时A 、B 相互作用的冲量。
答案:030/m s υ=,,100x e I N s =⋅
2(cos sin )Ox Pl F g ωφαφ=-+2(sin cos )Oy Pl F P g ωφαφ=+
-。
大学物理答案第9章
第九章 静 电 场9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )题 9-1 图分析与解 “无限大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ).9-2 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ).9-3 下列说法正确的是( )(A ) 电场强度为零的点,电势也一定为零(B ) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).*9-4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动题9-4 图分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B).9-5精密实验表明,电子与质子电量差值的最大范围不会超过±10-21e,而中子电量与零差值的最大范围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析考虑到极限情况,假设电子与质子电量差值的最大范围为2×10-21e,中子电量为10-21e,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解一个氧原子所带的最大可能净电荷为()e q 21max 10821-⨯⨯+=二个氧原子间的库仑力与万有引力之比为1108.2π46202max <<⨯==-Gmεq F F g e 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 9-6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32 的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律 ()r r r re r q q e e e F N 78.3π41π412202210===εε F 与径向单位矢量e r 方向相同表明它们之间为斥力.9-7 点电荷如图分布,试求P 点的电场强度.分析 依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 的一对点电荷在P 点激发的电场强度大小相等、方向相反而相互抵消,P 点的电场强度就等于电荷量为2.0q 的点电荷在该点单独激发的场强度.解 根据上述分析2020π1)2/(2π41aq a q E P εε==题 9-7 图9-8 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为2204π1Lr Q εE -=(2) 在棒的垂直平分线上,离棒为r 处的电场强度为 2204π21Lr r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.题 9-8 图分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r q εe E 20d π41d '=整个带电体在点P 的电场强度 ⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=L E i E d(2) 若点P 在棒的垂直平分线上,如图(a )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==L y E E j j E d sin d α证 (1) 延长线上一点P 的电场强度⎰'=L rq E20π2d ε,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 2⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2202/32222041π2d π41Lr r Q r x L x rQ E L/-L/+=+=⎰εε 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度 r ελL r L Q r εE l 0220π2 /41/π21lim =+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(b )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.9-9 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.题 9-9 图 分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第9-3节的例2可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθδδd sin π2d d 2⋅⋅==R S q ,在点O 激发的电场强度为 ()i E 2/3220d π41d r x q x +=ε 由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθδθεεd cos sin 2 d sin π2cos π41d π41d 02303/2220=⋅=+=R RR r x q x E积分得 02/π004d cos sin 2εδθθθεδ⎰==E 9-10 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.题 9-10 图分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θcos 20er p =,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度302π41x p εE = 可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布. 解1 水分子的电偶极矩θθcos 2cos 200er p p ==在电偶极矩延长线上30030030cos π1cos 4π412π41x θer εx θer εx p εE === 解2 在对称轴线上任取一点A ,则该点的电场强度+-+=E E E2020π42π4cos 2cos 2xεe r εθer E βE E -=-=+ 由于 θxr r x r cos 202022-+=rθr x βcos cos 0-=代入得 ()⎥⎥⎦⎤⎢⎢⎣⎡--+-=22/30202001cos 2cos π42x xr r x r x e E θθε 测量分子的电场时, 总有x >>r 0 , 因此, 式中()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x r x x r x xr r x θθθcos 2231cos 21cos 2032/3032/30202,将上式化简并略去微小量后,得 300cos π1x θe r εE = 9-11 两条无限长平行直导线相距为r 0,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.题 9-11 图 分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有 ()i i E E E x r x r x r x -=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2ελελ (2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有 i E F 00π2r ελλ==-+ i E F 002π2r ελλ-=-=+- 显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.9-12 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.题 9-12 图分析 方法1:作半径为R 的平面S 与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理 ∑⎰==⋅01d 0q εS S E 这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而⎰⎰'⋅-=⋅=S S S E S E Φd d 方法2:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=S S d s E Φ解1 由于闭合曲面内无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S S S E S E Φd d 依照约定取闭合曲面的外法线方向为面元d S 的方向,E R R E 22ππcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为()r E e e e E ϕθθϕϕθϕsin sin cos sin cos ++= r θθR e S d d sin d 2=ER ER ER S S 2π0π02222πd sin d sin d d sin sin d ===⋅=⎰⎰⎰⎰ϕϕθθϕθϕθS E Φ 9-13 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理∑⎰=-=⋅q εR E E 021π4d S E 地球表面电荷面密度∑--⋅⨯-=-≈=2902m C 1006.1π4/E R q E εσ单位面积额外电子数25cm 1063.6)/(-⨯=-=e n σ9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布.分析 电荷均匀分布在球体内呈球对称,带电球激发的电场也呈球对称性.根据静电场是有源场,电场强度应该沿径向球对称分布.因此可以利用高斯定理求得均匀带电球内外的电场分布.以带电球的球心为中心作同心球面为高斯面,依照高斯定理有 ⎰==⋅s Q E r S E 0i 2π4d ε上式中i Q 是高斯面内的电荷量,分别求出处于带电球内外的高斯面内的电荷量,即可求得带电球内外的电场强度分布.解 依照上述分析,由高斯定理可得R r <时, 302π34π4r E r ερ= 假设球体带正电荷,电场强度方向沿径向朝外.考虑到电场强度的方向,带电球体内的电场强度为r E 03ερ=R r >时, 302π34π4R E r ερ= 考虑到电场强度沿径向朝外,带电球体外的电场强度为r e rR E 2033ερ=9-15 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 (R 2>R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 . 题 9-15 图分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=⋅rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 , 0=∑q01=ER 1 <r <R 2 , L λq =∑rελE 02π2= r >R 2, 0=∑q03=E在带电面附近,电场强度大小不连续,如图(b )所示,电场强度有一跃变00π2π2ΔεσrL εL λr ελE === 9-16 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.题 9-16 图分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W 其中E 是点电荷Q 1 、Q 3 产生的合电场强度.(2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势).解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-= 由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为()2/322031π2y d εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()d εQ y y d εQ Q Q W y 022/3220002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势 的叠加得Q 1 、Q 3 在点O 的电势dεQ d εQ d εQ V 003010π2π4π4=+= 将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多. 9-17 已知均匀带电长直线附近的电场强度近似为r rελe E 0π2= 其中λ为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明.解 (1) 由于电场力作功与路径无关,若沿径向积分,则有12012ln π2d 21r r ελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等.9-18 一个球形雨滴半径为0.40 mm ,带有电量1.6 pC ,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大?分析 取无穷远处为零电势参考点,半径为R 带电量为q 的带电球形雨滴表面电势为 R q εV 0π41= 当两个球形雨滴合并为一个较大雨滴后,半径增大为R 32,代入上式后可以求出两雨滴相遇合并后,雨滴表面的电势.解 根据已知条件球形雨滴半径R 1=0.40 mm ,带有电量q 1=1.6 pC ,可以求得带电球形雨滴表面电势V 36π411101==R q εV 当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量 q 2=2q 1 ,雨滴表面电势V 5722π4113102==R q εV 9-19 电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图(a )放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.题 9-19 图分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布.解 由“无限大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的分布, ()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a a x0 00i E εσ电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x <<--=⋅=⎰ d 0l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 00a -a x l E l E ()a x a V >-=⋅+⋅=⎰⎰ d d 00a a x εσl E l E 电势变化曲线如图(b )所示. 9-20 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?题 9-20 图分析 通常可采用两种方法.方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.(2)利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQ V 0π4= 在球面内电场强度为零,电势处处相等,等于球面的电势 R εQ V 0π4=其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1) 由高斯定理可求得电场分布 ()()()22021********* π4 π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=r V l E d 可求得各区域的电势分布.当r ≤R 1 时,有 20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r +=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞l E l E l E当R 1 ≤r ≤R 2 时,有 202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r +=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞l E l E当r ≥R 2 时,有rεQ Q V r 02133π4d +=⋅=⎰∞l E (2) 两个球面间的电势差⎪⎪⎭⎫ ⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=若该点位于两个球面之间,即R 1≤r ≤R 2 ,则202012π4π4R εQ r εQ V += 若该点位于两个球面之外,即r ≥R 2 ,则 rεQ Q V 0213π4+= (2) 两个球面间的电势差 ()2011012112π4π42R εQ R εQ V V U R r -=-== 9-21 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.题 9-21 图分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理 ⎰⎰=⋅V V d 1d 0ρεS E 可求得电场分布E (r ),再根据电势差的定义 ()l E d ⋅=-⎰b ab a r V V 并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E =当r ≥R 时02/ππ2ερl R rl E =⋅得 ()r εR ρr E 022= 取棒表面为零电势,空间电势的分布有当r ≤R 时()()22004d 2r R ερr εr ρr V R r -==⎰当r ≥R 时 ()rR εR ρr r εR ρr V Rr ln 2d 20202==⎰ 如图所示是电势V 随空间位置r 的分布曲线. 9-22 一圆盘半径R =3.00 ×10-2 m .圆盘均匀带电,电荷面密度σ=2.00×10-5 C·m -2.(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.题 9-22 图分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布.解 (1) 如图所示,圆盘上半径为r 的带电细圆环在轴线上任一点P 激发的电势220d π2π41d x r r r σεV += 由电势叠加,轴线上任一点P 的电势的 ()x x R εσx r rr εσV R -+=+=⎰22002202d 2 (1) (2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R x εσx V (2) 电场强度方向沿x 轴方向. (3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得V 6911=V-1m V 6075⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有 V 1695π40==xεq V 1-20m V 5649π4⋅==x εq E 由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过 0.3%和0.8%,这已足以满足一般的测量精度.9-23 两个很长的共轴圆柱面(R 1 =3.0×10-2m ,R 2 =0.10 m ),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r =0.05 m 处的电场强度.解 (1) 由习题9-15 的结果,可得两圆柱面之间的电场强度为 rελE 0π2=根据电势差的定义有 120212ln π2d 21R R ελU R R =⋅=⎰l E 解得 1812120m C 101.2ln /π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r =0.05m 处的电场强度10m V 475 7π2-⋅==rE ελ 9-24 轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的过程,叫做核聚变.在此过程中可以释放出巨大的能量.例如四个氢原子核(质子)结合成一个氦原子核(α粒子)时,可释放出25.9MeV 的能量.即MeV 25.9e 2He H 4014211++→这类聚变反应提供了太阳发光、发热的能源.如果我们能在地球上实现核聚变,就能获得丰富廉价的能源.但是要实现核聚变难度相当大,只有在极高的温度下,使原子热运动的速度非常大,才能使原子核相碰而结合,故核聚变反应又称作热核反应.试估算:(1)一个质子(H 11)以多大的动能(以电子伏特表示)运动,才能从很远处到达与另一个质子相接触的距离? (2)平均热运动动能达到此值时,温度有多高? (质子的半径约为1.0 ×10-15 m ) 分析 作为估算,可以将质子上的电荷分布看作球对称分布,因此质子周围的电势分布为 rεe V 0π4= 将质子作为经典粒子处理,当另一质子从无穷远处以动能E k 飞向该质子时,势能增加,动能减少,如能克服库仑斥力而使两质子相碰,则质子的初始动能Re r eV E 2π41202R k 0ε=≥ 假设该氢原子核的初始动能就是氢分子热运动的平均动能,根据分子动理论知:kT E 23k = 由上述分析可估算出质子的动能和此时氢气的温度.解 (1) 两个质子相接触时势能最大,根据能量守恒eV 102.72π415202R K0⨯==≥Re r εeV E 由20k 021v m E =可估算出质子初始速率 17k 00s m 102.1/2-⋅⨯==m E v该速度已达到光速的4%.(2) 依照上述假设,质子的初始动能等于氢分子的平均动能kT E E 23k k 0== 得 K 106.5329k0⨯≈=kE T 实际上在这么高的温度下,中性原子已被离解为电子和正离子,称作等离子态,高温的等离子体不能用常规的容器来约束,只能采用磁场来约束(托卡马克装置)9-25 在一次典型的闪电中,两个放电点间的电势差约为109 V,被迁移的电荷约为30 C .(1) 如果释放出来的能量都用来使0 ℃的冰融化成0 ℃的水,则可溶解多少冰? (冰的融化热L =3.34 ×105 J· kg )(2) 假设每一个家庭一年消耗的能量为3 000kW·h ,则可为多少个家庭提供一年的能量消耗?解 (1) 若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量kg 1098.8Δ4⨯===LqU L E m 即可融化约 90 吨冰. (2) 一个家庭一年消耗的能量为J 1008.1h kW 0003100⨯=⋅=E8.2Δ00===E qU E E n 一次闪电在极短的时间内释放出来的能量约可维持3个家庭一年消耗的电能.9-26 已知水分子的电偶极矩p =6.17×10-30 C· m .这个水分子在电场强度E =1.0 ×105 V · m -1的电场中所受力矩的最大值是多少?分析与解 在均匀外电场中,电偶极子所受的力矩为E p M ⨯=当电偶极子与外电场正交时,电偶极子所受的力矩取最大值.因而有m N 1017.625max ⋅⨯==-pE M9-27 电子束焊接机中的电子枪如图所示,K 为阴极,A 为阳极,阴极发射的电子在阴极和阳极电场加速下聚集成一细束,以极高的速率穿过阳极上的小孔,射到被焊接的金属上使两块金属熔化在一起.已知V 105.24AK⨯=U ,并设电子从阴极发射时的初速度为零,求:(1)电子到达被焊接金属时具有的动能;(2)电子射到金属上时的速度.分析 电子被阴极和阳极间的电场加速获得动能,获得的动能等于电子在电场中减少的势能.由电子动能与速率的关系可以求得电子射到金属上时的速度.解 (1)依照上述分析,电子到达被焊接金属时具有的动能eV 105.24AK k ⨯==eU E(2)由于电子运动的动能远小于电子静止的能量,可以将电子当做经典粒子处理.电子射到金属上时的速度m/s 1037.927⨯==m E v k题 9-27。
大学物理第九章习题答案
第九章 真空中的静电场9–1 如图9-1所示,电量为+q 的三个点电荷,分别放在边长为a 的等边三角形ABC 的三个顶点上,为使每个点电荷受力为零,可在三角形中心处放另一点电荷Q ,则Q 的电量为 。
解:由对称性可知,只要某个顶点上的电荷受力为零即可。
C 处电荷所受合力为零,需使中心处的点电荷Q 对它的引力F 与A ,B 两个顶点处电荷的对它的斥力F 1,F 2三力平衡,如图9-2所示,即)21(F F F +-=因此12cos30F F ︒=即2202cos304πq aε=︒解得q Q 33=9-2 真空中两条平行的无限长的均匀带电直线,电荷线密度分别为+λ 和-λ,点P 1和P 2与两带电线共面,其位置如图9-3所示,取向右为坐标x 正向,则1P E = ,2P E = 。
解:(1)P 1点场强为无限长均匀带电直线λ,-λ在该点产生的场强的矢量和,即λλ-+=E E E 1P其大小为i i i E dd d P 000ππ2π21ελελελ=+=方向沿x 轴正方向。
(2)同理可得i i i E dd d P 000π3π2)3(π22ελελελ-=-=方向沿x 轴负方向。
图9–2图9-3C B图9–19-3 一个点电荷+q 位于一边长为L 的立方体的中心,如图9-4所示,则通过立方体一面的电通量为 。
如果该电荷移到立方体的一个顶角上,那么通过立方体每一面的电通量是 。
解:(1)点电荷+q 位于立方体的中心,则通过立方体的每一面的电通量相等,所以通过每一面的通量为总通量的1/6,根据高斯定理1d in Sq ε⋅=∑⎰⎰E S ,其中S 为立方体的各面所形成的闭合高斯面,所以,通过任一面的电通量为0d 6Sqε⋅=⎰⎰E S 。
(2)当电荷+q 移至立方体的一个顶角上,与+q 相连的三个侧面ABCD 、ABFE 、BCHF 上各点的E 均平行于各自的平面,故通过这三个平面的电通量为零,为了求另三个面上的电通量,可以以+q 为中心,补作另外7个大小相同的立方体,形成边长为2L 且与原边平行的大立方体,如图9–5所示,这个大立方体的每一个面的电通电都相等,且均等于6εq ,对原立方体而言,每个面的面积为大立方体一个面的面积的1/4,则每个面的电通量也为大立方体一个面的电通量的1/4,即此时通过立方体每一面的电通量为0111d 4624Sqε⋅⋅=⎰⎰E S 。
大学物理答案第9章
第九章 静 电 场9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )题9-1图 分析与解 “无限大”均匀带电平板激发的电场强度为2εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ). 9-2 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )(C )(D )分析与解但不也9-3 (A )(B )(C )(D )*9-4 偶极子将(A )(B )(C )(D )题9-4图分析与解 电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B ).9-5 精密实验表明,电子与质子电量差值的最大范围不会超过±10-21e ,而中子电量与零差值的最大范围也不会超过±10-21e ,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析 考虑到极限情况,假设电子与质子电量差值的最大范围为2×10-21e ,中子电量为10-21e ,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为二个氧原子间的库仑力与万有引力之比为显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力.9-6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32的上夸克和两个带e31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20m),中子内的两个下夸克之间相距2.60×10-15m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律F 与径向单位矢量e r 方向相同表明它们之间为斥力.9-7 点电荷如图分布,试求P 点的电场强度.分析依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 2.0q 的解9-8 (2)分析 L ,它在点P (1)若点P (2)若点P P 的电证 (1)E L/-L/P =⎰(2)当棒长L 此结果与无限长带电直线周围的电场强度分布相同[图(b )].这说明只要满足r 2/L 2<<1,带电长直细棒可视为无限长带电直线.9-9 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.题9-9图分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第9-3节的例2可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθδδd sin π2d d 2⋅⋅==R S q ,在点O 激发的电场强度为由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有积分得02/π004d cos sin 2εδθθθεδ⎰==E9-10 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0.试计算在分子的对称轴线上,距分子较远处的电场强度.题9-10图分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θcos 20er p =,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0,利用教材第5-3节中电偶极子在延长线上的电场强度可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布. 解1 水分子的电偶极矩解2 由于r 2=代入得(+r x2029-11 分析 (1(2)量,即:解 (1) (2)设F 显然有F +9-12 .分析 .因而方法2:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=SS d s E Φ解1 由于闭合曲面内无电荷分布,根据高斯定理,有 依照约定取闭合曲面的外法线方向为面元d S 的方向,解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为9-13 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理地球表面电荷面密度 单位面积额外电子数9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布.分析电荷均匀分布在球体内呈球对称,带电球激发的电场也呈球对称性.根据静电场是有源场,电场强度应该沿径向球对称分布.因此可以利用高斯定理求得均匀带电球内外的电场分布.以带电球的球心为中心作同心球面为高斯面,依照高斯定理有上式中i Q 是高斯面内的电荷量,分别求出处于带电球内外的高斯面内的电荷量,即可求得带电球内外的电场强度分布.解依照上述分析,由高斯定理可得R r <R r >9-15 .求离轴线为r 分析只有侧面布.解 r <R 1, R 1<r <R 2r >R 2,9-16 分析W ′=-W .(1)其中E 是点电荷Q 1、Q 3产生的合电场强度.(2)根据电场力作功与电势能差的关系,有 其中V 0是Q 1、Q 3在点O 产生的电势(取无穷远处为零电势). 解1 由题意Q 1所受的合力为零 解得Q Q Q 414132-=-=由点电荷电场的叠加,Q 1、Q 3激发的电场在y 轴上任意一点的电场强度为将Q 2从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1、Q 3在点O 的电势将Q 2从点O 推到无穷远处的过程中,外力作功比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多.9-17 已知均匀带电长直线附近的电场强度近似为其中λ为电荷线密度.(1)求在r =r 1和r =r 2两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取?试说明. 解 (1)由于电场力作功与路径无关,若沿径向积分,则有 (2)不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →9-18 分析 的电势.解 q 2=2q 19-19 分析分布.解 9-20 (2)分析 通常可采用两种方法.方法(1)由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=pp V l E d 可求得电势分布.(2)利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为 在球面内电场强度为零,电势处处相等,等于球面的电势其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1)由高斯定理可求得电场分布 由电势⎰∞⋅=rV l E d 可求得各区域的电势分布.当r ≤R 1时,有当R 1≤r ≤R 2时,有 当r ≥R 2时,有(2)两个球面间的电势差解2 (1)由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1,则 若该点位于两个球面之间,即R 1≤r ≤R 2,则 若该点位于两个球面之外,即r ≥R 2,则 (2)两个球面间的电势差9-21 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.题9-21图分析解 当r ≤R 时得()r E =当r ≥R 时得()r E =当r ≤R 时当r ≥R 时9-22 布;(2)分析解 由电势叠加,轴线上任一点P 的电势的()x x Rεσxr r r εσV R-+=+=⎰22222d 2(1)(2)轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R xεσx V (2) 电场强度方向沿x 轴方向.(3)将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得 当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过0.3%和0.8%,这已足以满足一般的测量精度.9-23 两个很长的共轴圆柱面(R 1=3.0×10-2m ,R 2=0.10 m ),带有等量异号的电荷,两者的电势差为450V.求:(1)圆柱面单位长度上带有多少电荷?(2)r =0.05 m 处的电场强度.解 (1)由习题9-15的结果,可得两圆柱面之间的电场强度为 根据电势差的定义有 解得1812120m C 101.2ln/π2--⋅⨯==R R U ελ (2)解得两圆柱面之间r =0.05m 处的电场强度9-24即 .但是要 m )分析 解由k0E 得=T9-25年消耗的能量为3000kW ·h ,则可为多少个家庭提供一年的能量消耗?解 (1)若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量 即可融化约90吨冰.(2)一个家庭一年消耗的能量为一次闪电在极短的时间内释放出来的能量约可维持3个家庭一年消耗的电能. 9-26 已知水分子的电偶极矩p =6.17×10-30C ·m .这个水分子在电场强度E =1.0×105V ·m -1的电场中所受力矩的最大值是多少?分析与解在均匀外电场中,电偶极子所受的力矩为当电偶极子与外电场正交时,电偶极子所受的力矩取最大值.因而有9-27电子束焊接机中的电子枪如图所示,K 为阴极,A 为阳极,阴极发射的电子在阴极和阳极电场加速下聚集成一细束,以极高的速率穿过阳极上的小孔,射到被焊接的金属上使两块金属熔化在一起.已知V 105.24AK ⨯=U ,并设电子从阴极发射时的初速度为零,求:(1)电子到达被焊接金属时具有的动能;(2)电子射到金属上时的速度.分析电子被阴极和阳极间的电场加速获得动能,获得的动能等于电子在电场中减少的势能.由电子动能与速率的关系可以求得电子射到金属上时的速度.解(1)依照上述分析,电子到达被焊接金属时具有的动能(2)由于电子运动的动能远小于电子静止的能量,可以将电子当做经典粒子处理.电子射到金属上时的速度题9-27。
大学物理课后习题答案第九章
第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。
求2t s =时,回路中感应电动势的大小和方向。
解:310)62(-⨯+-=Φ-=t dtd ε 当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。
已知导轨处于均匀磁场B ϖ中,B ϖ的方向与回路的法线成60°角,如图所示,B ϖ的大小为B =kt (k 为正常数)。
设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。
解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φρρ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。
3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。
求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。
解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0ρρ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。
设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υρ垂直离开导线。
大学物理第九章习题答案
B
A
O
C O
B
(A)A 点比 B 点电势高。 (B)A 点与 B 点电势相等。 (C)A 点比 B 点电势低。 (D)有稳恒电流从 A 点流向 B 点。 3、一根长为 L 的铜棒,在均匀磁场 B 中以匀角速度 旋转着, B 的方向垂直铜棒转动的 平面,如图。设 t 0 时,铜棒与 Ob 成 角,则在任一时刻 t 这根铜棒两端之间的感应电动势是:[ (A) L B cos(t ) (B)
0 I I b ldx 0 In 2 x 2 a
0 I 2 x
2、如图所示,矩形导体框架置于通有电流 I 的长直导线旁,且两者共面, ad 边与长直导 线平行, dc 段可沿框架移平动。设导体框架的总电阻 R 始终保持不变,现 dc 以速度 v 沿 ,穿过 abcd 回路 框架向下作匀速运动,试求(1)当 dc 段运动到图示位置(与 ab 相距 x ) 的磁通量; (2)回路中的感应电流 I i ;
B a b
2
大学物理习题集
10、在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内, 且线圈中两条边与导线平行, 当线圈以相同的速率作如图所示的三种不同方向的平动时, 线圈中的感应电流:[ B ]
是由通有电流 I 的线圈所产生,且 B KI ( K 为常量) ,则旋转线圈相对于产生磁场的线 圈最大互感系数为 6、 。
无限长密绕直螺线管通以电流 I 、内部充满均匀、各向同性的磁介质,磁导率为 。 , 磁能密度 。
设管内部的磁感应强度大小为 B ,则内部的磁场强度为 为 。 设螺线管体积为 V, 则存储在螺线管内部的总磁能为
大学物理第9章习题答案
第4篇电磁学第9章静电场9.1 基本要求1 掌握静电场的电场强度和电势的概念以及电场强度叠加原理和电势叠加原理。
掌 握电势与电场强度的积分关系。
能计算一些简单问题中的电场强度和电势。
了解电场强度 与电势的微分关系。
2 理解静电场的规律:高斯定理和环路定理。
理解用高斯定理计算电场强度的条件和 方法。
3 了解导体的静电平衡条件,了解介质的极化现象及其微观解释。
了解各向同性介质 中D和E之间的关系。
了解介质中的高斯定理。
4 了解电容和电能密度的概念。
9.2 基本概念1 电场强度E :试验电荷0q 所受到的电场力F 与0q 之比,即0q =F E 2 电位移D :电位移矢量是描述电场性质的辅助量。
在各向同性介质中,它与场强成正比,即ε=D E 3 电场强度通量e Φ:e Sd Φ=⎰E S电位移通量:D Sd Φ=⎰D S4 电势能pa E :0pa aE q d ∞=⎰E l (设0p E ∞=)5 电势a V :0pa a aE V d q ∞==⎰ E l (设0V ∞=)电势差ab U :ab a b U V V =- 6 场强与电势的关系(1)积分关系 a aV d ∞=⎰E l(2)微分关系 = -V ∇=-E gradV7 电容C:描述导体或导体组(电容器)容纳电荷能力的物理量。
孤立导体的电容:Q C V =;电容器的电容:Q C U= 8 静电场的能量:静电场中所贮存的能量。
电容器所贮存的电能:22222CU Q QUW C ===电场能量密度e w :单位体积的电场中所贮存的能量,即22e E w ε=9.3 基本规律 1 库仑定律:12204rq q rπε=F e 2 叠加原理(1)电场强度叠加原理:在点电荷系产生的电场中任一点的场强等于每个点电荷单独 存在时在该点产生的场强的矢量和。
(2)电势叠加原理:在点电荷系产生的电场中,某点的电势等于每个点电荷单独存在时 在该点产生的电势的代数和。
(完整版)大学物理章节习题9原子结构固体能带理论
©物理系_2015_09《大学物理AII 》作业 No.9 原子结构 固体能带理论班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、判断题:(用“T ”表示正确和“F ”表示错误)[ F ] 1.根据量子力学理论,氢原子中的电子是作确定的轨道运动,轨道是量子化的。
解:教材227.电子在核外不是按一定的轨道运动的,量子力学不能断言电子一定 出现在核外某个确定的位置,而只能给出电子在核外各处出现的概率。
[ F ] 2.本征半导体是电子与空穴两种载流子同时参与导电,N 型半导体只有电子导 电,P 型半导体只有空穴导电。
解:N 型半导体中依然是两种载流子参与导电,不过其中电子是主要载流子;P 型半导体也是两种载流子参与导电,其中的主要载流子是空穴。
[ T ] 3.固体中能带的形成是由于固体中的电子仍然满足泡利不相容原理。
解:只要是费米子都要遵从泡利不相容原理,电子是费米子。
[ T ] 4.由于P 型和N 型半导体材料接触时载流子扩散形成的PN 结具有单向导电性。
解:教材244.[ F ] 5.施特恩-盖拉赫实验证实了原子定态能级的存在。
解:施特恩-盖拉赫实验验证了电子自旋的存在,弗兰克—赫兹实验证实了原子定态能级的存在.二、选择题:1.下列各组量子数中,哪一组可以描述原子中电子的状态? [ D ] (A) n = 2,l = 2,m l = 0,21=s m (B) n = 3,l = 1,m l =-2,21-=s m(C) n = 1,l = 2,m l = 1,21=s m (D) n = 3,l = 2,m l = 0,21-=s m解:根据原子中电子四个量子数取值规则和泡利不相容原理知D 对。
故选 D2.与绝缘体相比较,半导体能带结构的特点是 [ D ] (A) 导带也是空带 (B) 满带与导带重合(C) 满带中总是有空穴,导带中总是有电 子 (D) 禁带宽度较窄解:教材241-242.3. 在原子的L 壳层中,电子可能具有的四个量子数(n ,l ,m l ,m s )是(1) (2,0,1,21)(2) (2,1,0,21-)(3) (2,1,1,21)(4) (2,1,-1,21-) 以上四种取值中,哪些是正确的? [ ] (A) 只有(1)、(2)是正确的 (B) 只有(2)、(3)是正确的 (C) 只有(2)、(3)、(4)是正确的 (D) 全部是正确的解:原子的L 壳层对应主量子数2=n ,角量子数可为2,1,0=l ,磁量子数可为2,1,0±±=l m ,自旋量子数可为21,21-=s m ,根据原子中电子四个量子数取值规则和泡利不相容原理知只有(2)、(3)、(4)正确。
大学物理学_(第3版.修订版)_北京邮电大学出版社_下册__第九章_习题9_答案
习题9之阳早格格创做(1)正圆形的二对付角线处各搁置电荷Q,另二对付角线各搁置电荷q,若Q所受到合力为整,则Q与q的关系为:()(A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q[问案:A](2)底下道法精确的是:()(A)若下斯里上的电场强度到处为整,则该里内肯定不电荷;(B)若下斯里内不电荷,则该里上的电场强度肯定到处为整;(C)若下斯里上的电场强度到处不为整,则该里内肯定有电荷;(D)若下斯里内有电荷,则该里上的电场强度肯定到处不为整.[问案:D](3)一半径为R的导体球表面的里面荷稀度为σ,则正在距球里R处的电场强度()(A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [问案:C](4)正在电场中的导体里里的()(A)电场战电势均为整;(B)电场不为整,电势均为整;(C)电势战表面电势相等;(D)电势矮于表面电势.[问案:C](1)正在静电场中,电势稳定的天区,场强肯定为 .[问案:相共](2)一个面电荷q搁正在坐圆体核心,则脱过某一致况的电通量为,若将面电荷由核心背中移动至无限近,则总通量将 .[问案:q/6ε0, 将为整](3)电介量正在电容器中效率(a)——(b)——.[问案:(a)普及电容器的容量;(b) 延少电容器的使用寿命](4)电量Q匀称分散正在半径为R的球体内,则球内球中的静电能之比 .[问案:5:6]9.3 电量皆是q的三个面电荷,分别搁正在正三角形的三个顶面.试问:(1)正在那三角形的核心搁一个什么样的电荷,便不妨使那四个电荷皆达到仄稳(即每个电荷受其余三个电荷的库仑力之战皆为整)?(2)那种仄稳与三角形的边少有无关系?(1) 以A处面电荷为钻研对付象,由力仄稳知:q 为背电荷解得 q q 33-=' (2)与三角形边少无关.9.4 二小球的品量皆是m ,皆用少为l 的细绳挂正在共一面,它们戴有相共电量,停止时二线夹角为2θ,如题9.4图所示.设小球的半径战线的品量皆不妨忽略不计,供每个小球所戴的电量.解:解得 θπεθtan 4sin 20mg l q = 9.5 根据面电荷场强公式204r q E πε=,当被观察的场面距源面电荷很近(r →0)时,则场强→∞,那是不物理意思的,对付此应怎么样明白?解: 020π4r r q Eε=仅对付面电荷创造,当0→r 时,戴电体不克不迭再视为面电荷,再用上式供场强是过失的,本量戴电体有一定形状大小,思量电荷正在戴电体上的分散供出的场强不会是无限大.9.6 正在真空中有A ,B 二仄止板,相对付距离为d ,板里积为S ,其戴电量分别为+q 战-q .则那二板之间有相互效率力f,有人道f =2024dq πε,又有人道,果为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问那二种道法对付吗?为什么? f 到底应等于几?解: 题中的二种道法均分歧过失.第一种道法中把二戴电板视为面电荷是分歧过失的,第二种道法把合场强Sq E 0ε=瞅成是一个戴电板正在另一戴电板处的场强也是分歧过失的.精确解允许为一个板的电场为Sq E 02ε=,另一板受它的效率力Sq S qq f 02022εε==,那是二板间相互效率的电场力.9.7 少l =的曲导线AB 上匀称天分散着线稀度λx10-9C ·m -1的正电荷.试供:(1)正在导线的延少线上与导线B 端相距1a =处P 面的场强;(2)正在导线的笔曲仄分线上与导线中面相距2d = 处Q 面的场强.解:(1) 正在戴电曲线上与线元x d ,其上电量q d 正在P面爆收场强为20)(d π41d x a xE P-=λε用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代进得21074.6⨯=P E 1C N -⋅ 目标火仄背左(2)共理2220d d π41d +=x x E Qλε由于对付称性⎰=l Qx E 0d ,即Q E惟有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代进得21096.14⨯==Q y Q E E 1C N -⋅,目标沿y 轴正背一个半径为R 的匀称戴电半圆环,电荷线稀度为λ,供环心处O 面的场强.ϕλλd d d R l q ==,它正在O 面爆收场强盛小为20π4d d R R E εϕλ=目标沿半径背中则 ϕϕελϕd sin π4sin d d 0RE E x ==积分RR E x 000π2d sin π4ελϕϕελπ==⎰ ∴ RE E x0π2ελ==,目标沿x 轴正背.9.9 匀称戴电的细线直成正圆形,边少为l ,总电量为q .(1)供那正圆形轴线上离核心为r 处的场强E ;(2)道明:正在l r >>处,它相称于面电荷q 爆收的场强E .解: 如9.9图示,正圆形一条边上电荷4q 正在P 面爆收物强P Ed 目标如图,大小为∵ 22cos 221l r l +=θ∴ 24π4d 22220l r l l r E P++=ελP Ed 正在笔曲于仄里上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ由于对付称性,P 面场强沿OP 目标,大小为 ∵ lq4=λ ∴ 2)4(π422220l r l r qrE P ++=ε 目标沿OP(1)面电荷q 位于一边少为a 的坐圆体核心,试供正在该面电荷电场中脱过坐圆体的一个里的电通量;(2)如果该场源面电荷移动到该坐圆体的一个顶面上,那时脱过坐圆体各里的电通量是几?解: (1)由下斯定理0d εqS E s⎰=⋅坐圆体六个里,当q 正在坐圆体核心时,每个里上电通量相等∴ 各里电通量06εq e =Φ.(2)电荷正在顶面时,将坐圆体蔓延为边少a 2的坐圆体,使q 处于边少a 2的坐圆体核心,则边少a 2的正圆形上电通量6εq e =Φ 对付于边少a 的正圆形,如果它不包罗q 天圆的顶面,则24εq e =Φ,如果它包罗q 天圆顶面则0=Φe .如题9.10图所示. 题9.10 图匀称戴电球壳内半径6cm ,中半径10cm ,电荷体稀度为2×510-C ·m -3供距球心5cm ,8cm ,12cm 各面的场强.解: 下斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=qr E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4r r r E ερ内-=41048.3⨯≈1C N -⋅, 目标沿半径背中.12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径背中. 半径为1R 战2R (2R >1R )的二无限少共轴圆柱里,单位少度上分别戴有电量λ战-λ,试供:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各面的场强.解: 下斯定理0d ε∑⎰=⋅qS E s与共轴圆柱形下斯里,正里积rl S π2=则 rl E S E Sπ2d =⋅⎰对付(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ rE 0π2ελ=沿径背背中(3) 2R r > 0=∑q∴ 0=E9.13 二个无限大的仄止仄里皆匀称戴电,电荷的里稀度分别为1σ战2σ,试供空间各处场强.解: 如题9.13图示,二戴电仄里匀称戴电,电荷里稀度分别为1σ与2σ, 二里间, n E)(21210σσε-=1σ里中, n E)(21210σσε+-=2σ里中, n E)(21210σσε+=n:笔曲于二仄里由1σ里指为2σ里.9.14 半径为R 的匀称戴电球体内的电荷体稀度为ρ,若正在球内掘去一齐半径为r <R 的小球体,如题图所示.试供:二球心O 与O '面的场强,并道明小球空腔内的电场是匀称的.解: 将此戴电体瞅做戴正电ρ的匀称球与戴电ρ-的匀称小球的拉拢,睹题9.14图(a).(1) ρ+球正在O 面爆收电场010=E,ρ-球正在O 面爆收电场'dπ4π3430320OO r E ερ=∴ O 面电场'd33030OO r E ερ= ;(2) ρ+正在O '爆收电场'dπ4d 3430301OO E ερπ='ρ-球正在O '爆收电场002='E∴ O ' 面电场 003ερ='E'OO 题9.14图(a) 题9.14图(b)(3)设空腔任一面P 相对付O '的位矢为r',相对付O 面位矢为r(如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=' , ∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+='∴腔内场强是匀称的. 9.15 一电奇极子由q ×10-6C的二个同号面电荷组成,二电荷距离d=,把那电奇极子搁正在×105N ·C -1的中电场中,供中电场效率于电奇极子上的最大举矩.解: ∵ 电奇极子p正在中场E 中受力矩∴ qlE pE M ==max 代进数字二面电荷1q ×10-8C ,2q ×10-8C ,相距1r =42cm ,要把它们之间的距离形成2r =25cm ,需做几功?解: ⎰⎰==⋅=22210212021π4π4d d r r r rq q r r q q r F A εε )11(21r r -中力需做的功 61055.6-⨯-=-='A A J9.17 如题图所示,正在A ,B 二面处搁有电量分别为+q ,-q 的面电荷,AB 间距离为2R ,现将另一正考查面电荷0q 从O 面通过半圆弧移到C 面,供移动历程中电场力做的功.解:∴ Rqq U U q A o C O 00π6)(ε=-=9.18 如题图所示的绝缘细线上匀称分散着线稀度为λ的正电荷,二曲导线的少度战半圆环的半径皆等于R .试供环核心O 面处的场强战电势.解: (1)由于电荷匀称分散与对付称性,AB 战CD 段电荷正在O 面爆收的场强互相对消,与θd d R l =则θλd d R q =爆收O 面Ed 如图,由于对付称性,O 面场强沿y 轴背目标R0π4ελ=[)2sin(π-2sin π-](2) AB 电荷正在O 面爆收电势,以0=∞U 共理CD 爆收 2ln π402ελ=U 半圆环爆收 0034π4πελελ==R R U ∴ 0032142ln π2ελελ+=++=U U U U O 9.19 一电子绕一戴匀称电荷的少曲导线以2×104m ·s -1的匀速率做圆周疏通.供戴电曲线上的线电荷稀度.(电子品量0m ×10-31kg ,电子电量e ×10-19C)解: 设匀称戴电曲线电荷稀度为λ,正在电子轨讲处场强 电子受力大小 re eE F e 0π2ελ== ∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅ 气氛不妨启受的场强的最大值为E =30kV ·cm -1,超出那个数值时气氛要爆收火花搁电.今有一下压仄止板电容器,极板间距离为d =,供此电容器可启受的最下电压.解: 仄止板电容器里里近似为匀称电场9.21 道明:对付于二个无限大的仄止仄里戴电导体板(题图)去道,(1)相背的二里上,电荷的里稀度经常大小相等而标记差同;(2)相背的二里上,电荷的里稀度经常大小相等而标记相共.证: 如题9.21图所示,设二导体A 、B 的四个仄里匀称戴电的电荷里稀度依次为1σ,2σ,3σ,4σ(1)则与与仄里笔曲且底里分别正在A 、B 里里的关合柱里为下斯里时,有∴ +2σ03=σ道明相背二里上电荷里稀度大小相等、标记差同;(2)正在A 里里任与一面P ,则其场强为整,而且它是由四个匀称戴电仄里爆收的场强叠加而成的,即 又∵ +2σ03=σ ∴ 1σ4σ=道明相背二里上电荷里稀度经常大小相等,标记相共. 9.22 三个仄止金属板A ,B 战C 的里积皆是200cm 2,A 战B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 皆接天,如题图所示.如果使A 板戴正电×10-7C ,略去边沿效力,问B 板战C 板上的感触电荷各是几?以天的电势为整,则A 板的电势是几? 解: 如题9.22图示,令A 板左正里电荷里稀度为1σ,左正里电荷里稀度为2σ(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴ 2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A =得 ,32Sq A =σ Sq A 321=σ而 7110232-⨯-=-=-=A Cq S q σCC 10172-⨯-=-=S q B σ (2)301103.2d d ⨯===AC AC AC A E U εσV 二个半径分别为1R 战2R (1R <2R )的共心薄金属球壳,现给内球壳戴电+q ,试估计:(1)中球壳上的电荷分散及电势大小;(2)先把中球壳接天,而后断启接天线沉新绝缘,此时中球壳的电荷分散及电势;*(3)再使内球壳接天,此时内球壳上的电荷以及中球壳上的电势的改变量.解: (1)内球戴电q +;球壳内表面戴电则为q -,中表面戴电为q +,且匀称分散,其电势⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εε(2)中壳接天时,中表面电荷q +进天,中表面不戴电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -爆收: (3)设此时内球壳戴电量为q ';则中壳内表面戴电量为q '-,中壳中表面戴电量为+-q q ' (电荷守恒),此时内球壳电势为整,且得 q R R q 21=' 中球壳上电势半径为R 的金属球离大天很近,并用导线与天相联,正在与球心相距为R d 3=处有一面电荷+q ,试供:金属球上的感触电荷的电量.解: 如题9.24图所示,设金属球感触电荷为q ',则球接天时电势0=O U由电势叠加本理有: 得 -='q 3q 有三个大小相共的金属小球,小球1,2戴有等量共号电荷,相距甚近,其间的库仑力为0F .试供:(1)用戴绝缘柄的不戴电小球3先后分别交战1,2后移去,小球1,2之间的库仑力;(2)小球3依次接替交战小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4rq F ε=(1)小球3交战小球1后,小球3战小球1均戴电2q q =', 小球3再与小球2交战后,小球2与小球3均戴电 ∴ 此时小球1与小球2间相互效率力(2)小球3依次接替交战小球1、2很多次后,每个小球戴电量均为32q .∴ 小球1、2间的效率力00294π432322F r qq F ==ε正在半径为1R 的金属球除中包有一层中半径为2R 的匀称电介量球壳,介量相对付介电常数为r ε,金属球戴电Q .试供:(1)电介量内、中的场强; (2)电介量层内、中的电势; (3)金属球的电势.解: 利用有介量时的下斯定理∑⎰=⋅q S D Sd(1)介量内)(21R r R <<场强303π4,π4rrQ E r r Q D r εε ==内; 介量中)(2R r <场强 (2)介量中)(2R r >电势 介量内)(21R r R <<电势 (3)金属球的电势9.27 如题图所示,正在仄止板电容器的一半容积内充进相对付介电常数为r ε的电介量.试供:正在有电介量部分战无电介量部分极板上自由电荷里稀度的比值. 解: 如题9.27图所示,充谦电介量部分场强为2E,真空部分场强为1E,自由电荷里稀度分别为2σ与1σ 由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε= ∴ r r E E εεεεσσ==102012二个共轴的圆柱里,少度均为l ,半径分别为1R 战2R (2R >1R ),且l >>2R -1R ,二柱里之间充有介电常数εQ 战-Q 时,供:(1)正在半径r 处(1R <r <2R =,薄度为dr ,少为l 的圆柱薄壳中任一面的电场能量稀度战所有薄壳中的电场能量; (2)电介量中的总电场能量; (3)圆柱形电容器的电容. 解: 与半径为r 的共轴圆柱里)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑ ∴ rlQD π2=(1)电场能量稀度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介量中总电场能量(3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε== 如题9.29 图所示,1C =μF ,2C =μF ,3C =μF .1C 上电压为50V .供:AB U . 解: 电容1C 上电量电容2C 与3C 并联3223C C C += 其上电荷123Q Q =∴ 355025231123232⨯===C U C C Q U 9.30 1C 战2C 二电容器分别标明“200 pF 、500 V”战“300 pF 、900 V”,把它们串联起去后等值电容是几?如果二端加上1000 V的电压,是可会打脱?解: (1) 1C 与2C 串联后电容 (2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V即电容1C 电压超出耐压值会打脱,而后2C 也打脱.半径为1R = 的导体球,中套有一共心的导体球壳,壳的内、中半径分别为2R =战3R =,当内球戴电荷Q ×10-8C 时,供:(1)所有电场储藏的能量;(2)如果将导体壳接天,估计储藏的能量; (3)此电容器的电容值.解: 如图,内球戴电Q ,中球壳内表面戴电Q -,中表面戴电Q(1)正在1R r <战32R r R <<天区正在21R r R <<时 301π4r rQ E ε=3R r >时 302π4rrQ E ε=∴正在21R r R <<天区正在3R r >天区∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε(2)导体壳接天时,惟奇尔21R r R <<30π4rrQ E ε=,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R QW C -==ε。
大学物理第九章习题及答案
第九章静电场的基本规律一、填空1.电荷分为和,一般把用摩擦过的玻璃棒上所带的电荷称为,把用毛皮摩擦过的上所带的电荷称为。
2.物体所带电荷的多寡程度的物理量称为。
3.物体所带的电荷量不是以连续值出现,而是以不连续的量值出现的,这称为。
4.试探电荷满足的两个条件是,。
5.穿过电场中某曲面的电场线条数称为电场对该曲面的。
6.静电场的电场线起始于,,终止于,是(填“闭合”或“不闭合”)的曲线,在没有电荷的空间里,电场线既不会,也不会。
7.高斯定理的表达式是。
8.电场中电势相等的点所构成的曲面称为。
点电荷的等势面是以点电荷为球心的一系列。
9.沿等势面移动电荷,电场力做功为,等势面和电场线处处。
10.沿电场线方向,电势(填“升高”或“降低”)。
二、简答1.简述真空中点电荷满足的库仑定律的内容及矢量表达式。
2.简述研究电场性质时,试探电荷需满足的两个条件。
3.简述静电场的电场线的性质。
4.简述真空中静电场的高斯定理。
5.简述为什么等势面的疏密程度可以描述电场大小的分布,二者有什么对应关系?三、计算9.1 两个点电荷的电荷量分别为2q和q,相距L.将第三个点电荷放在何处时,它所受的合力为零?此处由2q和q产生的合场强是多少?9.2 三个电荷量均为q 的点电荷放在等边三角形的各顶点上.在三角形中心放置怎样的点电荷,才能使作用在每一点电荷上的合力为零?9.3 两个点电荷,C q μ0.81=,C q μ60.12-=,相距20cm.求离它们都是20cm 处的电场强度.9.4 如图所示,半径为R 的均匀带电圆环,带电荷为q.(1)求轴线上离环心O 为x 处的场强.(2)画出E-x 曲线.(3)轴线上何处的场强最大?其值是多少?9.5 求均匀带电半圆环的圆心O 处的场强E.已知圆环的半径为R ,带电荷为q.9.6 计算线电荷密度为η的无限长均匀带电线弯成如图所示形状时,半圆圆心O处的场强E.半径为R ,直线Aa 和Bb 平行.9.7 半径为R 的无限长直圆柱体内均匀带电,电荷体密度为ρ,求体内、外场强分布,并画出E-r 分布曲线.9.8 一对无限长的共轴直圆筒,半径分别为R 1和R 2,筒面上都均匀带电,沿轴线单位长度的电荷密度分别为λ1和λ2,求:(1) 各区域内的场强分布;(2) 若λ1= -λ2,情况又如何?9.9 两同心均匀带电球面,带电荷分别为1q 和2q ,半径分别为R 1和R 2, (1) 各区域内场强分布;(2) 若21q q -=,情况又如何?9.10、点电荷q 处在中性导体球壳的中心,壳的内外半径分别为1R 和2R ,求场强和电势的分布第九章 静电场的基本规律答案一、填空1.正电荷,负电荷,丝绸,正电荷,胶木棒,负电荷2.电荷量3.电荷的量子化4.几何线度足够小,电荷量充分小5.电通量6.正电荷,负电荷,不闭合,相交,中断7.0ε内q S d E s e =⋅=Φ⎰⎰8.等势面,同心球面9.零,正交10.降低二、简答1.简述真空中点电荷满足的库仑定律的内容及矢量表达式。
大学物理习题答案第九章
[习题解答]9-3 两个相同的小球质量都是m ,并带有等量同号电荷q ,各用长为l 的丝线悬挂于同一点。
由于电荷的斥力作用,使小球处于图9-9所示的位置。
如果θ角很小,试证明两个小球的间距x 可近似地表示为.解 小球在三个力的共同作用下达到平衡,这三个力分别是重力m g 、绳子的张力T 和库仑力f 。
于是可以列出下面的方程式,(1),(2)(3)因为θ角很小,所以,.利用这个近似关系可以得到,(4). (5)将式(5)代入式(4),得图9-9,由上式可以解得.得证。
9-4在上题中,如果l = 120 cm,m = 0.010 kg,x = 5.0 cm,问每个小球所带的电量q为多大?解在上题的结果中,将q解出,再将已知数据代入,可得.9-5氢原子由一个质子和一个电子组成。
根据经典模型,在正常状态下,电子绕核作圆周运动,轨道半径是r0 = 5.29⨯10-11m。
质子的质量M = 1.67⨯10-27kg,电子的质量m = 9.11⨯10-31kg,它们的电量为±e =1.60⨯10-19C。
(1)求电子所受的库仑力;(2)电子所受库仑力是质子对它的万有引力的多少倍?(3)求电子绕核运动的速率。
解(1)电子与质子之间的库仑力为.(2)电子与质子之间的万有引力为.所以.(3)质子对电子的高斯引力提供了电子作圆周运动的向心力,所以,从上式解出电子绕核运动的速率,为.9-6 边长为a的立方体,每一个顶角上放一个电荷q。
(1)证明任一顶角上的电荷所受合力的大小为.(2) F的方向如何?解立方体每个顶角上放一个电荷q,由于对称性,每个电荷的受力情况均相同。
对于任一顶角上的电荷,例如B角上的q B,它所受到的力、和大小也是相等的,即.首先让我们来计算的大小。
图9-10由图9-10可见,、和对的作用力不产生x方向的分量;对的作用力f1的大小为,f1的方向与x轴的夹角为45︒。
对的作用力f2的大小为,f2的方向与x轴的夹角为0︒。
大学物理第9章 电磁感应和电磁场 课后习题及答案
第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。
求2t s =时,回路中感应电动势的大小和方向。
解:310)62(-⨯+-=Φ-=t dtd ε当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。
已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角,如图所示,B 的大小为B =kt (k 为正常数)。
设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。
解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。
3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。
求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。
解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0 ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。
设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υ垂直离开导线。
大学物理标准答案第9章
第九章 静 电 场9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )题 9-1 图分析与解 “无限大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ).9-2 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ).9-3 下列说法正确的是( )(A ) 电场强度为零的点,电势也一定为零(B ) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).*9-4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动题9-4 图分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B).9-5精密实验表明,电子与质子电量差值的最大范围不会超过±10-21e,而中子电量与零差值的最大范围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析考虑到极限情况,假设电子与质子电量差值的最大范围为2×10-21e,中子电量为10-21e,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解一个氧原子所带的最大可能净电荷为()e q 21max 10821-⨯⨯+=二个氧原子间的库仑力与万有引力之比为1108.2π46202max<<⨯==-Gmεq F F g e 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 9-6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32 的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律 ()r r r re r q q e e e F N 78.3π41π412202210===εε F 与径向单位矢量e r 方向相同表明它们之间为斥力.9-7 点电荷如图分布,试求P 点的电场强度.分析 依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 的一对点电荷在P 点激发的电场强度大小相等、方向相反而相互抵消,P 点的电场强度就等于电荷量为2.0q 的点电荷在该点单独激发的场强度.解 根据上述分析2020π1)2/(2π41aq a q E P εε==题 9-7 图9-8 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为2204π1Lr Q εE -=(2) 在棒的垂直平分线上,离棒为r 处的电场强度为 2204π21Lr r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.题 9-8 图分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r q εe E 20d π41d '=整个带电体在点P 的电场强度 ⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=L E i E d(2) 若点P 在棒的垂直平分线上,如图(a )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==L y E E j j E d sin d α证 (1) 延长线上一点P 的电场强度⎰'=L rq E20π2d ε,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 2⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2202/32222041π2d π41Lr r Q r x L x rQ E L/-L/+=+=⎰εε 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度 r ελL r L Q r εE l 0220π2 /41/π21lim =+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(b )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.9-9 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.题 9-9 图 分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第9-3节的例2可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθδδd sin π2d d 2⋅⋅==R S q ,在点O 激发的电场强度为 ()i E 2/3220d π41d r x q x +=ε 由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθδθεεd cos sin 2 d sin π2cos π41d π41d 02303/2220=⋅=+=R RR r x q x E积分得 02/π004d cos sin 2εδθθθεδ⎰==E 9-10 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.题 9-10 图分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θcos 20er p =,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度302π41x p εE = 可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布. 解1 水分子的电偶极矩θθcos 2cos 200er p p ==在电偶极矩延长线上30030030cos π1cos 4π412π41x θer εx θer εx p εE === 解2 在对称轴线上任取一点A ,则该点的电场强度+-+=E E E2020π42π4cos 2cos 2xεe r εθer E βE E -=-=+ 由于 θxr r x r cos 202022-+=rθr x βcos cos 0-=代入得 ()⎥⎥⎦⎤⎢⎢⎣⎡--+-=22/30202001cos 2cos π42x xr r x r x e E θθε 测量分子的电场时, 总有x >>r 0 , 因此, 式中()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x r x x r x xr r x θθθcos 2231cos 21cos 2032/3032/30202,将上式化简并略去微小量后,得 300cos π1x θe r εE = 9-11 两条无限长平行直导线相距为r 0,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.题 9-11 图 分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有 ()i i E E E x r x r x r x -=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2ελελ (2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有 i E F 00π2r ελλ==-+ i E F 002π2r ελλ-=-=+- 显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.9-12 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.题 9-12 图分析 方法1:作半径为R 的平面S 与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理 ∑⎰==⋅01d 0q εS S E 这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而⎰⎰'⋅-=⋅=S S S E S E Φd d 方法2:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=S S d s E Φ解1 由于闭合曲面内无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S S S E S E Φd d 依照约定取闭合曲面的外法线方向为面元d S 的方向,E R R E 22ππcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为()r E e e e E ϕθθϕϕθϕsin sin cos sin cos ++= r θθR e S d d sin d 2=ER ER ER S S 2π0π02222πd sin d sin d d sin sin d ===⋅=⎰⎰⎰⎰ϕϕθθϕθϕθS E Φ 9-13 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理∑⎰=-=⋅q εR E E 021π4d S E 地球表面电荷面密度∑--⋅⨯-=-≈=2902m C 1006.1π4/E R q E εσ单位面积额外电子数25cm 1063.6)/(-⨯=-=e n σ9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布.分析 电荷均匀分布在球体内呈球对称,带电球激发的电场也呈球对称性.根据静电场是有源场,电场强度应该沿径向球对称分布.因此可以利用高斯定理求得均匀带电球内外的电场分布.以带电球的球心为中心作同心球面为高斯面,依照高斯定理有 ⎰==⋅s Q E r S E 0i 2π4d ε上式中i Q 是高斯面内的电荷量,分别求出处于带电球内外的高斯面内的电荷量,即可求得带电球内外的电场强度分布.解 依照上述分析,由高斯定理可得R r <时, 302π34π4r E r ερ= 假设球体带正电荷,电场强度方向沿径向朝外.考虑到电场强度的方向,带电球体内的电场强度为r E 03ερ=R r >时, 302π34π4R E r ερ= 考虑到电场强度沿径向朝外,带电球体外的电场强度为r e rR E 2033ερ=9-15 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 (R 2>R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 . 题 9-15 图分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=⋅rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 , 0=∑q01=ER 1 <r <R 2 , L λq =∑rελE 02π2= r >R 2, 0=∑q03=E在带电面附近,电场强度大小不连续,如图(b )所示,电场强度有一跃变00π2π2ΔεσrL εL λr ελE === 9-16 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.题 9-16 图分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W 其中E 是点电荷Q 1 、Q 3 产生的合电场强度.(2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势).解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-= 由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为()2/322031π2y d εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()d εQ y y d εQ Q Q W y 022/3220002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势 的叠加得Q 1 、Q 3 在点O 的电势dεQ d εQ d εQ V 003010π2π4π4=+= 将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多. 9-17 已知均匀带电长直线附近的电场强度近似为r rελe E 0π2= 其中λ为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明.解 (1) 由于电场力作功与路径无关,若沿径向积分,则有12012ln π2d 21r r ελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等.9-18 一个球形雨滴半径为0.40 mm ,带有电量1.6 pC ,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大?分析 取无穷远处为零电势参考点,半径为R 带电量为q 的带电球形雨滴表面电势为 R q εV 0π41= 当两个球形雨滴合并为一个较大雨滴后,半径增大为R 32,代入上式后可以求出两雨滴相遇合并后,雨滴表面的电势.解 根据已知条件球形雨滴半径R 1=0.40 mm ,带有电量q 1=1.6 pC ,可以求得带电球形雨滴表面电势V 36π411101==R q εV 当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量 q 2=2q 1 ,雨滴表面电势V 5722π4113102==R q εV 9-19 电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图(a )放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.题 9-19 图分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布.解 由“无限大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的分布, ()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a a x0 00i E εσ电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x <<--=⋅=⎰ d 0l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 00a -a x l E l E ()a x a V >-=⋅+⋅=⎰⎰ d d 00a a x εσl E l E 电势变化曲线如图(b )所示. 9-20 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?题 9-20 图分析 通常可采用两种方法.方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.(2)利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQ V 0π4= 在球面内电场强度为零,电势处处相等,等于球面的电势 R εQ V 0π4=其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1) 由高斯定理可求得电场分布 ()()()22021********* π4 π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=r V l E d 可求得各区域的电势分布.当r ≤R 1 时,有 20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r +=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞l E l E l E当R 1 ≤r ≤R 2 时,有 202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r +=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞l E l E当r ≥R 2 时,有rεQ Q V r 02133π4d +=⋅=⎰∞l E (2) 两个球面间的电势差⎪⎪⎭⎫ ⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=若该点位于两个球面之间,即R 1≤r ≤R 2 ,则202012π4π4R εQ r εQ V += 若该点位于两个球面之外,即r ≥R 2 ,则 rεQ Q V 0213π4+= (2) 两个球面间的电势差 ()2011012112π4π42R εQ R εQ V V U R r -=-== 9-21 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.题 9-21 图分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理 ⎰⎰=⋅V V d 1d 0ρεS E 可求得电场分布E (r ),再根据电势差的定义 ()l E d ⋅=-⎰b ab a r V V 并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E =当r ≥R 时02/ππ2ερl R rl E =⋅得 ()r εR ρr E022= 取棒表面为零电势,空间电势的分布有当r ≤R 时()()22004d 2r R ερr εr ρr V R r -==⎰当r ≥R 时 ()rR εR ρr r εR ρr V Rr ln 2d 20202==⎰ 如图所示是电势V 随空间位置r 的分布曲线. 9-22 一圆盘半径R =3.00 ×10-2 m .圆盘均匀带电,电荷面密度σ=2.00×10-5 C·m -2.(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.题 9-22 图分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布.解 (1) 如图所示,圆盘上半径为r 的带电细圆环在轴线上任一点P 激发的电势220d π2π41d x r r r σεV += 由电势叠加,轴线上任一点P 的电势的 ()x x R εσx r rr εσV R -+=+=⎰22002202d 2 (1) (2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R x εσx V (2) 电场强度方向沿x 轴方向. (3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得V 6911=V-1m V 6075⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有 V 1695π40==xεq V 1-20m V 5649π4⋅==x εq E 由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过 0.3%和0.8%,这已足以满足一般的测量精度.9-23 两个很长的共轴圆柱面(R 1 =3.0×10-2m ,R 2 =0.10 m ),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r =0.05 m 处的电场强度.解 (1) 由习题9-15 的结果,可得两圆柱面之间的电场强度为 rελE 0π2=根据电势差的定义有 120212ln π2d 21R R ελU R R =⋅=⎰l E 解得 1812120m C 101.2ln /π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r =0.05m 处的电场强度10m V 475 7π2-⋅==rE ελ 9-24 轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的过程,叫做核聚变.在此过程中可以释放出巨大的能量.例如四个氢原子核(质子)结合成一个氦原子核(α粒子)时,可释放出25.9MeV 的能量.即MeV 25.9e 2He H 4014211++→这类聚变反应提供了太阳发光、发热的能源.如果我们能在地球上实现核聚变,就能获得丰富廉价的能源.但是要实现核聚变难度相当大,只有在极高的温度下,使原子热运动的速度非常大,才能使原子核相碰而结合,故核聚变反应又称作热核反应.试估算:(1)一个质子(H 11)以多大的动能(以电子伏特表示)运动,才能从很远处到达与另一个质子相接触的距离? (2)平均热运动动能达到此值时,温度有多高? (质子的半径约为1.0 ×10-15 m ) 分析 作为估算,可以将质子上的电荷分布看作球对称分布,因此质子周围的电势分布为 rεe V 0π4= 将质子作为经典粒子处理,当另一质子从无穷远处以动能E k 飞向该质子时,势能增加,动能减少,如能克服库仑斥力而使两质子相碰,则质子的初始动能Re r eV E 2π41202R k 0ε=≥ 假设该氢原子核的初始动能就是氢分子热运动的平均动能,根据分子动理论知:kT E 23k = 由上述分析可估算出质子的动能和此时氢气的温度.解 (1) 两个质子相接触时势能最大,根据能量守恒eV 102.72π415202R K0⨯==≥Re r εeV E 由20k021v m E =可估算出质子初始速率 17k 00s m 102.1/2-⋅⨯==m E v该速度已达到光速的4%.(2) 依照上述假设,质子的初始动能等于氢分子的平均动能kT E E 23k k0== 得 K 106.5329k0⨯≈=kE T 实际上在这么高的温度下,中性原子已被离解为电子和正离子,称作等离子态,高温的等离子体不能用常规的容器来约束,只能采用磁场来约束(托卡马克装置)9-25 在一次典型的闪电中,两个放电点间的电势差约为109 V,被迁移的电荷约为30 C .(1) 如果释放出来的能量都用来使0 ℃的冰融化成0 ℃的水,则可溶解多少冰? (冰的融化热L =3.34 ×105 J· kg )(2) 假设每一个家庭一年消耗的能量为3 000kW·h ,则可为多少个家庭提供一年的能量消耗?解 (1) 若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量kg 1098.8Δ4⨯===LqU L E m 即可融化约 90 吨冰. (2) 一个家庭一年消耗的能量为J 1008.1h kW 0003100⨯=⋅=E8.2Δ00===E qU E E n 一次闪电在极短的时间内释放出来的能量约可维持3个家庭一年消耗的电能.9-26 已知水分子的电偶极矩p =6.17×10-30 C· m .这个水分子在电场强度E =1.0 ×105 V · m -1的电场中所受力矩的最大值是多少?分析与解 在均匀外电场中,电偶极子所受的力矩为E p M ⨯=当电偶极子与外电场正交时,电偶极子所受的力矩取最大值.因而有m N 1017.625max ⋅⨯==-pE M9-27 电子束焊接机中的电子枪如图所示,K 为阴极,A 为阳极,阴极发射的电子在阴极和阳极电场加速下聚集成一细束,以极高的速率穿过阳极上的小孔,射到被焊接的金属上使两块金属熔化在一起.已知V 105.24AK⨯=U ,并设电子从阴极发射时的初速度为零,求:(1)电子到达被焊接金属时具有的动能;(2)电子射到金属上时的速度.分析 电子被阴极和阳极间的电场加速获得动能,获得的动能等于电子在电场中减少的势能.由电子动能与速率的关系可以求得电子射到金属上时的速度.解 (1)依照上述分析,电子到达被焊接金属时具有的动能eV 105.24AK k ⨯==eU E(2)由于电子运动的动能远小于电子静止的能量,可以将电子当做经典粒子处理.电子射到金属上时的速度m/s 1037.927⨯==m E v k题 9-27。
元培学院大学物理学第九章作业
元培学院大学物理学Ⅱ第九章作业1.题号:40111001分值:10分电量都是q 的三个点电荷,分别放在正三角形的三个顶点.正三角形的边长是a 。
试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡?(2)这种平衡与三角形的边长有无关系?2.题号:40143005分值:10分如下图所示,正电荷q 均匀地分布在半径为R 的圆环上,试计算在环的轴线上任一点P 处的电场强度。
3.题号:40143007分值:10分带电细线弯成半径为R 的半圆形,电荷线密度为0sin λλθ=,式中0λ为一常数,θ 为半径R 与x 轴所成的夹角,如图所示。
试求环心O 处的电场强度。
4.题号:40143008分值:10分 电量Q(Q >0)均匀分布在长为L 的细棒上,在细棒的延长线上距细棒中心O 距离为a 的P 点处放一带电量为q(q >0)的点电荷,如图所示。
求:(1) P 点的电场强度值;(8 分)(2) 带电细棒对该点电荷的静电力。
(2分)5.题号:40123012分值:10分如图所示,半径为R 的圆盘均匀带电,设电荷面密度为σ,P 为通过这一圆盘且垂直该圆盘平面的轴线上的一点求(1)P 点处的电势和电场强度(2)如果圆盘换成无限大的平面,求P 点电场强度。
分值:10分如下图所示为一沿X 轴放置的长度为l 的均匀带电细棒,其电荷线密度为00),(λλλa x -=为一常数。
求坐标原点O 处的电场强度。
7.题号:40143020分值:10分如图所示,一沿x 轴放置的长度为l 的均匀带电细棒,其电荷线密度为λ(常数),取无穷远处为电势零点,求坐标原点O 处的电场强度和电势。
8.题号:40241001分值:10分1.(本小题5分)用高斯定理求均匀带正电的无限大平面簿板的场强(设电荷的面密度为σ);2.(本小题5分)两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强。
9.题号:40242002分值:10分如图所示,真空中内半径为1R 的金属球外罩一半径为2R 的金属球壳,球和球壳所带电荷量分别为Q ±。
大学物理第9章静电场习题参考答案
第9章 静电场9-1 两小球处于如题9-1图所示的平衡位置时,每小球受到张力T ,重力mg 以及库仑力F 的作用,则有mg T =θcos 和F T =θsin ,∴θmgtg F =,由于θ很小,故lxmgmg mg x q F 2sin tg 41220=≈==θθπε ∴3/1022⎪⎪⎭⎫⎝⎛mg l q πε9-2 设q 1,q 2在C 点的场强分别为1E 和2E,则有210141AC r q E πε=14299m V 108.103.0108.1109--⋅⨯=⨯⨯⨯=方向沿AC 方向 220241BC r q E πε=14299m V 107.204.0108.1109--⋅⨯=⨯⨯⨯= 方向沿CB 方向∴ C 点的合场强E的大小为:24242221)107.2()108.1(⨯+⨯=+=E E E 14m V 1024.3-⋅⨯=设E 的方向与CB 的夹角为α,则有︒===--7.337.28.11211tg E E tg α 9-3 坐标如题9-3图所示,带电圆弧上取一电荷元l q d d λ=,它在圆心O 处的场强为201d 41d RlE λπε=,方向如题9-3图所示,由于对称性,上、下两带电圆弧中对应电荷元在圆心O 处产生的d E 1和d E 2在x 方向分量相互抵消。
习题9-1图习题9-3图习题9-2图0=∴x E ,圆心O 处场强E 的y 分量为⎪⎪⎭⎫⎝⎛-===⎰⎰2312sin d 412sin d 412026260R R R R lE y πελθθλπεθλπεππ方向沿y 轴正向。
9-4 (1)如题9-4图(a),取与棒端相距d 1的P 点为坐标原点,x 轴向右为正。
设带电细棒电荷元x q d d λ=至P 点的距离x ,它在P 点的场强大小为 20d 41d x xE P λπε=方向沿x 轴正向各电荷元在P 点产生的场强方向相同,于是 ⎰⎰-+-==11)(20d 41d d L d P P xxE E πε 132289110m V 1041.2102811081103109114----⋅⨯=⎪⎭⎫⎝⎛⨯-⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛+-=L d d πελ方向沿x 轴方向。
大学物理第09章作业
第九章 振 动
12
物理学
第五版
第九章作业题
旋转矢量法? 旋转矢量法?
x
0.10
0.05
P
tQ
Q
o
t
−A
A2
x
o
tP A
tO
- 0.1
第九章
振 动
13
物理学
第五版
第九章作业题
9-19 有一单摆,长为 有一单摆, 1.0m,最大摆角为 0,如 ,最大摆角为5 图所示。 图所示。 (1)求摆的角频率和周期; )求摆的角频率和周期; 2)设开始时摆角最大, (2)设开始时摆角最大, 试写出单摆的运动方程; 试写出单摆的运动方程; (3)当摆角为 0时的角速 )当摆角为3 度和摆球的线速度 。
物理学
第五版
第九章作业题
9-6 有一个弹簧振子,振幅 A = 2.0 × 10 -2 m , 有一个弹簧振子, 周期 T = 1.0s , 初相 ϕ = 3π 4 , 试写出它的运动 方程, 方程,并作出 x-t 图、v-t 图和a-t 图。 解:弹簧振子的振动是简谐振动,只要确定 弹簧振子的振动是简谐振动, 了三个特征量 A、ω 和ϕ ,其运动方程为: 其运动方程为: x = A cos(ωt + ϕ )
第九章 振 动
ϕ0 = - π 3
10
物理学
第五版
第九章作业题
x(m)
0.10 0.05 P 4.0
0
t(s)
则:x = 0.10 cos( ω t - )
3
π
曲线可知: 由 x-t 曲线可知:
t = 4s时,ϕ = π 2 = ω × 4 - π 3
5π 运动方程为: 运动方程为:x = 0.10 cos( t - π 3) 24
大学物理第9章题库答案
大学物理第9章题库答案.第九章电磁场填空题(简单)1、在竖直放置的一根无限长载流直导线右侧有一与其共面的任意形状的平面线圈,直导线中的电流由上向下,当线圈以垂直于导线的速度背离导线时,线圈中的感应电动势,当线圈平行导线向上运动时,线圈中的感应电动势。
(填>0,<0,=0)(设顺时针方向的感应电动势为正)(<0, =0)2、磁场的高斯定律表明磁场是,因为磁场发生变化而引起电磁感应,是不同于回路变化时产生的。
相同之处是。
(无源场,动生电动势,磁通量发生改变)3、只要有运动电荷,其周围就有产生;而法拉弟电磁感应定律表明,只要发生变化,就有产生。
(磁场,磁通量,感应电动势)4、一磁铁自上向下运动,穿过一闭合导体回路,(如图7),当磁铁运动到a 处和b处时,回路中感应电流的方向分别是和。
(逆时针,顺时针)5、电磁感应就是由生的现象,其主要定律为,其中它的方向是由定律来决定,即。
(磁,电,电磁感应定律,楞次,见p320)6、当穿过某回路中的磁通量发生变化时,电路中(填一定或不一定)产生感应电流;电路中(填一定或不一定)产生感应电动势。
(不一定, 一定)7、在电磁感应中,感应电动势的大小与闭合回路的磁通量成正比。
(对时间的变化率)8、在竖直放置的一根无限长载流直导线右侧有一与其共面的任意形状的平面线圈,直导线中的电流由上向下,当线圈平行导线向下运动时,线圈中的感应电动势,当线圈以垂直于导线的速度靠近导线时,线圈中的感应电动势。
(填>0,<0,=0)(设顺时针方向的感应电动势为正)(=0,>0)9、将条形磁铁插入与冲击电流计串连的金属环中,有-5q=2.010c ?的电荷通过电流计,若连接电流计的电路总电阻25R =Ω,则穿过环的磁通量的变化=?ΦWb 。
(4510q R --?=-?)10、电磁波是变化的和变化的在空间以一定的速度传播而形成的。
(电场,磁场) 11、如图所示,金属杆AOC 以恒定速度υ在均匀磁场B 中垂直于磁场方向运动,已知AO OC L ==,则杆中的动生电动势的大小为。
大学物理第九章-十四章 振动--习题集(含答案)
第九章 振动一、简答题1、如果把一弹簧振子和一单摆拿到月球上去,它们的振动周期将如何改变? 答案:弹簧振子的振动周期不变,单摆的振动周期变大。
2、完全弹性小球在硬地面上的跳动是不是简谐振动,为什么?答案:不是,因为小球在硬地面上跳动的运动学方程不能用简单的正弦或余弦函数表示,它是一种比较复杂的振动形式。
3、简述符合什么规律的运动是简谐运动答案:当质点离开平衡位置的位移`x`随时间`t`变化的规律,遵从余弦函数或正弦函数()ϕω+=t A x cos 时,该质点的运动便是简谐振动。
或:位移x 与加速度a 的关系为正比反向关系。
4、怎样判定一个振动是否简谐振动?写出简谐振动的运动学方程和动力学方程。
答案:物体在回复力作用下,在平衡位置附近,做周期性的线性往复振动,其动力学方程中加速度与位移成正比,且方向相反:x dtx d 222ω-= 或:运动方程中位移与时间满足余弦周期关系:)cos(φω+=t A x5、分别从运动学和动力学两个方面说明什么是简谐振动?答案:运动学方面:运动方程中位移与时间满足正弦或余弦函数关系)cos(φω+=t A x动力学方面:物体在线性回复力作用下在平衡位置做周期性往复运动,其动力学方程满足6、简谐运动的三要素是什么?答案: 振幅、周期、初相位。
7、弹簧振子所做的简谐振动的周期与什么物理量有关?答案: 仅与振动系统的本身物理性质:振子质量m 和弹簧弹性系数k 有关。
8、如果弹簧的质量不像轻弹簧那样可以忽略,那么该弹簧的周期与轻弹簧的周期相比,是否有变化,试定性说明之。
答案:该振子周期会变大,作用在物体上的力要小于单纯由弹簧形变而产生的力,因为单纯由形变而产生的弹力中有一部分是用于使弹簧产生加速度的,所以总体的效果相当于物体质量不变,但弹簧劲度系数减小,因此周期会变大。
9、伽利略曾提出和解决了这样一个问题:一根线挂在又高又暗的城堡中,看不见它的上端而只能看见其下端,那么如何测量此线的长度?答案:在线下端挂一质量远大于线的物体,拉开一小角度,让其自由振动,测出周期T ,便可依据单摆周期公式gl T π2=计算摆长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9-7 若简谐运动方程为()()m π25.0π20cos 10.0+=t x ,求:(1) 振幅、频率、角频率、周期和初相;(2)s 2=t 时的位移、速度和加速度.分析 可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x cos 作比较,即可求得各特征量.运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果.解 (1) 将()()m π25.0π20cos 10.0+=t x 与()ϕω+=t A x cos 比较后可得:振幅A =0.10m ,角频率1s π20-=ω,初相ϕ=0.25π,则周期s 1.0/π2==ωT ,频率Hz /1T =v .(2)s 2=t 时的位移、速度、加速度分别为()m 1007.7π25.0π40cos 10.02-⨯=+=t x()-1s m 44.4π25.0π40sin π2d /d ⋅-=+-==t x v()-22222s m 1079.2π25.0π40cos π40d /d ⋅⨯-=+-==t x a9-12 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T =0.50s.当t =0 时,(1) 物体在正方向端点;(2) 物体在平衡位置、向负方向运动;(3) 物体在x =-1.0×10-2m 处, 向负方向运动; (4) 物体在x =-1.0×10-2 m 处,向正方向运动.求以上各种情况的运动方程.分析 在振幅A 和周期T 已知的条件下,确定初相φ是求解简谐运动方程的关键.初相的确定通常有两种方法.(1) 解析法:由振动方程出发,根据初始条件,即t =0 时,x =x 0 和v =v 0 来确定φ值.(2) 旋转矢量法:如图(a )所示,将质点P 在Ox 轴上振动的初始位置x 0 和速度v 0 的方向与旋转矢量图相对应来确定φ.旋转矢量法比较直观、方便,在分析中常采用.题9-12 图解 由题给条件知A =2.0 ×10-2 m ,1s π4/2-==Tω,而初相φ可采用分析中的两种不同方法来求.解析法:根据简谐运动方程()ϕω+=t A x cos ,当0t =时有()ϕω+=t A x c o s 0,sin 0ωA -=v .当(1)A x =0时,1cos 1=ϕ,则01=ϕ;(2)00=x 时,0cos 2=ϕ,2π2±=,因00<v ,取2π2=; (3)m 100120-⨯=.x 时,50cos 3.=ϕ,3π3±= ,由00<v ,取3π3=; (4)m 100120-⨯-=.x 时,50cos 4.-=ϕ,3ππ4±= ,由00>v ,取3π44=. 旋转矢量法:分别画出四个不同初始状态的旋转矢量图,如图(b )所示,它们所对应的初相分别为01=ϕ,2π2=,3π3=,3π44=. 振幅A 、角频率ω、初相φ均确定后,则各相应状态下的运动方程为(1)()m t πcos4100.22-⨯=x (2)()()m /2πt π4cos 100.22+⨯=-x (3)()()m /3πt π4cos 100.22+⨯=-x (4)()()m /3π4t π4cos 100.22+⨯=-x9-13 有一弹簧, 当其下端挂一质量为m 的物体时, 伸长量为9.8 ×10-2 m .若使物体上、下振动,且规定向下为正方向.(1) 当t =0 时,物体在平衡位置上方8.0 ×10-2 m 处,由静止开始向下运动,求运动方程.(2) 当t =0 时,物体在平衡位置并以0.6m·s -1的速度向上运动,求运动方程.分析 求运动方程,也就是要确定振动的三个特征物理量A 、ω和φ.其中振动的角频率是由弹簧振子系统的固有性质(振子质量m 及弹簧劲度系数k )决定的,即ωk 可根据物体受力平衡时弹簧的伸长来计算;振幅A 和初相φ需要根据初始条件确定.题9-13 图解 物体受力平衡时,弹性力F 与重力P 的大小相等,即F =mg .而此时弹簧的伸长量Δl =9.8 ×10-2m .则弹簧的劲度系数k =F /Δl =mg /Δl .系统作简谐运动的角频率为1s 10-=∆==l g m k //ω(1) 设系统平衡时,物体所在处为坐标原点,向下为x 轴正向.由初始条件t =0 时,x 10 =8.0 ×10-2 m 、v 10 =0 可得振幅()m 10082210210-⨯=+=./ωv x A ;应用旋转矢量法可确定初相π1=[图(a )].则运动方程为()()m π10t cos 100.821+⨯=-x(2)t =0 时,x 20 =0、v 20 =0.6 m·s -1 ,同理可得()m 100622202202-⨯=+=./ωv x A ;2/π2=[图(b )].则运动方程为()()m π5.010t cos 100.622+⨯=-x9-14 某振动质点的x -t 曲线如图(a )所示,试求:(1) 运动方程;(2) 点P 对应的相位;(3) 到达点P 相应位置所需的时间.分析 由已知运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题.本题就是要通过x -t 图线确定振动的三个特征量A 、ω和0ϕ,从而写出运动方程.曲线最大幅值即为振幅A ;而ω、0ϕ通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比较方便.解 (1) 质点振动振幅A =0.10 m.而由振动曲线可画出t 0 =0 和t 1 =4 s时旋转矢量,如图(b ) 所示.由图可见初相3/π0-=(或3/π50=),而由()3201//ππω+=-t t 得1s 24/π5-=ω,则运动方程为()m 3/π24π5cos 10.0⎪⎭⎫ ⎝⎛-=t x题9-14 图(2) 图(a )中点P 的位置是质点从A /2 处运动到正向的端点处.对应的旋转矢量图如图(c ) 所示.当初相取3/π0-=时,点P 的相位为()000=-+=p p t ωϕϕ(如果初相取成3/π50=,则点P 相应的相位应表示为()π200=-+=p p t ω.(3) 由旋转矢量图可得()3/π0=-pt ω,则s 61.=p t .9-15 作简谐运动的物体,由平衡位置向x 轴正方向运动,试问经过下列路程所需的最短时间各为周期的几分之几? (1) 由平衡位置到最大位移处;(2) 由平衡位置到x =A /2 处; (3) 由x =A /2处到最大位移处.解 采用旋转矢量法求解较为方便.按题意作如图所示的旋转矢量图,平衡位置在点O .(1) 平衡位置x 1 到最大位移x 3 处,图中的旋转矢量从位置 1 转到位置3,故2/πΔ1=,则所需时间411//T t =∆=∆ωϕ(2) 从平衡位置x 1 到x 2 =A /2 处,图中旋转矢量从位置1转到位置2,故有6/πΔ2=,则所需时间1222//T t =∆=∆ωϕ(3) 从x 2 =A /2 运动到最大位移x 3 处,图中旋转矢量从位置2 转到位置3,有3/πΔ3=,则所需时间633//T t =∆=∆ωϕ题9-15 图9-25 质量为0.10kg 的物体,以振幅1.0×10-2 m 作简谐运动,其最大加速度为4.0 m·s -1 求:(1) 振动的周期;(2) 物体通过平衡位置时的总能量与动能;(3) 物体在何处其动能和势能相等? (4) 当物体的位移大小为振幅的一半时,动能、势能各占总能量的多少?分析 在简谐运动过程中,物体的最大加速度2max ωA a =,由此可确定振动的周期T .另外,在简谐运动过程中机械能是守恒的,其中动能和势能互相交替转化,其总能量E =kA 2/2.当动能与势能相等时,E k =E P =kA 2/4.因而可求解本题.解 (1) 由分析可得振动周期s 314.0/π2/π2max ===a A ωT(2) 当物体处于平衡位置时,系统的势能为零,由机械能守恒可得系统的动能等于总能量,即J100221213max 22k -⨯====.mAa mA E E ω(3) 设振子在位移x 0 处动能与势能相等,则有42220//kA kx =得 m 100772230-⨯±=±=./A x(4) 物体位移的大小为振幅的一半(即2x A =/)时的势能为4221212P /E A k kx E =⎪⎭⎫ ⎝⎛== 则动能为 43P K /E E E E =-=9-27 质量m =10g 的小球与轻弹簧组成一振动系统, 按()()cm 3/ππ85.0+=t x 的规律作自由振动,求(1) 振动的角频率、周期、振幅和初相;(2) 振动的能量E ;(3) 一个周期内的平均动能和平均势能.解 (1) 将()()cm 3/ππ85.0+=t x 与()ϕω+=t A x cos 比较后可得:角频率1s π8-=ω,振幅A =0.5cm ,初相φ=π/3,则周期T =2π/ω=0.25 s(2) 简谐运动的能量 J 1090721522-⨯==.ωmA E (3) 简谐运动的动能和势能分别为()ϕωω+=t mA E K 222sin 21 ()ϕωω+=t mA E P 222cos 21 则在一个周期中,动能与势能对时间的平均值分别为()J 109534d sin 2115220222-⨯==+=⎰.ωϕωωmA t t mA T E T K ()J 109534d cos 2115220222-⨯==+=⎰.ωϕωωmA t t mA T E T P9-30 两个同频率的简谐运动1 和2 的振动曲线如图(a )所示,求(1)两简谐运动的运动方程x 1 和x 2;(2) 在同一图中画出两简谐运动的旋转矢量,并比较两振动的相位关系;(3) 若两简谐运动叠加,求合振动的运动方程.分析 振动图已给出了两个简谐运动的振幅和周期,因此只要利用图中所给初始条件,由旋转矢量法或解析法求出初相位,便可得两个简谐运动的方程.解 (1) 由振动曲线可知,A =0.1 m,T =2s,则ω=2π/T =πs-1 .曲线1表示质点初始时刻在x =0 处且向x 轴正向运动,因此φ1 =-π/2;曲线2 表示质点初始时刻在x =A /2 处且向x 轴负向运动,因此φ2 =π/3.它们的旋转矢量图如图(b )所示.则两振动的运动方程分别为()()m 2/ππcos 1.01-=t x 和 ()()m 3/ππcos 1.02+=t x(2) 由图(b )可知振动2超前振动1 的相位为5π/6.(3)()ϕω+'=+=t A x x x cos 21其中()m 0520cos 212212221.=-++='ϕϕA A A A A()120.268arctan cos cos sin sin arctan 22112211πϕϕϕϕϕ-=-=++=A A A A则合振动的运动方程为 ()()m π/12πcos 052.0-=t x题9-30 图9-31 将频率为348 Hz 的标准音叉振动和一待测频率的音叉振动合成,测得拍频为3.0Hz .若在待测频率音叉的一端加上一小块物体,则拍频数将减少,求待测音叉的固有频率.分析 这是利用拍现象来测定振动频率的一种方法.在频率υ1 和拍频数Δυ=|υ2 -υ1|已知的情况下,待测频率υ2 可取两个值,即υ2 =υ1 ±Δυ.式中Δυ前正、负号的选取应根据待测音叉系统质量改变时,拍频数变化的情况来决定.解 根据分析可知,待测频率的可能值为υ2 =υ1 ±Δυ =(348 ±3) Hz 因振动系统的固有频率mk π21=v ,即质量m 增加时,频率υ 减小.从题意知,当待测音叉质量增加时拍频减少,即|υ2 -υ1|变小.因此,在满足υ2 与Δυ 均变小的情况下,式中只能取正号,故待测频率为υ2 =υ1 +Δυ=351 Hz9-10 如图(a )所示,两个轻弹簧的劲度系数分别为1k 、2k .当物体在光滑斜面上振动时.(1) 证明其运动仍是简谐运动;(2) 求系统的振动频率.题9-10 图分析 从上两题的求解知道,要证明一个系统作简谐运动,首先要分析受力情况,然后看是否满足简谐运动的受力特征(或简谐运动微分方程).为此,建立如图(b )所示的坐标.设系统平衡时物体所在位置为坐标原点O ,Ox 轴正向沿斜面向下,由受力分析可知,沿Ox 轴,物体受弹性力及重力分力的作用,其中弹性力是变力.利用串联时各弹簧受力相等,分析物体在任一位置时受力与位移的关系,即可证得物体作简谐运动,并可求出频率υ.证 设物体平衡时两弹簧伸长分别为1x 、2x ,则由物体受力平衡,有2211sin x k x k mg ==θ (1)按图(b )所取坐标,物体沿x 轴移动位移x 时,两弹簧又分别被拉伸1x '和2x ',即21x x x '+'=.则物体受力为 ()()111222sin sin x x k mg x x k mg F '+-='+-=θθ (2)将式(1)代入式(2)得1122x k x k F '-='-=(3) 由式(3)得11k F x /-='、22k F x /-=',而21x x x '+'=,则得到 ()[]kx x k k k k F -=+-=2121/式中()2121k k k k k +=/为常数,则物体作简谐运动,振动频率 ()m k k k k πm k ωv 2121/21/π21π2/+=== 讨论 (1) 由本题的求证可知,斜面倾角θ 对弹簧是否作简谐运动以及振动的频率均不产生影响.事实上,无论弹簧水平放置、斜置还是竖直悬挂,物体均作简谐运动.而且可以证明它们的频率相同,均由弹簧振子的固有性质决定,这就是称为固有频率的原因.(2) 如果振动系统如图(c )(弹簧并联)或如图(d )所示,也可通过物体在某一位置的受力分析得出其作简谐运动,且振动频率均为()m k k v /π2121+=,读者可以一试.通过这些例子可以知道,证明物体是否作简谐运动的思路是相同的.9-18 图(a )为一简谐运动质点的速度与时间的关系曲线,且振幅为2cm ,求(1) 振动周期;(2) 加速度的最大值;(3) 运动方程.分析 根据v -t 图可知速度的最大值v max ,由v max =Aω可求出角频率ω,进而可求出周期T 和加速度的最大值a max =Aω2 .在要求的简谐运动方程x =A cos (ωt +φ)中,因为A 和ω已得出,故只要求初相位φ即可.由v -t 曲线图可以知道,当t =0 时,质点运动速度v 0 =v max /2 =Aω/2,之后速度越来越大,因此可以判断出质点沿x 轴正向向着平衡点运动.利用v 0 =-Aωsinφ就可求出φ.解 (1) 由ωA v =max 得1s 51-=.ω,则s 2.4/π2==ωT(2)222max s m 1054--⋅⨯==.ωA a(3) 从分析中已知2/sin 0ωA ωA =-=v ,即21sin /-=ϕ6/π5,6/π--=因为质点沿x 轴正向向平衡位置运动,则取6/π5-=,其旋转矢量图如图(b )所示.则运动方程为 ()()cm 6/π55.1cos 2-=t x题9-18 图9-21 一飞轮质量为12kg ,内缘半径r =0.6m,如图所示.为了测定其对质心轴的转动惯量,现让其绕内缘刃口摆动,在摆角较小时,测得周期为2.0s ,试求其绕质心轴的转动惯量.9-21 题图分析 飞轮的运动相当于一个以刃口为转轴的复摆运动,复摆振动周期为c /π2mg l J T =,因此,只要知道复摆振动的周期和转轴到质心的距离c l ,其以刃口为转轴的转动惯量即可求得.再根据平行轴定理,可求出其绕质心轴的转动惯量.解 由复摆振动周期c /π2mgl J T =,可得22π4/mgrT J =.则由平行轴定理得222220m kg 8324⋅=-=-=./mr mgrT mr J J π9-22 如图(a )所示,质量为1.0 ×10-2kg 的子弹,以500m·s -1的速度射入木块,并嵌在木块中,同时使弹簧压缩从而作简谐运动,设木块的质量为4.99 kg ,弹簧的劲度系数为8.0 ×103 N·m -1 ,若以弹簧原长时物体所在处为坐标原点,向左为x 轴正向,求简谐运动方程.题9-22 图分析 可分为两个过程讨论.首先是子弹射入木块的过程,在此过程中,子弹和木块组成的系统满足动量守恒,因而可以确定它们共同运动的初速度v 0 ,即振动的初速度.随后的过程是以子弹和木块为弹簧振子作简谐运动.它的角频率由振子质量m 1 +m 2 和弹簧的劲度系数k 确定,振幅和初相可根据初始条件(初速度v 0 和初位移x 0 )求得.初相位仍可用旋转矢量法求.解 振动系统的角频率为 ()121s 40-=+=m m k /ω由动量守恒定律得振动的初始速度即子弹和木块的共同运动初速度v 0 为()12110s m 01-⋅=+=.m m v m v又因初始位移x 0 =0,则振动系统的振幅为 ()m 105.2//202020-⨯==+=ωωx A v v图(b )给出了弹簧振子的旋转矢量图,从图中可知初相位2/π0=,则简谐运动方程为()()m π0.540cos 105.22+⨯=-t x。