TW434345B Latex coagulation in a thick fabric
latex 常用符号大全
Contento
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 1 Letters 2 Fonts 3 Common functions 4 Big symbols 5 Arrows 6 Order symbols 7 Set symbols 8 Equality and inference 9 Brackets 10 Other symbols 11 See also
= \neq \equiv \thickapprox \approx \approxeq \cong \ncong
\sim \thicksim \nsim \simeq \backsim \backsimeq
\doteq \div \doteqdot \fallingdotseq \risingdotseq
\ntriangleright \ntrianglerighteq \gnsim \gnapprox \nsucc \nsucceq \succnsim \succnapprox
\eqslantless \lessgtr \lesseqgtr
\eqslantgtr \gtrless \gtreqless
2014/11/13
Wikipedia:LaTeX symbols - Wikipedia, le encyclopedia libere \mho \prime \backprime \P \S \AA
页码,2/7
\acute{a} \hat{a} \ddot{a} \bar{a} \tilde{a}
2014/11/13
Wikipedia:LaTeX symbols - Wikipedia, le encyclopedia libere
页码,3/7
Common functions
latex_数学公式常用包__解释说明
latex 数学公式常用包解释说明1. 引言1.1 概述这篇文章旨在介绍latex中常用的数学公式包,主要包括amsmath,amssymb 和mathtools等。
通过详细解释说明这些包的具体用法和常见命令,可以帮助读者更加熟悉和掌握latex撰写数学公式的技巧与方法。
1.2 文章结构本文将分为五个部分进行讲解。
首先是引言部分,概述文章的目的和结构。
然后分别介绍常用数学公式包amsmath,amssymb和mathtools,并提供具体的使用方法和常见命令说明。
接下来,在第三部分中,我们将对这些包进行更深入的解释,并提供一些实际示例以及需要注意的事项。
最后,在结论部分总结全文内容,并展望未来进一步扩展latex数学公式相关知识。
1.3 目的本文旨在帮助读者深入理解latex中常用的数学公式包的使用方法和功能特点。
通过阅读本文,读者可以掌握amsmath、amssymb和mathtools等包中所提供的命令与函数,并且能够灵活运用这些工具编写复杂且美观的数学公式。
2. 常用数学公式包数学公式在LaTeX 中的编写离不开各种数学公式包的支持。
本节将介绍常用的数学公式包,包括amsmath、amssymb和mathtools。
2.1 amsmath包amsmath 是LaTeX 中处理数学公式的核心宏集之一,提供了丰富的数学公式编写命令和环境。
下面是amsmath 包中一些常用的功能:a. 数学环境:amsmath 提供了多个数学环境,如equation、align、gather 等,方便对多行或多个公式进行排版。
b. 公式标号控制:使用amsmath,可以通过命令控制公式编号的样式和位置。
c. 分段函数:通过amsthm 宏包所加载的amsmath 可以方便地编写分段函数。
2.2 amssymb包amssymb 提供了大量额外的特殊符号,补充了LaTeX 基本符号集中没有提供的符号。
下面是amssymb 包中一些常用符号:a. 数字集符号:比如实数集、整数集、有理数集等。
latex,article,最简单的模板
竭诚为您提供优质文档/双击可除latex,article,最简单的模板篇一:latex教程--新手入门20xx.5.19于百度文库搜寻到,将作者文中提到的文章全部搜寻集中,放置于百度文库,方便自己在我初学latex 时,我自己有着很强烈的感受,对于新人来说,latex其实不缺少长篇的系统论述的manual,但是缺少简短的stepbystep的一个example接一个example的有操作价值的tutorial。
我想大多数人接触latex的原因都和我一样,只是论文需要,并不是有多么想去当一个杂志编辑。
因此这一篇tutorial的起点为零,终点到满足写一个proposal就为止了。
同时这一篇tutorial的内容只涉及信息的撰写和录入,不涉及排版美化。
我提倡的是新人们先开始跟着这个教程用latex来写起来,在把内容放进去之后,遇到怎么让版面更加规范美观的问题的时候,可以从容地去翻manual或者问google。
这篇教程中涉及的以及被我有意过滤掉的latex的功能,都是我仔细斟酌过的,我确保文章的内容对于新人来说完全够用。
从proposal到paper当然还有一点距离,最重要的台阶是模板的应用,其次是做参考文献。
不过有了这篇文章垫底,至少能用latex编辑点东西了,也就不怕了,单独去google需要的部分的教材就可以了。
那么我个人对于即将接触latex的新人的教材建议是,先从这一篇出发,掌握这一篇里的内容之后,就可以开始着手撰写和编辑自己的latex文本了,比如自己的proposal或者论文的提纲,一边写一边可以去看一下我学latex的时候觉得最简短有指导意义有操作价值的《一份不太短的latex介绍》,那一篇教材里基本就涵盖了以写paper为目的全部latex功能需求了。
另外感谢朋友留言提醒了我另外一篇当初在我入门时对我帮助非常大的教程,它名字很简单朴素叫做《latexnotes》。
这个note和《不太短的》都是内容合理实用,没有多余的废话,没有职业编辑才可能用到的高端内容,而且充满了清爽的examples的教程。
微生物代谢产物在肠-脑轴中作用机制研究进展
与 SCFA 一样,BA 也可 以 作 为 信 号 分 子 激 活 法 尼 醇 X 受体(FXR)、G 蛋白偶联胆汁酸受体5(TGR5)、孕 烷 X 受 体 (PXR)及维生素 D 受体(VDR)等。 通 过 激 活 这 些 受 体,BA 控制葡萄糖稳态、脂 质 代 谢 和 能 量 消 耗 等,对 宿 主 新 陈 代 谢 有显著影响。微生物群功能的变化 可 以 改 变 BA 池 的 组 成, 并 改 变 其 整 体 信 号 传 导 能 力 。 [27] 已 经 在 人 类 和 啮 齿 类 动 物 的大脑中检测到 BA,并且它们的受体和转运蛋白在 CNS的 细 胞 中 表 达 。 [28-29] 这 表 明 BA 可 能 在 CNS 中 起 信 号 传 导 作 用。虽然目前对这种信号传导潜能的了解有限,但在 小 鼠 中 发现 FXR 缺失扰乱了多种神经递质系统,并改变 了 情 感、认
SCFA 可以通过刺 激 肠 内 分 泌 细 胞 释 放 肠 道 激 素 和 肽 类来间接调节 GBA。SCFA 还可通过刺激 胰 高 血 糖 素 样 肽1(GLP-1)、肽 YY(PYY)和瘦素等厌食激素的分泌来调 节 摄 食 行 为 。 [11,17-19] 这 些 食 欲 激 素 除 了 可 以 作 用 于 大 脑 中 的 受 体,还可 以 作 用 于 迷 走 神 经。GOSWAMI等 研 [20] 究 证 明 了 迷走神经在肠道微生物控制食欲中的作用,其中 SCFA 的 厌 食效应在迷走 神 经 切 断 的 小 鼠 中 明 显 降 低。SCFA 也 可 以 通过中枢机制参与食欲调节。 肠 源 性 乙 酸 盐 可 以 穿 过 血-脑 脊液屏障,通过改变神经肽的表达对下丘脑控制食欲 有 直 接 影 响 。 [21]
ieee transaction journal latex模板 -回复
ieee transaction journal latex模板-回复IEEE Transactions on Journal LaTex TemplateLaTeX is a widely used typesetting system for scientific and technical documents. It provides a high-quality layout, excellent typography, and ease of use for creating professional-looking research papers. In order to achieve consistency and conformity, many scientific journals, including the Institute of Electrical and Electronics Engineers (IEEE), have developed LaTeX templates for authors to use when preparing their manuscripts. This article aims to provide a step-by-step guide on how to use the IEEE Transactions journal LaTeX template.1. Download the Template: The first step is to download the IEEE Transactions journal LaTeX template from the official IEEE website. The template is typically provided in a compressed format like .zip or .tar.gz. Unpack the contents to a folder on your computer.2. Choose the Document Class: Open the template folder and locate the main LaTeX file, usually named "root.tex". This file serves as the main document for your paper. Open it in a LaTeX editor of your choice. At the beginning of the file, you will find the document class declaration. Make sure it is set to "IEEEtran" for Transactionstemplate.3. Fill in Title and Author Information: The template provides placeholders for the title, author names, and affiliations. Replace the placeholders with your own paper's title, author names, and affiliations. If there are multiple authors with different affiliations, use the provided template for multiple authors.4. Write the Abstract: The template contains a section for the abstract. Write a concise and informative abstract summarizing the key aspects of your research. The abstract should be around100-250 words long.5. Organize the Paper Structure: The template includes predefined sections and subsections common to research papers. Divide your paper into logical sections such as Introduction, Methodology, Results, Discussion, and Conclusion. Use the provided section headings to structure your paper accordingly.6. Insert Content: Within each section, start writing the content for your paper. LaTeX uses plain text with specific markup commands for formatting. Use commands like "\textbf{}" for bold text,"\emph{}" for emphasis, and "\cite{}" for citations. Remember to provide proper citations for any external sources you use.7. Include Figures and Tables: If your research includes figures or tables, use the LaTeX commands to insert them into the document. Make sure to provide appropriate captions and labels for easy referencing. Keep the figures and tables within the specified page limits set by the journal.8. Format Equations: LaTeX is renowned for its superior typesetting of mathematical equations. Use the LaTeX equation syntax to write your mathematical expressions. Number the equations using the automatic numbering feature and refer to them appropriately within the text.9. Proofread and Review: Once you have completed writing the paper, proofread it for grammar, spelling, and overall coherence. Read through each section and paragraph to ensure a smooth flow of ideas. Keep in mind the journal's guidelines and the specific requirements mentioned in the IEEE Transactions template.10. Compile the Document: Save your changes and compile theLaTeX document to generate the final PDF output. Most LaTeX editors have a built-in compiler that converts the LaTeX code into a PDF document. Check the resulting PDF for any remaining formatting issues or errors.11. Submit the Paper: When you are satisfied with the final version of your paper and have addressed any remaining issues, you are ready to submit it to the IEEE Transactions journal. Follow the submission guidelines provided by the journal, including the file format and submission procedure.In conclusion, using LaTeX templates provided by scientific journals, such as the IEEE Transactions journal template, can significantly simplify the process of preparing research papers. By following the step-by-step guide outlined in this article, authors can createwell-formatted and professional-looking manuscripts that adhere to the standards of the journal and provide a seamless reading experience for readers.。
恒温控制器用户操作指南说明书
Step 11. Enter to the Thermocouple Type Input Submenu Press d to display flashing, previously selected Thermocouple type.Step 12. Scroll through available selection of TC types Press b to sequence thru flashing Thermocouple types,(select k -for type "K" CHROMEGA ®/ALOMEGA ®)J K T E N DIN J R S B C - TC types J k t E N dN J R S b C - DisplayStep 13. Store TC typeAfter you have selected the Thermocouple type press d to store your selection, the instrument automatically advances to the next menu item.Step 14. Enter to Reading Configuration MenuThe display shows RDG Reading Configuration, which is the top menu for 4 submenus: Decimal Point, Degree Units,Filter Constant and Input/Reading Submenus.Step 15. Enter to Decimal Point Submenu Press d to show DEC Decimal Point.Step 16. Display the Decimal Point positionPress d again to display the flashing Decimal Point position.Step 17. Select the Decimal Point position Press b to select FFF.F Decimal Point position.Step 18. Store selected Decimal Point positionBy pressing d momentarily the Decimal Point position will be stored and the instrument will go to the next menu item.Step 19. Enter to Temperature Unit Submenu Display shows TEMP Temperature Unit.Step 20. Display available Temperature Units Press d to display the flashing Degree °F or °C .Step 21. Scroll through Temperature Units selection Press b to select °F Degree.Step 22. Store the Temperature UnitPress d to display momentarily that the Degree Unit has been stored and the instrument will go automatically to the next menu item.Step 23. Enter the Filter Constant Submenu Display shows FLTR Filter Constant Submenu.Step 24. Display the Filter Constant Value Submenu Press d to display the flashing, previously selected Filter Constant.Step 25. Scroll through available Filter Constants Press b to sequence thru Filter Constants 0001, 0002,0004, 0008, 0016, 0032, 0064and 0128.Step 26. Store the Filter ConstantPress d momentarily to store 0004Filter Constant and the instrument will automatically go to the next menu item.Step 27. Enter Alarm 1 MenuPress a until the ALR1Alarm 1 Menu appears on the Display. In the following steps we are going to DisableLatch, Active Above, Deadband 020.0, and above Setpoint 1Value will activate Alarm 1.Step 28. Select Latch Type SubmenuPress d to display flashing DSBL / ENBL .If flashing DSBL is displayed, press a , if ENBL is displayed, press buntil DSBL is displayed, then press d to store and go to the next menu item.Step 29. Select the Above Type of Active Submenu Press d . If flashing ABoV Above is displayed, press a ,otherwise press b until ABoV is displayed. Press d to store and advance to next menu item.MQS3716-SM/0305iLD24 Big Display Universal Temperature&ProcessSimplified Menu (-SM)WARRANTY/DISCLAIMEROMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a period of 61 months from date of purchase. OMEGA’s WARRANTY adds an additional one (1) month grace period to the normal five (5) year product warranty to cover handling and shipping time. T his ensures that OMEGA’s customers receive maximum coverage on each product.If the unit malfunctions, it must be returned to the factory for evalua-tion. OMEGA’s Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by OMEGA, if the unit is found to be defective, it will be repaired or replaced at no charge. OMEGA’s WARRANTY does not apply to defects resulting from any action of the purchaser, includ-ing but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modifica-tion. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of having been damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of OMEGA’s control. Components in which wear is not warranted, include but are not limited to contact points, fuses, and triacs.OMEGA is pleased to offer suggestions on the use of its vari-ous products. However, OMEGA neither assumes responsibil-ity for any omissions or errors nor assumes liability for any damages that result from the use if its products in accordance with information provided by OMEGA, either verbal or writ-ten. OMEGA warrants only that the parts manufactured by the company will be as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY W ARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive, and the total liability of OMEGA with respect to this order, whether based on contract, warran-ty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall OMEGA be liable for consequential, incidental or special damages.CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a “Basic Component” under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical appli-cations or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility as set forth in our basic WARRANT Y/DISCLAIMER language, and, additionally, purchaser will indemnify OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.RETURN REQUESTS/INQUIRIESDirect all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE RE URNING ANY PRODUC (S) O OMEGA, PURCHASER MUS OB AIN AN AUTHORIZED RETURN (AR) NUMBER FROM OMEGA’S CUSTOMER SERVICE DEPART MENT (IN ORDER T O AVOID PROCESSING DELAYS). T he assigned AR number should then be marked on the outside of the return package and on any correspondence.FOR WARRANTY RETURNS, please have the followinginformation available BEFORE contacting OMEGA:1. Purchase Order number under which the product was PURCHASED,2.3. Model and serial number of the product under warranty, and Repair instructions and/or specific problems relative to the product.FOR NON-WARRANTY REPAIRS, consult OMEGA for current repair charges. Have the following information available BEFORE contacting OMEGA:1. P urchase Order number to cover the COST of the repair or calibration,2.3.Model and serial number of the product, and R epair instructions and/or specific problems relative to the product.OMEGA’s policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.OMEGA is a trademark of OMEGA ENGINEERING, INC.© Copyright 2018 OMEGA ENGINEERING, INC. All rights reserved. T his document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of OMEGA ENGINEERING, INC.***********************Servicing North America:Omega Engineering, Inc.Toll-Free: 1-800-826-6342 (USA & Canada only)Customer Service: 1-800-622-2378 (USA & Canada only) Engineering Service: 1-800-872-9436 (USA & Canada only) Tel: (203) 359-1660 Fax: (203) 359-7700 e-mail:**************For Other Locations Visit /worldwidehis Quick Start Reference provides information on setting up your instrument for basic operation. The latest complete Communication and Operational Manual as well as free Software and ActiveX Controls are available at or on the CD-ROM enclosed with your shipment .SAFETY CONSIDERATIONThe instrument is a panel mount device protected in accordance with EN 61010-1:2001, electrical safetyrequirements for electrical equipment for measurement, control and laboratory.Remember that the unit has no power-on switch. Building installation should include a switch or circuit-breaker that must be compliant to IEC 947-1 and 947-3.SAFETY:•Do not exceed voltage rating on the label located on the back of the instrument housing.•Always disconnect power before changing signal and power connections.•Do not use this instrument on a work bench without its case for safety reasons.•Do not operate this instrument in flammable or explosive atmospheres.EMC:•Whenever EMC is an issue, always use shielded cables. •Never run signal and power wires in the same conduit.•Use signal wire connections with twisted-pair cables.•Install Ferrite Bead(s) on signal wire close to the instrument if EMC problems persist.。
配置说明书
Step 28. Select Latch Type SubmenuPress d to display flashing DSBL / ENBL .If flashing DSBL is displayed, press a , if ENBL is displayed, press b until DSBL is displayed, then press d to store and go to the next menu item.Step 29. Select the Above Type of Active Submenu Press d . If flashing ABoV Above is displayed, press a ,otherwise press b until ABoV is displayed. Press d to store and advance to next menu item.Step 30. Select the Deadband Value Submenu Press d . The display will show 020.0, otherwisepress b or c.Press d to store and advance to next menu item.Step 31. Enter the Alarm 2 MenuThe display will show ALR2the top menu for Alarm 2.Repeat steps from 29 and 30 to set for Alarm 2 the same conditions as for Alarm 1.Step 32. Configuration of Display Color Selection Press a until the COLR Display Color Selection Menu appears on the Display. Configure COLR as N.CLR / GRN (green), 1.CLR / RED (red), 2.CLR / AMBR (amber). Please refer to the operator’s manual if needed.Step 33. Run a TestPress a until reset the controller and return to RUN Mode to display 075.0(Ambient Temperature). Now you are ready to observe temperature as it rises 10°F higher than displayed. Touch the tip of the Thermocouple to raise the temperature above the Alarm 2 value 082.0, and AL2 will turn on, and Display Color will change from Green toAmber. Continue touching the tip to raise the temperature above the Alarm 1 value 087.0and Display Color will change from Amber to Red.Step 10. Enter to the Thermocouple Input Submenu Press d to store Thermocouple Input. The display will stop flashing and show the top menu for Thermocouple types. If you press a controller will step to next menu item (Skip to Step 14).Step 11. Enter to the Thermocouple Type Input Submenu Press d to display flashing, previously selected Thermocouple type.Step 12. Scroll through available selection of TC types Press b to sequence thru flashing Thermocouple types,(select k -for type "K" CHROMEGA ®/ALOMEGA ®)J K T E N DIN J R S B C - TC types J k t E N dN J R S b C - DisplayStep 13. Store TC typeAfter you have selected the Thermocouple type press d to store your selection, the instrument automatically advances to the next menu item.Step 14. Enter to Reading Configuration MenuThe display shows RDG Reading Configuration, which is the top menu for 4 submenus: Decimal Point, Degree Units,Filter Constant and Input/Reading Submenus.Step 15. Enter to Decimal Point Submenu Press d to show DEC Decimal Point.Step 16. Display the Decimal Point positionPress d again to display the flashing Decimal Point position.Step 17. Select the Decimal Point position Press b to select FFF.F Decimal Point position.Step 18. Store selected Decimal Point positionBy pressing d momentarily the Decimal Point position will be stored and the instrument will go to the next menu item.Step 19. Enter to Temperature Unit Submenu Display shows TEMP Temperature Unit.Step 20. Display available Temperature Units Press d to display the flashing Degree °F or °C .Step 21. Scroll through Temperature Units selection Press b to select °F Degree.Step 22. Store the Temperature UnitPress d to display momentarily that the Degree Unit has been stored and the instrument will go automatically to the next menu item.Step 23. Enter the Filter Constant Submenu Display shows FLTR Filter Constant Submenu.Step 24. Display the Filter Constant Value Submenu Press d to display the flashing, previously selected Filter Constant.Step 25. Scroll through available Filter Constants Press b to sequence thru Filter Constants 0001, 0002,0004, 0008, 0016, 0032, 0064and 0128.Step 26. Store the Filter ConstantPress d momentarily to store 0004Filter Constant and the instrument will automatically go to the next menu item.Step 27. Enter Alarm 1 MenuPress a until the ALR1Alarm 1 Menu appears on the Display. In the following steps we are going to DisableLatch, Active Above, Deadband 020.0, and above Setpoint 1Value will activate Alarm 1.MQS3846/N/0905SPECIFICATIONAccuracy:+0.5°C temp;0.03% rdg. process typical Resolution:1°/0.1°; 10 µV process Temperature Stability:0.04°C/°C RTD;0.05°C/°C TC @ 25°C (77°F); 50 ppm/°C process Display:4-digits, 9-segments LED,10.2 mm (0.40") with red, green and amber programmable colors Input Types:Thermocouple, RTD, Analog Voltage and Current TC:(ITS90)J, K, T, E, R, S, B, C, N, L RTD:(ITS68)100/500/1000 ohm Pt sensor 2-wire, 3-wire, or 4-wire;0.00385 or 0.00392 curve Voltage:0 to 100 mV, 0 to 1 V, 0 to 10 Vdc Current:0 to 20 mA (4 to 20 mA)Output 1†:Relay 250 Vac @ 3 A Resistive Load,SSR, Pulse, Analog Voltage and Current Output 2†:Relay 250 Vac @ 3 A Resistive Load,SSR, Pulse †Only for AlarmsOptions:Communication RS-232 / RS-485 or 10BaseT or Excitation:24 Vdc @ 25 mAExc. not available for Low Power OptionLine Voltage/Power:90 - 240 Vac ±10%,50 - 400 Hz*,or 110-375 Vdc, 4W for i16; 5W for i16D* No CE compliance above 60 HzLow Voltage Power Option:12 - 36 Vdc, 3 W** for i16;20 - 36 Vdc, 4 W** for i16D;**Units can be powered safely with 24 Vac but No Certification for CE/UL are claimed.Dimensions:48 H x 48 W x 127 D mm (1.89 x 1.89 x 5")Weight:159 g (0.35 lb)Approvals:CE per EN 61010-1:2001NEWPORT is constantly pursuing certification of its products to the European New Approach Directives.NEWPORT will add the CE mark to every appropriate device upon certification.The information contained in this document is believed to be correct, but NEWPORT Electronics, Inc.accepts no liability for any errors it contains, and reserves the right to alter specifications without notice.TRADEMARK NOTICE:,NEWPORT , NEWPORT , ,andthe “Meter Bezel Design”are Trademarks of NEWPORT ELECTRONICS, INC.This Quick Start Reference provides informationon setting up your instrument for basic operation.The latest complete Communication and OperationalManual as well as free Software and ActiveX Controlsare available at /i or on theCD-ROM enclosed with your shipment.SAFETY CONSIDERATIONThe instrument is a panel mount device protected in accordance with EN61010-1:2001. Remember that the unit has no power-on switch. Building installation should include a switch or circuit-breaker that must be compliant to IEC 947-1 and 947-3.SAFETY:•Do not exceed voltage rating on the label located onthe top of the instrument housing.•Always disconnect power before changing signal andpower connections.•Do not use this instrument on a work bench withoutits case for safety reason.•Do not operate this instrument in flammable orexplosive atmospheres.•Do not expose this instrument to rain or moisture. EMC:•Whenever EMC is an issue, always use shielded cables.•Never run signal and power wires in the same conduit.•Use signal wire connections with twisted-pair cables.•Install Ferrite Bead(s) on signal wire close to theinstrument if EMC problems persist.Panel Mounting Instruction:ing the dimensions from the panel cutout diagramshown above, cut an opening in the panel.2.Insert the unit into the opening from the front of the panel,so the gasket seals between the bezel and the front of the panel.3.Slide the retainer over the rear of the case and tightenagainst the backside of the mounting panel.。
latex符号大全
latex符号大全LaTeX符号大全。
LaTeX是一种基于TeX的排版系统,广泛用于生成科技文档和数学公式排版。
在LaTeX中,使用符号是非常常见的,它可以帮助我们表达各种数学、科技和工程领域的内容。
本文将为大家介绍LaTeX中常用的符号,帮助大家更好地使用LaTeX排版文档。
1.基本符号。
在LaTeX中,使用基本符号是非常简单的,例如加号“+”、减号“-”、乘号“”、除号“/”等。
这些符号在LaTeX中的输入方式和在常规文本中的输入方式是一样的,无需特殊的命令。
2.希腊字母。
LaTeX中常用的希腊字母包括α、β、γ、δ、ε、ζ、η、θ、ι、κ、λ、μ、ν、ξ、ο、π、ρ、σ、τ、υ、φ、χ、ψ、ω等。
在LaTeX中,输入希腊字母需要使用特定的命令,例如输入α需要使用“\alpha”命令。
这些希腊字母在数学公式中经常被用到,是LaTeX中不可或缺的一部分。
3.数学运算符号。
LaTeX中常用的数学运算符号包括加法“+”、减法“-”、乘法“”、除法“/”、等于“=”、大于“>”、小于“<”、不等于“≠”、大于等于“≥”、小于等于“≤”等。
这些符号在LaTeX中有对应的命令,方便我们在数学公式中使用。
4.箭头符号。
LaTeX中常用的箭头符号包括单向箭头“→”、“←”、“↑”、“↓”、双向箭头“↔”、“⇒”、“⇐”、“⇑”、“⇓”等。
这些箭头符号在LaTeX中也有对应的命令,方便我们在文档中使用。
5.逻辑符号。
在LaTeX中,逻辑符号也是非常常用的,例如与“∧”、或“∨”、非“¬”、蕴含“⇒”、等价“⇔”等。
这些逻辑符号在数学和逻辑推理中经常被用到,是LaTeX中不可或缺的一部分。
6.集合符号。
LaTeX中常用的集合符号包括空集“∅”、子集“⊆”、真子集“⊂”、并集“∪”、交集“∩”、补集“∁”等。
这些集合符号在数学中经常被用到,是LaTeX中不可或缺的一部分。
7.特殊符号。
除了上述常用的符号外,LaTeX中还有许多特殊的符号,例如数学常数“π”、自然对数“e”、无穷大“∞”、微分符号“d”、积分符号“∫”等。
EZ Shot 3 Plus Aspiration Needle Quick Reference G
For more information, contact your Olympus sales representative, or call 800-848-9024. ©2018 Olympus America Inc. All rights reserved.Printed in USA OAIET0518QRG26489EZ Shot 3 Plus has been designed to be used with an Olympus ultrasound endoscope for ultrasonically guided fine needle aspiration (FNA) and fine needle biopsy (FNB) of submucosal and extramural lesions within the gastrointestinal tract (i.e. pancreatic masses, mediastinal masses, perirectal masses and lymph nodes).EZ Shot 3 Plus Single-Use Aspiration Needle (NA-U200H series)Quick Reference Guide: Piercing & AspirationOlympus is a registered trademark of Olympus Corporation, Olympus America Inc., and/or their affiliates. I Medical devices listed may not be available for sale in all countries.CAUTION: This guide is only a summary of the instructions for use of the NA-U200H EZ Shot 3 Plus. Be sure to follow the instruction manual included with your purchase.45■Push the needle slider to extend the needle tube from the distal end of the sheath and pierce the target area while observing ultrasound image.■Confirm that the needle distal end has pierced the target and withdraw the stylet fully from the aspiration port.■Attach the syringe to the aspiration port and open the stopcock by turning it until it is parallel to the syringe.■Close the stopcock by turning it 90 degrees and pull the needle slider as far out as possible to retract the needle tube into the sheath.SyringeDisclaimer: Any content or information (“Content”) presented herein is illustrative in nature and does not guarantee or represent specific information,outcomes, or results. Olympus Corporation, its subsidiaries, affiliates, directors, officers, employees, agents, and representatives (collectively “Olympus”) does not represent to or warrant the accuracy or applicability of the Content. Under no circumstances shall Olympus be liable for any costs, expenses, losses, claims, liabilities, or other damages (whether direct, indirect, special, incidental, consequential, or otherwise) that may arise from, or be incurred in connection with, the Content or any use thereof.。
Siemens 控制器说明书
Step 30. Select the Deadband Value Submenu Press d . The display will show 020.0, otherwisepress b or c.Press d to store and advance to next menu item.Step 31. Enter the Alarm 2 MenuThe display will show ALR2the top menu for Alarm 2.Repeat steps from 29 and 30 to set for Alarm 2 the same conditions as for Alarm 1.Step 32. Configuration of Display Color Selection Press a until the COLR Display Color Selection Menu appears on the Display. Configure COLR as N.CLR /GRN (green), 1.CLR / RED (red), 2.CLR /AMBR (amber). Please refer to the operator’s manual if needed.For color change on Setpoints refer to Owners Manual Section 2.Step 33. Run a TestPress a until reset the controller and return to RUN Mode to display 075.0(Ambient Temperature). Now you are ready to observe temperature as it rises 10°F higher thandisplayed. Touch the tip of the Thermocouple to raise the temperature above the Alarm 2 High value 082.0, and AL2will turn on, and Display Color will change from Green to Amber. Continue touching the tip to raise the temperature above the Alarm 1 High value 087.0and Display Color will change from Amber to Red. Annunciator “1” is turning on and off displaying output 1.Step 11. Enter to the Thermocouple Type Input Submenu Press d to display flashing, previously selected Thermocouple type.Step 12. Scroll through available selection of TC types Press b to sequence thru flashing Thermocouple types,(select k -for type "K" CHROMEGA ®/ALOMEGA ®)J K T E N DIN J R S B C - TC types J k t E N dN J R S b C - DisplayStep 13. Store TC typeAfter you have selected the Thermocouple type press d to store your selection, the instrument automatically advances to the next menu item.Step 14. Enter to Reading Configuration MenuThe display shows RDG Reading Configuration, which is the top menu for 4 submenus: Decimal Point, Degree Units,Filter Constant and Input/Reading Submenus.Step 15. Enter to Decimal Point Submenu Press d to show DEC Decimal Point.Step 16. Display the Decimal Point positionPress d again to display the flashing Decimal Point position.Step 17. Select the Decimal Point position Press b to select FFF.F Decimal Point position.Step 18. Store selected Decimal Point positionBy pressing d momentarily the Decimal Point position will be stored and the instrument will go to the next menu item.Step 19. Enter to Temperature Unit Submenu Display shows TEMP Temperature Unit.Step 20. Display available Temperature Units Press d to display the flashing Degree °F or °C .Step 21. Scroll through Temperature Units selection Press b to select °F Degree.Step 22. Store the Temperature UnitPress d to display momentarily that the Degree Unit has been stored and the instrument will go automatically to the next menu item.Step 23. Enter the Filter Constant Submenu Display shows FLTR Filter Constant Submenu.Step 24. Display the Filter Constant Value Submenu Press d to display the flashing, previously selected Filter Constant.Step 25. Scroll through available Filter Constants Press b to sequence thru Filter Constants 0001, 0002,0004, 0008, 0016, 0032, 0064and 0128.Step 26. Store the Filter ConstantPress d momentarily to store 0004Filter Constant and the instrument will automatically go to the next menu item.Step 27. Enter Alarm 1 MenuPress a until the ALR1Alarm 1 Menu appears on the Display. In the following steps we are going to DisableLatch, Active Above, Deadband 020.0, and above Setpoint 1Value will activate Alarm 1.Step 28. Select Latch Type SubmenuPress d to display flashing DSBL / ENBL .If flashing DSBL is displayed, press a , if ENBL is displayed, press b until DSBL is displayed, then press d to store and go to the next menu item.Step 29. Select the Above Type of Active Submenu Press d . If flashing ABoV Above is displayed, press a ,otherwise press b until ABoV is displayed. Press d to store and advance to next menu item.MQS3720-SM/0305WARNING:These products are not designed for use in, and should not be used for, patient-connected applications.It is the policy of OMEGA to comply with all worldwide safety and EMC/EMI regulations that apply.OMEGA is constantly pursuing certification of its products to the European New Approach Directives.OMEGA will add the CE mark to every appropriate device upon certification.The information contained in this document is believed to be correct, but OMEGA Engineering,Inc.accepts no liability for any errors it contains, and reserves the right to alter specifications without notice.TRADEMARK NOTICE:®,®,, andare Trademarks ofOMEGA ENGINEERING, INC.®SPECIFICATIONAccuracy:+0.5°C temp;0.03% rdg. process typical Resolution:1°/0.1°; 10 µV process Temperature Stability:0.04°C/°C RTD;0.05°C/°C TC @ 25°C (77°F); 50 ppm/°C process Display:4-digit, 7-segment LED, 101.6mm (4.00”)with red, green, and amber programmable colors for process variable, set point and temperature units.Input Types:Thermocouple, RTD, Analog Voltage and Current TC: (ITS 90)J, K, T, E, R, S, B, C, N, L RTD: (ITS 68)100/500/1000 ohm Pt sensor2-, 3-, or 4-wire; 0.00385 or 0.00392 curve Voltage:0 to 100 mV, 0 to 1 V, 0 to 10 Vdc Current:0 to 20 mA (4 to 20 mA)Output 1†:Relay 250 Vac @ 3 A Resistive Load,SSR, Pulse, Analog Voltage and Current Output 2†:Relay 250 Vac @ 3 A Resistive Load,SSR, Pulse†Only for AlarmsOptions:Communication RS-232 / RS-485 or Excitation:24 VdcPower:100-240 Vac ±10%,50-60 Hz, 22.5 W Dimensions:480.0L x 210.8W x 95.4D mm (18.11" x 8.31" x 3.76")Panel Cutout:414.3 L x 179.4 W mm (16.31” L x 7.06” W)Weight:2,495 g (5.5 lbs)Approvals:CE per EN61010-1:2001This Quick Start Reference provides information onsetting up your instrument for basic operation. Thelatest complete Communication and OperationalManual as well as free Software and ActiveXControls are available at or onthe CD-ROM enclosed with your shipment.The instrument is a panel mount device protected in accordance with EN 61010-1:2001, electrical safety requirements for electrical equipment for measurement, control and laboratory.Remember that the unit has no power-on switch. Building installation should include a switch or circuit-breaker that must be compliant to IEC 947-1 and 947-3. SAFETY:•Do not exceed voltage rating on the label located onthe back of the instrument housing.•Always disconnect power before changing signal andpower connections.•Do not use this instrument on a work bench withoutits case for safety reasons.•Do not operate this instrument in flammable orexplosive atmospheres.EMC:•Whenever EMC is an issue, always use shielded cables.•Never run signal and power wires in the same conduit.•Use signal wire connections with twisted-pair cables.•Install Ferrite Bead(s) on signal wire close to theinstrument if EMC problems persist.。
(2011ceRNA)Coding-Independent Regulation
Coding-Independent Regulationof the Tumor Suppressor PTENby Competing Endogenous mRNAsYvonne Tay,1Lev Kats,1Leonardo Salmena,1Dror Weiss,1Shen Mynn Tan,2,3Ugo Ala,1,4Florian Karreth,1Laura Poliseno,1,6Paolo Provero,4Ferdinando Di Cunto,4Judy Lieberman,2,3Isidore Rigoutsos,5and Pier Paolo Pandolfi1,*1Cancer Genetics Program,Division of Genetics,Beth Israel Deaconess Cancer Center,Department of Medicine and Pathology,Beth Israel Deaconess Medical Center2Immune Disease Institute and Program in Cellular and Molecular Medicine,Children’s Hospital Boston3Department of PediatricsHarvard Medical School,Boston,MA02115,USA4Molecular Biotechnology Center and Department of Genetics,Biology,and Biochemistry,University of Turin,Turin,Italy5Computational Medicine Center,Jefferson Medical College,Thomas Jefferson University,Philadelphia,PA19107,USA6Present address:Department of Dermatology,New York University School of Medicine,522First Avenue,Smilow406,New York,NY10016,USA*Correspondence:ppandolf@DOI10.1016/j.cell.2011.09.029SUMMARYHere,we demonstrate that protein-coding RNA tran-scripts can crosstalk by competing for common microRNAs,with microRNA response elements as the foundation of this interaction.We have termed such RNA transcripts as competing endogenous RNAs(ceRNAs).We tested this hypothesis in the context of PTEN,a key tumor suppressor whose abundance determines critical outcomes in tumori-genesis.By a combined computational and experi-mental approach,we identified and validated endog-enous protein-coding transcripts that regulate PTEN,antagonize PI3K/AKT signaling,and possess growth-and tumor-suppressive properties.Notably, we also show that these genes display concordant expression patterns with PTEN and copy number loss in cancers.Our study presents a road map for the prediction and validation of ceRNA activity and networks and thus imparts a trans-regulatory func-tion to protein-coding mRNAs.INTRODUCTIONRegulation of gene expression by small noncoding RNA mole-cules is ubiquitous in many eukaryotic organisms from protozoa to plants and animals.In mammals,$22nucleotide long RNAs termed microRNAs guide the RNA-induced silencing complex (RISC)to microRNA response elements(MREs)on target transcripts,usually resulting in degradation of the transcript or inhibition of its translation(Bartel,2009;Bartel and Chen, 2004).Individual genes often contain MREs for multiple distinct microRNAs,and conversely,individual microRNAs often target multiple distinct transcripts(Friedman et al.,2009).We and others recently provided experimental support to the hypothesis that RNA molecules that share MREs can regulate each other by competing for microRNA binding(Cazalla et al., 2010;Jeyapalan et al.,2011;Kloc,2008;Lee et al.,2009; Poliseno et al.,2010b;Seitz,2009).Specifically,we reported several examples of pseudogene transcripts exerting regulatory control of their ancestral cancer gene’s expression levels by competing for microRNAs that targeted sequences common to the mRNA and the pseudo-mRNA(Poliseno et al.,2010b),in keeping with the notion that the microRNA activity should be theoretically affected by the availability of its target MRE in the cellular milieu(Arvey et al.,2010).This,in turn,led us to hypothesize that the mRNA/microRNA network would operate through a reverse logic whereby protein-coding and noncoding mRNAs would communicate with each other in a microRNA-dependent manner through a MRE language(Salmena et al.,2011).We proposed that a reversed RNA/microRNA function exists,whereby RNAs actively regulate each other through direct competition for microRNA binding.In this work,we tested this hypothesis experimentally and present a comprehensive scheme for the prediction and validation of ceRNA activity and networks demonstrating that bioinformatic predictions followed by a set of stringent biological tests allow for the identification and valida-tion of ceRNAs for mRNAs of interest.We focused our analysis on the ceRNA network encompassing PTEN,a critical tumor suppressor gene that encodes a phosphatase that converts phosphatidylinositol3,4,5-trisphosphate to phosphatidylinositol 4,5-bisphosphate,thereby antagonizing the highly oncogenic PI3K/Akt-signaling pathway(Hollander et al.,2011).PTEN was selected as a model system for three reasons:(1) PTEN expression is frequently altered in a wide spectrum of human cancers(Hollander et al.,2011),(2)subtle changes in344Cell147,344–357,October14,2011ª2011Elsevier Inc.PTEN dose dictate critical outcomes in tumor initiation and progression in vivo(Alimonti et al.,2010;Berger et al.,2011; Trotman et al.,2003),and(3)numerous microRNAs have been validated as PTEN regulators,including the proto-oncogenic miR-106b$25cluster that is overexpressed in prostate cancer (Huse et al.,2009;Mu et al.,2009;Olive et al.,2009;Poliseno et al.,2010a;Xiao et al.,2008).Taken together,these previous studies suggested that bonafide PTEN ceRNAs,as well as a broader PTEN ceRNA network,may represent a previously un-characterized RNA-dependent tumor-suppressive dimension.RESULTSIdentification of Candidate PTEN ceRNAsTo identify and characterize the PTEN ceRNA network in the human genome,we devised a multifaceted scheme involving integrated computational analysis and experimental validation (Figure1A),an approach that we termed mu tually ta rgeted M RE e nrichment(MuTaME).Initially,we sought to identify mRNAs that are targeted by PTEN-targeting microRNAs.We focused on validated PTEN-targeting microRNAs,specifically those previously implicated in the ceRNA-mediated regulation of PTEN by its pseudogene PTENP1:miR-17-5p,miR-19a, miR-19b,miR-20a,miR-20b,miR-26a,miR-26b,miR-93,miR-106a,miR-106b,and miR-214(Poliseno et al.,2010a,2010b), and we excluded miR-214from subsequent analysis,as it is not expressed in the cell lines utilized to validate the putative PTEN ceRNAs(Figure S1A available online).Importantly,we also examined the physical association of the PTEN30UTR with endogenous levels of these microRNAs in the cell line used in our study.We reasoned that this represents a critical selective criterion to guide the computational component of our analysis(Figure1A).To do so,we performed RNA immu-noprecipitation(RIP)to pull down endogenous microRNAs associated with the PTEN30UTR(Figure S1B)and demonstrated via real-time PCR analysis that the PTEN30UTR RIP in DU145 prostate cancer cells significantly enriched for miR-17-5p, 19a,19b,20a,26a,93,106a,and106b compared to empty vector and IgG controls and a nontargeting microRNA control (miR-191)(Figure1B).These results further support the claim that these microRNAs,which were previously validated mainly by overexpression and/or knockdown experiments,are bona fide PTEN-targeting microRNAs in this cell line and justify their inclusion in our analyses.We next used the rna22microRNA target prediction algorithm (Miranda et al.,2006)available at / rna22.html to generate MuTaME scores for the entire human protein-coding transcriptome.The choice of rna22was based on earlier reports supporting its low rate of false prediction (Hammell et al.,2008;Ritchie et al.,2009).A central tenet of our hypothesis is that trans-regulatory ceRNA crosstalk increases with the number of microRNAs that are shared by tran-scripts.This is thefirst consideration in deriving a MuTaMe score.The second consideration results from an often ignored dependence on the length of the candidate transcript’s30UTR: the expected number of spurious microRNA target predictions increases with the length of the candidate30UTR through a nonlinear relationship(Altschul et al.,1990;Miranda et al.,2006),and this holds true independently of the algorithm used to predict microRNA targets.This dependence on length and thefindings described in Miranda et al.and Ritchie et al. (Miranda et al.,2006;Ritchie et al.,2009)suggest that scenarios in which(1)there are many predicted MREs in a candidate tran-script,(2)the MREs are spread over a relatively short span and are as evenly distributed within the span as possible,and(3) multiple MREs are predicted for each of the microRNAs under consideration ought to be favored.To summarize,MuTaME evaluates a candidate ceRNA X based on the following:(1)how many microRNAs it shares with the mRNA M of interest.In our case,this is PTEN and is captured by the ratio of#microRNAs predicted to target X over #microRNAs being considered,which increases with the number of targeting microRNAs that X shares with M;(2)the number of MREs predicted in X for the i-th microRNA and the width of the span that they cover.This is captured by the ratio of#MREs in X for i-th microRNA over distance between leftmost and rightmost predicted MRE for the i-th microRNA,which favors situations in which more MREs spanning shorter distances are predicted for the i-th microRNA,and it captures one of the main observations in(Ritchie et al.,2009);(3)how evenly distributed the predicted MREs for the i-th microRNA are over the distance they span in X.This is captured by the ratio of square of the distance between leftmost and rightmost predicted MRE for the i-th microRNA over sum of the squared distances between successive MREs of the i-th microRNA,which favors more evenly distributed MREs for each microRNA and penalizes cases in which the majority,but not all,of a microRNA’s MREs aggregate in a narrow neighborhood;and(4)the relation between the total number of MREs predicted in X compared to the total number of microRNAs that give rise to these MREs.This is captured by the ratio of(#MREs in X for all considered microRNAsÀ#microRNAs predicted to target X+1)over#MREs in X for all considered microRNAs,which favors situations in which each targeting microRNA gives rise to more than one MRE in X.A priori, there is no reason to favor one type of contribution more than the rest,and thus,each candidate transcript X receives a com-bined MuTaMe score obtained simply by multiplying these four components.Furthermore,for our specific setting,we set strin-gent criteria and required that(1)a candidate ceRNA be targeted by at least seven of the ten validated PTEN-targeting microRNAs and(2)all predicted MREs occur only in the candidate ceRNA’s 30UTR.One potential concern here is whether this scoring approach would be biased in favor of transcripts X with longer 30UTRs.Notably,we observed no correlation between30UTR length and MuTaMe score(corr=À0.13)or between30UTR length and the number of microRNAs predicted to target a candidate ceRNA(corr=0.07).Using MuTaMe,we identified158candidate protein-coding transcripts representing136distinct genes as putative trans-regulators of PTEN(Figures1C and1D and Table S1).Intriguingly,the candidates displayed a nonrandom enrich-ment in selected biological categories(Figure S1C).Putative PTEN ceRNAs Are Coexpressed with PTENIn VivoAs our hypothesis predicts that transcripts within a ceRNA network are coregulated,wefirst examined whether putative Cell147,344–357,October14,2011ª2011Elsevier Inc.345Figure1.Mutually Targeted MRE Enrichment Analysis Predicts Competitive Endogenous RNAs for PTEN(A)Schematic outlining the mutually targeted MRE enrichment(MuTaME)analysis and subsequent experimental validation strategy.Validated PTEN-targeting microRNAs were used to predict putative PTEN ceRNAs.Candidates sharing at least seven microRNAs were considered putative PTEN ceRNAs.346Cell147,344–357,October14,2011ª2011Elsevier Inc.PTEN ceRNAs are coexpressed with PTEN in human samples. We selected the top seven candidates from our MuTaME analysis(NCOA7,BCL11B,SERINC1,ZNF460,NUDT13, DTWD2,and VAPA)(Figure1D)and investigated whether their expression correlated with PTEN expression in human prostate cancer(GSE21032)and glioblastoma(GSE15824),malignancies commonly defined by reduced PTEN levels.Significantly, NCOA7,SERINC1,ZNF460,and VAPA showed differential expression when samples were subdivided according to PTEN expression levels in both prostate cancer(179total samples: 29normal,150tumor)and glioblastoma(45total samples:5 normal,40tumor)(Figures2A,2B,and S2A).Expression of these four genes was also significantly correlated with PTEN transcript levels(Figure S2C).As the prostate cancer study contained integrated expression profiling of both mRNAs and microRNAs,we were also able to rank patient samples according to microRNA expression levels. This enabled us to assess whether microRNA expression levels impact the coexpression correlation of PTEN ceRNAs and PTEN. Taking into account only the expression levels of the ten vali-dated PTEN-targeting microRNAs used in our analysis,we sub-divided samples into two groups:thefirst in which microRNAs were expressed at a lower level compared to their expression level in all samples and the second in which they were expressed at a higher level.The Pearson correlation coefficients between PTEN and its candidate ceRNAs were calculated in both groups, and intriguingly,we found an increase in correlation between SERINC1,ZNF460,and VAPA expression levels and PTEN when the microRNA expression was taken into consideration (Figure2C).NCOA7was not significantly correlated with PTEN in this analysis(Figure S2B).The significant correlation between PTEN expression and SERINC1,ZNF460,and VAPA expression and the sensitivity of this correlation to microRNA expression levels support our hypothesis that ceRNA transcripts can regulate PTEN levels in a biologically relevant manner.We next examined the coexpres-sion of these three genes with PTEN in a database of multitissue and tissue-specific conserved human-mouse gene coexpres-sion networks(Piro et al.,2011)and found that these genes were present in the top1%of genes coexpressed with PTEN in several human-specific coexpression networks(Figure S2E). Based on their consistent coexpression with PTEN,we selected SERINC1,ZNF460,and VAPA for subsequent experimental validation.Additionally,to investigate the extent to which lower-ranking candidates from our list exerted regulatory control over PTEN, wefirst explored the correlation of the20transcripts on our list with the lowest MuTaME scores with PTEN as described above. One of the most significantly correlated transcripts in both the prostate cancer and glioblastoma data sets was CNOT6L,which was also found to be significantly correlated with PTEN in the largest number of multitissue and tissue-specific conserved human-mouse gene coexpression networks(Figure S2D).We thus selected it as another candidate for further validation analysis. PTEN ceRNAs Modulate PTEN LevelsWe investigated the ability of these putative PTEN ceRNAs to modulate PTEN levels byfirst examining the effect of depletion of these candidates on endogenous PTEN protein levels in DU145prostate cancer cells(Figure3A).For this analysis,we also included two genes,ACSL4and UNC5CL,which are not predicted targets of these PTEN-targeting microRNAs as negative controls(Figure1C).These experiments were per-formed using siRNA pools(a combination of four independent siRNAs),which are designed to achieve strong on-target gene knockdown with minimal off-target effects.Real-time PCR anal-ysis confirmed efficient siRNA-mediated knockdown of candidate PTEN ceRNAs(Figure S3A).Depletion of SERINC1,ZNF460, VAPA,or CNOT6L transcripts did indeed result in a significant reduction in PTEN protein levels,whereas depletion of ACSL4or UNC5CL did not have a significant effect(Figures3A and3B). Moreover,reduced PTEN protein levels were accompanied by a concomitant,albeit less significant,decrease in PTEN transcript levels for SERINC1,VAPA,and CNOT6L knockdown(Figure3B). To ascertain whether this observed effect is dependent upon regulation of the PTEN30UTR,we constructed a chimeric lucif-erase construct tagged with the PTEN30UTR(Luc-PTEN30UTR). This approach allows us to uncouple regulation of PTEN via 30UTR-targeting microRNAs from PTEN mRNA transcription and protein stability.siRNA-mediated reduction of SERINC1, VAPA,and CNOT6L transcripts in Luc-PTEN30UTR-expressing cells significantly lowered luciferase activity(Figure3C). However,siRNA-mediated ZNF460knockdown did not signifi-cantly reduce Luc-PTEN30UTR activity,suggesting that the observed effect on PTEN protein is not solely mediated by the PTEN30UTR.We thus excluded it from subsequent analysis. Conversely,ectopic overexpression of PTEN ceRNA30UTRs in DU145cells led to a marked upregulation of both Luc-PTEN30UTR and endogenous protein levels,similar to the effect of overexpression of the PTEN30UTR on PTEN protein levels (Figures3D–3F).Due to their large size,the VAPA and CNOT6L 30UTRs were each cloned as two separate fragments subdivided based on the location of predicted MREs.Thus,sequestration of only a fraction of PTEN-targeting microRNAs may impact PTEN expression.MicroRNA Dependency of ceRNA-Mediated PTEN RegulationTo investigate the microRNA dependency of ceRNA-mediated PTEN regulation,we utilized isogenic wild-type and DICER mutant HCT116colon carcinoma cells.In the latter,gene target-ing was used to disrupt a well-conserved segment of the N-terminal helicase domain in exon5of DICER(Cummins et al.,2006).As DICER is a critical enzyme involved in the(B)MS2-RIP followed by microRNA RT-PCR to detect microRNAs endogenously associated with PTEN30UTR.Mean±SD;n R3;*p<0.05;**p<0.01.(C)Heat map showing MRE enrichment of the top20(top)and bottom20(middle)putative PTEN ceRNAs and25randomly selected transcripts(bottom).(D)Table summarizing predicted MREs in the30UTRs of the top seven putative PTEN ceRNAs.See also Figure S1and Table S1.Cell147,344–357,October14,2011ª2011Elsevier Inc.347processing of mature microRNAs,the DICER Ex5mutant cells presented an ideal system to evaluate microRNA-dependent effects.Though DICER processes the vast majority of mature mi-croRNAs,not all microRNAs exhibit DICER-dependent process-ing.We thus assessed whether processing of the microRNAs used in our analyses (Figures 1A and 1B)is abrogated in DICER Ex5HCT116cells.Indeed,microRNA real-time PCR anal-ysis confirmed that these microRNAs were significantly downre-gulated in DICER Ex5HCT116cells (Figure S3C).We also confirmed that siRNA-mediated gene silencing is independentof DICER processing and hence is fully functional in DICER Ex5HCT116cells (Figure S3B).Similar to the experiments in DU145prostate cancer cells,siRNA-mediated depletion of SERINC1,VAPA ,or CNOT6L expression resulted in a significant downregulation of PTEN protein in wild-type HCT116colon cancer cells (Figures 3G and 3H).Importantly,PTEN downregulation by ceRNA loss was profoundly attenuated in DICER Ex5HCT116cells (Figures 3G and 3H),suggesting that mature microRNAs are essential for the regulation of PTEN by these threetranscripts.Figure 2.Coexpression of PTEN and PTEN ceRNAs in Human Cancer(A and B)Comparison of PTEN ceRNA expression levels in primary (A)prostate cancer and (B)glioblastoma between two subsets of samples:‘‘PTEN high’’and ‘‘PTEN low,’’classified according to the average PTEN expression level.p <0.001except for SERINC1in glioblastoma,in which p =0.009.The ends of the whiskers represent the minimum and maximum of all the data.(C)Coexpression analysis of PTEN and PTEN ceRNAs in subsets of the human prostate cancer specimens analyzed in (A)with decreased (blue,top)or increased (red,bottom)expression of PTEN-targeting microRNAs.p <0.001for all graphs except for SERINC1microRNA up (p =0.002)and ZNF460microRNA up (p =0.024).See also Figure S2.348Cell 147,344–357,October 14,2011ª2011Elsevier Inc.PTEN ceRNAs Are Regulated by PTEN-Targeting MicroRNAsAfter successfully validating SERINC1,VAPA ,and CNOT6L as bona fide PTEN ceRNAs that regulate PTEN levels in a micro-RNA-dependent manner,we next investigated their association with the PTEN -targeting microRNAs used in our analysis.We focused on VAPA and CNOT6L,as they had the most significant effect on PTEN at the 30UTR level (Figures 3C–3F).We constructed chimeric luciferase constructs tagged with the respective ceRNA 30UTR fragments.As mentionedpreviously,Figure 3.Putative PTEN ceRNAs Modulate PTEN Expression(A)Western blot for PTEN protein levels in DU145cells transfected with siRNA against predicted ceRNAs SERINC1(siSER),ZNF460(siZNF),VAPA (siVAPA),and CNOT6L (siCNO)and selected nontargeting controls ACSL4(siACS)and UNC5CL (siUNC).(B)Quantitation of PTEN protein shown in (A)and PTEN mRNA changes after transfection with siRNA against ceRNA as measured by RT-PCR.(C)Luciferase activity in DU145cells cotransfected with siRNA against PTEN ceRNAs and a luciferase-PTEN 30UTR reporter construct.(D)Luciferase activity in DU145cells cotransfected with PTEN ceRNAs 30UTRs and a luciferase-PTEN 30UTR reporter construct.(E)Western blot showing PTEN protein in response to overexpression of ceRNA 30UTRs in DU145cells.(F)Quantitation of PTEN protein shown in (E).(G)Western blot for PTEN in HCT116WT (top)and DICER Ex5(bottom)cells transfected with siRNAs against PTEN ceRNAs.(H)Quantitation of PTEN protein shown in (G).(B,D–F,and H)Mean ±SD;n R 4;*p <0.05;**p <0.01;***p <0.001.See also Figure S3.Cell 147,344–357,October 14,2011ª2011Elsevier Inc.349Figure4.MicroRNA Dependency of PTEN ceRNA Function(A)Schematic outlining the predicted binding sites of PTEN-targeting microRNAs to the30UTR of VAPA.The two fragments VAPA30UTR1and VAPA30UTR2were used for the luciferase experiments.350Cell147,344–357,October14,2011ª2011Elsevier Inc.the VAPA and CNOT6L30UTRs were each cloned as two sepa-rate fragments subdivided based on the location of predicted MREs due to their large size(Figures4A and4D).Expression of miR-17,20a,20b,and106a significantly reduced Luc-VAPA-30UTR1activity,and expression of miR-19a,26b,and106b significantly reduced Luc-VAPA-30UTR2activity in both DU145 and wild-type HCT116cells(Figure4B).The effect of miR-93 and106b appeared to be cell type specific:miR-93significantly reduced Luc-VAPA-30UTR1activity in HCT116wild-type cells only,whereas miR-106b significantly reduced Luc-VAPA-30UTR1activity in DU145cells only(Figure4B).Consistent with the luciferase results,overexpression of miRs17,19a,20a,20b,26b,106a,and106b caused a significant downregulation of VAPA protein levels(Figure4C).These results confirm that these validated PTEN-targeting microRNAs also regulate VAPA protein levels via its30UTR.Overexpression of miR-93also resulted in a significant reduction of VAPA protein levels,in contrast to its effect on the Luc-VAPA-30UTR1reporter. This suggests that miR-93is able to regulate VAPA protein levels independently of its30UTR,perhaps via targeting MREs located outside of the30UTR or modulation of upstream regulators.It is important to note that the effects of the various microRNAs on VAPA were consistently less profound than on those on PTEN. This result is in agreement with the fact that VAPA transcript is expressed at levels significantly higher than PTEN in DU145cells (100-fold),a factor that may significantly increase its efficacy as a PTEN ceRNA(Figure S4A).As predicted,miR-17,19a,19b,20a,20b,and106b signifi-cantly reduced Luc-CNO-30UTR1activity in both DU145and wild-type HCT116cells(Figure4E).Transfection of miR-93 significantly reduced the activity of Luc-CNO-30UTR2,but not Luc-CNO-30UTR1,consistent with the location of the predicted MRE(Figure4E).As we were unable tofind a good antibody for CNOT6L for western blot analysis,we instead performed RIP to confirm the physical association of these microRNAs with the CNOT6L30UTR.RIP for CNOT6L30UTR1in DU145 prostate cancer cells significantly enriched for miR-17-5p,19a, 19b,20a,and106b compared to empty vector and IgG controls, whereas RIP for CNOT6L30UTR2significantly enriched for only miR-93(Figure4F).Expression of miR-20b was not detected, possibly due to its low level of endogenous expression(Fig-ure S1A).These results therefore confirm the microRNA:30UTR associations predicted by our MuTaME analysis.Reciprocal ceRNA InteractionsFurthermore,we postulate that ceRNA networks will behave in a mutually reciprocal manner,i.e.,ceRNAs will regulate one another bidirectionally.In an effort to study the network and reciprocal effects of ceRNA misexpression,we investigated the ability of PTEN downregulation to modulate VAPA protein expression and vice versa.We could not perform this experiment for CNOT6L due to the lack of specific antibodies,as mentioned above.Interestingly,we observed that siRNA knockdown of PTEN was able to significantly reduce VAPA expression in both DU145and HCT116cells(Figure S4B,top and middle),thus identifying regulatory loops between ceRNAs.This reciprocal regulation was at least partially microRNA dependent,as it was significantly lost in DICER Ex5HCT116cells(Figure S4B,bottom). Attenuated Expression of PTEN ceRNAs Activatesthe PI3K/AKT PathwayWe next investigated the biological function of CNOT6L and VAPA in accordance with defined experimental criteria(Fig-ure1A).On the basis of our hypothesis,the net output of any given gene on oncogenic PI3K/AKT signaling encompasses their protein function,as well as ceRNA effect on PTEN and other transcripts.We therefore decided to determine which of the PTEN ceRNAs would not solely regulate PTEN,but also yield a robust suppressive effect on PI3K/AKT as well as on growth-and tumor-promoting activities.First,we evaluated the conse-quences of ceRNA-mediated PTEN regulation on the activation of the PI3K pathway.Aberrant activation of the PI3K/AKT pathway,at least in part,accounts for the protumorigenic effect of PTEN loss.DU145cells depleted of individual PTEN ceRNAs were serum starved and restimulated,and AKT activation was determined.Consistent with the effect on PTEN protein levels, abrogation of CNOT6L or VAPA expression significantly elevated phospho-Akt(p-Akt)levels in response to serum stimulation (Figure5A).Depletion of CNOT6L in wild-type HCT116augmented AKT activation in response to serum starvation and restimulation (1.6-and2.1-fold change at5and15min,respectively,relative to the negative control transfection at the same time points)(Fig-ure5A),similar to the effects observed in DU145cells.Similarly, VAPA depletion elevated p-Akt levels postrestimulation(1.8-and 2.1-fold change at0and5min,respectively,relative to the nega-tive control transfection at the same time points)(Figure5A). Notably,the effect of CNOT6L depletion on p-AKT was completely abrogated in DICER Ex5HCT116cells(p-Akt levels at5and15min were0.9-and0.4-fold,respectively,relative to the negative control transfection at the same time points),and the effect of VAPA depletion was significantly reduced(p-Akt levels at0and5min were0.8-and1.4-fold,respectively,relative to the negative control transfection at the same time points)(Fig-ure5A).Our results therefore demonstrate that downregulation of CNOT6L and VAPA activated the PI3K/AKT pathway in(B)Luciferase activity in DU145cells cotransfected with validated PTEN-targeting microRNAs predicted to target VAPA and luciferase-VAPA-30UTR1and30UTR2 reporter constructs.(C)Western blot analysis of PTEN and VAPA expression in DU145cells transfected with validated PTEN-targeting microRNAs predicted to target VAPA.(D)Schematic outlining the predicted binding sites of PTEN-targeting microRNAs to the30UTR of CNOT6L.The two fragments CNOT30UTR1and CNOT30UTR2 were used for the luciferase and RIP experiments.(E)Luciferase activity in DU145cells cotransfected with validated PTEN-targeting microRNAs predicted to target CNOT6L and luciferase-CNOT-30UTR1and 30UTR2reporter constructs.(F)RIP followed by microRNA RT-PCR shows enrichment of PTEN-targeting microRNAs associated with CNOT6L30UTR.(B,C,E,and F)Mean±SD;n R4;*p<0.05;**p<0.01;***p<0.001.See also Figure S4.Cell147,344–357,October14,2011ª2011Elsevier Inc.351。
恒温控制器用户指南说明书
Step 30. Select the Deadband Value Submenu Press d . The display will show 020.0, otherwisepress b or c.Press d to store and advance to next menu item.Step 31. Enter the Alarm 2 MenuThe display will show ALR2the top menu for Alarm 2.Repeat steps from 29 and 30 to set for Alarm 2 the same conditions as for Alarm 1.Step 32. Configuration of Display Color Selection Press a until the COLR Display Color Selection Menu appears on the Display. Configure COLR as N.CLR /GRN (green), 1.CLR / RED (red), 2.CLR /AMBR (amber). Please refer to the operator’s manual if needed.For color change on Setpoints refer to Owners Manual Section 2.Step 33. Run a TestPress a until reset the controller and return to RUN Mode to display 075.0(Ambient Temperature). Now you are ready to observe temperature as it rises 10°F higher thandisplayed. Touch the tip of the Thermocouple to raise the temperature above the Alarm 2 High value 082.0, and AL2will turn on, and Display Color will change from Green to Amber. Continue touching the tip to raise the temperature above the Alarm 1 High value 087.0and Display Color will change from Amber to Red. Annunciator “1” is turning on and off displaying output 1.Step 11. Enter to the Thermocouple Type Input Submenu Press d to display flashing, previously selected Thermocouple type.Step 12. Scroll through available selection of TC types Press b to sequence thru flashing Thermocouple types,(select k -for type "K" CHROMEGA ®/ALOMEGA ®)J K T E N DIN J R S B C - TC types J k t E N dN J R S b C - DisplayStep 13. Store TC typeAfter you have selected the Thermocouple type press d to store your selection, the instrument automatically advances to the next menu item.Step 14. Enter to Reading Configuration MenuThe display shows RDG Reading Configuration, which is the top menu for 4 submenus: Decimal Point, Degree Units,Filter Constant and Input/Reading Submenus.Step 15. Enter to Decimal Point Submenu Press d to show DEC Decimal Point.Step 16. Display the Decimal Point positionPress d again to display the flashing Decimal Point position.Step 17. Select the Decimal Point position Press b to select FFF.F Decimal Point position.Step 18. Store selected Decimal Point positionBy pressing d momentarily the Decimal Point position will be stored and the instrument will go to the next menu item.Step 19. Enter to Temperature Unit Submenu Display shows TEMP Temperature Unit.Step 20. Display available Temperature Units Press d to display the flashing Degree °F or °C .Step 21. Scroll through Temperature Units selection Press b to select °F Degree.Step 22. Store the Temperature UnitPress d to display momentarily that the Degree Unit has been stored and the instrument will go automatically to the next menu item.Step 23. Enter the Filter Constant Submenu Display shows FLTR Filter Constant Submenu.Step 24. Display the Filter Constant Value Submenu Press d to display the flashing, previously selected Filter Constant.Step 25. Scroll through available Filter Constants Press b to sequence thru Filter Constants 0001, 0002,0004, 0008, 0016, 0032, 0064and 0128.Step 26. Store the Filter ConstantPress d momentarily to store 0004Filter Constant and the instrument will automatically go to the next menu item.Step 27. Enter Alarm 1 MenuPress a until the ALR1Alarm 1 Menu appears on the Display. In the following steps we are going to DisableLatch, Active Above, Deadband 020.0, and above Setpoint 1Value will activate Alarm 1.Step 28. Select Latch Type SubmenuPress d to display flashing DSBL / ENBL .If flashing DSBL is displayed, press a , if ENBL is displayed, press b until DSBL is displayed, then press d to store and go to the next menu item.Step 29. Select the Above Type of Active Submenu Press d . If flashing ABoV Above is displayed, press a ,otherwise press b until ABoV is displayed. Press d to store and advance to next menu item.MQS3716-SM/0305WARNING:These products are not designed for use in, and should not be used for, patient-connected applications.It is the policy of OMEGA to comply with all worldwide safety and EMC/EMI regulations that apply. OMEGA is constantly pursuing certification of its products to the European New Approach Directives. OMEGA will add the mark to every appropriate device upon certification.The information contained in this document is believed to be correct, but OMEGA Engineering, Inc. accepts no liability for any errors it contains, and reserves the right to alter specifications without notice.TRADEMARK NOTICE:®,®,, andare Trademarks ofOMEGA ENGINEERING, INC.®SPECIFICATIONAccuracy:+0.5°C temp;0.03% rdg. process typical Resolution:1°/0.1°; 10 µV process Temperature Stability:0.04°C/°C RTD;0.05°C/°C TC @ 25°C (77°F); 50 ppm/°C process Display:4-digit, 7-segment LED, 57.2 mm (2.25") with red, green, and amber programmable colors for process variable, set point and temperature units.Input Types:Thermocouple, RTD, Analog Voltage and Current TC: (ITS 90)J, K, T, E, R, S, B, C, N, L RTD: (ITS 68)100/500/1000 ohm Pt sensor2-, 3-, or 4-wire; 0.00385 or 0.00392 curve Voltage:0 to 100 mV, 0 to 1 V, 0 to 10 Vdc Current:0 to 20 mA (4 to 20 mA)Output 1†:Relay 250 Vac @ 3 A Resistive Load,SSR, Pulse, Analog Voltage and Current Output 2†:Relay 250 Vac @ 3 A Resistive Load,SSR, Pulse†Only for AlarmsOptions:Communication RS-232 / RS-485 or Excitation:24 Vdc Power:100-240 Vac ±10%,50-60 Hz, 22.5 W Dimensions:289 L x 137 W x 73 D mm(11.75” L x 5.375” W x 2.875” D)Panel Cutout:279.4 L x 116.8 W mm (11.00” L x 4.60” W)Weight:1,360 g (3 lbs)Approvals:per EN 61010-1:2001iLD24 Big Displayhis Quick Start Reference provides information on setting up your instrument for basic operation. The latest complete Communication and Operational Manual as well as free Software and ActiveX Controls are available at or on the CD-ROM enclosed with your shipment .SAFETY CONSIDERATIONThe instrument is a panel mount device protected in accordance with EN 61010-1:2001, electrical safetyrequirements for electrical equipment for measurement, control and laboratory.Remember that the unit has no power-on switch. Building installation should include a switch or circuit-breaker that must be compliant to IEC 947-1 and 947-3.SAFETY:•Do not exceed voltage rating on the label located on the back of the instrument housing.•Always disconnect power before changing signal and power connections.•Do not use this instrument on a work bench without its case for safety reasons.•Do not operate this instrument in flammable or explosive atmospheres.EMC:•Whenever EMC is an issue, always use shielded cables. •Never run signal and power wires in the same conduit.•Use signal wire connections with twisted-pair cables.•Install Ferrite Bead(s) on signal wire close to the instrument if EMC problems persist.。
QUANTUM_ESPRESSO_a_modular_and_open-source_software_project_for_quantum_simulations_of_materials
arXiv:0906.2569v1 [cond-mat.mtrl-sci] 14 Jun 2009
Q UANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). Q UANTUM ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. Q UANTUM ESPRESSO builds upon newlyrestructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively-parallel architectures, and a great effort being devoted to user friendliness. Q UANTUM ESPRESSO is evolving towards a distribution of independent and inter-operable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.
痰湿壅盛型高血压大鼠模型的建立
293(38):14723-14739.[14]CHEN R,ZOU Y L,MAO D X,et al.The general amino acid controlpathway regulates mTOR and autophagy during serum/glutaminestarvation[J].The Journal of Cell Biology,2014,206(2):173-182.[15]BAR-PELED L,SABATINI D M.Regulation of mTORC1by aminoacids[J].Trends in Cell Biology,2014,24(7):400-406. [16]BEUREL E,GRIECO S F,JOPE R S.Glycogen synthase kinase-3(GSK3):regulation,actions,and diseases[J].Pharmacology&Therapeutics,2015,148:114-131.[17]MIN J,WEI C.Hydroxysafflor yellow A cardioprotection inischemia-reperfusion(I/R)injury mainly via AKT/hexokinaseⅡindependent of ERK/GSK-3βpathway[J].Biomedicine&Pharmacotherapy,2017,87:419-426.[18]CHEN L,LI Q N,LEI L,et al.Dioscin ameliorates cardiachypertrophy through inhibition of the MAPK and AKT/GSK3β/mTOR pathways[J].Life Sciences,2018,209:420-429. [19]阮小芬,沈智杰,薛金贵,等.速效救心丸干预ACS血管重建术后病人的随机㊁双盲㊁安慰剂对照临床研究[J].中西医结合心脑血管病杂志,2019,17(9):1286-1290.[20]王肖龙,刘永明,朱谷晶,等.速效救心丸对急性冠脉综合征患者早期经皮冠状动脉介入效果的影响[J].中国中西医结合杂志,2012,32(11):1483-1487.[21]RUAN X F,LI Y J,JU C W,et al.Exosomes from Suxiao Jiuxinpill-treated cardiac mesenchymal stem cells decrease H3K27demethylase UTX expression in mouse cardiomyocytes in vitro[J].Acta Pharmacologica Sinica,2018,39(4):579-586. [22]YAO W F,HAN X,GE M,et al.N6-methyladenosine(m6A)methylation inischemia-reperfusion injury[J].Cell Death&Disease,2020,11(6):478.[23]FU Y,DOMINISSINI D,RECHAVI G,et al.Gene expressionregulation mediated through reversible m6A RNA methylation[J].Nature Reviews Genetics,2014,15(5):293-306. [24]SCHWARTZ S,MUMBACH M R,JOVANOVIC M,et al.Perturbationof m6A writers reveals two distinct classes of mRNA methylation atinternal and5'sites[J].Cell Reports,2014,8(1):284-296. [25]ZHAO X,YANG Y,SUN B F,et al.FTO-dependent demethylationof N6-methyladenosine regulates mRNA splicing and is requiredfor adipogenesis[J].Cell Research,2014,24(12):1403-1419. [26]ZHENG G Q,DAHL J A,NIU Y M,et al.ALKBH5is a mammalianRNA demethylase that impacts RNA metabolism and mousefertility[J].Molecular Cell,2013,49(1):18-29.[27]ZHANG C Z,SAMANTA D,LU H Q,et al.Hypoxia induces thebreast cancer stem cell phenotype by HIF-dependent andALKBH5-mediated m6A-demethylation of NANOG mRNA[J].Proceedings of the National Academy of Sciences of the UnitedStates of America,2016,113(14):E2047-E2056.[28]CHAO Y H,SHANG J,JI W D.ALKBH5-m6A-FOXM1signalingaxis promotes proliferation and invasion of lung adenocarcinomacells under intermittent hypoxia[J].Biochemical and BiophysicalResearch Communications,2020,521(2):499-506.[29]YANG P P,WANG Q,LIU A H,et al.ALKBH5holds prognosticvalues and inhibits the metastasis of colon cancer[J].PathologyOncology Research,2020,26(3):1615-1623.[30]ZHANG J,GUO S,PIAO H Y,et al.ALKBH5promotes invasionand metastasis of gastric cancer by decreasing methylation ofthe lncRNA NEAT1[J].Journal of Physiology and Biochemistry,2019,75(3):379-389.[31]ZHU H T,GAN X L,JIANG X W,et al.ALKBH5inhibitedautophagy of epithelial ovarian cancer through miR-7and BCL-2[J].Journal of Experimental&Clinical Cancer Research,2019,38(1):163.[32]LUO S K,TONG L.Molecular basis for the recognition ofmethylated adenines in RNA by the eukaryotic YTH domain[J].Proceedings of the National Academy of Sciences of the UnitedStates of America,2014,111(38):13834-13839.(收稿日期:2022-03-01)(本文编辑薛妮)痰湿壅盛型高血压大鼠模型的建立朱甫臻1,尹艳燕1,梁劲杰1,郭嵩然1,徐钟慧2,王灵芝1摘要目的:建立快速稳定的痰湿壅盛型高血压大鼠模型㊂方法:采用不同高脂饮食诱导自发性高血压大鼠(SHR)建立3种痰湿壅盛型高血压大鼠模型㊂将SHR随机分为4组:SHR对照组㊁模型Ⅰ组㊁模型Ⅱ组和模型Ⅲ组,以Wistar大鼠作为正常对照组㊂对照组饲喂普通饲料,造模组分别饲喂高脂饲料1㊁高脂饲料2和高脂饲料3,造模8周㊂造模过程中监测动物行为学变化,全自动生化仪分析血清血脂变化,尾袖法测量血压变化,超声法进行动物心脏结构分析㊂结果:采用高脂饮食1(蛋黄粉10%㊁蔗糖10%㊁猪油15%㊁胆固醇1.2%㊁胆酸钠0.2%,适量的酪蛋白㊁磷酸氢钙㊁石粉等)饲喂SHR而建立的模型Ⅰ组大鼠血压稳定,收缩压维持在167.8 mmHg以上,体质量和低密度脂蛋白胆固醇(LDL-C)增高(P<0.05),高密度脂蛋白胆固醇(HDL-C)降低(P<0.05),造模成功率为100%㊂心脏超声表明,相比Wistar大鼠,SHR对照组和模型Ⅰ组心脏左室收缩末期前壁厚度(LVAWs)㊁左室舒张末期后壁厚度(LVPWd)㊁左心室平均质量(LV Mass A W)增加(P<0.05),左室舒张末期内径(LVIDd)降低(P<0.05);模型Ⅰ组肝脏指数较SHR对照组升高(P<0.05)㊂结论:多种脂肪来源的高脂饲料饮食诱导SHR可建立快速稳定且符合临床要求的痰湿壅盛型高血压大鼠模型㊂关键词高血压;痰湿壅盛型;动物模型;饮食诱导;血脂;实验研究d o i:10.12102/j.i s s n.1672-1349.2023.24.008Establishment of Hypertensive Rat Models with Phlegm-damp AccumulationZHU Fuzhen,YIN Yanyan,LIANG Jinjie,GUO Songran,XU Zhonghui,WANG LingzhiBeijing University of Chinese Medicine,Beijing100029,ChinaCorresponding Author WANG Lingzhi,E-mail:***************.cn;XU Zhonghui,E-mail:******************* Abstract Objective:To establish rapid and stable hypertensive rat models with phlegm-damp accumulation.Methods:Three hypertensive rat models with phlegm-damp accumulation were established by different high-fat diet-induced spontaneously hypertensive rats(SHR).SHR were randomly divided into4groups:SHR control group,modelⅠgroup,modelⅡgroup and modelⅢgroup,and Wistar rats were used as normal control group.Two control groups were fed with normal diet for8weeks,and three model groups were fed with high-fat diet1,high-fat diet2,and high-fat diet3,respectively for8weeks.Behavioral changes of SHR were monitored during the modeling process,serum lipid were analyzed by fully automated biochemistry,and blood pressure changes were detected by the tail-cuff method.Ultrasound method was used to detected the SHR's cardiac structure.Results:The blood pressure of the modelⅠgroup,which was established by feeding with the high-fat diet1(egg yolk powder10%,sucrose10%,lard15%, cholesterol1.2%,sodium cholate0.2%,appropriate amounts of casein,calcium hydrogen phosphate,and stone powder),systolic blood pressure was stably maintained above167.8mmHg.The body weight and low-density lipoprotein cholesterol(LDL-C)increased(P<0.05),and high-density lipoprotein cholesterol(HDL-C)decreased(P<0.05),and the success rate of modeling was100%.Cardiac ultrasound showed that compared with Wistar rats,the left ventricular anterior wall at end-systole(LV A Ws),left ventricular posterior wall at end-diastole (LVPWd),and left ventricular mass average weight(LV Mass AW)increased(P<0.05),and the left ventricular internal diameter at end-diastole(LVIDd)of the SHR control group and the modelⅠgroup decreased(P<0.05),while the liver index of the modelⅠgroup was significantly higher than that of the SHR control group(P<0.05).Conclusion:By a high-fat diet with multiple fat sources HSR could be used to establish rapid and stable hypertensive rat models with obstructed phlegm-damp accumulation that fulfilled clinical requirements. Keywords hypertension;phlegm-damp accumulation;animal models;diet induction;blood lipids;experimental study基金项目国家自然科学基金项目(No.81872972)作者单位 1.北京中医药大学(北京100029);2.中国医学科学院北京协和医学院北京协和医院(北京100730)通讯作者王灵芝,E-mail:***************.cn;徐钟慧,E-mail:*******************引用信息朱甫臻,尹艳燕,梁劲杰,等.痰湿壅盛型高血压大鼠模型的建立[J].中西医结合心脑血管病杂志,2023,21(24):4519-4523.高血压是一种以主动脉收缩压升高为主要特征的常见慢性病[1],严重危害着人类健康㊂2019年世界卫生组织统计,全世界约14亿例高血压病人,控制率仅为14%[2]㊂在我国,大中型城市如北京㊁上海等地高血压发病率约为35.9%和29.1%[3],给我国带来沉重的医疗负担㊂高血压病在中医学上归属于 眩晕 头痛 范畴,按照证候分为痰湿壅盛型㊁肝火亢盛型㊁阴虚阳亢型和阴阳两虚型[4]㊂其中,痰湿壅盛型占比最高,约为17.96%[5]㊂痰湿壅盛型高血压的主要临床表现为头重如裹㊁胸脘痞闷㊁纳呆恶心㊁呕吐痰涎㊁身重困倦㊁少食多寐㊁苔腻㊁脉滑等症状㊂‘景岳全书“提到: 脾为生痰之源 [6],其病机主要为脾运化不利,故生痰浊㊂‘金匮要略“记载: 心下有痰饮,胸胁支满,目眩,苓桂尤甘汤主之 ㊂张仲景提出对痰饮 当以温药和之 ,对饮停中焦之证,应用苓桂术甘汤法健脾温阳利水㊂‘丹溪心法㊃头眩“中云: 头眩,痰挟气虚并火,治痰为主,挟补气药及降火药,无痰则不作眩 ,主张清化痰热㊁补充正气㊂动物模型在研究人类疾病的发病机制㊁发展规律及药物研发中发挥着重要作用㊂目前,常用高血压动物模型主要有:1)自发性高血压动物模型,即自发性高血压大鼠(spontaneous hypertension rats,SHR),由日本京都医学院利用有明显高血压症状的Wistar Kyoto雄性大鼠与带有轻微高血压症状雌性大鼠连续交配培育而成,成年后血压高达200 mmHg以上,高血压自发率为100%㊂2)药物诱导法,常用药物包括醋酸去氧皮质酮(deoxycorticosterone acetate,DOCA)㊁亚硝基左旋精氨酸甲酯(nitro L arginine methyl ester,L-NAME)和血管紧张素Ⅱ(AngⅡ)㊂20世纪70年代,DOCA-盐模型首次用于高血压研究,皮下注射DOCA同时配合高盐饮食,饮用盐水可促进动物高血压的发展[7]㊂Leo等[8]采用L-NAME饲喂Wistar大鼠诱导高血压模型;Cao等[9]采用AngⅡ灌注C57BL6小鼠诱导高血压㊂3)手术诱导法,主要包括一肾一夹[10]㊁两肾一夹[11]㊁两肾两夹法[12]等㊂近年来,痰湿壅盛型高血压动物模型的建立逐渐引起人们关注,该模型的建立常采用陈腾蛟等[13]研究方法,即饲喂Wistar大鼠高脂饲料,该方法存在着造模周期时间长㊁成功率较低等不足,且造模评价指标为血压升高和行为学变化㊂该中医证型的临床特点是低密度脂蛋白胆固醇(LDL-C)升高,高密度脂蛋白胆固醇(HDL-C)降低[14],应进一步完善造模评价指标,以提高造模效率㊂本研究采用不同方法建立快速㊁稳定的痰湿壅盛型高血压大鼠模型,为该病的作用机制和药物研发提供合理的研究基础㊂1材料与方法1.1实验动物Wistar大鼠5只,无特定病原体(SPF)级,雄性,体质量120~150g;购自北京维通利华实验动物技术有限公司,动物合格证号:SCXK(京)2021-0006㊂SHR 共20只,SPF级,雄性,体质量75~105g,由北京维通利华实验动物技术有限公司提供,动物合格证号为SCXK(京)2021-0006㊂所有动物均饲养于北京中医药大学动物房㊂1.2实验饲料动物饲料:普通大鼠维持饲料㊁高脂饲料1(蛋黄粉10%,蔗糖10%,猪油15%,胆固醇1.2%,胆酸钠0.2%,适量的酪蛋白㊁磷酸氢钙㊁石粉等);高脂饲料2(蛋白质24%,碳水化合物41%,猪油24%,酪蛋白㊁糊精㊁蔗糖㊁纤维素㊁豆油㊁多矿㊁多维㊁胆碱);高脂饲料3(蔗糖20%,猪油15%,胆固醇1.2%,胆酸钠0.2%,适量的酪蛋白,磷酸氢钙,石粉)㊂所有饲料均由北京华阜康生物科技股份有限公司提供㊂1.3实验方法1.3.1动物分组及造模SPF级SHR(20只)和Wistar大鼠(5只),适应性喂养1周后,将SHR随机分为SHR对照组㊁模型Ⅰ组㊁模型Ⅱ组和模型Ⅲ组,每组5只;将Wistar大鼠作为正常对照组㊂其间,SHR对照组及正常对照组喂食普通饲料,模型Ⅰ组㊁模型Ⅱ组和模型Ⅲ组分别饲喂高脂饲料1㊁高脂饲料2和高脂饲料3,连续饲喂8周㊂1.3.2观察指标建模期间,每日观察记录大鼠毛色㊁活动程度㊁二便及饮食㊁进水等情况,每周测量体质量㊂血压:采用尾袖法测定大鼠血压[15],无创血压仪型号:BP2000(美国Visitech systems公司);血压测定台37ħ预热5 min,将大鼠放入固定器内适应3~5min,测量安静状态下尾动脉血压,连续测量20次,取平均值,每2周测量1次㊂血脂:眼眶取血,置于无抗凝剂离心管内,室温放置1h,1000ˑg(重力加速度)离心15min,取上清备用㊂采用全自动生化仪(型号:AU480,美国Beckman Coulter公司)测定大鼠血清总胆固醇(TC)㊁三酰甘油(TG)㊁HDL-C㊁LDL-C水平㊂实验结束后,冰上分离大鼠心㊁肝㊁脾㊁肺㊁肾,并称重,按照如下公式计算:脏器指数(%)=脏器质量大鼠体质量ˑ100%1.3.3造模评价标准造模评价标准参照相关文献[13],痰湿型高血压病人常患有高脂血症[14],故将血脂纳入评价标准:1)身型肥胖㊁嗜睡懒动㊁胃纳呆滞㊁不思饮水㊁大便不成形㊁肛门不洁;2)收缩压ȡ140mmHg和(或)舒张压ȡ90mmHg;3)血脂水平变化符合4种高脂血症中的1种,高胆固醇血症,血清TC水平上升;高三酰甘油血症,血清TG水平升高;混合型高脂血症,血清TC㊁TG 水平均增高;低高密度脂蛋白血症,血清HDL-C水平降低㊂1.3.4心脏结构变化大鼠麻醉后,使用超高分辨小动物超声影像系统VevoTM2100(加拿大Visual Sonics公司)测量左室收缩末期内径(left ventricular internal diameter at end-systole,LVIDs)㊁左室舒张末期内径(left ventricular internal diameter at end-diastole,LVIDd)㊁左室收缩末期后壁厚度(left ventricular posterior wall at end-systole,LVPWs)㊁左室舒张末期后壁厚度(left ventricular posterior wall at end-diastole,LVPWd)㊁左室收缩末期前壁厚度(left ventricular anterior wall at end-systole,LVAWs)㊁左室舒张末期前壁厚度(left ventricular anterior wall at end-diastole,LVAWd)㊁左心室平均质量(LV Mass AW)㊁左室射血分数(left ventricular ejection fraction,LVEF)㊁左室短轴缩短率(left ventricular fraction shortening,LVFS)㊂1.4统计学处理采用SPSS19.0分析软件进行数据处理,符合正态分布的定量资料以均数ʃ标准差(xʃs)表示,两组间比较采用t检验,多组间比较采用单因素方差分析ANOVA法㊂采用GraphPad Prism8进行绘图㊂以P< 0.05为差异有统计学意义㊂2结果2.1不同模型大鼠形态学指标造模期间,正常对照组和SHR对照组大鼠毛发洁白㊁柔顺有光泽,精神状态良好,活动度正常,大便黏软有形,肛周洁净㊂各模型组大鼠在造模期间均呈痰湿证表现,包括体质量增加㊁嗜睡萎靡㊁活动度下降㊁饮食饮水减少㊁便溏㊁肛周不洁等㊂从第4周开始,各模型组动物体质量均高于SHR对照组(P<0.05)㊂详见图1㊂2.2不同模型大鼠收缩压变化造模期间,正常对照组收缩压基本维持在131.8~ 150.2mmHg,SHR各组收缩压维持在167.8mmHg以上,且呈现缓慢上升趋势㊂详见图2㊂图1不同模型大鼠体质量变化图2不同模型大鼠收缩压变化2.3不同模型大鼠血脂含量变化模型Ⅰ组LDL-C从第4周开始较SHR对照组升高(P<0.05),HDL-C第8周较SHR对照组降低(P< 0.05);模型Ⅱ组第8周TC和TG均显著增高(P< 0.05),模型Ⅲ组第8周HDL-C水平较SHR对照组显著降低(P<0.05),第4周LDL-C水平较SHR对照组显著升高(P<0.05)㊂详见图3㊂根据临床报道,模型Ⅰ组更符合临床症状[14]㊂2.4不同模型大鼠心脏结构变化为确立痰湿壅盛型高血压大鼠模型,进一步对模型Ⅰ组进行心脏结构分析㊂相较于正常对照组大鼠, SHR对照组大鼠和模型Ⅰ组LVAWs㊁LV Mass AW㊁LVPWd增加(P<0.05),LVIDd降低(P<0.05),模型Ⅰ组LVIDs较SHR对照组降低㊂详见图4㊁表1㊂表明痰湿壅盛型高血压大鼠已出现心脏向心性肥大,提示心脏结构变化可作为痰湿壅盛型高血压模型的评价指标㊂2.5不同模型大鼠脏器指数比较与正常对照组比较,SHR对照组和模型Ⅰ组心脏指数均升高;模型Ⅰ组肝脏指数较SHR对照组升高(P<0.05)㊂提示该饲喂方式对肝脏结构具有一定影响㊂详见表2㊂图3不同模型大鼠血脂含量变化(A为TC;B为TG;C为HDL-C;D为LDL-C㊂与正常对照组同时间比较,*P<0.05;与SHR对照组同时间比较,#P<0.05)图4不同模型大鼠心脏超声结构(短轴)表1不同模型大鼠心脏结构变化(xʃs)组别只数LVAWd(mm)LVAWs(mm)LVIDd(mm)LVIDs(mm)正常对照组5 2.37ʃ0.43 3.43ʃ0.29 6.36ʃ0.62 2.06ʃ0.32 SHR对照组5 2.27ʃ0.18 4.17ʃ0.18① 5.45ʃ0.25① 1.72ʃ0.21模型Ⅰ组5 2.35ʃ0.29 4.11ʃ0.23① 5.07ʃ0.45① 1.04ʃ0.14①②组别LVPWd(mm)LVPWs(mm)LVEF(%)LVFS(%)LV Mass AW(mg)正常对照组 2.51ʃ0.24 4.25ʃ0.1390.79ʃ0.2461.09ʃ0.14975.58ʃ109.71 SHR对照组 4.52ʃ0.28① 6.49ʃ0.37①95.29ʃ0.2872.45ʃ0.371255.49ʃ92.79①模型Ⅰ组 3.20ʃ0.36①② 4.83ʃ0.37②98.11ʃ0.4479.53ʃ1.701126.30ʃ107.27①注:与正常对照组比较,①P<0.05;与SHR对照组比较,②P<0.05㊂表2不同模型大鼠脏器指数比较(xʃs)单位:%组别只数心肝脾肺肾正常对照组50.29ʃ0.04 2.71ʃ0.180.17ʃ0.060.37ʃ0.070.35ʃ0.05 SHR对照组50.39ʃ0.02① 2.82ʃ0.130.15ʃ0.010.41ʃ0.050.36ʃ0.03模型Ⅰ组50.36ʃ0.02① 3.40ʃ0.11①②0.13ʃ0.010.36ʃ0.010.32ʃ0.02注:与正常对照组比较,①P<0.05;与SHR对照组比较,②P<0.05㊂3讨论高血压发病机制复杂多样,包括系统性代谢紊乱㊁肾脏代谢[16]㊁肥胖症[17]㊁糖尿病[18]㊁内皮功能失调[19]㊁氧化应激及炎症[20]等㊂基于中医体质学,高血压的影响因素包括平和质㊁气虚质㊁阳虚质㊁阴虚质㊁痰湿质㊁湿热质㊁血瘀质㊁气郁质㊁特禀质,其中痰湿质㊁阴虚质和气虚质为主要影响因素㊂痰湿质是由气血津液运化失司,淤积形成痰,以浊重黏滞为主要特征的一种体质[21]㊂痰湿既是高血压的病理产物,又是其致病因素,在高血压发生过程中发挥重要作用,是高血压的常见证型之一[22]㊂中医学认为血脂异常是 痰浊 重要的生理生化指标和物质基础㊂高脂血症是一种由脂质代谢异常引起的代谢性疾病,通常以TG㊁TC㊁LDL-C增加和/或HDL-C 降低进行判断㊂有研究表明,肾脏中脂质堆积阻碍肾素分泌,导致血压异常[23]㊂肥胖是高血压发生的重要因素,中医学认为 肥人多痰湿 ,肥胖㊁超重等因素可增加高血压发生的风险[24],长期高脂饮食导致SD大鼠内脏脂肪增加㊁平均动脉压升高,发生内皮功能障碍[25]㊂本研究结果表明,高脂饮食使SHR体质量显著增加,且SHR血压增加快且稳定,收缩压维持在167.8 mmHg以上,达到造模中血压标准;Wistar大鼠与SHR脂肪代谢方面存在着一定差异,SHR的HDL-C 水平低于Wistar大鼠(P<0.05),符合痰湿壅盛型高血压的模型要求,表明以SHR建立痰湿壅盛型高血压大鼠模型省时高效㊂目前常用高脂饮食诱导法建立痰湿壅盛型高血压大鼠模型,其中高脂配方中的脂肪主要来源为猪油[26-27],来源单一,存在一定的局限性;应用高脂高糖配方可诱导痰湿型高血压模型[28-29]㊂本研究采用3种不同的高脂饲料,其中高脂饲料2为经典肥胖高脂饲料配方,高脂饲料3为常用高脂高糖饲料配方,高脂饲料1中添加了10%蛋黄粉,导致SHR的HDL-C㊁LDL-C 水平升高,符合临床痰湿壅盛型的特点㊂说明丰富的脂肪种类诱导的动物模型更符合临床痰湿型,今后可进一步将HDL-C及LDL-C水平纳入建模评判标准㊂综上所述,本研究采用高脂饲料1(蛋黄粉10%㊁蔗糖10%㊁猪油15%㊁胆固醇1.2%㊁胆酸钠0.2%,适量的酪蛋白㊁磷酸氢钙㊁石粉等)饲喂SHR建立了快速稳定的痰湿壅盛型高血压大鼠模型,可为今后相关疾病的作用机制解析和药物研发提供可靠的实验基础㊂参考文献:[1]JAHANDIDEH F,WU J P.Perspectives on the potential benefitsof antihypertensive peptides towards metabolic syndrome[J].International Journal of Molecular Sciences,2020,21(6):2192. [2]World Health Organization.Guideline for the pharmacologicaltreatment of hypertension in adults[EB/OL].(2021-08-24)[2022-10-21].https://www.who.int/publications/i/item/9789240033986.[3]中国高血压管理指南编写组,中国高血压联盟,中国心脏病学会,等.中国高血压防治指南(2018年修订版)[J].中国心血管杂志,2019,24(1):24-56.[4]中药新药治疗高血压病的临床研究指导原则(摘编之一)[J].中医药临床杂志,2007,19(2):118-119.[5]周明超,王清海.脉胀病辨证分型规律的文献研究[J].中华中医药杂志,2017,32(8):3511-3514.[6]柳亚平,潘桂娟.‘景岳全书“痰证诊治研讨[J].中华中医药杂志,2007,22(7):427-429.[7]BASTING T,LAZARTIGUES E.DOCA-salt hypertension:anupdate[J].Current Hypertension Reports,2017,19(4):32. [8]LEO M D,KANDASAMY K,SUBRAMANI J,et al.Involvement ofinducible nitric oxide synthase and dimethyl argininedimethylaminohydrolase in Nω-nitro-L-arginine methyl ester(L-NAME)-induced hypertension[J].Cardiovascular Pathology,2015,24(1):49-55.[9]CAO X,LUO T,LUO X,et al.Resveratrol prevents AngⅡ-inducedhypertension via AMPK activation and RhoA/ROCK suppressionin mice[J].Hypertension Research,2014,37(9):803-810. [10]原卫清,王颢,吕卓人. 一肾一夹 高血压大鼠动脉平滑肌细胞钠泵α亚单位的基因表达[J].高血压杂志,2001,9(2):140-142. [11]傅辰生,刘春凤,徐少伟,等.罗格列酮对两肾一夹高血压大鼠的降压作用[J].复旦学报(医学版),2006,33(6):807-809;818. [12]周四桂,高洁,符佳佳,等.两肾两夹高血压与自发性高血压大鼠左心室肥厚的比较[J].蛇志,2008,20(2):94-98.[13]陈腾蛟,徐男.自发性高血压痰湿壅盛型大鼠动物模型的构建和分析评价[J].药学研究,2015,34(9):503-506.[14]杨红,金艳蓉,杨海燕.高血压病血脂异常与辨证分型的关系[J].疑难病杂志,2002,1(4):221-222.[15]CHEN W H,LIU T H,LIANG Q E,et al.miR-1283contributes toendoplasmic reticulum stress in the development of hypertensionthrough the activating transcription factor-4(ATF4)/C/EBP-homologous protein(CHOP)signaling pathway[J].MedicalScience Monitor,2021,27:e930552.[16]TIAN Z M,LIANG M Y.Renal metabolism and hypertension[J].Nature Communications,2021,12:963.[17]SERAVALLE G,GRASSI G.Obesity and hypertension[J].Pharmacological Research,2017,122:1-7.[18]CHEUNG B M Y,LI C.Diabetes and hypertension:is there acommon metabolic pathway?[J].Current AtherosclerosisReports,2012,14(2):160-166.[19]KONUKOGLU D,UZUN H.Endothelial dysfunction andhypertension[M]//Advances in Experimental Medicine andBiology.Cham:Springer International Publishing,2016:511-540.[20]DINH Q N,DRUMMOND G R,SOBEY C G,et al.Roles ofinflammation,oxidative stress,and vascular dysfunction inhypertension[J].Bio Med Research International,2014,2014:406960.[21]王琦,叶加农,朱燕波,等.中医痰湿体质的判定标准研究[J].中华中医药杂志,2006,21(2):73-75.[22]丛德毓.痰湿质与高血压病形成的相关性研究[J].长春中医药大学学报,2012,28(1):74.[23]GAI Z B,WANG T Q,VISENTIN M,et al.Lipid accumulation andchronic kidney disease[J].Nutrients,2019,11(4):722. [24]中华医学会心血管病学分会高血压学组.肥胖相关性高血压管理的中国专家共识[J].中华心血管病杂志,2016,44(3):212-219. [25]DA SILVA A A,KUO J J,TALLAM L S,et al.Role of endothelin-1in blood pressure regulation in a rat model of visceral obesityand hypertension[J].Hypertension,2004,43(2):383-387. [26]贾磊,杨雨民,周芸慧,等.半夏白术天麻汤对痰湿壅盛型高血压大鼠血清TC㊁TG㊁LDL-C㊁HDL-C含量的影响[J].中西医结合心血管病电子杂志,2019,7(10):7-8;10.[27]徐男,时海燕,王淑玲,等.基于正交试验配合多药效指标综合评价半夏白术天麻汤治疗痰湿壅盛型高血压的有效组分配伍[J].中国实验方剂学杂志,2018,24(21):7-13.[28]何茂,许万枫,苏洁,等.复方野菊花提取物对高脂高糖饮酒致肝旺痰阻型高血压大鼠的作用研究[J].中药新药与临床药理,2019,30(2):156-161.[29]王娇,欧阳丽娟,陈慧.葛根和盐泽泻不同配伍比例对长期高糖高脂饮食致高血压大鼠的影响[J].临床合理用药杂志,2022,15(6):9-12.(收稿日期:2023-01-19)(本文编辑薛妮)。
②,③,④的latex写法 -回复
②,③,④的latex写法-回复选择序号在中括号内,文章题目未提及,以下是一篇1500-2000字的示例文章,以中括号内的内容为主题,回答的步骤分为四个部分。
[②的latex写法]LaTex(LaTeX)是一种专业的排版系统,它可用于创建高质量的科学和技术文档。
以下是一些基本的LaTeX写作和排版的步骤与示例。
步骤一:设置文档类和全局参数在开始编写LaTeX文档之前,我们需要确定文档类和设置一些全局参数。
以下是一个基本的LaTeX文档模板示例:\documentclass{article} 文档类,可根据需要选择article、report、book等\usepackage[utf8]{inputenc} 设置文档编码为UTF-8\title{我的LaTeX文档} 设置文档标题\author{我的名字} 设置作者姓名\date{\today} 设置日期为当前日期或特定日期\begin{document} 文档开始\maketitle 生成标题页此处插入正文内容\end{document} 文档结束步骤二:编写正文内容在上述示例的\begin{document}和\end{document}之间,我们可以编写正文内容。
LaTeX使用一种类似于标记语言的方式来排版文本。
以下是一些基本的LaTeX写作示例:1. 插入段落:在每个段落之间留一行空白即可。
这是第一个段落。
这是第二个段落。
2. 插入标题:使用\section{}、\subsection{}等命令来创建标题。
\section{第一节}这是第一节的内容。
\subsection{第一小节}这是第一小节的内容。
3. 插入列表:LaTeX支持有序和无序列表。
\begin{itemize} 无序列表\item 项目一\item 项目二\item 项目三\end{itemize}\begin{enumerate} 有序列表\item 项目一\item 项目二\item 项目三\end{enumerate}4. 插入公式:LaTeX是数学公式排版的首选工具。
latex标准尺寸
latex标准尺寸Latex标准尺寸。
Latex是一种专业的排版系统,它被广泛应用于学术论文、书籍、报告等文档的排版。
在使用Latex排版文档时,我们经常需要设定文档的尺寸,以满足不同的排版要求。
本文将介绍Latex中的标准尺寸设定,帮助大家更好地掌握文档排版的技巧。
在Latex中,我们可以通过指定文档类选项的方式来设定文档的尺寸。
常见的文档类选项包括a4paper、letterpaper等,分别对应A4纸和Letter纸两种标准尺寸。
以A4纸为例,我们可以在文档类声明中使用a4paper选项来指定文档的尺寸,具体语法如下:\documentclass[a4paper]{article}。
通过上述语法,我们就可以将文档的尺寸设定为A4纸。
在实际使用中,我们还可以通过geometry宏包来对文档的页边距进行调整,以适应不同的排版需求。
例如,我们可以使用geometry宏包提供的参数来设置文档的上、下、左、右页边距,具体语法如下:\usepackage[left=2cm, right=2cm, top=2.5cm, bottom=2.5cm]{geometry}。
通过上述语法,我们可以将文档的页边距设定为上下各2.5cm,左右各2cm。
这样一来,我们就可以根据实际需要来调整文档的排版效果,使其更加符合我们的要求。
除了A4纸和Letter纸之外,Latex还支持其他一些特殊尺寸的文档,比如legalpaper、executivepaper等。
如果我们需要将文档的尺寸设定为这些特殊尺寸,只需要在文档类声明中使用相应的选项即可。
例如,要将文档的尺寸设定为Legal 纸,我们可以使用如下语法:\documentclass[legalpaper]{article}。
通过上述语法,我们就可以将文档的尺寸设定为Legal纸。
需要注意的是,对于一些特殊尺寸的文档,可能需要使用特定的宏包来支持,具体使用时需要查阅相应的文档以获取更多信息。
申博latex模板
申博latex模板申博是一个常用的LaTeX模板,它为用户提供了一种方便快捷的方式来创建美观的文档。
本文将介绍申博的特点和使用方法,帮助读者更好地理解和应用该模板。
1. 申博模板的特点申博模板具有以下几个特点:(1)美观大方:申博模板采用了简洁、专业的设计风格,使生成的文档看起来更加整洁、美观。
(2)灵活可定制:申博模板提供了丰富的选项和命令,用户可以按照自己的需求进行个性化设置,包括字体、页眉页脚、目录样式等。
(3)数学公式支持优秀:对于需要插入数学公式的情况,申博模板提供了强大的支持,使得编写科技论文变得更加便捷。
2. 申博模板的使用方法(1)安装申博模板:用户可以在申博官网上下载到最新版本的申博模板,根据安装说明进行安装。
(2)创建文档:在安装完毕后,用户可以开始使用申博模板来创建自己的文档。
首先使用`\documentclass`命令指定文档类型为申博模板,然后在`\begin{document}`和`\end{document}`之间编写正文内容。
(3)设置文档格式:用户可以通过使用各种命令和选项来设置文档的格式,包括修改字体、页眉页脚、目录样式等。
(4)插入数学公式:申博模板内置了强大的数学公式支持,用户可以使用`\equation`、`\frac`等命令来插入数学公式,使得论文中的公式排版更加美观、清晰。
(5)编译文档:完成文档编写后,用户可以通过编译器对文档进行编译,生成最终的PDF文件。
总结:申博模板是一个功能强大、风格美观的LaTeX模板,适用于各种类型的文档创作,特别适合科技类论文的写作。
通过学习和使用申博模板,用户可以更好地展示自己的学术成果,并将注意力更多地集中在内容创作上。
如果你是一位LaTeX用户,不妨尝试使用申博模板,提升你的文档排版质量和效率。
Kaiser 测试剂说明书
The vibrant M and Sigma-Aldrich are trademarks of Merck KGaA, Darmstadt, Germany or its affiliates.Detailed information on trademarks is available via publicly accessible resources. © 2018 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.Page 1 of 160017 Kaiser test kitProduct Description:Colour test to monitor completeness of amino acid coupling in Solid Phase Peptide Synthesis (SPPS) and Solid Phase Organic Synthesis (SPOS). Intensive blue colour is generated by reaction of ninhydrin with free primary amines (see scheme below). The test can be used to monitor the presence of free amine after deprotection (dark blue colour) and the completeness of the amino acid coupling step (yellow colour). The test is routinely applied qualitatively 1 and quantitatively 2. It is important to state that the test does not yield the typical dark blue colour with serine, asparagine, aspartic acid 3, andproline (secondary amine).Kit componentsThe Kit contains 50 ml of each: phenol, 80% in ethanol, KCN in H 2O/ pyridine and Ninhydrin, 6% in ethanol.ProcedureRemove a few resin beads from the reaction vessel and wash 3 times with ethanol (02860). Transfer beads into a small glass tube and add three drops of each solution. Mix well and heat the tube at 120°C for 5 minutes. The resin beads and the solution turn dark blue when primary amine is present. The resin beads remain their colour and the solution stays yellow when no free primary amine is present (expected result after successful coupling). A re-coupling step is necessary when a slight blue colour is detected in the solution and/or on beads.References1) E. Kaiser, R. L. Colescott, C. D. Bossinger, P. I. Cook, Analytical Biochemistry 34 595 (1970) 2) V. K. Sarin, S. B. H. Kent, J. P. Tam, R. B. Merrifield, Analytical Biochemistry 117 147 (1981) 3) J. D. Fontenot, et al. Peptide Research 4 194 (1991)Precautions and Disclaimer:For Laboratory Use Only. Not for drug, household or other uses.。