人教版八年级上数学第12章全等三角形单元测试 - 副本

合集下载

八年级数学上册《第十二章 全等三角形》单元测试卷及答案(人教版)

八年级数学上册《第十二章 全等三角形》单元测试卷及答案(人教版)

八年级数学上册《第十二章 全等三角形》单元测试卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列可以判定两个直角三角形全等的条件是( )A .斜边相等B .面积相等C .两对锐角对应相等D .两对直角边对应相等2.到三角形三边的距离相等的点是( )A .三角形三内角平分线的交点;B .三角形三边中线的交点;C .三角形三边高的交点;D .三角形三边中垂线的交点。

3.如图,ABC ≌△DEC ,B 、C 、D 在同一直线上,且CE=5,AC=7,则BD 长( )A .12B .7C .2D .144.如图,在ABC 中,AD 平分BAC ∠,DE AB ⊥于点E ,再添加一个条件仍然不能证明△ADC ≌△ADE 的是( )A .90ACB ∠=︒ B .∠ADC =∠ADE C .AC AE =D .DC DE =5.如图,在△ABC 中,∠A=90°,AB=AC=6,点D 是BC 中点,点E 、F 分别在AB 、AC 上,且BE=AF ,则四边形AEDF 的面积为( )A .6B .7C .D .96.如图,在ABC 中90A ∠=︒,AB =2,BC =5,BD 是ABC ∠的平分线,设ABD 和BDC 的面积分别是1S 和2S ,则S 1:S 2的值为( )A .5:2B .2:5C .12:D .1:5 7.如图,∠A=∠B ,AE=BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O ,若∠1=38°,则∠BDE 的度数为( )A .71°B .76°C .78°D .80°8.如图所示,点 ,A B 分别是 ,NOF MOF ∠∠ 平分线上的点, AB OF ⊥ 于点 E , BC ⊥MN 于点 C , AD ⊥MN 于点 D ,下列结论错误的是( )A .90AOB ∠= B .AD +BC =ABC .点 O 是 CD 的中点 D .图中与 ∠CBO 互余的角有两个二、填空题:(本题共5小题,每小题3分,共15分.)9.如图,在△ABC 和△DEF 中,已知CB =DF ,∠C =∠D ,要使△ABC ≌△EFD ,还需添加一个条件,那么这个条件可以是 .10.在Rt △ABC 中,∠ACB=90°,BC=2cm ,CD ⊥AB ,在AC 上取一点E ,使EC=BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF=5cm ,则AE= cm.11.如图,AC 平分∠DCB ,CB =CD ,DA 的延长线交BC 于点E ,若∠BAE =80°,则∠EAC 的度数为 .12.如图,有一个直角三角形ABC ∠C =90° , AC=10 , BC=5 ,一条线段PQ=AB ,P 、Q 两点分别在线段AC 和过点A 且垂直于AC 的射线AX 上运动,动点P 从C 点以2个单位秒的速度出发,问P 点运动 秒时(不包括点C ),才能使△ABC ≌△QPA .13.如图,已知ABC ∆的周长是 21 ,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于D ,且OD =4,ABC ∆ 面积是 .三、解答题:(本题共5题,共45分)14.如图,△ABO ≌△CDO ,点B 在CD 上,AO ∥CD ,∠BOD=30°,求∠A 的度数.15.如图,在ABC 中,∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD CE ⊥于D ,AD =2.5cm ,DE =1.7cm ,求BE 的长.16.如图,DE AC ⊥于点E ,BFAC ⊥于点F .AB =CD ,AE =CF ,BD 交AC 于点M ,求证:MB =MD .17.如图所示,已知 AD//BC , 点 E 为 CD 上一点,AE 、BE 分别平分∠DAB 、∠CBA ,BE 交 AD 的延长线于点 F.求证:(1)△ABE ≌△AEF ;(2) AD+BC=AB18.如图,在△ABC 中,∠B =60°,AD 平分∠BAC ,CE 平分∠BCA ,AD 、CE 交于点F ,CD =CG ,连结FG.(1)求证:FD =FG ;(2)线段FG 与FE 之间有怎样的数量关系,请说明理由;(3)若∠B ≠60°,其他条件不变,则(1)和(2)中的结论是否仍然成立?请直接写出判断结果,不必说明理由参考答案:1.D 2.A 3.A 4.D 5.D 6.B 7.A 8.D9.AC =ED 或∠A =∠FED 或∠ABC =∠F .10.311.50°12.2.513.4214.解:∵△ABO ≌△CDO∴OB=OD ,∠ABO=∠D∴∠OBD=∠D=12(180°﹣∠BOD )=12×(180°﹣30)=75° ∴∠ABC=180°﹣75°×2=30°∴∠A=∠ABC=30°.15.解:∵90ACB ∠=︒∴90BCE ACD ∠+∠=︒∵AD CE BE CE ⊥⊥,∴9090ADC CEB CAD ACD ∠=∠=︒∠+∠=︒, ∴CAD BCE ∠∠=在ACD 与CBE 中{∠ADC =∠CEB∠BCE =∠CAD AC =BC∴()AAS ACD CBE ≌∴BE CD CE AD ==,∴ 2.5 1.70.8cm BE CD CE DE AD DE ==-=-=-=. 答:BE 的长为0.8cm .16.证明:∵AE =CF∴AE +EF =CF +EF ,即AF =CE∵DE ⊥AC 于点E ,BF AC ⊥于点F∴ABF 和CDE 是直角三角形在Rt ABF 和Rt CDE 中{AB =CD AF =CE∴Rt △ABF ≌Rt △CDE(HL),∴BF =DE ;在DEM 和△BFM 中{∠DEM =∠BFM =90°∠DME =∠BMF DE =BF∴△DEM ≌△BFM(AAS),∴MB =MD .17.(1)证明:如图,∵AE 、BE 分别平分∠DAB 、∠CBA∴∠1=∠2,∠3=∠4∵AD∥BC∴∠2=∠F,∠1=∠F在△ABE和△AFE中∴△ABE≌△AFE(AAS)(2)证明:∵△ABE≌△AFE∴BE=EF在△BCE和△FDE中∴△BCE≌△FDE(ASA)∴BC=DF∴AD+BC=AD+DF=AF=AB即AD+BC=AB.18.(1)证明:∵EC平分∠ACB ∴∠FCD=∠FCG∵CG=CD,CF=CF∴△CFD≌△CFG(SAS)∴FD=FG.(2)解:结论:FG=FE.理由:∵∠B=60°∴∠BAC+∠BCA=120°∵AD平分∠BAC,CE平分∠BCA∴∠ACF+∠FAC=12(∠BCA+∠BAC)=60°∴∠AFC=120°,∠CFD=∠AFE=60°∵△CFD≌△CFG∴∠CFD=∠CFG=60°∴∠AFG=∠AFE=60°∵AF=AF,∠FAG=∠FAE∴△AFG≌△AFE(ASA)∴FG=FE.(3)解:结论:(1)中结论成立.(2)中结论不成立. 理由:①同法可证△CFD≌△CFG(SAS)∴FD=FG.②∵∠B≠60°∴无法证明∠AFG=∠AFE∴不能判断△AFG≌△AFE∴(2)中结论不成立。

人教版八年级数学上:第12章《全等三角形》单元测试(含答案)(含答案)

人教版八年级数学上:第12章《全等三角形》单元测试(含答案)(含答案)

第12章全等三角形一、选择题1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A 地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.55.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣29.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)12.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若______,则△ABC≌△DEF.25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.第12章全等三角形参考答案一、选择题(共9小题)1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm【解答】解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.3.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.【解答】解:A、延长AC、BE交于S,∵∠CAB=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B、延长AF、BH交于S1,作FK∥GH与BH的延长线交于点K,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=180°﹣70°﹣43°=67°=∠GHB,∴FG∥KH,∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,C、D、同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB.综上所述,D选项的所走的线路最长.故选:D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.5【解答】解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.∴∠DPF=∠AKC=∠CHA=90°.∵AB=BC,∴∠BAC=∠BCA.在△AKC和△CHA中,∴△AKC≌△CHA(ASA),∴KC=HA.∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),∴AH=4.∴KC=4.∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF.在△AKC和△DPF中,,∴△AKC≌△DPF(AAS),∴KC=PF=4.故选:C.5.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中∴△DBE≌△EGF,∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选:A.8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣2【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥CN于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴ME==,∴tan∠MCN==故选:A.9.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD 是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG 是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ ,∵AC 是∠BCD 的角平分线,∠EPC=∠EQC=90°, ∴EP=EQ ,四边形PCQE 是正方形,在△EPM 和△EQN 中,,∴△EPM ≌△EQN (ASA )∴S △EQN =S △EPM ,∴四边形EMCN 的面积等于正方形PCQE 的面积, ∵正方形ABCD 的边长为a ,∴AC=a ,∵EC=2AE ,∴EC=a ,∴EP=PC=a ,∴正方形PCQE 的面积=a ×a=a 2, ∴四边形EMCN 的面积=a 2,故选:D.二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.【解答】(1)解:∵∠CEF=90°.∴cos∠ECF=.∵∠E CF=30°,CF=8.∴CF=CF•cos30°=8×=4;(2)证明:∵AB∥DE,∴∠A=∠D,∵在△ABF和△DEC中∴△ABF≌△DEC (SAS);(3)证明:由(2)可知:△ABF≌△DEC,∴BF=CE,∠AFB=∠DCE,∵∠AFB+∠BFC=180°,∠DCE+∠ECF=180°,∴∠BFC=∠ECF,∴BF∥EC,∴四边形BCEF是平行四边形,∵∠CEF=90°,∴四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)【解答】解:(1)AE+BF=AB,如图1,∵△ABC和△DCF是等边三角形,∴CA=CB,CD=CF,∠ACB=∠DCF=60°.∴∠ACD=∠BCF,在△ACD和△BCF中∴△ACD≌△BCF(SAS)∴AD=BF同理:△CBD≌△CAE(SAS)∴BD=AE∴AE+BF=BD+AD=AB;(2)BF﹣AE=AB,如图2,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB;(3)AE﹣BF=AB,如图3,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB.12.(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.【解答】证明:∵AB∥CD,∴∠B=∠C,∠A=∠D,∵在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.【解答】(1)证明:∵△ABC为等腰直角三角形,∴CA=CB,∠A=∠ABC=45°,由旋转可知:CP=CE,BP=BD,∴CA﹣CE=CB﹣CP,即AE=BP,∴AE=BD.又∵∠CBD=90°,∴∠OBD=45°,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB;(2)成立,理由如下:连接AE,则△AEC≌△BCP,∴AE=BP,∠CAE=∠BPC,∵BP=BD,∴BD=AE,∵∠OAE=45°+∠CAE,∠OBD=90°﹣∠OBP=90°﹣(45°﹣∠BPC)=45°+∠PBC,∴∠OAE=∠OBD,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB,②当∠BPC=135°时,AB=DE.理由如下:解法一:当AB=DE时,由①知OA=OB,∴OA=OB=OE=OD.设∠PCB=α,由旋转可知,∠ACE=α.连接OC,则OC=OA=OB,∴OC=OE,∴∠DEC=∠OCE=45°+α.设∠PBC=β,则∠ABP=45°﹣β,∠OBD=90°﹣∠ABP=45°+β.∵OB=OD,∴∠D=∠OBD=45°+β.在四边形BCED中,∠DEC+∠D+∠DBC+∠BCE=360°,即:(45°+α)+(45°+β)+(90°+β)+(90°+α)=360°,解得:α+β=45°,∴∠BPC=180°﹣(α+β)=135°.解法二(本溪赵老师提供,更为简洁):当AB=DE时,四边形AEBD为矩形则∠DBE=90°=∠DBP,∴点P落在线段BE上.∵△ECP为等腰直角三角形,∴∠EPC=45°,∴∠BPC=180°﹣∠EPC=135°.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.【解答】(1)证明:∵AB∥DC,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS),∴∠A=∠D;(2)解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=4,∴AC=2AO=8.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?【解答】(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名学生.23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.【解答】证明:∵DE∥AB,∴∠CAB=∠ADE,∵在△ABC和△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A ,则△ABC≌△DEF.【解答】(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.25.(2014•德州)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【解答】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.【解答】(1)证明:如图①,∵∠BAC+∠EAD=180°,∠BAE=90°,∴∠DAC=90°,在△ABE与△ACD中∴△ABE≌△ACD(SAS),∴CD=BE,∵在Rt△ABE中,F为BE的中点,∴BE=2AF,∴CD=2AF.(2)成立,证明:如图②,延长EA交BC于G,在AG上截取AH=AD,∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°,∵∠EAB+∠BAH=180°,∴∠DAC=∠BAH,在△ABH与△ACD中,∴△ABH≌△ACD(SAS)∴BH=DC,∵AD=AE,AH=AD,∴AE=AH,∵EF=FB,∴BH=2AF,∴CD=2AF.。

人教版八年级数学上册《第十二章全等三角形》单元测试卷及答案

人教版八年级数学上册《第十二章全等三角形》单元测试卷及答案

人教版八年级数学上册《第十二章全等三角形》单元测试卷及答案学校:___________姓名:___________班级:___________题 号 一 二 三 总分 得 分评卷人 得分一 单选题(共36分) 1.(本题3分)如图,在Rt ABC 中90C ∠=︒.按以下步骤作图:①以点A 为圆心 适当长为半径画弧 分别交边,AB AC 于点,M N ①分别以点M 和点N 为圆心 以大于12MN 的长为半径画弧,两弧在ABC 内交于点P ①作射线AP 交边BC 于点Q .若5,20CQ AB ==,则ABQ 的面积是( )A .100B .50C .25D .202.(本题3分)如图,ABC DEF ≌△△ 2BE = 3CE = 则EF 的长是( )A .5B .4C .3D .23.(本题3分)如图,用尺规按如下步骤作图:①以点O 为圆心 线段m 的长为半径画弧 交OA 于点M 交OB 于点N①分别以点M N 为圆心 线段n 的长为半径画弧 两弧在AOB ∠的内部相交于点C ①画射线OC 连接MC NC 。

下列结论不一定成立的是( )A .OM ON =B .CM CN =C .OM CN =D .MCO NCO ∠=∠4.(本题3分)如图,AB AC = AD AE = BAC DAE ∠=∠ 30BAD ∠=︒ 25ACE ∠=︒ 则ADE ∠的度数为( )A .50︒B .55︒C .60︒D .65︒5.(本题3分)小华在复习用尺规作一个角等于已知角的过程中,回顾了作图的过程 并作了如下的思考:请你说明小华得到两个三角形全等的根据是( ) A .SSSB .SASC .ASAD .AAS6.(本题3分)如图,在ABC 中,AD 为角平分线 12AB = 8AC = DE AC ⊥于E 4CD = 则BD 等于( )A .5B .6C .7D .87.(本题3分)如图,90A D ∠=∠=︒ 添加下列条件中的一个后 能判定ABC 与DCB △全等的有( ) ①ABC DCB ∠=∠ ①ACB DBC ∠=∠ ①AB DC = ①AC DB =。

八年级数学上册《第十二章 全等三角形》单元测试卷及答案(人教版)

八年级数学上册《第十二章 全等三角形》单元测试卷及答案(人教版)

八年级数学上册《第十二章全等三角形》单元测试卷及答案(人教版)班级姓名学号一、单选题1.全等图形是指两个图形()A.大小相同B.形状相同C.能够完全重合D.相等2.如图,△ABC≌△ADE,若∠B=80°,∠C=30°,则∠EAD的度数为()A.70°B.75°C.60°D.80°3.如图,三条直线表示相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) .A.一处B.两处C.三处D.四处4.长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为()A.16≤x<14B.18≤x<14C.16<x<14D.18<x<145.如图,在△ABC中,点D在边BC上,点E在线段AD上,AB=AC,EB=EC.则依据SSS可以判定()A.△ABD≌△ACD B.△ABE≌△ACEC.△BED≌△CED D.以上都对6.如图,在△ABC中,∠B=∠C,BF=CD,BD=CE,∠FDE=α,则下列结论正确的是()A.2α+∠A=180°B.α+∠A=90°C.2α+∠A=90°D.α+∠A=180°7.如图,点O在△ABC内,且到三边的距离相等,∠A=64°,则∠BOC的度数为()A.58°B.64°C.122°D.124°8.如图,在△ABC中,P是BC上的点,作PQ∥AC交AB于点Q,分别作PR⊥AB,PS⊥AC,垂足分别是R,S,若PR=PS,则下面三个结论:①AS=AR;②AQ=PQ;③△PQR≌△CPS;④AC﹣AQ=2SC,其中正确的是()A.②③④B.①②C.①④D.①②③④二、填空题9.已知△ABC≌△DEF,若∠B=40°,∠D=30°,则∠F=10.如图,已知B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件,可以判断△ABF≌△DCE.11.如图,△ABD≌△ACE,点B和点C是对应顶点,AB=9cm,BD=7cm,AD=4cm,则DC= cm.12.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面AC•BD.正确的是(填写所有正确结论的序号)积S= 1213.如图,在△ABC中AC=BC,∠ACB=50°,AD⊥BC于点D,MC⊥BC于点C,MC=BC点E,点F分别在线段AD,AC上CF=AE,连接MF,BF,CE.(1)图中与MF相等的线段是;(2)当BF+CE取最小值时∠AFB=°三、解答题14.将Rt△ABC的直角顶点C置于直线l上AC=BC,分别过点A、B作直线l的垂线,垂足分别为点D、E连接AE若BE=3,DE=5求△ACE的面积.15.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.16.如图,已知AC∥BD、EA、EB分别平分∠CAB和△DBA,CD过点E,则线段AB与AC、BD有什么数量关系?请说明理由.17.如图,已知B,C,E三点在同一条直线上AC//DE,AC=CE,∠ACD=∠B .求证:△ABC≌△EDC .18.如图,点D为锐角∠ABC的平分线上一点,点M在边BA上,点N在边BC上,∠BMD+∠BND=180°.试说明:DM=DN.19.已知:AD=BC,AC=BD.(1)如图1,求证:AE=BE;(2)如图2,若AB=AC,∠D=2∠BAC,在不添加任何辅助线的情况下,请直接写出图2中四个度数为36°的角.参考答案 1.C 2.A 3.D 4.A 5.D 6.A 7.C 8.B 9.110° 10.AB=DC 11.5 12.①④ 13.(1)EC (2)9514.解:∵AD ⊥CE ,BE ⊥CE ∴∠ADC =∠CEB =90° ∵∠ACB =90°∴∠ACD =∠CBE =90°−∠ECB 在 △ACD 与 △CBE 中{∠ADC =∠CEB∠ACD =∠CBE AC =BC∴△ACD ≌△CBE (AAS) ∴CD =BE =3 AD =CE ∵CE =CD +DE =3+5=8 ∴AD =8 .S △ACE =12CE ·AD =12×8×8=32 . 15.证明:∵CE ∥DF ∴∠ACE=∠D 在△ACE 和△FDB 中{AC=FD ∠ACE=∠D EC=BD∴△ACE≌△FDB(SAS)∴AE=FB.16.解:AB=AC+BD理由是:在AB上截取AC=AF,连接EF∵AE平分∠CAB∴∠CAE=∠BAE在△CAE和△FAE中{AC=AF∠CAE=∠BAE AE=AE∴△CAE≌△FAE(SAS)∴∠C=∠AFE∵AC∥BD∴∠C+∠D=180°∴∠AFE+∠D=180°∵∠EFB+∠AFE=180°∴∠D=∠EFB∵BE平分∠ABD∴∠DBE=∠FBE在△BEF和△BED中{∠D=∠EFB∠FBE=∠DBEBE=BE∴△BEF≌△BED(AAS)∴BF=BD∵AB=AF+BF,AC=AF,BF=BD ∴AB=AC+BD.17.证明:∵AC//DE∴∠BCA =∠E ∠ACD =∠D . 又∵∠ACD =∠B ∴∠B =∠D .在 △ABC 和 △EDC 中{∠B =∠D∠BCA =∠E AC =EC∴△ABC ≌△EDC .18.解:过点D 作DE ⊥AB 于点E ,DF ⊥BC 于点F . ∴∠DEB =∠DFB =90°. 又∵BD 平分∠ABC ∴DE =DF .∵∠BMD+∠DME =180°,∠BMD+∠BND =180° ∴∠DME =∠BND . 在△EMD 和△FND 中{∠DEM =∠DFN∠EMD =∠FND DE =DF∴△EMD ≌△FND (AAS ). ∴DM =DN .19.(1)证明:在△ABD 和△BAC 中:{AB =BAAD =BC BD =AC∴△ABD ≌△BAC (SSS ) ∴∠ABD=∠BAC ∴AE=BE ;(2)∠BAC ,∠ABD ,∠DAC ,∠DBC。

人教版八年级数学上册《第十二章 全等三角形》单元测试卷-附含答案

人教版八年级数学上册《第十二章 全等三角形》单元测试卷-附含答案

人教版八年级数学上册《第十二章 全等三角形》单元测试卷-附含答案时间:100分钟 总分:120分一、选择题(每题3分 共24分)1.图中是全等的三角形是 ( )A .甲和乙B .乙和丁C .甲和丙D .甲和丁【解析】解:比较三角形的三边长度 发现乙和丁的长度完全一样 即为全等三角形故选:B .【点睛】本题考查全等三角形的判定SSS 三边对应相等 两三角形全等.2.如图 在△ABC 和△DEF 中 AB =DE ∠A =∠D 添加一个条件不能判定这两个三角形全等的是 ( )A .AC =DFB .∠B =∠EC .BC =EFD .∠C =∠F【解析】根据全等三角形的判定定理 结合各选项的条件进行判断即可.解:A 、添加AC =DF 满足SAS 可以判定两三角形全等;B 、添加∠B =∠E 满足ASA 可以判定两三角形全等;C 、添加BC =EF 不能判定这两个三角形全等;D 、添加∠C =∠F 满足AAS 可以判定两三角形全等;故选:C .【点睛】本题考查三角形全等的判定方法 判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等 判定两个三角形全等时 必须有边的参与 若有两边一角对应相等时 角必须是两边的夹角.3.BD 、CE 分别是△ABC 中∠ABC 、∠ACB 的平分线 且交于点O 若O 到AB 的距离为1 BC =3 则OCB S △= ( )A .12B .1C .32 D .3【解析】解:∵点O 是△ABC 中∠ABC 、∠ACB 的平分线的交点∴O 到AB 的距离与O 到BC 的距离相等∴O 到BC 的距离为1∴OCB S △ =12×3×1= 32.故选:C .【点睛】本题考查了角平分线的性质 角平分线上的点到角的两边的距离相等 熟练掌握角平分线的性质是解题的关键.4.如图 已知ABN ACM △≌△ 则下列结论不正确...的是 ( )A .BC ∠=∠ B .BAM CAN =∠∠ C .AMN ANM ∠=∠D .AMC BAN ∠=∠【解析】解:∵ABN ACM △≌△∴B C ∠=∠ A 选项正确;BAN CAM ∠=∠ AN AM = AMC ANB ∠=∠∵BAM MAN CAN MAN ∠+∠=∠+∠∴BAM CAN =∠∠ B 选项正确;∵AN AM =∴AMN ANM ∠=∠ C 选项正确;∵AMC ANB ∠=∠∴AMC BAN ∠=∠ 不一定成立 D 选项不正确.故选:D.【点睛】本题考查全等三角形的性质 解答本题的关键是找准对应边和对应角以及熟悉等腰三角形的性质.5.如图 △ABC ≌△A ′B ′C ′ 边 B ′C ′过点 A 且平分∠BAC 交 BC 于点 D ∠B =27° ∠CDB ′=98° 则∠C ′的度数为 ( )A.60°B.45°C.43°D.34°【解析】解∶∵△ABC≌△A′B′C′∴∠C′=∠C∵∠CDB′=98°∴∠ADB=98°∵∠B=27°∴∠BAD=55°∵B′C′过点A 且平分∠BAC 交BC 于点D∴∠BAC=2∠BAD=110°∴∠C=180°-∠BAD-∠B=43°即∠C′=43°.故选:C【点睛】本题主要考查了全等三角形的性质三角形的内角和定理熟练掌握全等三角形的性质三角形的内角和定理是解题的关键.6.如图为了估算河的宽度我们可以在河的对岸选定一个目标点A再在河的这一边选定点B和F使AB⊥BF并在垂线BF上取两点C、D使BC=CD再作出BF的垂线DE使点A、C、E在同一条直线上因此证得△ABC≌△EDC进而可得AB=DE即测得DE的长就是AB的长则△ABC≌△EDC的理论依据是()A.SAS B.HL C.ASA D.AAA【解析】解:∵证明在△ABC≌△EDC用到的条件是:CD=BC∠ABC=∠EDC=90°∠ACB=∠ECD∴用到的是两角及这两角的夹边对应相等即ASA这一方法故C正确.故选:C.【点睛】本题考查了全等三角形的应用判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL 做题时注意选择.注意:AAA、SSA不能判定两个三角形全等判定两个三角形全等时必须有边的参与 若有两边一角对应相等时 角必须是两边的夹角.7.如图33 的正方形网格中 ABC 的顶点都在小正方形的格点上 这样的三角形称为格点三角形 则在此网格中与ABC 全等的格点三角形(不含ABC )共有 ( )A .5个B .6个C .7个D .8个【解析】解:如图所示:与ABC 全等的三角形有DEF 、HIJ 、GMN 、IEM △、HAF △、BDG 、CJN △ 共7个故选:C .【点睛】本题考查了全等三角形的判定定理 能熟记全等三角形的判定定理是解此题的关键 注意:全等三角形的判定定理有SAS ASA AAS SSS 两直角三角形全等还有HL 等.8.如图 BC ⊥CE BC =CE AC ⊥CD AC =CD DE 交AC 的延长线于点M M 是DE 的中点 若AB =8 则CM 的长为 ( )A .3.2B .3.6C .4D .4.8【解析】解:如图 过点E 作EF ⊥AC 交AC 的延长线于点F∵ CD ⊥AC EF ⊥AC∴∠DCM =∠EFM =90°∵M 是DE 的中点∴DM =EM∵∠DMC =∠EMF∴△DCM ≌△EFM (AAS )∴CM =FM CD =FE∵BC ⊥CE EF ⊥AC∴∠BCE =90° ∠CFE =90°∴∠ACB +∠ECF =90° ∠ECF +∠FEC =90°∴∠ACB =∠FEC∵AC =CD∴AC =FE∵BC =CE∴△ABC ≌△FCE (SAS )∴FC =AB =8∵CM =FM∴M 是FC 的中点∴CM =12FC =4故选:C【点睛】本题考查了全等三角形的判定与性质 熟练掌握三角形的判定方法是基础添加辅助线构造全等三角形是关键.二、填空题(每题3分 共24分)9.如图 90B D ∠=∠=︒ AB AD = 130BAD ∠=︒ 则DCA ∠=______°.【解析】解:∵90B D ∠=∠=︒∴△ABC 和△ADC 是直角三角形∵AC =AC AB AD =∴Rt △ABC ≌Rt △ADC (HL )∴∠DAC =∠BAC∵130BAD ∠=︒∴∠DAC =12∠BAD =65°∴DCA ∠=90°-∠DAC =25°.故答案为:25.【点睛】此题考查了全等三角形的判定和性质 熟练掌握直角三角形的判定定理是解题的关键.10.如图 ,AC AD BC BD == 连结CD 交AB 于点E F 是AB 上一点 连结FC FD 则图中的全等三角形共有_________对.【解析】解:解:在△ACB 和ADB 中AC AD AB AB BC BD =⎧⎪=⎨⎪=⎩∴△ACB ≌ADB∴∠CAB =∠DAB ∠CBA =∠DBA∵AC =AD ∠CAB =∠DAB AF =AF∴△CAF ≌△DAF CF =DF∵AC =AD ∠CAB =∠DAB AE =AE∴△ACE ≌△ADE CE =DE∵BC =BD ∠CBA =∠DBA BE =BE∴△CBE ≌△DBE∵BC =BD ∠CBA =∠DBA BF =BF∴△FCB ≌△FDB∵CF =DF CE =DE EF =EF∴△CEF ≌△DEF∴图中全等的三角形有6对图中全等三角形有△ACB ≌△ADB △ACF ≌△ADF △ACE ≌△ADE △BCE ≌△BDE△BCF ≌△BDF △FCE ≌△FDE 共6对故答案为:6 .【点睛】本题考查了对全等三角形的判定定理的应用 注意:全等三角形的判定定理有SAS ASA AAS SSS .11.如图 在△ABC 中 ∠B =∠C =65° BD =CE BE =CF 则∠DEF 的度数是_____.【解析】解:在△DBE 和△ECF 中=C BD CE B BE CF =⎧⎪∠∠⎨⎪=⎩∴△DBE ≌△ECF (SAS )∴∠BDE =∠FEC∵∠DEF +∠FEC =∠B +∠BDE∴∠DEF =∠B =65°故答案为:65°.【点睛】本题考查全等三角形的判定与性质、三角形的外角性质等知识 证明△DBE ≌△ECF 是解题的关键 属于中考常考题型.12.如图 E ABC AD ≅∆∆ BC 的延长线经过点E 交AD 于F 105AED ∠=︒ 10CAD ∠=︒ 50B ∠=︒ 则EAB ∠=__︒.【解析】解:ABC ADE ∆≅∆ 50B ∠=︒ 50D B EAD CAB ∠=∠105AED ∠=︒18025EAD D AED ∴∠=︒-∠-∠=︒25CAB ∴∠=︒10CAD25102560EAB EAD DAC CAB ∴∠=∠+∠+∠=︒+︒+︒=︒.故答案为:60.【点睛】本题考查了全等三角形的性质和三角形内角和定理 能熟记全等三角形的性质的内容是解此题的关键 注意:全等三角形的对应边相等 对角角相等.13.如图 在ABC 中 AD 是它的角平分线 8cm AB = 6cm AC = 则:ABD ACD S S =△△______.【解析】解:如图 过D 作DH AB ⊥于,H 作DG AC ⊥于,G∵AD 是它的角平分线,DH DG 而8cm AB = 6cm AC =1842.1632ABDACD AB DH SAB S AC AC DG 故答案为:4∶3【点睛】本题考查的是角平分线的性质 三角形的面积的计算 证明DH DG =是解本题的关键.14.如图 ∠ACB =90° AC =BC BE ⊥CE AD ⊥CE垂足分别为E D AD =25 DE =17 则BE =_____.【解析】解:∵∠ACB =90°∴∠BCE +∠ACD =90°又∵BE ⊥CE AD ⊥CE∴∠E =∠ADC =90°∴∠BCE +∠CBE =90°∴∠CBE =∠ACD在△CBE 和△ACD 中E ADC CBE ACD BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CBE ≌△ACD (AAS )∴BE =CD CE =AD =25∵DE =17∴CD =CE ﹣DE =AD ﹣DE =25﹣17=8∴BE =CD =8;故答案为:8.【点睛】本题主要考查全等三角形的判定和性质;证明三角形全等得出对应边相等是解决问题的关键.15.如图 在平面直角坐标系中 点A 的坐标是(4 0) 点P 的坐标是(0 3) 把线段AP 绕点P 逆时针旋转90°后得到线段PQ 则点Q 的坐标是__________.【解析】解:过Q 作QE ⊥y 轴于E 点 如下图所示:∵旋转90°∴∠1+∠2=90°∵EQ ⊥y 轴∴∠3+∠2=90°∴∠1=∠3且∠QEP =∠POA =90° PQ=PA∴△QEP ≌△POA (AAS )∴EQ=PO =3 EP=OA =4∴EO=EP+PO =4+3=7∴点Q 的坐标是(3 7)故答案为:(3 7).【点睛】本题考查三角形全等的判定和性质 坐标与图形 本题的关键过Q 作QE ⊥y 轴于E 点 证明△QEP ≌△POA .16.如图 ∠ABC =∠ACD =90° BC =2 AC =CD 则△BCD 的面积为_________.【解析】解:如图 作DE 垂直于BC 的延长线 垂足为E∵90ACB BAC ∠+∠=︒ 90ACB DCE ∠+∠=︒∴BAC DCE ∠=∠在ABC 和CED 中∵90BAC DCEABC CED AC CD∠=∠⎧⎪∠==︒⎨⎪=⎩∴()ABC CED AAS ≌∴2BC DE == ∴122BCD S BC DE =⨯⨯=故答案为:2.【点睛】本题考查了三角形全等的判定与性质.解题的关键在于证明三角形全等.三、解答题(每题8分 共72分)17.如图 在四边形ABCD 中 点E 为对角线BD 上一点 A BEC ∠=∠ ABD BCE ∠=∠ 且AD BE = 证明:AD BC ∥.【解析】证明:在ABD ∆与ECB ∆中A BEC ABD BCE AD BE ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABD ECB AAS ∴∆≅∆;ADB EBC ∴∠=∠AD BC ∴;【点睛】本题主要考查了平行线的判定及全等三角形的判定及性质 熟练运用全等三角形的判定及性质是解题的关键.18.如图 点A 、D 、C 、F 在同一条直线上 ,,AD CF AB DE BC EF ===.若55A ∠=︒ 求EDF ∠的度数.【解析】∵AC =AD +DC DF =DC +CF 且AD =CF∴AC =DF在△ABC 和△DEF 中AB DE BC EF AC DF ⎧⎪⎨⎪⎩=== ∴△ABC ≌△DEF (SSS )∴∠A =∠EDF =55︒.【点睛】本题考查全等三角形的判定与性质 解答本题的关键是明确题意 利用数形结合的思想解答.19.已知:如图 AB ⊥BD ED ⊥BD C 是BD 上的一点 AC ⊥CE AB =CD 求证:BC =DE .【解析】证明:∵AB ⊥BD ED ⊥BD AC ⊥CE (已知)∴∠ACE =∠B =∠D =90°(垂直的意义)∵∠BCA +∠DCE +∠ACE =180°(平角的意义)∠ACE =90°(已证)∴∠BCA +∠DCE =90°(等式性质)∵∠BCA +∠A +∠B =180°(三角形内角和等于180°)∠B =90°(已证)∴∠BCA +∠A =90°(等式性质)∴∠DCE =∠A (同角的余角相等)在△ABC 和△CDE 中A DCE AB CD B D ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△CDE (ASA )∴BC =DE (全等三角形对应边相等)【点睛】本题考查了全等三角形的判定和性质;熟练掌握三角形全等的判定定理是解题的关键.20.如图 在ABC 中 240AB AC B ==∠=︒, 点D 在线段BC 上运动(D 不与B 、C 重合) 连接AD 作40ADE ∠=︒ DE 交线段AC 于E .(1)点D 从B 向C 运动时 BDA ∠逐渐变__________(填“大”或“小”) 但BDA ∠与EDC ∠的度数和始终是__________度.(2)当DC 的长度是多少时 ABD DCE △△≌ 并说明理由.【解析】(1)在△ABD 中 ∠B +∠BAD +∠ADB =180°设∠BAD =x ° ∠BDA =y °∴40°+x +y =180°∴y =140-x (0<x <100)当点D 从点B 向C 运动时 x 增大∴y 减小BDA ∠+EDC ∠=180°-140ADE ∠=︒故答案为:小 140;(2)当DC =2时 △ABD ≌△DCE理由:∵∠C =40°∴∠DEC +∠EDC =140°又∵∠ADE =40°∴∠ADB +∠EDC =140°∴∠ADB =∠DEC又∵AB =DC =2在△ABD 和△DCE 中===ADB DEC B CAB DC ∠∠⎧⎪∠∠⎨⎪⎩∴△ABD ≌△DCE (AAS );【点睛】此题主要考查学生对等腰三角形的判定与性质 全等三角形的判定与性质 三角形外角的性质等知识点的理解和掌握 三角形的内角和公式 解本题的关键是分类讨论.21.如图 已知ABC 中 ,90AC BC ACB =∠=︒ 点D 与点E 都在射线AP 上 且CD CE = 90DCE ∠=︒.(1)说明AD BE =的理由;(2)说明BE AE ⊥的理由.【解析】(1)解:90ACB DCE ∠=∠=︒ACD DCB BCE DCB ∴∠+∠=∠+∠ACD BCE ∠∠∴=在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()ACD BCE SAS ∴∆≅∆AD BE ∴=;(2)解:如图 设AE 和BC 交于点F∆≅∆ACD BCE∴∠=∠CAD CBEEFB FAB FBA FAB∠=∠+∠=∠+︒45EFB FBE FAB FBE∴∠+∠=∠+︒+∠45=∠+︒+∠FAB CAD45=∠+︒CAB45=︒+︒=︒454590∴∠BEF=90°BE AE∴⊥.【点睛】本题考查了全等三角形的性质和判定、外角的性质解题的关键是能证明出E∆.≅∆ACD BC 22.已知:如图在△ABC△ADE中∠BAC=∠DAE=90°AB=AC AD=AE点C D E 三点在同一直线上连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD CE有何特殊位置关系并证明.【解析】(1)证明:∠BAC=∠DAE=90°∴∠+∠=∠+∠,BAC CAD CAD DAEBAD CAE∴∠=∠,AB=AC AD=AE≌BAD CAE.BD CE BD CE理由如下:(2)解:,,BAD CAE≌,ABD ACE∴∠=∠,∠=︒90,BACABC ACB90,ABD DBC ACB90,ACE DBC ACB DBC BCD90,BDC BD CE90,.【点睛】本题考查的是三角形的内角和定理的应用全等三角形的判定与性质掌握“利用SAS证明两个三角形全等及应用全等三角形的性质”是解本题的关键.23.图已知AE⊥AB AF⊥AC.AE=AB AF=AC BF与CE相交于点M.(1)EC=BF;(2)EC⊥BF;(3)连接AM求证:AM平分∠EMF.【解析】(1)证明:∵AE⊥AB AF⊥AC∴∠BAE=∠CAF=90°∴∠BAE+∠BAC=∠CAF+∠BAC即∠EAC=∠BAF在△ABF和△AEC中∵AE ABEAC BAF AF AC=⎧⎪∠=∠⎨⎪=⎩∴△ABF≌△AEC(SAS)∴EC=BF;(2)根据(1)∵△ABF≌△AEC∴∠AEC=∠ABF∵AE⊥AB∴∠BAE=90°∴∠AEC+∠ADE=90°∵∠ADE=∠BDM(对顶角相等)∴∠ABF+∠BDM=90°在△BDM中∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°所以EC⊥BF.(3)作AP⊥CE于P AQ⊥BF于Q.如图:∵△EAC ≌△BAF∴AP =AQ (全等三角形对应边上的高相等).∵AP ⊥CE 于P AQ ⊥BF 于Q∴AM 平分∠EMF .【点睛】本题考查了全等三角形的判定与性质 根据条件找出两组对应边的夹角∠EAC =∠BAF 是证明的关键 也是解答本题的难点.24.在直线m 上依次取互不重合的三个点,,D A E 在直线m 上方有AB AC = 且满足BDA AEC BAC α∠=∠=∠=.(1)如图1 当90α=︒时 猜想线段,,DE BD CE 之间的数量关系是____________;(2)如图2 当0180α<<︒时 问题(1)中结论是否仍然成立?如成立 请你给出证明;若不成立 请说明理由;(3)应用:如图3 在ABC 中 BAC ∠是钝角 AB AC = ,BAD CAE BDA AEC BAC ∠<∠∠=∠=∠ 直线m 与CB 的延长线交于点F 若3BC FB = ABC 的面积是12 求FBD 与ACE 的面积之和.【解析】(1)解:DE =BD +CE 理由如下∵∠BDA =∠BAC =∠AEC =90°∴∠BAD +∠EAC =∠BAD +∠DBA =90°∴∠DBA =∠EAC∵AB =AC∴△DBA ≌△EAC (AAS )∴AD =CE BD =AE∴DE =AD +AE =BD +CE故答案为:DE =BD +CE .(2)DE =BD +CE 仍然成立 理由如下∵∠BDA =∠BAC =∠AEC =α∴∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α∴∠DBA =∠EAC∵AB =AC∴△DBA ≌△EAC (AAS )∴BD =AE AD =CE∴DE =AD +AE =BD +CE ;(3)解:∵∠BAD <∠CAE ∠BDA =∠AEC =∠BAC∴∠CAE =∠ABD在△ABD 和△CAE 中ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS )∴S △ABD =S △CAE设△ABC 的底边BC 上的高为h 则△ABF 的底边BF 上的高为h∴S △ABC =12BC •h =12 S △ABF =12BF •h∵BC =3BF∴S △ABF =4∵S △ABF =S △BDF +S △ABD =S △FBD +S △ACE =4∴△FBD 与△ACE 的面积之和为4.【点睛】本题考查了全等三角形的判定与性质、直角三角形的性质 三角形的面积 解题的关键是熟练掌握全等三角形的判定与性质.25.如图 ∠MAN 是一个钝角 AB 平分∠MAN 点C 在射线AN 上 且AB =BC BD ⊥AC 垂足为D .(1)求证:BAM BCA ∠=∠;(2)动点P Q 同时从A 点出发 其中点Q 以每秒3个单位长度的速度沿射线AN 方向匀速运动;动点P 以每秒1个单位长度的速度匀速运动.已知AC =5 设动点P Q 的运动时间为t 秒. ①如图② 当点P 在射线AM 上运动时 若点Q 在线段AC 上 且52ABP BQC S S =△△ 求此时t 的值;②如图③ 当点P 在直线AM 上运动时 点Q 在射线AN 上运动的过程中 是否存在某个时刻 使得APB 与BQC 全等?若存在 请求出t 的值;若不存在 请说出理由.【解析】(1)证明:∵BD ⊥AC∴90BDA BDC ∠=∠=︒在Rt △BDA 和Rt △BDC 中BD BD AB CB =⎧⎨=⎩, ∴Rt△BDA ≌Rt△BDC (HL )∴∠BAC =∠BCA .∵AB 平分∠MAN∴∠BAM =∠BAC∴∠BAM =∠BCA .(2)解:①如下图所示 作BH ⊥AM 垂足为M .∵BH ⊥AM BD ⊥AC∴∠AHB =∠ADB =90°在△AHB 和△ADB 中AHB ADB BAH BAD AB AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△AHB ≌△ADB (AAS )∴BH =BD∵S △ABP =52S △BQC ∴151222AP BH CQ BD =⨯∴52AP CQ =∴5(53)2t t =-∴2517t =.②存在 理由如下:当点P 沿射线AM 方向运动 点Q 在线段AC 上时 如下图所示∵AB =BC又由(1)得∠BAM =∠BCA∴当AP =CQ 时 △APB ≌△CQB∴53t t =-∴54t =;当点P沿射线AM 反向延长线方向运动 点Q 在线段AC 延长线上时 如下图所示由(1)得∠BAM=∠BCA∴∠BAP=∠BCQ又∵AB=BC∴当AP=CQ时△APB≌△CQB ∴35t t=-∴52t=.综上所述当54t=或52t=时△APB和△CQB全等.【点睛】本题考查角平分线的定义全等三角形的判定与性质熟练掌握全等三角形的判定方法并注意分类讨论是解题的关键.第21页共21页。

2023-2024学年人教版八年级数学上册《第十二章 全等三角形》单元测试卷附有答案

2023-2024学年人教版八年级数学上册《第十二章 全等三角形》单元测试卷附有答案

2023-2024学年人教版八年级数学上册《第十二章 全等三角形》单元测试卷附有答案学校:___________班级:___________姓名:___________考号:___________一、单选题(共10小题 满分40分) 1.如图 已知//AB CF E 为DF 的中点 若11AB cm = 5CF cm =则BD =( )A .11cmB .6cmC .5cmD .3cm2.如图 已知AD 是ABC 的角平分线 过点D 作DE AB ⊥于点,E ABC 的面积为28 8,:4:3AB BD DC ==则AC 的长为( )A .2B .6C .4D .53.如图 △ABC△△EFD 则下列说法错误的是( )A .FC BD =B .EF 平行且等于ABC .AC 平行且等于DED .CD ED =4.如图所示 点O 是ABC 内一点 BO 平分,ABC OD BC ∠⊥于点D 连接OA 若5OD = 20AB =则AOB 的面积是( )A .20B .30C .50D .1005.已知:如图 点D 、E 分别在AB 、AC 边上 △ABE △△ACD AC =15 BD =9 则线段AD 的长是()A .6B .9C .12D .15ACE BCE ACD S S S -=.其中确结论的个数( )A .1个B .2个C .3个D .4个7.如图 BE DF = AB DC ∥ 要使ABF CDE △△≌ 应添加的条件是( )A .BF DE =B .AF CE =C .AB DC =D .ABD CDB ∠=∠ 8.如图 在ABC 中 P 、Q 分别是BC 、AC 上的点 作PR AB ⊥ PS AC ⊥ 垂足分别为R 、S 若AQ PQ = PR PS = 则下列四个结论:△PA 平分BAC ∠;△AS AR =;△QP AR ∥;△BRP CSP △≌△ 其中结论正确的的个数为( ).A .4B .3C .2D .19.下列结论不正确的是( )A .两个锐角对应相等的两个直角三角形全等B .一锐角和斜边对应相等的两个直角三角形全等C .一直角边和一锐角对应相等的两个直角三角形全等D .两条直角边对应相等的两个直角三角形全等10.如图 在平面直角坐标系中 以O 为圆心 适当长为半径画弧 交x 轴于点M 交y 轴于点N 再分别以点M 、N 为圆心 大于MN 的长为半径画弧 两弧在第二象限交于点P .若点P 的坐标为()2,1a b + 则a 与b 的数量关系为( ).A .21a b -=B .21a b +=-C .21a b -=-D .21a b +=二、填空题(共8小题 满分32分)11.如图 在ABC 中 90C ∠=︒ ABC ∠的平分线BD 交AC 于点D .若10BD =厘米 8BC =厘米 6DC =厘米 则点D 到直线AB 的距离是 厘米.12.如图 在△ABC 与△ABD 中 AD 与BC 相交于点O △1=△2 请你添加一个条件(不再添加其他线段 不再标注或使用其他字母) 使AC =BD .你添加的条件是 .13.如图 公园里有一座假山 要测量假山两端A 、B 的距离 先在平地上取一个可以直接到达A 、B 的点C 分别延长AC 、BC 到D 、E 使CE CB = CA CD = 连接DE 这样就可以利用三角形全等 通过测量DE 的长得到假山两端A 、B 的距离 则这两个三角形全等的依据是 .14.如图:OP 平分△AOB PE △OA PE =5 F 为OB 上一动点 则PF 的最小值为 .15.如图 在ABC ∆中 AEB AEC ∠=∠ BE CE = 直接使用“SAS ”可判定 .16.如图 四边形ABCD 中 AC 与BD 相交于点P △ABC +△ADC =180° BD 平分△ABC AD =CD 过D 作DE △BC 于E 若AB =5 BC =12 则CE = .17.如图 CD 是ABC 的角平分线 AE CD ⊥于E 6,4BC AC == ABC 的面积是9 则AEC △的面积是 .18.在ABC 中给定下面几组条件:△BC=4cm AC=5cm △ACB=30°;△BC=4cm AC=3cm △ABC=30°;△BC=4cm AC=5cm △ABC=90°;△BC=4cm AC=5cm △ABC=120°.若根据每组条件画图 则ABC 能够唯一确定的是 (填序号).三、解答题(共6小题 每题8分 满分48分)19.如图 Rt ABC △中 9015C AC ∠=︒=, 面积为150的平分线交AB于点D;(不要求写作法保留作图痕迹)(1)尺规作图:作C(2)在(1)的条件下求出点D到两条直角边的距离.、、三点在同一条直线上ABC和CDE为等边三角形连接20.如图所示B C DAD BE.请在图中找出与ACD全等的三角形并说明理由.,21.已知:△ABC△△EDC.(1)若DE△BC(如图1)判断△ABC的形状并说明理由.(2)连结BE 交AC于F 点H是CE上的点且CH=CF 连结DH交BE于K(如图2).求证:△DKF=△ACB22.如图所示 AC BC = DC EC = 90ACB ECD ∠=∠=︒ 且42EBD ∠=︒(1)求证:DBC EAC ∠=∠;(2)求AEB ∠的度数.23.如图所示 已知△ABC 中 AB =AC =10cm BC =8cm 点D 为AB 的中点.如果点P 在线段BC 上由B 出发向C 点运动 同时点Q 在线段CA 上由C 点出发向A 点运动.设运动时间为t 秒.(1)若点P 的速度为3cm/s 用含t 的式子表示第t 秒时 BP = cm CP = cm .(2)在(1)的条件下 若点Q 运动速度与点P 的运动速度相等 经过几秒钟△BPD 与△CQP 全等 说明理由;(3)若点Q 的运动速度与点P 的运动速度不相等 且点P 的速度比点Q 的速度慢1cm/s 时 点Q 的运动速度为多少时?能够使△BPD 与△CQP 全等?24.如图1 点A 、B 分别在射线OM 、ON 上运动(不与点O 重合) AC 、BC 分别是△BAO 和△ABO 的角平分线 BC 延长线交OM 于点G .(1)若△MON=60° 则△ACG=;(直接写出答案)(2)若△MON=n° 求出△ACG的度数;(用含n的代数式表示)(3)如图2 若△MON=x° 过点C作CF△OA交AB于点F求△BGO-△ACF的度数.(用含x的代数式表示)参考答案:19.(1)略 (2)60720.△ACD△△BCE .21.(1)△ABC 是等腰三角形;(2)11;22.(1)略(2)132︒23.(1)3t 8﹣3t ;(2)经过1秒钟△BPD 与△CQP 全等;(3)Q 的速度是5cm/s 时 △BPD△△CQP24.(1)60︒;(2)1902ACG n ;(3)1902BGO ACF x .。

人教新版 八年级(上)数学 第12章 全等三角形 单元测试卷 (解析版)

人教新版 八年级(上)数学 第12章 全等三角形 单元测试卷 (解析版)

第12章全等三角形单元测试卷一、选择题(共10小题).1.(2分)在三角形的内部,到三边距离相等的点是三角形的三条()A.中线的交点B.角平分线的交点C.高的交点D.以上都不对2.(2分)如图,若△ABC与△DEF全等,且BC=DF,则下列结论正确的是()A.∠D=66°B.EF=5cm C.∠E=60°D.DE=5cm 3.(2分)如图,已知△ABC≌△BAD,A与B,C与D分别是对应顶点,若AB=3cm,BC=2cm,AC=4cm,则AD的长为()A.2cm B.3cm C.4cm D.不能确定4.(2分)根据下列已知条件,能唯一画出△ABC的是()A.AB=3cm,BC=4cm,AC=8cmB.AB=4cm,BC=3cm,∠A=30°C.∠A=60°,∠B=45°,AB=40cmD.∠C=90°,AB=6cm5.(2分)下列判定直角三角形全等的方法,不正确的是()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一直角边对应相等D.两个直角三角形的面积相等6.(2分)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=()A.60°B.55°C.50°D.无法计算7.(2分)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c8.(2分)如图是一个4×4的正方形网格,图中所标示的7个角的角度之和等于()A.585°B.540°C.270°D.315°9.(2分)如图,EB交AC于点M,交FC于点D,AB交FC于点N,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:其中正确的结论有()①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN;⑤△AFN≌△AEM.A.2个B.3个C.4个D.5个10.(2分)如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA 二、填空题(每小题3分,共30分)11.(3分)如图所示,AD⊥BC,D为BC的中点,若∠B=52°,则∠DAC=.12.(3分)如图,AD=AB,∠C=∠E,∠CDE=60°,则∠ABE=.13.(3分)如图,点D,C,A在同一条直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,若△EDC≌△ABC,则∠BCE的度数为.14.(3分)如图,△ABC和△EBD都是等腰三角形,且∠ABC=∠EBD=100°,当点D 在AC边上时,∠BAE=度.15.(3分)如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2cm,BE=0.5cm,则DE=cm.16.(3分)如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=.17.(3分)如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有对全等三角形.18.(3分)如图,AB⊥BC、DC⊥BC,垂足分别为B、C,AB=6,BC=8,CD=2,点P为BC边上一动点,当BP=时,形成的Rt△ABP与Rt△PCD全等.19.(3分)如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.则∠APN=.20.(3分)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=.三、解答题(共50分)21.(4分)如图,在直线MN上求作一点P,点P到射线OA和OB的距离相等.(要求用尺规作图,保留作图痕迹,不必写作法和证明过程.22.(6分)如图,在△ABC中,点D是BC的中点,DE⊥AB,DF⊥AC,E、F为垂足,DE=DF,求证:∠B=∠C.23.(8分)如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC,求证:AD是∠BAC的平分线.24.(8分)已知:如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上的一点,求证:△ACE≌△BCD.25.(6分)已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.26.(8分)如图,已知M是∠AOB内一点,MD⊥OB于点D,MC⊥OA于点C,且MD =MC作射线OM,在OM上任取一点P,连接PC,PD.找出图中所有相等的线段(MD =MC除外),并加以证明.27.(10分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D.BE⊥MN于点E.(1)当直线MN绕点C旋转到如图所示位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到与线段AB相交(交点不是AB中点)时,画出相应的图形,探求线段DE,AD与BE之间的等量关系,并写出其关系式.四、附加题(共10分)28.有位同学发现了“角平分线”的另一种尺规作法,其方法为:(1)如图所示,以O为圆心,任意长为半径画弧交OM、ON于点A、B;(2)以O为圆心,不等于(1)中的半径长为半径画弧交OM、ON于点C、D;(3)连接AD、BC相交于点E;(4)作射线OE,则OE为∠MON的平分线.你认为他这种作法对吗?试说明理由.参考答案一、选择题(每小题2分,共20分)1.(2分)在三角形的内部,到三边距离相等的点是三角形的三条()A.中线的交点B.角平分线的交点C.高的交点D.以上都不对解:在三角形内部到三边距离相等的点是三个内角平分线的交点,故选:B.2.(2分)如图,若△ABC与△DEF全等,且BC=DF,则下列结论正确的是()A.∠D=66°B.EF=5cm C.∠E=60°D.DE=5cm解:∵△ABC与△DEF全等,∠B=∠F,且BC=DF,∴EF=AB=5cm,故选:B.3.(2分)如图,已知△ABC≌△BAD,A与B,C与D分别是对应顶点,若AB=3cm,BC=2cm,AC=4cm,则AD的长为()A.2cm B.3cm C.4cm D.不能确定解:∵△ABC≌△BAD,∴AD=BC=2cm,故选:A.4.(2分)根据下列已知条件,能唯一画出△ABC的是()A.AB=3cm,BC=4cm,AC=8cmB.AB=4cm,BC=3cm,∠A=30°C.∠A=60°,∠B=45°,AB=40cmD.∠C=90°,AB=6cm解:A、AB=3cm,BC=4cm,AC=8cm;不满足三角形三边关系,本选项不符合题意;B、AB=4cm,BC=3cm,∠A=30°;边边角三角形不能唯一确定.本选项不符合题意;C、∠A=60°,∠B=45°,AB=40cm;角边角三角形唯一确定.本选项符合题意;D、∠C=90°,AB=6cm;一边一角三角形不能唯一确定.本选项不符合题意;故选:C.5.(2分)下列判定直角三角形全等的方法,不正确的是()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一直角边对应相等D.两个直角三角形的面积相等解:如果在两个直角三角形中,两条直角边对应相等,那么根据SAS即可判断两三角形全等,故选项A正确;如果如果在两个直角三角形中,斜边和一锐角对应相等,那么根据AAS可判断两三角形全等,故选项B正确;如果如果在两个直角三角形中,斜边和一直角边对应相等,那么根据HL可判断两三角形全等,故选项C正确;如果两个直角三角形的面积相等,那么无法判定两个直角三角形全等,故D错误;故选:D.6.(2分)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=()A.60°B.55°C.50°D.无法计算解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠CAE,在△BAD和△CAE中∴△BAD≌△CAE,∵∠2=30°,∴∠ABD=∠2=30°,∵,∠1=25°,∴∠3=∠ABD+∠1=55°,故选:B.7.(2分)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b﹣c)=a+b﹣c,故选:D.8.(2分)如图是一个4×4的正方形网格,图中所标示的7个角的角度之和等于()A.585°B.540°C.270°D.315°解:仔细观察图形,我们可以发现:∵AB=AZ,BC=ZV,∠B=∠Z,∴△ABC≌△AZV(SAS),∴∠1=∠AVZ,∴∠1+∠7=180°,同理可得:∠2+∠6=180°,∠3+∠5=180°,∠4=45°,所以说图示的7个角的度数和为∠1+∠7+∠2+∠6+∠3+∠5+∠4=180°+180°+180°+45°=585°.故选:A.9.(2分)如图,EB交AC于点M,交FC于点D,AB交FC于点N,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:其中正确的结论有()①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN;⑤△AFN≌△AEM.A.2个B.3个C.4个D.5个解:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF(AAS),∴BE=CF,AF=AE,故②正确,∠BAE=∠CAF,∠BAE﹣∠BAC=∠CAF﹣∠BAC,∴∠1=∠2,故①正确,∵△ABE≌△ACF,∴AB=AC,又∠BAC=∠CAB,∠B=∠C△ACN≌△ABM(ASA),故③正确,CD=DN不能证明成立,故④错误∵∠1=∠2,∠F=∠E,AF=AE,∴△AFN≌△AEM(ASA),故⑤正确,故选:C.10.(2分)如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA 解:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中,∴△BCD≌△ACE(SAS),故A成立,∴∠DBC=∠CAE,∵∠BCA=∠ECD=60°,∴∠ACD=60°,在△BGC和△AFC中,∴△BGC≌△AFC,故B成立,∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中,∴△DCG≌△ECF,故C成立,故选:D.二、填空题(每小题3分,共30分)11.(3分)如图所示,AD⊥BC,D为BC的中点,若∠B=52°,则∠DAC=38°.解:∵D为BC的中点,∴BD=CD,∵AD⊥BC,∠B=52°,∴∠ADB=∠ADC=90°,∠BAD=38°,在△ADB和△ADC中,,∴△ABD≌△ACD(SAS),∴∠DAC=∠BAD=38°,故答案为:38°.12.(3分)如图,AD=AB,∠C=∠E,∠CDE=60°,则∠ABE=120°.解:∵在△ADC和△ABE中,,∴△ADC≌△ABE(AAS),∴∠ADC=∠ABE,∵∠CDE=60°,∴∠ADC=120°,∴∠ABE=120°,故答案为120°.13.(3分)如图,点D,C,A在同一条直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,若△EDC≌△ABC,则∠BCE的度数为20°.解:∵∠A:∠ABC:∠ACB=3:5:10,∴∠ACB=180°×=100°,∵△EDC≌△ABC,∴∠ECD=∠ACB=100°,∴∠ECA=180°﹣∠ECD=180°﹣100°=80°,∠BCE=∠ACB﹣∠ECA=100°﹣80°=20°,故答案为:20°14.(3分)如图,△ABC和△EBD都是等腰三角形,且∠ABC=∠EBD=100°,当点D 在AC边上时,∠BAE=40度.解:∵∠ABC=∠ABD+∠DBC,∠EBD=∠EBA+∠ABD,∠ABC=∠EBD,∴∠DBC=∠EBA,∵△ABC和△EBD都是等腰三角形,∴BE=BD,AB=CB,在△EAB和△DCB中,∴△EAB≌△DCB(SAS),∴∠BAE=∠BCD,∵∠ABC=100°,AB=CB,∴∠BAE=∠BCD==40°,故答案为:40.15.(3分)如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2cm,BE=0.5cm,则DE= 1.5cm.解:∵BE⊥CE,AD⊥CE∴∠E=∠ADC=90°∴∠DAC+∠DCA=90°∵∠ACB=90°∴∠BCE+∠DCA=90°∴∠BAC=∠DAE在△ACD和△CBE中,,∴△ACD≌△CBE∴BE=CD=0.5(cm),EC=AD=2(cm)DE=CE﹣CD=1.5(cm),故答案为1.516.(3分)如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=135°.解:∵在△ABC和△DBE中,∴△ABC≌△DBE(SAS),∴∠3=∠ACB,∵∠ACB+∠1=90°,∴∠1+∠3=90°,∴∠1+∠2+∠3=90°+45°=135°,故答案为:135°.17.(3分)如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有3对全等三角形.解:OP平分∠MON,PE⊥OM于E,PF⊥ON于F,∴PE=PF,∠1=∠2,在△AOP与△BOP中,,∴△AOP≌△BOP,∴AP=BP,在△EOP与△FOP中,,∴△EOP≌△FOP,在R t△AEP与R t△BFP中,,∴R t△AEP≌R t△BFP,∴图中有3对全等三角形,故答案为:3.18.(3分)如图,AB⊥BC、DC⊥BC,垂足分别为B、C,AB=6,BC=8,CD=2,点P为BC边上一动点,当BP=2时,形成的Rt△ABP与Rt△PCD全等.解:当BP=2时,Rt△ABP≌Rt△PCD,∵BC=8,BP=2,∴PC=6,∵AB⊥BC、DC⊥BC,∴∠B=∠C=90°,在△ABP和△PCD中,∴△ABP≌△PCD(SAS),故答案为:2.19.(3分)如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.则∠APN=108°.解:∵五边形ABCDE为正五边形,∴AB=BC,∠ABM=∠C,在△ABM和△BCN中,,∴△ABM≌△BCN(SAS),∴∠BAM=∠CBN,∵∠BAM+∠ABP=∠APN,∴∠CBN+∠ABP=∠APN=∠ABC==108°,∴∠APN的度数为108°,故答案为108°20.(3分)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=4:5:6.解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(AB•OD):(BC•OF):(AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.三、解答题(共50分)21.(4分)如图,在直线MN上求作一点P,点P到射线OA和OB的距离相等.(要求用尺规作图,保留作图痕迹,不必写作法和证明过程.解:如图,点P即为所求.22.(6分)如图,在△ABC中,点D是BC的中点,DE⊥AB,DF⊥AC,E、F为垂足,DE=DF,求证:∠B=∠C.【解答】证明:∵点D是BC的中点,∴DB=DC,∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL).∴∠B=∠C.23.(8分)如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC,求证:AD是∠BAC的平分线.【解答】证明:∵DE⊥AB的延长线于点E,DF⊥AC于点F,∴∠BED=∠CFD,∴△BDE与△CDF是直角三角形,,∴Rt△BDE≌Rt△CDF(HL),∴DE=DF,∴AD是∠BAC的平分线.24.(8分)已知:如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上的一点,求证:△ACE≌△BCD.【解答】证明:∵△ABC和△ECD都是等腰直角三角形,∴EC=DC,AC=CB,∵∠ACB=∠DCE=90°,∴∠ACB﹣∠3=∠ECD﹣∠3,即:∠1=∠2,在△ACE和△BCD中,∴△ACE≌△BCD(SAS).25.(6分)已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.【解答】(1)证明:在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;(2)证明:∵∠1=∠2,∴∠1+∠DAE=∠2+∠DAE,即∠BAN=∠CAM,由(1)得:△ABD≌△ACE,∴∠B=∠C,在△ACM和△ABN中,,∴△ACM≌△ABN(ASA),∴∠M=∠N.26.(8分)如图,已知M是∠AOB内一点,MD⊥OB于点D,MC⊥OA于点C,且MD =MC作射线OM,在OM上任取一点P,连接PC,PD.找出图中所有相等的线段(MD =MC除外),并加以证明.解:∵M是∠AOB内一点,MD⊥OB于点D,MC⊥OA于点C,且MD=MC,∴∠BOM=∠AOM,在Rt△DOM与Rt△COM中,∴Rt△DOM≌Rt△COM(HL),∴OD=OC,在△DOP与△COP中,∴△DOP≌△COP(SAS),∴PC=PD.27.(10分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D.BE⊥MN于点E.(1)当直线MN绕点C旋转到如图所示位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到与线段AB相交(交点不是AB中点)时,画出相应的图形,探求线段DE,AD与BE之间的等量关系,并写出其关系式.【解答】(1)证明:如图1,∵AD⊥MN于点D.BE⊥MN于点E,∴∠ADC=90°,∠CEB=90°,∵∠ACB=90°,∴∠ACD=∠CBE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴AD=CE,CD=BE,∴DE=CE+CD=AD+BE;(2)如图2,DE=AD﹣BE;如图3,DE=BE﹣AD.四、附加题(共10分)28.有位同学发现了“角平分线”的另一种尺规作法,其方法为:(1)如图所示,以O为圆心,任意长为半径画弧交OM、ON于点A、B;(2)以O为圆心,不等于(1)中的半径长为半径画弧交OM、ON于点C、D;(3)连接AD、BC相交于点E;(4)作射线OE,则OE为∠MON的平分线.你认为他这种作法对吗?试说明理由.解:正确,理由:由题意可得;AO=BO,CO=DO,在△OBC和△OAD中,∴△OBC≌△OAD(SAS),∴∠OCB=∠ODA,∠OAD=∠OBC,∴∠CAE=∠DBE,在△CAE和△DBE中,∴△CAE≌△DBE(ASA),∴CE=ED,在△OOE和△DOE中,∴△COE≌△DOE(SSS),∴∠CAE=∠DOE,即OE为∠MON的平分线.。

人教版八年级数学上册 第12章 全等三角形 单元综合测试(配套练习附答案)

人教版八年级数学上册 第12章 全等三角形 单元综合测试(配套练习附答案)
解得∠DGB=70°.
故答案为:70°.
【点睛】本题主要考查全等三角形的性质和三角形内角和和外角性质,解决本题的关键是要熟练掌握全等三角形的性质和三角形的内角和和外角性质.
12.如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=________.
【答案】7
【解析】
分析】
先过点P作PF⊥AB于G,由于∠ABC和∠ACB的外角平分线BP,CP交于P,根据角平分线的性质可得PF=PG=PE=2,根据 ,可得 ,解得BC=2,再根据△ABC的周长为11,可得AC+AB=11-2=9,继而可得 = =7.
【详解】如图,
过点P作PF⊥AB于G,
因为∠ABC和∠ACB的外角平分线BP,CP交于P,
【点睛】本题主要考查全等图形的定义,解决本题的关键是要熟练掌握全等图形的定义.
2.如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是( )
A. 3B. -3C. 2D. -2
【答案】A
【解析】
【分析】
过点D作DE⊥AB于E,由于AD是∠OAB的平分线,根据角平分线上的点到角两边的距离相等可得:DE=OD=3,即点D到AB的距离是3.
【答案】16
【解析】
四边形FBCD周长=BC+AC+DF;当 时,四边形FBCD周长最小为5+6+5=16
三、解答题(共52分)
17.如图,已知 ,用尺规过点 作直线 ,使得 .(保留作图痕迹,不写做法)
【答案】见解析

人教版数学八年级上册 第十二章 全等三角形单元测试(含答案)

人教版数学八年级上册 第十二章  全等三角形单元测试(含答案)

人教版数学八年级上册第十二章全等三角形一、单选题(每题3分,共30分)1.已知△ABC≌△DEF,则下列说法错误的是()A.∠A=∠D B.AC=DF C.AB=EF D.∠B=∠E2.如图,工人师傅设计了一种测零件内径AB的卡钳,卡钳交叉点O为AA′、BB′的中点,只要量出A′B′的长度,就可以知道该零件内径AB的长度.依据的数学基本事实是()A.两角和它们的夹边分别相等的两个三角形全等B.两边和它们的夹角分别相等的两个三角形全等C.三边分别相等的两个三角形全等D.两点之间线段最短3.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.60°C.46°D.50°4.根据下列已知条件,能画出唯一△ABC的是( )A.AB=3,BC=4,AC=8B.∠A=100°,∠B=45°,AB=5C.AB=3,BC=5,∠A=75°D.∠C=90°,∠A=30°,∠B=60°5.如图,△ABC≌△A′B′C′,边B′C′过点A且平分∠BAC交BC于点D,∠B=24°,∠CDB′=96°,则∠C′的度数为()A.24 °B.36 °C.45 °D.60 °6.如图,为了促进当地旅游发展,某地要在三条公路旁边的平地上修建一个游客中心,要使这个游客中心到三条公路的距离相等,游客中心可以选择的位置有()种A.一B.二C.三D.四7.用直尺和圆规作一个角等于已知角的示意图,如图所示,则说明∠A′O′B′=∠AOB是因为图中的两个三角形△COD≌△C′O′D′,那么判定这两个三角形全等的依据是( )A.SAS B.SSS C.ASA D.AAS8.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,AB=10,S△ABD=20,则CD的长为( )A.3B.4C.5D.69.如图,有两个长度相同的滑梯靠在一面竖直墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,若DF=6m,DE=8m,AD=4m,则BF等于()A.10m B.12m C.16m D.18m10.如图,任意画一个∠BAC=60°的△ABC,再分别作△ABC的两角的角平分线BE和CD,BE、CD相交于点P,连接AP,有以下结论:①∠BPC=120°;②AP平分∠BAC;③AD=AE;④PD=PE;⑤BD+CE=BC,其中正确的结论有( )A.2个B.3个C.4个D.5个二、填空题(每题3分,共24分)11.如图,若AB=DE,BE=CF,要证△ABF≌△DEC需补充一个条件.(任填一个).12.如图,亮亮书上的三角形被墨迹污染了一部分,借助剩余的图形,他很快就画出一个三角形与书上的三角形全等,这两个三角形全等的依据是.13.一个三角形的三边为3、5、x,另一个三角形的三边为y、3、6,若这两个三角形全等,则x +y = .14.如图,已知AB=AC,D为∠BAC的角平分线上的一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上的两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上的三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第5个图形中有全等三角形的对数是.15.已知:点A的坐标为(1,−1),点B的坐标为(1,5),点C的坐标为(4,3),如果要使△ABD与△ABC全等,且C、D不重合,那么点D的坐标是.16.如图,已知O是△ABC的两条角平分线BO,CO的交点,过点O作OD⊥BC于点D,且OD=3,若△ABC的周长是24,则△ABC的面积是.17.在△ABC中,已知AB=6,AC=5,AD是BC边上的中线,则AD取值范围是.18.如图所示,锐角△ABC中,D,E分别是AB,AC边上的点,连结BE、CD交于点F.将△ADC和△AEB分别绕着边AB、AC翻折得到△ADC'和△AEB',且EB'∥DC'∥BC,若∠BAC=42°,则∠BFC的大小是.三、解答题(共46分)19.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=6,FC=4,求线段DB的长.20.如图,△ABC的一个顶点A在△DEC的边DE上,AB交CD于点F,且AC=EC,∠1=∠2=∠3.试说明AB与DE的大小关系.21.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△ACD≌△CBE;(2)若BE=5,AD=12,求DE的长.22.如图,CA=CB,CD=CE,∠ACB=∠DCE,AD,BE交于点H,连接CH.求证:(1)△ACD≌△BCE;(2)HC平分∠AHE.23.已知,如图,AD∥BC,AE平分∠BAD,点E是CD的中点.(1)求证:AB=AD+BC(2)求证:AE⊥BE参考答案:1.C2.B3.D4.B5.B6.D7.B8.B9.D10.C11.AF=DC(答案不唯一)12.ASA13.1114.1515.(4,1)或(−2,3)或(−2,1)16.3617.0.5<AD<5.518.96°19.∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中{∠A=∠FCE∠ADE=∠FDE=FE∴△ADE≌△CFE(AAS),∴AD=CF=4,∵AB=6,∴DB=AB−AD=6−4=2.20.∵∠1=∠2,∠AFD=∠BFC,∴∠B=∠D,又∵∠2=∠3,∴∠2+∠ACD=∠3+∠ACD,即∠BCA=∠DCE,在△ABC和△EDC中,{∠B=∠D∠BCA=∠DCEAB=ED∴△ABC≌△EDC (AAS),∴AB=ED.21.(1)证明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠E=90°∴∠A+∠DCA=90°,∵∠ACB=∠DCA+∠BCE=90°,∴∠A=∠BCE,在△ACD和△CBE中,{∠ADC=∠E∠A=∠BCE,AC=BC∴△ACD≌△CBE(AAS);(2)由(1)得:△ACD≌△CBE,∴CE=AD=12,BE=CD=5,∴DE=CE﹣CD=12﹣5=7.22.(1)证明:∵∠ACB=∠DCE,∴∠ACD=∠BCE在△ACD和△BCE中,{CA=CB,∠ACD=∠BCE,CD=CE,∴△ACD≌△BCE(SAS)(2)证明:如图:过点C作CM⊥AD于点M,CN⊥BE于点N∵△ACD≌△BCE∴∠CAM =∠CBN ,在△ACM 和△BCN 中,{∠CAM =∠CBN,∠AMC =∠BNC =90°,AC =BC,∴△ACM≌△BCN ,∴CM =CN又CM ⊥AH ,CN ⊥HE ,∴HC 平分∠AHE23.解:如图:延长AE 交BC 的延长线于点F ,∵AE 平分∠BAD∴∠BAF =∠DAE∵E 是DC 中点∴DE=CE∵AD ∥BC∴∠DAE =∠F∴∠BAF =∠F∴AB=BF又∵在△FCE 和△ADE 中,{∠DAE =∠F∠DEA =∠CEF DE =CE∴△FCE≌△ADE,∴AD=CF∴AB=BF=BC+CF=BC+AD 即AB=AD+BC。

八年级数学上册《第12章 全等三角形》单元测试卷和答案详解

八年级数学上册《第12章 全等三角形》单元测试卷和答案详解

人教新版八年级上册《第12章全等三角形》单元测试卷(1)一.选择题(共10小题)1.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°2.如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处3.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF4.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD5.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可6.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD =8,则点P到BC的距离是()A.8B.6C.4D.27.如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2B.2.5C.3D.58.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE9.如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF =b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c 10.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50B.62C.65D.68二.填空题(共6小题)11.如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是.(只填一个即可)12.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=.13.如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后,△CAP与△PQB全等.14.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.15.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=°.16.如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是.三.解答题(共9小题)17.计算:﹣(﹣2)﹣2×+.18.解不等式组,并把它的解集在数轴上表示出来.19.如图,在直线MN上求作一点P,使点P到射线OA和OB的距离相等.(要求用尺规作图,保留作图痕迹,不必写作法和证明过程)20.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上BF=CE,AC∥DF且AC =DF.求证:AB∥DE.21.如图,点E,F在BC上,BE=CF,AB=DC,AF=DE,AF与DE相交于点G,求证:GE=GF.22.如图,△ADE的顶点D在△ABC的BC边上,且∠ABD=∠ADB,∠BAD=∠CAE,AC=AE.求证:BC=DE.23.如图,CD⊥AB,BE⊥AC,垂足分别为D,E,BE和CD相交于点O,OB=OC,连AO,求证:(1)△ODB≌△OEC;(2)∠1=∠2.24.如图,在△ABC中,AD为BC边上的中线,E为AC上一点,BE与AD交于点F,若∠FAE=∠AFE.求证:AC=BF.25.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1),△ABD不动.(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC 的数量关系还成立吗?说明理由.人教新版八年级上册《第12章全等三角形》单元测试卷(1)参考答案与试题解析一.选择题(共10小题)1.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°【考点】全等三角形的性质.【分析】根据三角形内角和定理求得∠2=58°;然后由全等三角形是性质得到∠1=∠2=58°.【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.2.如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边的距离相等作出图形即可得解.【解答】解:如图所示,加油站站的地址有四处.故选:D.3.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF【考点】全等三角形的判定.【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:D.4.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【考点】全等三角形的判定.【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.5.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可【考点】全等三角形的应用.【分析】②④虽没有原三角形完整的边,又没有角,但延长可得出原三角形的形状;带①、④可以用“角边角”确定三角形;带③、④也可以用“角边角”确定三角形.【解答】解:带③、④可以用“角边角”确定三角形,带①、④可以用“角边角”确定三角形,带②④可以延长还原出原三角形,故选:D.6.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD =8,则点P到BC的距离是()A.8B.6C.4D.2【考点】角平分线的性质.【分析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,那么PE=PA=PD,又AD=8,进而求出PE=4.【解答】解:过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.故选:C.7.如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2B.2.5C.3D.5【考点】全等三角形的性质.【分析】根据全等三角形性质求出AC,即可求出答案.【解答】解:∵△ABE≌△ACF,AB=5,∴AC=AB=5,∵AE=2,∴EC=AC﹣AE=5﹣2=3,故选:C.8.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【考点】全等三角形的性质.【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.9.如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF =b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c【考点】全等三角形的判定与性质.【分析】只要证明△ABF≌△CDE,可得AF=CE=a,BF=DE=b,推出AD=AF+DF =a+(b﹣c)=a+b﹣c;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b﹣c)=a+b﹣c,故选:D.10.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50B.62C.65D.68【考点】全等三角形的判定与性质.【分析】由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA =∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;同理证得△BGC≌△DHC,GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.【解答】解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH,∴∠EAB=∠EFA=∠BGA=90°,∵∠EAF+∠BAG=90°,∠ABG+∠BAG=90°,∴∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG,∴△EFA≌△AGB,∴AF=BG,AG=EF.同理证得△BGC≌△CHD得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故选:A.二.填空题(共6小题)11.如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是BC=EF或∠BAC=∠EDF或∠C=∠F.(只填一个即可)【考点】全等三角形的判定.【分析】BC=EF或∠BAC=∠EDF,若BC=EF,根据条件利用SAS即可得证;若∠BAC =∠EDF,根据条件利用ASA即可得证;若添加∠C=∠F,根据条件利用AAS即可得证.【解答】解:若添加BC=EF,∵BC∥EF,∴∠B=∠E,∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);若添加∠BAC=∠EDF,∵BC∥EF,∴∠B=∠E,∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),若添加∠C=∠F,∵BC∥EF,∴∠B=∠E,∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED,在△ABC和△DEF中,,∴△ABC≌△DEF(AAA).故答案为:BC=EF或∠BAC=∠EDF或∠C=∠F.12.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=120°.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠C的度数,根据三角形内角和定理计算即可.【解答】解:∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠C=120°,故答案为:120°.13.如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动4分钟后,△CAP与△PQB全等.【考点】直角三角形全等的判定.【分析】设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,此时AP=BQ,△CAP≌△PBQ;②若BP=AP,则12﹣x=x,得出x=6,BQ=12(m)≠AC,即可得出结果.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12(m)≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.14.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为4.【考点】全等三角形的性质.【分析】根据△ABC≌△ADE,得到AE=AC,由AB=7,AC=3,根据BE=AB﹣AE即可解答.【解答】解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.15.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=135°.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故答案为:135.16.如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是①②③.【考点】全等三角形的判定与性质.【分析】根据全等三角形的性质得出AB=AD,∠BAO=∠DAO,∠AOB=∠AOD=90°,OB=OD,再根据全等三角形的判定定理得出△ABC≌△ADC,进而得出其它结论.【解答】解:∵△ABO≌△ADO,∴AB=AD,∠BAO=∠DAO,∠AOB=∠AOD=90°,OB=OD,∴AC⊥BD,故①正确;∵四边形ABCD的对角线AC、BD相交于点O,∴∠COB=∠COD=90°,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS),故③正确;∴BC=DC,故②正确.故答案为:①②③.三.解答题(共9小题)17.计算:﹣(﹣2)﹣2×+.【考点】实数的运算.【分析】原式利用平方根及立方根定义计算即可得到结果.【解答】解:原式=﹣﹣×4﹣2=﹣3.18.解不等式组,并把它的解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:解①得x≥﹣,解②得x<.则不等式组的解集是﹣≤x<.19.如图,在直线MN上求作一点P,使点P到射线OA和OB的距离相等.(要求用尺规作图,保留作图痕迹,不必写作法和证明过程)【考点】角平分线的性质;作图—基本作图.【分析】作∠AOB的平分线交MN于P点,则P点满足条件.【解答】解:如图,点P为所作.20.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上BF=CE,AC∥DF且AC =DF.求证:AB∥DE.【考点】全等三角形的判定与性质.【分析】依据全等三角形的性质可得到∠B=∠E,最后依据内错角相等两直线平行进行证明即可.【解答】证明:∵AC∥DF,∴∠ACB=∠DFE.∵BF=CE,∴BF+FC=CE+FC,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).∴∠B=∠E.∴AB∥DE.21.如图,点E,F在BC上,BE=CF,AB=DC,AF=DE,AF与DE相交于点G,求证:GE=GF.【考点】全等三角形的判定与性质.【分析】由“SSS”可证△ABF≌△DCE,可得∠AFB=∠DEC,即可得GE=GF.【解答】证明:∵BE=CF,∴BF=CE,且AB=CD,AF=DE,∴△ABF≌△DCE(SSS)∴∠AFB=∠DEC∴GE=GF22.如图,△ADE的顶点D在△ABC的BC边上,且∠ABD=∠ADB,∠BAD=∠CAE,AC=AE.求证:BC=DE.【考点】全等三角形的判定与性质.【分析】求出AB=AD,∠BAC=∠DAE,根据SAS证△ABC≌△ADE,推出BC=DE 即可.【解答】证明:∵∠ABD=∠ADB,∴AB=AD,∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE,∵在△ABC和△ADE中,.∴△ABC≌△ADE(SAS),∴BC=DE.23.如图,CD⊥AB,BE⊥AC,垂足分别为D,E,BE和CD相交于点O,OB=OC,连AO,求证:(1)△ODB≌△OEC;(2)∠1=∠2.【考点】全等三角形的判定与性质.【分析】(1)根据AAS证明△ODB≌△OEC即可;(2)利用角平分线的判定定理证明即可;【解答】证明:(1)∵CD⊥AB,BE⊥AC,∴∠ODB=∠OEC=90°,在△ODB和△OEC中,,∴△ODB≌△OEC(AAS).(2)∵△ODB≌△OEC,∴OD=OE,∵OD⊥AB,OE⊥AC,∴∠1=∠2.24.如图,在△ABC中,AD为BC边上的中线,E为AC上一点,BE与AD交于点F,若∠FAE=∠AFE.求证:AC=BF.【考点】全等三角形的判定与性质.【分析】延长AD至G,使DG=AD,连接BG,可证明△BDG≌△CDA(SAS),则BG =AC,∠CAD=∠G,根据AE=EF,得∠CAD=∠AFE,可证出∠G=∠BFG,即得出AC=BF.【解答】证明:延长AD至G,使DG=AD,连接BG,在△BDG和△CDA中,∵,∴△BDG≌△CDA(SAS),∴BG=AC,∠CAD=∠G.又∵AE=EF,∴∠CAD=∠AFE.又∵∠BFG=∠AFE,∴∠CAD=∠BFG,∴∠G=∠BFG,∴BG=BF,∴AC=BF.25.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1),△ABD不动.(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC 的数量关系还成立吗?说明理由.【考点】全等三角形的判定与性质.【分析】(1)连接AM,根据全等三角形的对应边相等可得AD=AE,AB=AC,全等三角形对应角相等可得∠BAD=∠CAE,再根据等腰三角形三线合一的性质得到∠MAD=∠MAE,然后利用“边角边”证明△ABM和△ACM全等,根据全等三角形对应边相等即可得证;(2)延长DB、AE相交于E′,延长EC交AD于F,根据等腰三角形三线合一的性质得到BD=BE′,然后求出MB∥AE′,再根据两直线平行,内错角相等求出∠MBC=∠CAE,同理求出MC∥AD,根据两直线平行,同位角相等求出∠BCM=∠BAD,然后求出∠MBC=∠BCM,再根据等角对等边即可得证;(3)延长BM交CE于F,根据两直线平行,内错角相等可得∠MDB=∠MEF,∠MBD =∠MFE,然后利用“角角边”证明△MDB和△MEF全等,根据全等三角形对应边相等可得MB=MF,然后根据直角三角形斜边上的中线等于斜边的一半证明即可.【解答】证明:(1)如图2,连接AM,由已知得△ABD≌△ACE,∴AD=AE,AB=AC,∠BAD=∠CAE,∵MD=ME,∴∠MAD=∠MAE,∴∠MAD﹣∠BAD=∠MAE﹣∠CAE,即∠BAM=∠CAM,在△ABM和△ACM中,,∴△ABM≌△ACM(SAS),∴MB=MC;(2)MB=MC.理由如下:如图3,延长DB、AE相交于E′,延长EC交AD于F,∴BD=BE′,CE=CF,∵M是ED的中点,B是DE′的中点,∴MB∥AE′,∴∠MBC=∠CAE,同理:MC∥AD,∴∠BCM=∠BAD,∵∠BAD=∠CAE,∴∠MBC=∠BCM,∴MB=MC;解法二:如图3中,延长CM交BD于点T.∵EC∥DT,∴∠CEM=∠TDM,在△ECM和△DTM中,,∴△ECM≌△DTM(ASA),∴CM=MT,∵∠CBT=90°,∴BM=CM=MT.(3)MB=MC还成立.如图4,延长BM交CE于F,∵CE∥BD,∴∠MDB=∠MEF,∠MBD=∠MFE,又∵M是DE的中点,∴MD=ME,在△MDB和△MEF中,,∴△MDB≌△MEF(AAS),∴MB=MF,∵∠ACE=90°,∴∠BCF=90°,∴MB=MC.。

人教版八年级数学上册《第十二章 全等三角形》单元测试卷(附答案)

人教版八年级数学上册《第十二章 全等三角形》单元测试卷(附答案)

人教版八年级数学上册《第十二章全等三角形》单元测试卷(附答案)一、选择题1.下列说法正确的是( )A. 两个等边三角形一定全等B. 形状相同的两个三角形全等C. 面积相等的两个三角形全等D. 全等三角形的面积一定相等2.根据下列已知条件,能唯一画出△ABC的是( )A. AB=5,BC=3,AC=8B. AB=4,BC=3C. ∠C=90°,AB=6D. ∠A=60°,∠B=45°3.如图,已知∠C=∠D=90°,AC=AD那么△ABC与△ABD全等的理由是( )A. HLB. SASC. ASAD. AAS4.如图∠CAB=∠DBA,再添加一个条件,不一定能判定△ABC≌△BAD的是( )A. AC=BDB. ∠1=∠2C. AD=BCD. ∠C=∠D5.如图,若△ABC≌△ADE,则下列结论中一定成立的是( )A. AC=DEB. ∠BAD=∠CAEC. AB=AED. ∠ABC=∠AED6.在△ABC中AC=6则BC边上的中线AD的取值范围是( )A. 3<AD<11B. 3<AD<9C. 1<AD<7D. 5<AD<117.如图,AD是△ABC中∠BAC的平分线,DE⊥AB交AB于点E,DF⊥AC交AC于点F,若S△ABC=7,DE= 2,AB=4则AC的长为( )A. 3B. 4C. 5D. 68.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE= 55°,∠BCD=155°,则∠BPD的度数为( )A. 130°B. 155°C. 125°D. 110°9.在△ABC中AC=6则BC边上的中线AD的取值范围是( )A. 6<AD<8B. 2<AD<14C. 1<AD<7D. 无法确定10.如图AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=5cm,DE=3cm,则BD等于( )A. 6cmB. 8cmC. 10cmD. 4cm二、填空题11.一个三角形的三边为3、5、x,另一个三角形的三边为y、3、6,若这两个三角形全等,则x−y=__________.12.如图为6个边长相等的正方形的组合图形,则∠1+∠3=______ .13.如图△ABC≌△A′B′C′,其中∠C′=24°则∠B=°.14.如图,已知△ABC≌△ADE,若AB=7,AC=3则BE的值为_____.15.如图,已知在△ABC和△DEF中BF=CE点B、F、C、E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).16.如图△ABC中AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_______度.17.如图△ABC≌△DCB,若AC=7,BE=5则DE的长为.18.如图,Rt△ABC中AD为的∠BAC角平分线,与BC相交于点D,若CD=3,AB=10则△ABD的面积是______.19.如图,在△ABC中∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=8cm,则△BED的周长是______.20.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF//AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF给出下列四个结论:①DE=DF②DB=DC③AD⊥BC④AC=3BF其中正确的结论是______ .三、解答题21.如图,在直线MN上求作一点P,使点P到射线OA和OB的距离相等.(要求用尺规作图,保留作图痕迹,不必写作法和证明过程)22.如图AB//CD,AB=CD,CE=BF请写出DF与AE的数量关系,并证明你的结论.23.已知:如图AB//DE,点C、F在AD上AF=DC,AB=DE.求证:△ABC≌△DEF.24.如图,点A,E,F,B在直线l上AE=BF,AC//BD且AC=BD,求证:CF=DE.25.如图,在△ABC中∠C=90∘,AD平分∠BAC,DE⊥AB于点E,点F在AC上,且BD=DF.(1)求证:CF=EB;(2)请你判断AE、AF与BE之间的数量关系,并说明理由.答案和解析1.【答案】D【解析】【分析】本题考查的是全等图形,熟知全等三角形的判定与性质是解答此题的关键,根据全等图形的性质对各选项进行逐一分析即可.【解答】解:A.两个边长不相等的等边三角形不全等,故本选项错误;B.形状相同,边长不对应相等的两个三角形不全等,故本选项错误;C.面积相等的两个三角形不一定全等,故本选项错误;D.全等三角形的面积一定相等,故本选项正确.故选D.2.【答案】D【解析】【分析】本题考查了三角形的三边关系定理和全等三角形的判定定理,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,HL.根据三角形的三边关系定理,先看看能否组成三角形,再根据全等三角形的判定定理判断即可.【解答】解:A∵3+5=8∴根据三角形三边关系AB=5BC=3AC=8不能画出三角形故本选项错误;B已知AB BC和BC的对角AB=4BC=3∠A=30°不能画出唯一三角形故本选项错误;C根据∠C=90°AB=6已知一个角和一条边不能画出唯一三角形故本选项错误;D根据∠A=60°∠B=45°AB=4已知两角和夹边符合全等三角形的判定定理ASA即能画出唯一三角形故本选项正确;故选D.3.【答案】A【解析】【分析】本题考查全等三角形的判定解题的关键是注意AB是两个三角形的公共边本题属于基础题型.已知∠C=∠D=90°AC=AD且公共边AB=AB故△ABC与△ABD全等.【解答】解:在Rt△ABC与Rt△ABD中{AB=ABAC=AD∴Rt△ABC≌Rt△ABD(HL)故选A.4.【答案】C【解析】【分析】本题主要考查全等三角形的判定.熟记5种判定并灵活运用是解决本题的关键.【解答】解:A.添加AC=BD则可以通过(SAS)判定△ABC≌△BAD故本选项不符合题意;B.添加∠1=∠2则可以通过(ASA)判定△ABC≌△BAD故本选项不符合题意;C.添加AD=BC不能判定△ABC≌△BAD故本选项符合题意;D.添加∠C=∠D则可以通过(AAS)判定△ABC≌△BAD故本选项不符合题意;故选C.5.【答案】B【解析】【分析】本题考查了全等三角形的性质熟练掌握全等三角形的性质是解题的关键.根据全等三角形的性质即可得到结论.【解答】解:∵△ABC≌△ADE∴AC=AE AB=AD∠ABC=∠ADE∠BAC=∠DAE∴∠BAC−∠DAC=∠DAE−∠DAC即∠BAD=∠CAE.故A C D选项错误B选项正确故选:B.6.【答案】C【解析】【分析】这是一道考查全等三角形的判定和三角形的三边关系的题目解题关键在于构造三角形延长AD至E使DE=AD连接CE证明△ABD≌△ECD再利用三边关系即可得到答案.【解答】解:延长AD至E使DE=AD连接CE在△ABD和△ECD中{AD=ED∠ADB=∠EDC DB=DC,∴△ABD≌△ECD∴CE=AB=8在△ACE中CE−AC<AE<CE+AC即2<2AD<14故1<AD<7故选C.7.【答案】A【解析】【分析】本题主要考查了角平分线的性质;利用三角形的面积求线段的大小是一种很好的方法要注意掌握应用.先由角平分线的性质可知DF=DE=2然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.【解答】解:∵AD是△ABC中∠BAC的平分线DE⊥AB于点E DF⊥AC交AC于点F∴DF=DE=2又∵S△ABC=S△ABD+S△ACD AB=4∴7=12×4×2+12·AC·2∴AC=3.故选A.8.【答案】A【解析】【分析】本题考查了全等三角形的判定和性质三角形的内角和定理以及四边形的内角和定理易证△ACD≌△BCE由全等三角形的性质可知:∠A=∠B再根据已知条件和四边形的内角和为360°即可求出∠BPD的度数.【解答】解:在△ACD 和△BCE 中{AC =BC CD =CE AD =BE∴△ACD≌△BCE(SSS)∴∠A =∠B ∠BCE =∠ACD∴∠BCA =∠ECD∵∠ACE =55° ∠BCD =155°∴∠BCA +∠ECD =100°∴∠BCA =∠ECD =50°∵∠ACE =55°∴∠ACD =105°∴∠A +∠D =75°∴∠B +∠D =75°∵∠BCD =155°∴∠BPD =360°−75°−155°=130°.故选A .9.【答案】C【解析】【分析】此题主要考查了全等三角形的判定和性质 三角形的三边关系.注意:倍长中线是常见的辅助线之一. 延长AD 至E 使DE =AD 连接CE.根据SAS 证明△ABD≌△ECD 得CE =AB 再根据三角形的三边关系即可求解.【解答】解:延长AD 至E 使DE =AD 连接CE .在△ABD和△ECD中{DE=AD∠ADB=∠CDE DB=DC∴△ABD≌△ECD(SAS)∴CE=AB.在△ACE中CE−AC<AE<CE+AC即2<2AD<141<AD<7.故选:C.10.【答案】B【解析】【分析】由题意可证△ABC≌△CDE即可得CD=AB=5cm DE=BC=3cm进而可求BD的长。

八年级数学上册《第十二章 全等三角形》单元测试卷含答案(人教版)

八年级数学上册《第十二章 全等三角形》单元测试卷含答案(人教版)

八年级数学上册《第十二章 全等三角形》单元测试卷含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.角平分线的性质:角平分线上的点到这个角的两边距离相等,其理论依据是全等三角形判定定理( )A .SASB .HLC .AASD .ASA2.如图,Rt ABC 沿直角边BC 所在的直线向右平移得到DEF ,下列结论中错误的是( )A .ΔABC ≌ΔDEFB .90DEF ∠=︒C .AC DF =D .EC CF =3.如图:EA ∥DF ,AE=DF ,要使△AEC ≌△DBF ,则只要( )A .AB=CDB .EC=BFC .∠A=∠D D .AB=BC4.如图,ABC A B C '''≌,其中3624A C ∠=︒∠='︒,,则B ∠的度数为( )A .150︒B .120︒C .100︒D .60︒5.如图,在△ABC 中,CD 、BE 分别是AB 、AC 边上的高,F 是CD 与BE 的交点.若AD =FD ,∠ABE =26°,则∠ACB 的度数为( )A .76°B .71°C .81°D .86°6.如图,在ABC 中,108AB AC O ==,,为ABC 角平分线的交点,若ABO 的面积为30,则ACO 的面积为( )A .18B .20C .22D .247.如图,△ABC 中,AB =4,BC =6,BD 是△ABC 的角平分线,DE ⊥AB 于点E ,AF ⊥BC 于点F ,若DE =2,则AF 的长为( )A .3B .103C .72D .1548.如图,AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE=DF ,连结BF ,CE.下列说法:①△ABD 和△ACD 面积相等;②∠BAD=∠CAD ;③△BDF ≌△CDE ;④BF ∥CE ;⑤CE=AE.其中正确的有( )A .1个B .2个C .3个D .4个二、填空题9.如图,已知 ABC 中,点D ,E 分别在边AC ,AB 上,连接BD ,DE 和 180C AED ∠+∠=︒ 请你添加一个条件,使 BDE BDC ≌ ,你所添加的条件是 .(只填一个条件即可)10.如图,在△ABC 中,已知∠1=∠2,BE=CD ,AB=7,AE=3,则CE= .11.如图所示,点O 在一块直角三角板ABC 上(其中30ABC ∠=︒),OM AB ⊥于点M ,ON BC∠=度.=,则ABO⊥于点N,若OM ON--路径运动,终12.如图,ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A点出发沿A C B--路径运动,终点为A点.点P和点Q分别以1cm/s和点为B点;点Q从B点出发沿B C A⊥3cm/s的速度同时开始运动,两点到达相应的终点时分别停止运动.若分别过点P和Q作PE l ⊥于F.当PEC与QFC全等时,点P的运动时间t为.于E,QF l13.如图,AD是ABC的角平分线,DF⊥AB,垂足为F,DE=DG,ADG和AED的面积分别为27和14,则EDF的面积为.三、解答题14.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,求AC长.∠,交AC边于点E,连接DE.求15.如图,在ABC中,D是BC边上的一点,AB=DB,BE平分ABC≌;证:ABE DBE16.如图,AD,BC相交于点O,且AB CD,OA=OD.=;(1)求证:OB OC=,求证:BE CF.(2)若在直线AD上截取AE DF17.已知:如图,△ABC中,∠ACB=45°,AD⊥BC于D,CF交AD于点F,连接BF并延长交AC于点E,∠BAD=∠FCD.求证:(1)△ABD≌△CFD;(2)BE⊥AC.cm的18.如图,在ABC中,∠BAD=∠DAC,DF⊥AB,DM⊥AC,AF=10cm,AC=14cm,动点E以2/scm的速度从C点向A点运动,当一个点到达终点时,另一个速度从A点向F点运动,动点G以1/s点随之停止运动,设运动时间为t.=;(1)求证:AF AM(2)当t取何值时,DFE与DMG全等参考答案:1.C 2.D 3.A 4.B 5.B 6.D 7.B 8.C9.答案不唯一,如∠CBD=∠EBD 等10.411.1512.1或72或12 13.6514.解:过D 作DF ⊥AC 于F∵AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,DE=2∴DE=DF=2∵S △ABC =7∴S △ADB +S △ADC =7 ∴1122AB DE AC DF ⨯⨯+⨯⨯ =7 ∴1142222AC ⨯⨯+⨯⨯ =7解得:AC=3.15.证明:∵BE 平分 ABC ∠ ∴ABE DBE ∠=∠在 ABE 和 DBE 中∵AB DB ABE DBE BE BE =⎧⎪∠=∠⎨⎪=⎩∴()ABE DBE SAS ≌ ;16.(1)证明:∵AB CD∴OAB ODC ∠=∠∵OA OD = AOB DOC ∠=∠∴()ASA OAB ODC ≌.∴OB OC =;(2)证明:∵OA OD = AE DF =∴OA AE OD DF +=+即OE OF =.∵EOB FOC ∠=∠,且在(1)中,有OB OC =∴()SAS BOE COF ≌∴E F ∠=∠.∴BE CF .17.(1)证明:∵AD ⊥BC,∴∠ADC=∠ADB=90°又∵∠ACB=45°∴∠DAC=45°,∴∠ACB=∠DAC∴AD=CD在△ABD 和△CFD 中,∠BAD=∠FCD, AD=CD ∠ADB=∠FDC∴△ABD ≌△CFD;(2)证明:∵△ABD ≌△CFD,∴BD=FD∴∠1=∠2又∵∠FDB=90°,∴∠1=∠2=45°又∵∠ACD=45°∴△BEC 中,∠BEC=90°,∴BE ⊥AC.18.(1)证明:∵BAD DAC DF AB DM AC ∠=∠⊥⊥,,,∴DF DM =,在Rt AFD ∆和Rt ΔAMD 中DF DM AD AD =⎧⎨=⎩∴()Rt ΔRt ΔHL AFD AMD ≌;∴AF AM =;(2)解:若DFE 与DMG 全等,且90DF DM EFD GMD =∠=∠=︒, ∴EF MG =∵10AM AF ==∴14104CM AC AM =-=-=①当04t <<时,点G 在线段CM 上,点E 在线段AF 上∴1024EF t MG CM CG t =-=-=-,∴1024t t -=-∴6t =(不合题意,舍去);②当45t ≤<时,点G 在线段AM 上,点E 在线段AF 上1024EF t MG CG CM t =-=-=-,∴1024t t -=- ∴143t =综上所述,当14s 3t 时,DFE 与DMG 全等。

八年级数学上册《第十二章 三角形全等的判定》单元测试卷及答案(人教版)

八年级数学上册《第十二章 三角形全等的判定》单元测试卷及答案(人教版)

八年级数学上册《第十二章三角形全等的判定》单元测试卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图的四个三角形中,与ΔABC全等的是()A. B. C. D.2.下列命题中,正确的是()A.周长相等的两个等腰三角形全等B.三个角分别相等的两个三角形全等C.有两边及一个角对应相等的两个三角形全等D.三边分别相等的两个三角形全等3.如图,点E、F在BC上AB=CD,AF=DE,AF、DE相交于点G,添加下列哪一个条件,可使得△ABF≌△DCE()A.∠B=∠C B.AG=DG C.∠AFE=∠DEF D.BE=CF4.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=5厘米,EF=7厘米,圆形容器的壁厚是()A.1厘米B.2厘米C.5厘米D.7厘米5.如图,AD平分∠BAC,AB=AC,连接BD,CD并延长交AC,AB于E,F点,则此图中全等三角形共有()A.2对B.3对C.4对D.5对6.如图,在3×3的正方形方格中,每个小正方形方格的边长都为1,则∠1和∠2的关系是()A.∠2=2∠1B.∠2−∠1=90°C.∠1+∠2=90°D.∠1+∠2=180°7.如图,在△ABC中,点D为BC的中点,△AEF的边EF过点C,且AE=EF,AB∥EF,AD平分∠BAE,CE=3,AB=13,则CF=( )A.10 B.8 C.7 D.68.如图,在△ABC中∠B=∠C,BF=CD,BD=CE,∠FDE=65°则∠A的度数是()A.45°B.70°C.65°D.50°二、填空题9.如图,若要用“HL”证明Rt△ABC≌Rt△ABD,则需要添加的一个条件是.10.如图,已知 AB//CF,E为DF的中点,若AB=13cm,CF=7cm,则BD= cm .11.如图,小虎用10块高度都是3cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,则两堵木墙之间的距离为.12.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE交于点F,若BF=AC,CD= 3,BD=8,则线段AF的长度为.三、解答题13.如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示AB=AE,AC=AD,BC= DE,∠C=48°求∠D.14.如图,点A,F,C,D在同一直线上AF=DC,∠B=∠E,BC∥EF求证:△ABC≌△DEF.15.如图,已知在△ABC和△DBE中,AB=DB,∠1=∠2,∠A=∠D.求证:BC=BE.16.如图BE=BC,∠A=∠D.(1)求证:△ABC≅△DBE;(2)求证:AE=DC.17.如图D、C、F、B四点在一条直线上AB=DE,AC⊥BD,EF⊥BD垂足分别为点C、点F,CD= BF.(1)求证:△ABC≌△EDF.(2)连结AD、BE,求证:AD=EB.18.如图,在四边形ABCD中E,F分别是边AB,AD上一点CD=CE,∠BEC=∠D,∠BAD+∠BCF=180°.(1)求证:EB=DF;(2)连接AC,若AC平分∠BCF,求证:AB=AF.参考答案1.B2.D3.D4.A5.C6.D7.C8.D9.AC=AD或BC=BD10.611.30cm12.513.解:在△ABC和△AED中{AB=AE BC=DE AC=AD∴△ABC≌△AED(SSS)∴∠D=∠C=48°.14.解:证明:∵AF=DC∴AF+CF=DC+CF,即AC=DF ∵BC∥EF∴∠BCA=∠EFD在△ABC和△DEF中{∠B=∠E∠BCA=∠EFDAC=DF∴△ABC≌△DEF(AAS).15.证明:∵∠1=∠2∴∠1+∠ABE=∠2+∠ABE即∠DBE=∠ABC在△ABC与△DBE中∵{∠A =∠DAB =DB∠DBE =∠ABC(ASA ) ∴△ABC ≌△DBE∴BC=BE.16.(1)证明:在△ABC 与△DBE 中{∠A =∠D∠B =∠B BC =BE∴△ABC ≅△DBE(AAS)(2)证明:∵△ABC ≅△DBE∴AB =DB又已知BE =BC∴AB −BE =DB −BC即:AE =DC17.(1)证明:∵AC ⊥BD ,EF ⊥BD ∴△ABC 和△DEF 是直角三角形 又∵CD =BF∴CD+CF =BF+CF∴DF =BC又∵AB=DE∴Rt △ABC ≌Rt △EDF (HL ).(2)证明:∵△ABC ≌△EDF ∴AC =EF∵AC ⊥BD ,EF ⊥BD∴∠ACD =∠EFB又∵CD=BF∴△ACD ≌△EFB (SAS )∴AD =BE .18.(1)证明:∵在四边形ABCD 中∠BAD +∠BCF =180° ∴∠CFA +∠ABC =180° ∵∠CFA +∠CFD =180°∴∠CFD =∠ABC∵{∠CFD =∠ABC ∠D =∠BEC CD =CE∴△DFC ≌△FBC (AAS) ∴EB =DF ;(2)证明:∵△DFC ≌△FBC ∴FC =BC∵{FC =CB∠ACF =∠ACB AC =AC∴△AFC ≌△ABC (SAS) ∴AB =AF .。

八年级数学上册《第十二章 全等三角形》单元测试卷及答案-人教版

八年级数学上册《第十二章 全等三角形》单元测试卷及答案-人教版

八年级数学上册《第十二章全等三角形》单元测试卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________知识梳理1、全等三角形的概念(1)能够完全重合的两个三角形叫做全等三角形。

(2)把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

2、全等三角形的性质(1)全等三角形的对应边相等;全等三角形的对应角相等。

3、三角形全等的判定(1)边边边(SSS):三边分别相等的两个三角形全等。

(2)边角边(SAS):两边和它们的夹角分别相等的两个三角形全等。

(3)角边角(ASA):两角和它们的夹边分别相等的两个三角形全等。

(4)角角边(AAS):两角和其中一个角的对边分别相等的两个三角形全等。

(5)斜边、直角边(HL):斜边和一条直角边分别相等的两个直角三角形全等。

提升练习一、选择题1.如图△ABC≌△ADE,点D在BC上,下列结论中不一定成立的是()A.∠E=∠C B.BC=DE C.∠BAD=∠CAE D.AB=BD2.如图,B,D分别是位于线段AC两侧的点,连接AB,AD,CB,CD,则下列条件中,与AB=AD相结合无法判定△ABC≌△ADC的是( )A.CB=CD B.∠BAC=∠DACC.∠BCA=∠DCA D.以上都无法判定3.如图,已知△ABC≌△DCB,∠A=80°,∠ACB=40°则∠ABD的度数为()A.20°B.25°C.30°D.40°4.如图,一名工作人员不慎将一块三角形模具打碎成三块,他要带其中一块或两块碎片到商店去配一块与原来一样的三角形模具,他带()去最省事.A.①B.②C.③D.①③5.如图,在3×3的正方形网格中,∠1+∠2等于()A.60°B.75°C.90°D.105°6.如图,在△ABC中,AD⊥BC于点D,BE⊥AC与点E,BE与AD交于点F,若AD=BD=5,CD=3则AF的长为()A.3 B.3.5 C.2.5 D.27.如图在Rt△ABC中∠C=90°,若BC=20,AD平分∠BAC交BC于点D,且BD:CD=3:2则点D到线段AB的距离DE的长为()A.4 B.8 C.10 D.128.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于().A.1∶1∶1 B.1∶2∶3 C.2∶3∶4 D.3∶4∶5二、填空题9.如图,△ABC≌△ADE,AB=8,AC=5,BC=6,则CD= .10.如图,在ΔABC中D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数是.11.如图,CA平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=46°,则∠BAE的度数为.12.如图,在△ABC中,点D在AB边上,E是AC边的中点CF∥AB,CF与DE的延长线交于点F,若AB=4,CF=3,则BD的长为.13.如图,在Rt△ABC中∠C=90°,AD是△ABC的角平分线,如果AB=6,CD=2那么S△ABD=.三、解答题14.如图,点A,B,C,D在同一直线上,AE=BF,EC=FD,AB=CD求证:△EAC≌△FBD.15.已知,如图AB=AE,AB∥DE,∠ACB=∠D求证:△ABC≌△EAD.16.如图,已知△ABC,D是AB延长线上一点BD=CB,DE∥BC,DE=BA连接BE,求证:BE=CA.17.如图,在四边形ABDC中∠D=∠B=90°,O为BD上的一点,且AO平分∠BAC,CO平分∠ACD.求证:(1)OA⊥OC.(2)AB+CD=AC.18.如图,在Rt△ABC中∠BAC=90°,∠ABC=60°,AD,CE分别平分∠BAC,∠ACB.(1)求∠AOE得度数;(2)求证:AC=AE+CD.参考答案1.D2.C3.A4.C5.C6.D7.B8.C9.310.30°11.88°12.113.614.证明:∵AB =CD∴AB +BC =CD +BC即 AC =BD在 △EAC 和 △FBD 中{AE =BF EC =FD AC =BD∴△EAC ≌△FBD(SSS) .15.证明:∵AB ∥DE∴∠CAB =∠E在△ABC 和△EAD 中,{∠ACB =∠D∠CAB =∠EAB =AE∴△ABC ≌△EAD(AAS).16.证明:∵DE ∥BC∴∠BDE =∠ABC在△EDB 和△ABC 中{BD=CB∠BDE=∠ABCDE=BA∴△EDB≌△ABC(SAS)∴BE=CA.17.(1)证明:∵∠D=∠B=90°∴∠B+∠D=180°∴AB∥CD∴∠BAC+∠DCA=180°∵AO平分∠BAC,CO平分∠ACD∴∠OAC=∠OAB=12∠BAC∠ACO=∠DCO=12∠ACD∴∠OAC+∠ACO=12∠BAC+12∠ACD=90°∴∠AOC=180°−90°=90°∴OA⊥OC;(2)证明:过点O作OE⊥AC于点E,如图所示:∵∠D=∠B=90°∴OB⊥AB OD⊥CD∵AO平分∠BAC,CO平分∠ACD∴OB=OE OD=OE∵OA=OA OC=OC∴Rt△OAB≌Rt△OAE(HL)Rt△OCE≌Rt△OCD(HL)∴AB=AE CD=CE∴AB+CD=AE+CE=AC18.(1)解:∵∠BAC=90°∠ABC=60°∴∠ACB=30°∵AD平分∠BAC,CE平分∠BAC∴∠CAD=12∠BAC=45°∠ACE=12∠ACB=15°∵∠AOE是△AOC的外角∴∠AOE=∠CAD+∠ACE=60°;(2)证明:在AC上截取CF=CD,连接OF∵CE平分∠ACB∴∠DCO=∠FCO在△DCO和△FCO中{CD=CF∠DCO=∠FCOOC=OC∴△DCO≌△FCO(SAS)∴∠COD=∠COF∵∠AOE=60°∴∠COD=∠COF=60°∴∠AOF=180°−∠AOE−∠COF==60°∴∠AOE=∠AOF∵AD平分∠BAC∴∠EAO=∠FAO在△EAO和△FAO中{∠EAO=∠FAO AO=AO∠AOE=∠AOF ∴△EAO≌△FAO(ASA)∴AE=AF∵AC=AF+CF∴AC=AE+CD.。

第12章 全等三角形 人教版数学八年级上册单元测试卷(含答案)

第12章 全等三角形 人教版数学八年级上册单元测试卷(含答案)

第十二章 全等三角形时间:60分钟 满分:100分一、选择题(本大题共10小题,每小题3分,满分30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·浙江杭州余杭区期末)下列各组图形中,是全等三角形的是( ) A B C D2.(2022·山西运城盐湖区期中)如图,△ABC≌△DEC,点B,C,D在同一直线上.若CE=4,AC=7,则BD=( ) A.3B.8C.11 D.10(第2题)(第3题)3.如图是由边长为1的小正方形组成的网格,若△MNP≌△MEQ,则点Q(与点P不重合)可能是图中的( ) A.点A B.点B C.点C D.点D4.已知∠AOB,用尺规作∠A'O'B'等于∠AOB的作图痕迹如图所示,则判断∠AOB=∠A'O'B'所用到的三角形全等的判断方法是( )A.SSSB.SASC.ASAD.AAS5.(2022·北京东城区期末)下列已知条件,不能唯一确定△ABC的是( )A.∠A=60°,∠B=45°,AB=4B.∠A=30°,AB=5,BC=3C.∠B=60°,AB=6,BC=10D.∠C=90°,AB=5,BC=36.(2022·河南许昌期中)已知△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x-2,2x-1,若这两个三角形全等,则x的值为( )B.4C.3D.无法确定A.737.(2022·甘肃武威凉州区期末改编)如图,在△ABC中,∠C=90°,AD平分∠CAB交BC 于点D,DE⊥AB于点E,且AB=5cm,AC=3cm,BC=4cm,则△DEB的周长为( ) A.5cm B.6cm C.7cm D.8cm(第7题)(第8题)8.如图,在△ABC中,∠B=∠C,BF=CD,BD=CE,∠FDE=65°,则∠A=( )A.50°B.55°C.60°D.65°9.(2022·湖南衡阳期末改编)如图,OA平分∠NOP,OB平分∠MOP,AB⊥OP于点E,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是( )A.AD+BC=ABB.点O是CD的中点C.∠AOB=90°D.∠CBO=∠BAO10.如图,在△ACD和△BCE中,AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,AD与BE相交于点P,则∠BPD=( )A.110°B.125°C.130°D.155°二、填空题(共6小题,每小题3分,共18分)11.(2022·广东广州越秀区期中)如图为打碎的一块三角形玻璃,现在要去玻璃店配一块完全相同的玻璃,如果带了两块玻璃,其中有一块是②,那么另一块是 .(第11题)(第12题)12.(2022·北京东城区期末)如图,点B,D,E,C在同一直线上,若△ABD≌△ACE,BC=12,BD=3,则DE的长为 .13.(2022·安徽合肥蜀山区期末)如图,在△ABC中,点D,E分别为边AC,BC上的点,若AD=DE,AB=BE,∠A=70°,则∠CED= .(第13题)(第14题)14.(2022·广东珠海香洲区期末)如图,AD是△ABC的角平分线,DE⊥AB于点E,DF ⊥AC于点F.若S△ABC=21,DE=3,AB=9,则AC的长为 .15.(2022·湖北黄冈期中改编)已知在△ABC中,AB=4,中线AD=4,则AC的取值范围是 .16.(2022·江苏盐城段考改编)如图,已知四边形ABCD中,AB=12cm,BC=8cm,CD=14cm,∠B=∠C,点E为线段AB的中点.如果点P在线段BC上以3cm/s的速度由点B向点C运动,同时,点Q在线段CD上由点C向点三、解答题(共6小题,共52分)17.(6分)(2021·江苏扬州邗江区期末)如图,点C,F在线段BE上,∠ABC=∠DEF= 90°,BC=EF,请添加一个合适的条件使△ABC≌△DEF.(1)根据“ASA”进行判定,需添加的条件是 ;根据“HL”进行判定,需添加的条件是 ;(2)请从(1)中选择一种,加以证明.18.(7分)(2021·重庆綦江区期末)如图,AD=CB,AB=CD,BE⊥AC于点E,DF⊥AC于点F.求证:(1)△ABC≌△CDA;(2)BE=DF.19.(9分)(2022·天津红桥区期末)如图,在△ABC中,AD是△ABC的中线,DE⊥AB, DF⊥AC,垂足分别为E,F.(1)若BE=CF,求证:AD是△ABC的角平分线.(2)若AD是△ABC的角平分线,求证:BE=CF.20.(9分)(2022·山东聊城期末)课间,小明拿着老师的等腰直角三角板(AC=CB,AC⊥BC)玩,不小心掉到两墙之间(墙与地面垂直),三角板的直角顶点恰好着地,且D,C,E三点在同一直线上,如图所示.(A,B,C,D,E五点在同一平面内)(1)求证:△ADC≌△CEB.(2)已知DE=35cm,且图中每块砖的厚度为a cm,请你帮小明求出每块砌墙砖块的厚度.21.(10分)(2022·重庆巴南区期中)(1)教材回顾:在人教版八年级上册数学教材P53的数学活动2中有这样一段描述:我们把两组邻边分别相等的四边形叫做“筝形”.如图(1),四边形ABCD是一个筝形,其中AD=CD,AB=CB,猜想筝形的对角线有什么性质(写出一条即可).并用全等三角形的知识证明你的猜想.(2)知识拓展:如图(2),如果D为△ABC内一点,BD平分∠ABC,AD=CD,证明:∠BAD=∠BCD.  图(1) 图(2)22.(11分)(2022·湖北天门期中)在△ABC中,AB=AC,点D是线段CB上的一动点(不与点B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图(1),当点D在线段CB上,∠BAC=90°时,∠DCE= °;(2)设∠BAC=α,∠DCE=β.①如图(2),当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图(3),当点D在线段CB的延长线上,∠BAC≠90°时,请将图(3)补充完整,并直接写出此时α与β之间的数量关系(不需要证明).图(1) 图(2)图(3)第十二章 全等三角形选择填空题答案速查12345678910B C D A B C B A D C11.①12.613.110°14.515.4<AC<1216.3或921.B B选项可根据“SAS”判定两三角形全等.2.C ∵△ABC≌△DEC,CE=4,AC=7,∴BC=CE=4,CD=AC=7,∴BD=BC+CD=4+7=11.3.D 图示速解4.A 如图,连接CD,C'D',因为在△COD和△C'O'D'中,CO=C'O',DO=D'O',CD=C'D',所以△COD≌△C'O'D'(SSS),所以∠AOB=∠A'O'B'.故选A.5.B 逐项分析如下.选项已知条件判定方法正误A∠A,∠B,AB 两角及其夹边“ASA”√B∠A,AB,BC 两边及其一边的对角✕C∠B,AB,BC 两边及其夹角“SAS”√D∠C=90°,AB,BC斜边和直角边“HL”√6.C ∵△ABC与△DEF全等,∴3+5+7=3+3x-2+2x-1,解得x=3.【题眼】若两个三角形全等,则这两个三角形的周长相等一题多解(分类讨论思想)△ABC 与△DEF 全等,可分以下两种情况讨论.(1)当边长为5的边的对应边长为3x-2时,则3x -2=5,2x -1=7,无解,不符合题意舍去.(2)当边长为5的边的对应边长为2x-1时,则2x -1=5,3x -2=7,解得x=3,符合题意.综上所述,x 的值为3.7.B ∵AD 平分∠CAB 交BC 于点D ,DE ⊥AB ,DC ⊥AC ,∴DC=DE.在Rt △ADC和Rt △ADE 中,AD =AD ,DC =DE ,∴Rt △ADC ≌Rt △ADE (HL),∴AE=AC=3cm,∴BE=AB-AE=5-3=2(cm),∴△DEB 的周长=BE+BD+DE=BE+BD+CD=BE+BC=2+4=6(cm).8.A 在△BDF 和△CED 中,BF =CD ,∠B =∠C ,BD =CE ,∴△BDF ≌△CED (SAS),∴∠BFD=∠CDE.∵∠FDE+∠EDC=∠B+∠BFD ,∴∠B=∠FDE=65°,∴∠A=180°-∠B-∠C=180°-65°-65°=50°.9.D (排除法)∵OA 平分∠NOP ,OB 平分∠MOP ,∴∠AOD=∠AOP=12∠DOE ,∠COB=∠EOB=12∠COE ,∴∠AOB=12(∠COE+∠DOE )=90°,故选项C 不合题意.在△AOD 和△AOE 中,∠AOD =∠AOE ,∠ADO =∠AEO ,AO =AO ,∴△AOD ≌△AOE (AAS),∴AE=AD ,OE=OD ,∠OAE=∠OAD.同理可得BC=BE ,CO=OE ,∴AB=AE+BE=AD+BC ,CO=OE=OD ,∴点O 是CD 的中点,故选项A,B 不合题意.故选D .10.C 在△ACD 和△BCE 中,AC =BC ,AD =BE ,CD =CE ,∴△ACD ≌△BCE (SSS),∴∠ACD=∠BCE ,∠A=∠B ,∴∠BCA+∠ACE=∠ACE+∠ECD ,∴∠ACB=∠ECD=12(∠BCD-∠ACE )=12×(155°-55°)=50°.∵∠B+∠ACB=∠A+∠APB ,∴∠APB=∠ACB=50°,∴∠BPD=180°-50°=130°.11.① 带①②去,符合全等三角形的“ASA”判定方法.带②③去,仅保留了原三角形的一个角和部分边,带②④去,仅保留了原三角形的两个角和部分边,均不符合全等三角形的判定方法.故另一块是①.12.6 ∵△ABD ≌△ACE ,BD=3,∴CE=BD=3.∵BC=12,∴DE=BC-BD-CE=6.13.110° 在△ADB 与△EDB 中,AD =DE ,AB =BE ,DB =DB ,∴△ADB ≌△EDB (SSS),∴∠DEB=∠A=70°,∴∠CED=180°-∠DEB=110°.14.5 ∵AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DF=DE=3.∵S △ABD +S △ACD =S △ABC ,∴12·AB ·DE+12·AC ·DF=21,即12×9×3+12×AC×3=21,∴AC=5.【注意】角平分线的性质15.4<AC<12 图示速解(“倍长中线”模型)如图,延长AD 到点E ,使DE=AD=4,连接CE.∵AD 是BC 边上的中线,∴BD=CD.在△ABD 和△ECD 中,BD =CD ,∠ADB =∠EDC ,AD =ED ,∴△ABD ≌△ECD (SAS),∴CE=AB=4.在△AEC 中,AE-CE<AC<AE+EC ,即8-4<AC<8+4,∴4<AC<12.16.3或92 (分类讨论思想)设点P 运动的时间为t s,则BP=3t cm,CP=(8-3t )cm,由∠B=∠C ,可分以下两种情况讨论.①当BE=CP=6cm,BP=CQ 时,△BPE ≌△CQP ,此时6=8-3t ,解得t=23,所以BP=CQ=2cm,此时点Q 的运动速度为2÷23=3(cm/s).②当BE=CQ=6cm,BP=CP 时,△BPE ≌△CPQ ,此时3t=8-3t ,解得t=43,此时点Q 的运动速度为6÷43=92(cm/s).17.【参考答案】(1)∠ACB=∠DFE AC=DF (4分)(2)选择添加条件AC=DF.证明:∵∠ABC=∠DEF=90°,∴在Rt△ABC和Rt△DEF中,AC=DF,BC=EF,∴Rt△ABC≌Rt△DEF(HL).(6分)一题多解(2)选择添加条件∠ACB=∠DFE.证明:在△ABC和△DEF中,∠ABC=∠DEF,BC=EF,∠ACB=∠DFE,∴△ABC≌△DEF(ASA).(6分) 18.【参考答案】证明:(1)在△ABC和△CDA中,CB=AD,AB=CD,AC=CA,∴△ABC≌△CDA(SSS).(3分) (2)∵△ABC≌△CDA,∴∠ACB=∠DAC.∵BE⊥AC,DF⊥AC,∴∠BEC=∠DFA=90°.(4分)在△AFD和△CEB中,∠DFA=∠BEC,∠DAF=∠BCE,DA=BC,∴△AFD≌△CEB(AAS),∴BE=DF.(7分) 19.(1)BD=CD,BE=CF Rt△BDE≌Rt△CDF→DE=DF→证得结论(2)Rt△BDE≌ Rt△CDF→BE= CF【参考答案】证明:(1)∵AD是△ABC的中线,∴BD=CD.∵DE⊥AB,DF⊥AC,∴△BDE,△CDF都是直角三角形.在Rt△BDE与Rt△CDF中,BD=CD,BE=CF,∴Rt△BDE≌Rt△CDF(HL),∴DE=DF.(2分)∵DE⊥AB,DF⊥AC,∴AD是△ABC的角平分线.(4分)【关键】角的内部到角的两边的距离相等的点在角的平分线上(2)∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF.【关键】角平分线的性质∵AD是△ABC的中线,∴BD=CD.(6分)在Rt△BDE和Rt△CDF中,BD=CD,DE=DF,∴Rt△BDE≌Rt△CDF(HL),∴BE=CF.(9分) 20.【参考答案】(1)证明:由题意得AC=BC,∠ACB=90°,∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC. 【关键】同角的余角相等在△ADC和△CEB中,∠ADC=∠CEB,∠DAC=∠BCE,AC=CB,∴△ADC≌△CEB(AAS).(5分)(2)由题意知,一块砌墙砖块的厚度为a cm,∴AD=4a,BE=3a.由(1)得△ADC≌△CEB,∴DC=BE=3a,CE=AD=4a,∴DC+CE=7a=35,解得a=5.答:每块砌墙砖块的厚度为5cm.(9分) 21.思路导图(1) △ADB≌△CDB(SSS)→∠ADO=∠CDO(2)过点D作DE⊥AB,DF⊥BC DE=DF Rt△ADE≌Rt△CDF→∠BAD=∠BCD【参考答案】(1)猜想:BD⊥AC,AO=OC.(写出一个即可)(2分)证明:在△ADB和△CDB中,AB=CB, AD=CD, BD=BD,∴△ADB≌△CDB(SSS),∴∠ADO=∠CDO.(3分)在△AOD和△COD中,AD=CD,∠ADO=∠CDO, OD=OD,∴△AOD≌△COD(SAS),(4分)∴∠AOD=∠COD,OA=OC,∴∠COD=90°,∴BD⊥AC.(5分) (2)证明:如图,分别过点D作DE⊥AB,DF⊥BC,垂足分别为E,F.(6分)∵BD平分∠ABC,∴DE=DF.(7分)在Rt△ADE和Rt△CDF中,DE=DF, AD=CD,∴Rt△ADE≌Rt△CDF(HL),∴∠BAD=∠BCD.(10分)22.思路导图【参考答案】(1)90(2分)解法提示:∵∠BAD+∠DAC=90°,∠DAC+∠CAE=90°,∴∠BAD=∠CAE,在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS),∴∠ACE=∠B.∵∠B+∠ACB=90°,∴∠DCE=∠ACE+∠ACB=90°.(2)①α+β=180°.证明:∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE,(3分)在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS),(5分)∴∠B=∠ACE.∵∠B+∠ACB=180°-α,∴∠DCE=∠ACE+∠ACB=∠B+∠ACB=180°-α=β,∴α+β=180°.(7分)②如图所示.(9分)α=β.(11分)。

八年级数学上册《第十二章 全等三角形》单元测试卷-带答案(人教版)

八年级数学上册《第十二章 全等三角形》单元测试卷-带答案(人教版)

八年级数学上册《第十二章全等三角形》单元测试卷-带答案(人教版)一、单选题1.如图,△ABC中,AD⊥BC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AB=AC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个B.2个C.3个D.4个2.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=a,EF=b,圆形容器的壁厚是()A.A B.B C.b﹣a D.1(b﹣a)23.如图,AB与CD相交于点E,AD=CB,要使△ADE≌△CBE,需添加一个条件,则添加的条件以及相应的判定定理正确的是()A.AE=CE;SAS B.DE=BE;SASC.∠D=∠B;AAS D.∠A=∠C;ASA4.如图∠ACB=90∘,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=5,BE=2则DE 的长是()A.7 B.3 C.5 D.25.如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=CD,B=AC B.∠ADB=∠ADC,BD=CDC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=CD6.如图,已知△ABC≌△ADE,∠D=55°,∠AED=76°,则∠C的大小是()A.50°B.60°C.76°D.55°7.如图,在等边三角形ABC中,D,E分别是AB,AC上的点,且AD=CE,则∠BCD+∠CBE的度数为()A.60°B.45°C.30°D.无法确定8.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,DE平分∠ADB,则∠B=()A.40°B.30°C.25°D.22.5°二、填空题9.如图,在△ABC中,∠ABC=45°,AC=9cm,F是高AD和BE的交点,则BF的长是.10.如图所示,已知△ABC的周长是15,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是.11.如图,A、B两点分别位于一个池塘的两端,点C是AD的中点,也是BE的中点,若DE=20米,则AB= 米;12.如图,已知△ABC的周长是22,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是.13.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=52°,则∠AEB=.三、解答题14.如图所示,要测量河两岸相对的两点A、B的距离,因无法直接量出A、B两点的距离,请你设计一种方案,求出A、B的距离,并说明理由.15.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.16.如图,已知,△ABC中,∠A=60º,BD,CE是△ABC的两条角平分线,BD,CE相交于点O,求证:BC=CD+BE.17.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.18.如图,AD=CB,AE⊥BD,CF⊥BD,E、F是垂足,AE=CF.求证:(1)AB=CD(2)AB//CD.19.已知:在△AOB和△COD中,OA=OB,OC=OD.(1)如图①,若∠AOB=∠COD=60°,求证:AC=BD.(2)如图②,若∠AOB=∠COD=α,则AC与BD间的等量关系式为,∠APB的大小为(直接写出结果,不证明)参考答案1.D2.D3.C4.B5.D6.C7.A8.B9.9cm10.3011.2012.3313.142°14.解:在AB的垂线BF上取两点C,D,使CD=BC,再作出BF的垂线DE,使A,C,E在一条直线上,这时测得的DE的长就是AB的长.作出的图形如图所示:∵AB⊥BF ED⊥BF∴∠ABC=∠EDC=90°又∵CD=BC ∠ACB=∠ECD∴△ACB≌△ECD,∴AB=DE.15.证明:∵点C是AE的中点∴AC=CE在△ABC和△CDE中∴△ABC≌△CDE∴∠B=∠D.16.解:在BC上找到F使得BF=BE∵∠A=60°,BD、CE是△ABC的角平分线∴∠BOC=180°- 12(∠ABC+∠ACB)=180°- 12(180°-∠A)=120°∴∠BOE=∠COD=60°在△BOE和△BOF中,{BE=BF ∠1=∠2 BO=BO,∴△BOE≌△BOF,(SAS)∴∠BOF=∠BOE=60°∴∠COF=∠BOC-∠BOF=60°在△OCF和△OCD中∴△OCF≌△OCD(ASA)∴CF=CD∵BC=BF+CF∴BC=BE+CD.17.证明:∵∠1=∠2∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠DAE 在△ABC和△ADE中{AB=AD∠BAC=∠DAEAC=AE∴△ABC≌△ADE∴BC=DE.18.(1)∵AE⊥BD CF⊥BD∴∠AEB=∠CFD=∠AED=∠CFB=90°∵AE=CF AD=CB∴RtΔADE≅ΔCBF(HL)∴DE=BF∴BD−DE=BD−BF∴BE=DF∵∠AEB=∠CFD AE=CF∴ΔABE≅ΔCDF(SAS)∴AB=CD(2)∵ΔABE≅ΔCDF∴∠ABE=∠CDF∴AB//CD 19.(1)证明:∵∠AOB=∠COD=60°∴∠AOB+∠BOC=∠COD+∠BOC∴∠AOC=∠BOD.在△AOC和△BOD中,{AO=BO∠AOC=∠BOD OC=OD∴△AOC≌△BOD(SAS)∴AC=BD;(2)AC=BD;α。

人教版八年级上数学第12章全等三角形单元测试 - 副本

人教版八年级上数学第12章全等三角形单元测试 - 副本

第12章全等三角形单元测试一、选择题(每小题4分,共32分)1.下列条件中,不能判定三角形全等的是().三条边对应相等 B.两边和一角对应相等C.两角的其中一角的对边对应相等D.两角和它们的夹边对应相等2. 如果两个三角形全等,则不正确的是().它们的最小角相等 B.它们的对应外角相等.它们是直角三角形 D.它们的最长边相等3.在⊿ABC和⊿A′B′C′中,AB=A′B′,∠A=∠A′,若证⊿ABC≌⊿A′B′C′还要从下列条件中补选一个,错误的选法是(). ∠B=∠B′ B. ∠C=∠C′ C. BC=B′C′ D. AC=A′C′4.P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD_____P点到∠AOB 两边距离之和.( ).小于B.大于C.等于D.不能确定4题)(5题)(7题)5.如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是().1个B.2个C.3个D.4个6.. 下列说法中不正确的是().全等三角形的对应高相等 B.全等三角形的面积相等.全等三角形的周长相等 D.周长相等的两个三角形全等.1︰1︰1 B.1︰2︰3 C.2︰3︰4 D.3︰4︰58.如图所示,在Rt△ABC中,AD是斜边上的高,∠ABC的平分线分别交AD、AC于点F、E,EG⊥BC于G,下列结论正确的是()A.∠C=∠ABC B.BA=BGC.AE=CE D. AF=FD二、填空题(每小题4分,共24分)9.如图,Rt△ABC中,直角边是,斜边是。

10.如图,点分别在线段上,相交于点,要使,需添加一个条件是(只要写一个条件).10题)(11题)(12题)12.如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有_____对.13.如图,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带去。

第十二章 全等三角形数学八年级上册-单元测试卷-人教版(含答案)

第十二章 全等三角形数学八年级上册-单元测试卷-人教版(含答案)

第十二章全等三角形数学八年级上册-单元测试卷-人教版(含答案)一、单选题(共15题,共计45分)1、已知∠AOB=45°,求作∠AOP=22.5°,作法:( 1 )以O为圆心,任意长为半径画弧分别交OA,OB于点N,M;(2)分别以N,M为圆心,以OM长为半径在角的内部画弧交于点P;(3)作射线OP,则OP为∠AOB的平分线,可得∠AOP=22.5°根据以上作法,某同学有以下3种证明思路:①可证明△OPN≌△OPM,得∠POA=∠POB,可得;②可证明四边形OMPN为菱形,OP,MN互相垂直平分,得∠POA=∠POB,可得;③可证明△PMN为等边三角形,OP,MN互相垂直平分,从而得∠POA=∠POB,可得.你认为该同学以上3种证明思路中,正确的有()A.①②B.①③C.②③D.①②③2、如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为()A. :1B.3:2C. :1D. :23、如图,OA=OC,OB=OD且OA⊥OB,OC⊥OD,下列结论:①△AOD≌△COB;②CD=AB;③∠CDA=∠ABC;其中正确的结论是()A.①②B.①②③C.①③D.②③4、如图,在△ACD中,AB⊥CD于B,BD>BC,E在AB上,AB=BD,BC=BE,下列结论:①△ABC≌△DBE;②△ACB≌△ABD;③△CBE≌△BED;④△ACE≌△ADE.其中正确的是()A.①②③④B.①③④C.①D.②③④5、如图,在△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线相交于点D,DE⊥AB交AB的延长线于点E,DF⊥AC于点F,现有下列结论:①DE=DF;②DE+DF=AD;③AM平分∠ADF;④AB+AC=2AE;其中正确的有()A.2个B.3个C.4个D.1个6、如图,中,,根据尺规作图的痕迹判断以下结论错误的是()A. B. C. D.7、如图,已知,,于点,于点,若,则长度是()A. B. C.3 D.28、如图,若△ABC≌△DEF,∠A=45°,∠F=35°,则∠E等于()A.35°B.45°C.60°D.100°9、如图,AD是角平分线,E是AB上一点,AE=AC,EF∥BC交AC于F.下列结论①△ADC≌△ADE;②EC平分∠DEF;③AD垂直平分CE.其中结论正确的有()个A.1B.2C.3D.010、如图,AD是的角平分线,于点E,于点F,连接EF交AD于点G,则下列结论:①;②;③;④AB:AC=BD:CD.正确的有()个A.1B. 2C.3D.411、如图,在矩形ABCD中,EF∥AB,GH∥BC,EF.GH的交点P在BD上,图中面积相等的四边形有()A.3对B.4对C.5对D.6对12、如图,AD是△ABC的角平分线,DE⊥AB,AB=6cm,DE=4cm,S△ABC=30cm2,则AC的长为( )A.10cmB.9cmC.4.5cmD.3cm13、如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中符合题意的个数是()①点D到∠BAC的两边距离相等;②点D在AB的中垂线上;③AD=2CD④AB=2 CDA.1B.2C.3D.414、如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是()作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB内交于一点C;③画射线OC,射线OC就是∠AOB的角平分线.A.ASAB.SASC.SSSD.AAS15、如图,AE⊥AB,BD⊥AB,C为线段AB上一点,满足CE⊥CD,CE=CD,若AE =4,BD=3,则AB的长为( )A.7B.8C.9D.12二、填空题(共10题,共计30分)16、如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.若∠ACD=114°,则∠MAB的度数为________17、如图,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且∠EAF= ∠BAD,延长FD到点G,使DG=BE,连接AG,下列结论:①△ABE≌△ADG;②△AEF≌△AGF;③EF=BE+DF;④AD+BE>AF,正确的有________18、在△ABC 中,AB = AC ,∠BAC=100°,点D 在BC 上,△ABD 和△AFD 关于直线AD 对称,∠FAC 的平分线交BC 于点G,连接FG 当∠BAD =________.时,△DFG为等腰三角形.19、如图,矩形ABCD中,AB=3,BC=2,E为BC的中点,AF=1,以EF为直径的半圆与DE交于点G,则劣弧的长为________.20、如图所示,∠AOB=70°,以点O为圆心,以适当长为半径作弧分别交OA,OB于C,D 两点;分别以C,D为圆心,以大于CD的长为半径作弧,两弧相交于点P;以O为端点作射线OP,在射线OP上取点M,连接MC、MD.若测得∠CMD=40°,则∠MDB=________21、如图,在△ABC中,∠C=45°,∠BAC=90°,点A为(,0)、点B为(0,1),坐标系内有一动点P,使得以P、A、C为顶点的三角形和△ABC全等,则P点坐标为________.22、在平面直角坐标系中,点A(1,0),B(0,2),作△BOC,使△BOC与△ABO全等,则点C坐标为________.23、如图,将等边放在平面直角坐标系中,点A的坐标为,点B在第一象限,将等边绕点O顺时针旋转180°得到,则点的坐标是________.24、如图,已知AC与BF相交于点E,AB∥CF,点E为BF中点,若CF=6,AD=4,则BD=________.25、如图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD=3,BD=5,则CD的长为________.三、解答题(共5题,共计25分)26、如图,已知AB=AD,且AC平分∠BAD,求证:BC=DC27、已知:如图点A、B、C、D在一条直线上,EA∥FB,EC∥FD,AB=CD,求证:EA=FB.28、如图所示,在梯形ABCD中,AD∥BC,AB=DC,P为梯形ABCD外一点,且PA=PD,求证:△ABP≌△DCP.29、如图,和中,,连接、,为的中点,连接. 求证:.30、已知:如图,OC=OD,AD⊥OB于D,BC⊥OA于C,求证:EA=EB.参考答案一、单选题(共15题,共计45分)1、A2、A3、B4、A5、B6、D7、A8、D9、C10、C11、C12、B13、D14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、。

人教版八年级数学上册第十二章全等三角形单元测试(附答案)-副本

人教版八年级数学上册第十二章全等三角形单元测试(附答案)-副本

全等三角形单元测试一.填空题:(每题3分,共30分)1.如图1,AD ⊥BC ,D 为BC 的中点,则△ABD ≌_________.2.如图2,若AB =DE ,BE =CF ,要证△ABF ≌△DEC ,需补充条件_______或_______. A B CED 12 3.如图3,AB=DC ,AD=BC ,E.F 是DB 上两点且BE=DF ,若∠AEB=100°,∠ADB=,则∠BCF= .AB C DEF图3 图44. 如图4,△ABC≌△AED,若,,则 .5.如图5,已知AB∥CD,AD∥BC,E.F是BD上两点,且BF=DE,则图中共有对全等三角形.6.如图6,四边形ABCD的对角线相交于O点,且有AB∥DC,AD∥BC,则图中有___对全等三角形.7.“全等三角形对应角相等”的条件是 .8.如图8,AE=AF,AB=AC,∠A=60°,∠B=24°,则∠BOC=__________.9.若△ABC≌△A′B′C′,AD和A′D′分别是对应边BC和B′C′的高,则△ABD≌△A′B′D′,理由是_______________.10.在Rt△ABC中,∠C=90°,∠A.∠B的平分线相交于O,则∠AOB=_________.二.选择题:(每题3分,共24分)11.如图9,△ABC≌△BAD,A和B.C和D分别是对应顶点,若AB=6cm,AC=4cm,BC=5cm,则AD的长为()A.4cmB.5cmC.6cmD.以上都不对12.下列说法正确的是()A.周长相等的两个三角形全等B.有两边和其中一边的对角对应相等的两个三角形全等C.面积相等的两个三角形全等D.有两角和其中一角的对边对应相等的两个三角形全等13.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C14.下列条件中,能判定△ABC≌△DEF的是()A.AB=DE,BC=ED,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.∠B=∠E,∠A=∠D,AC=EFD.∠B=∠E,∠A=∠D,AB=DE15.AD是△ABC中BC边上的中线,若AB=4,AC=6,则AD的取值范围是()A.AD>1B.AD<5C.1<AD<5D.2<AD<1016.下列命题正确的是()A.两条直角边对应相等的两个直角三角形全等;B.一条边和一个锐角对应相等的两个直角三角形全等C.有两边和其中一边的对角(此角为钝角)对应相等的两个三角形全等D.有两条边对应相等的两个直角三角形全等17.如图10.△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD和CE交于点O,AO的延长线交BC于F,则图中全等直角三角形的对数为()A.3对B.4对C.5对D.6对18.如图11,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A. 线段CD的中点B. OA与OB的中垂线的交点C. OA与CD的中垂线的交点D. CD与∠AOB的平分线的交点三.解答题(共46分)19. (8分)如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角.20. (7分)如图, ∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线,为什么?21. (7分)如图,已知AB=DC,AC=DB,BE=CE,求证:AE=DE.22. (8分)如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE与DE的大小与位置关系,并证明你的结论.23. (8分)已知如图,E.F在BD上,且AB=CD,BF=DE,AE=CF,求证:AC与BD互相平分.24. (8分)如图,∠ABC=90°,AB=BC,D为AC上一点,分别过A.C作BD的垂线,垂足分别为E.F,求证:EF=CF-AE.参考答案1.△ADC2. ∠B=∠C或AF=DC3.704.27°5.36.37.两个三角形全等8.72°9.HL 10.135° 11.B 12.D 13.A 14.D 15.C 16.A 17.D 18.D 19. 对应边:AB AC,AN,AM,BN,CM 对应角:∠BAN=∠CAM, ∠ANB=∠AMC 20. △AMC≌△CON 21.先证△ABC≌△DBC得∠ABC=∠DCB,再证△ABE≌△CED 22.垂直 23. 先证△ABE≌△DFC得∠B=∠D,再证△ABO≌△COD 24.证△ABF≌△BCF专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图 第8题图8.(2016·呼和浩特中考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6.9.12 10.12 11.15 12.35 13.15 14.13 15.解:(1)4 2或3 (2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13;(2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 52 2 23 2 5 2 3 2 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12章全等三角形单元测试
一、选择题(每小题4分,共32分)
1.下列条件中,不能判定三角形全等的是()
.三条边对应相等 B.两边和一角对应相等
C.两角的其中一角的对边对应相等
D.两角和它们的夹边对应相等
2. 如果两个三角形全等,则不正确的是()
.它们的最小角相等 B.它们的对应外角相等
.它们是直角三角形 D.它们的最长边相等
3.在⊿ABC和⊿A′B′C′中,AB=A′B′,∠A=∠A′,若证⊿ABC≌⊿A′B′C′还要从下列条件中补选一个,错误的选法是()
. ∠B=∠B′ B. ∠C=∠C′ C. BC=B′C′ D. AC=A′C′
4.P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD_____P点到∠AOB 两边距离之和.( )
.小于B.大于C.等于D.不能确定
4题)(5题)(7题)
5.如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,
取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()
.1个B.2个C.3个D.4个
6.. 下列说法中不正确的是()
.全等三角形的对应高相等 B.全等三角形的面积相等
.全等三角形的周长相等 D.周长相等的两个三角形全等
.1︰1︰1 B.1︰2︰3 C.2︰3︰4 D.3︰4︰5
8.如图所示,在Rt△ABC中,AD是斜边上的高,∠ABC的平分线分别交AD、AC于点F、E,EG⊥BC于G,下列结论正确的是()A.∠C=∠ABC B.BA=BG
C.AE=CE D. AF=FD
二、填空题(每小题4分,共24分)
9.如图,Rt△ABC中,直角边是,斜边是。

10.如图,点分别在线段上,相交于
点,要使,需添加一个条件是(只要写一个条件).
10题)(11题)(12题)
12.如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有_____对.
13.如图,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去
配一块完全一样的玻璃,那么最省事的办法是带去。

(填序号)
14.正方形ABCD中,AC、BD交于O,∠EOF=90o,已知AE=3, F=4, 则S△BEF为___.
三:解答题(共44分)
5、(5分)已知: 如图, AC、BD相交于点O, ∠A =∠D, AB=CD.
证:△AOB≌△DOC,。

6. (7分)已知:如图,,,,证:
18.(7分)如图,在中,是上一点,交于点,,,与有什么位置关系?证明你的结论。

19.(8分)如图9,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC 于点F,且BE=CF.
20.阅读理解题(12分)
初二(1)班同学到野外上数学活动课,为测量池塘两端A、B的距离,设计了如下方案:(Ⅰ)如图1,先在平地上取一个可直接到达A、B的点C,连接AC、BC,并分别延长AC至D,延长BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB的长;
(Ⅱ)如图2,先过B点作AB的垂线BF,再在BF上取C、D两点使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离. 阅读后回答下列问题:
(1)方案(Ⅰ)是否可行?请说明理由。

若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?.
图1)(图2)
参考答案:
一、选择题(每小题4分,共32分)
1 B ,
2 C,
3 C,
4 B,
5 B,
6 D ,
7 C,
8 B
二、填空题(每小题4分,共24分)
9.AC、BC ,AB 。

10.AB=AC或∠B=∠C或∠ADC=∠AEB,BD=CE(只要写一个条件).11.55 °,12._5,
13.③,14. 6.
15、证明:∵∠A =∠D, AB=CD. ∠A OB=∠DOC,
△AOB≌△DOC(ASA)
16. 解:∵,∴∠B A C =∠D A E
∵∠A =∠D, AB=CD. ∠A OB=∠DOC,
△AOB≌△DOC(ASA)
由SAA可得全等,
17.解:∥,
,,∠A ED=∠FEC
18.解:作∠MBN的角平分线,在角平分线上取BP=3.5cm,则点P即为蓝方指挥部的位置∵蓝方指挥部在A区内,到铁路到公路的距离相等
∴蓝方指挥部一定在∠MBN的角平分线上,而它又离铁路与公路交叉处B点700米,通过比例尺知,蓝方指挥部在距B点3.5cm处的P处。

如图:
9.证明:∵BE=CF,BD=CD
0解:(1)方案(Ⅰ)可行
∠ACB=∠ECD,AC=CD,BC=CE
⊿ACB≌⊿ECD,
DE=AB ∴方案(Ⅰ)可行
2)方案(Ⅱ)可行
∠ACB=∠ECD,∠ABD=∠BDE,BC=CD
⊿ACB≌⊿ECD,DE=AB ∴方案(Ⅱ)可行
3) 方案(Ⅱ)中作BF⊥AB,ED⊥BF的目是构造三角形全等,仅满足∠ABD=∠BDE,方案(Ⅱ)不一定成立。

A,C,E不一定共线。

⊿ACB不一定全等⊿ECD,DE不一定等于AB 。

图1)(图2)。

相关文档
最新文档