中考数学计算专练

合集下载

数学计算题练习题初三

数学计算题练习题初三

数学计算题练习题初三1. 填空题(1) 27 ÷ 9 × 3 = _______(2) 13 + 25 × 2 = _______(3) 98 - 57 ÷ 3 = _______(4) 35 × 3 ÷ 5 = _______(5) 45 ÷ 15 + 8 = _______2. 选择题(1) 一辆自行车每小时行驶30公里,行驶6小时可以走多远?A. 90公里B. 120公里C. 180公里D. 210公里(2) 计算:9.2 + 6.9 - 4.7 = _______A. 11.4B. 12.2C. 12.4D. 13.6(3) 一个数的三分之一加上9等于这个数,这个数是多少?A. 3B. 6C. 9D. 12(4) 一个矩形的长是25厘米,宽是12厘米,它的面积是多少平方厘米?A. 250B. 300C. 375D. 450(5) 一个数字是7的倍数,它能被9整除吗?A. 能B. 不能3. 解答题(1) 计算:12.5 × 8 - 4.2 ÷ 2 = _______解答:12.5 × 8 = 1004.2 ÷ 2 = 2.1100 - 2.1 = 97.9所以,12.5 × 8 - 4.2 ÷ 2 = 97.9(2) 一条长方形的长是15米,宽是8米,它的周长是多少米?解答:周长 = 2 × (长 + 宽)周长 = 2 × (15 + 8)周长 = 2 × 23周长 = 46所以,该长方形的周长是46米。

(3) 解方程:2x + 5 = 17解答:2x + 5 = 172x = 17 - 52x = 12x = 12 ÷ 2x = 6所以,方程的解为x = 6。

以上是数学计算题的练习题,希望能帮助你巩固数学知识,提高计算能力。

中考 数学专练01(选择题-基础)(50题)-(老师版)

中考 数学专练01(选择题-基础)(50题)-(老师版)

2022中考考点必杀500题专练01(选择题-基础)(50道)1.(2022·湖北咸宁·一模)22-的相反数是( )A .14-B .14C .4-D .4【答案】D【解析】解:224-=-,4-的相反数是4即22-的相反数是4故选D【点睛】本题考查了有理数的乘方,相反数的定义,掌握相反数的意义是解题的关键.2.(2022·广东·模拟预测)计算(﹣m 2)3的结果是( )A .﹣m 6B .m 6C .﹣m 5D .m 5【答案】A【解析】解:()326m m -=- 故选A .【点睛】本题主要考查了积的乘方运算,熟知相关计算法则是解题的关键.3.(2021·河南郑州·一模)2021年5月11日,第7次全国人口普查结果公布:全国常住人口数为14.21亿人,14.21亿用科学计数法表示为( )A .14.21×108B .0.1421×1010C .1.421×109D .1.421×108【答案】C【解析】解:14.21亿=1421000000=91.42110⨯故选C .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.4.(2022·广东·模拟预测)在实数﹣13,﹣2,1 ) A .﹣2B .1C .﹣13 D 【答案】A【解析】 解:在实数﹣13,﹣2,12- 故选A【点睛】本题考查了实数的大小比较,掌握实数的大小比较是解题的关键.5.(2022·陕西宝鸡·模拟预测)计算:231()3xy -=( ) A .3619x y - B .36127x y - C .36127x y D .3627x y【答案】B【解析】 解:23332336111()()()3327xy x y x y -=-=- 故选:B .【点睛】本题主要考查了积的乘方的知识,掌握积的乘方的性质准确计算是做出本题的关键.6.(2022·湖北随州·一模)如图,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是( )A .(a ﹣b )2=a 2﹣2ab +b 2B .a (a ﹣b )=a 2﹣abC .(a ﹣b )2=a 2﹣b 2D .a 2﹣b 2=(a +b )(a ﹣b )【答案】D【解析】解:由题意这两个图形的面积相等,∴a 2﹣b 2=(a +b )(a ﹣b ),故选:D .【点睛】本题考查了平方差公式与图形面积,数形结合是解题的关键. 7.(2022·安徽·合肥市第二十九中学一模)目前发现的新冠病毒其直径约为0.00012毫米,则这个数字用科学计数法表示正确的是( )A .1.2×104B .1.2×10-4C .1.2×105D .1.2×10-5 【答案】B【解析】解:40.00012 1.210.-=⨯故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a <,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.8.(2022·山东·日照市新营中学一模)下列各数:0.9-,π,227 1.2020020002……(每两个2之间多一个0),cos45︒是无理数的有( )个.A .1个B .2个C .3个D .4个 【答案】D【解析】解:π 1.2020020002…(每两个2之间多一个0)cos 45︒=4个, 故选:D .9.(2022·河北·模拟预测)将多项式()211a a --+因式分解,结果正确的是( )A .1a -B .()()12a a --C .()21a -D .()()11a a +-【答案】B解:()211a a --+=2211a a a -+-+=()()12a a --.故选B .【点睛】本题主要考查了运用完全平方公式计算、十字相乘法因式分解等知识点,掌握运用十字相乘法进行因式分解是解答本题的关键.10.(2022·河南新乡·一模)不等式组12322(4)4x x ⎧-≥-⎪⎨⎪->⎩的解集在数轴上表示为( )A .B .C .D .【答案】A【解析】 解:()1232244x x ⎧-≥-⎪⎨⎪->⎩①② 由∴得:x ≥-2由∴得:x <2所以22x -≤<在数轴表示如图:故选:A .【点睛】本题考查解一元一次不等式组,并在数轴表示出来,准确求出不等式的解集是解题的关键.注意在数轴表示解集时,“≥”、“≤”要用实心点表示,“>”、“<”用空心点表示.11.(2019·新疆·克拉玛依市教育研究所一模)共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x ,则所列方程正确的为( )A .()210001440x +=B .()2100011000440x +=+ C .()244011000x += D .()()21000+10001+10001+1000440x x +=+解:由题意可得,1000(1+x )2=1000+440.故选:B .【点睛】本题考查了一元二次方程的应用之增长率问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.12.(2021·浙江绍兴·一模)不等式组3223x x x x +⎧⎨-≤⎩>的解集是( ) A .13x ≤<B .13x ≤<C .3x ≤D .1x >【答案】B【解析】 解:解不等式32x x +>,得:1x >, 解不等式23xx ≤﹣,得:3x ≤, 则不等式组的解集为13x ≤<,故选:B .【点睛】本题考查解一元一次不等式组,正确求出每个不等式的解集是解决问题额关键,注意不等号需要变号时的情况,牢记:同大取大、同小取小、大小小大中间找、大大小小找不到的口诀.13.(2022·河南平顶山·一模)一元二次方程x 2+x -1=0根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法判断【答案】C【解析】解:∴关于x 的一元二次方程为x 2+x -1=0∴ a =1,b =1,c =-1,∴ ∴=24b ac -=()2=1411=50-⨯⨯->, ∴ 方程有两个不相等的实数根.故选:C .【点睛】本题考查了一元二次方程根的判别式,正确掌握根的判别式是解题的关键.14.(2021·安徽黄山·二模)使得方程210x x --=有两个不相等实根,则k 的取值范围是( ) A .5k <B .5k ≤C .1k ≤D .1k <【答案】C【解析】解:根据题意,得()241010k ⎧-⨯-⎪⎨⎪-≥⎩> , 解得k ≤1,故选择C .【点睛】本题考查一元二次方程根的判别式,注意被开方数是非负数是本题的易错点.15.(2022·福建泉州·一模)把方程2630x x -+=配方成2()x m n -=的形式,则m n 、的值分别是( ) A .36、B .36-、C .3,6-D .36--、 【答案】A【解析】解:方程2630x x -+=,变形得:263-=-x x ,配方得:2696x x -+=,即2(3)6x -=,可得3m =,6n =,故选:A .【点睛】此题考查用配方法解一元二次方程,熟练掌握完全平方公式是解本题的关键.16.(2021·河南新乡·二模)若直线y =﹣2x ﹣4与直线y =4x +b 的交点在第二象限,则b 的取值范围是( ) A .﹣4<b <8B .﹣4<b <0C .b >8D .﹣2≤b ≤8 【答案】C【解析】 解:解方程组244y x y x b =--⎧⎨=+⎩得4683b x b y +⎧=-⎪⎪⎨-⎪=⎪⎩,所以直线y=-2x-4与直线y=4x+b的交点坐标为(-46b+,83b-),因为直线y=-2x-4与直线y=4x+b的交点在第二象限,所以4683bb+⎧-<⎪⎪⎨-⎪>⎪⎩,解得:b>8.故选:C.【点睛】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.17.(2021·江苏南通·一模)《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛()斛米.(注:斛是古代一种容量单位)A.67B.56C.1D.65【答案】B【解析】解:设1大桶可盛x斛米,1小桶可盛y斛米,(方法一)依题意,得:5352x yx y+=⎧⎨+=⎩,解得:1324724 xy⎧=⎪⎪⎨⎪=⎪⎩,∴x+y=1324+724=56.(方法二)依题意,得:5352x yx y+=⎧⎨+=⎩①②,∴+∴得:6x+6y=5,∴x+y=56.故选:B.【点睛】本题主要考查二元一次方程组的实际应用问题,找到题目中的等量关系式是解决问题的关键.18.(2021·山东泰安·模拟预测)关于x的方程(x﹣1)(x+2)=p2(p为常数)的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根【答案】C【解析】解:∴关于x的方程(x﹣1)(x+2)=p2(p为常数),∴x2+x﹣2﹣p2=0,∴b2﹣4ac=1+8+4p2=9+4p2>0,∴方程有两个不相等的实数根,根据根与系数的关系,方程的两个根的积为﹣2﹣p2<0,∴一个正根,一个负根,故选:C.【点睛】本题主要考查由根的判别式判断一元二次方程根的情况以及根与系数的关系.x+2的图象与坐标轴的交点为A和B,下列说法中正19.(2021·河南洛阳·三模)如图,一次函数y=﹣12确的是()A.点(2,﹣1)在直线AB上B.y随x的增大而增大C.当x>0时,y<2D.∴AOB的面积是2【答案】C【解析】x+2中,令x=2,则y=1,解:在y=﹣12∴点(2,﹣1)不在直线AB上,故A选项错误,不符合题意;如图所示:y随x的增大而减小,故B选项错误,不符合题意;∴在y=﹣1x+2中,令x=0,则y=2;令y=0,则x=4,2∴函数图象与x 轴交于A (4,0),与y 轴交于B (0,2),如图所示:当x >0时,y <2,故C 选项正确,符合题意; 图象与坐标轴围成的三角形的面积是12×2×4=4,故D 选项错误,不符合题意;故选:C .【点睛】本题主要考查了一次函数与坐标轴的交点,一次函数图像的性质,熟知一次函数的相关知识是解题的关键. 20.(2021·浙江绍兴·一模)函数y =ax 2+3ax +1(a >0)的图象上有三个点分别为A (﹣3,y 1),B (﹣1,y 2),C (12,y 3),则y 1,y 2,y 3的大小关系为( ) A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 2<y 1D .y 1,y 2,y 3的大小不确定 【答案】B【解析】解:∴二次函数的解析式y =ax 2+3ax +1(a >0),∴该二次函数的抛物线开口向上,且对称轴为x =﹣32a a =﹣32. ∴A (﹣3,y 1),B (﹣1,y 2),C (12,y 3)为y =ax 2+3ax +1(a >0)的图象上三个点,()3331133,1,2222222⎛⎫⎛⎫---=---=--= ⎪ ⎪⎝⎭⎝⎭, 则三点横坐标距离与对称轴x =32的距离远近顺序为:C (12,y 3)、A (﹣3,y 1)、B (﹣1,y 2), ∴三点纵坐标的大小关系为:y 2<y 1<y 3.故选:B .【点睛】本题考查了二次函数的性质,掌握二次函数的性质是解题的关键. 21.(2022·山东东营·模拟预测)二次函数2y ax bx c =++的图象如图所示,则一次函数y ax b =+和反比例函数c y x=在同一平面直角坐标系中的图象可能是( )A .B .C .D .【答案】D解:因为二次函数2y ax bx c =++的图象开口向上,得出a >0,与y 轴交点在y 轴的正半轴,得出c >0,利用对称轴2b x a=->0,得出b <0, 所以一次函数y =ax +b 经过一、三、四象限,反比例函数c y x=经过一、三象限. 故选:D .【点睛】 本题考查了反比例函数的图象、一次函数的图象以及二次函数的图象,根据二次函数图象,得出a >0、b <0、c >0是解题的关键.22.(2022·广东·模拟预测)二次函数y =-x 2+bx +4经过(-2,n )( 4,n )两点,则n 的值是( ) A .-4B .-2C .2D .4【答案】A【解析】解:抛物线y =-x 2+bx +4经过(-2,n )和(4,n )两点,可知函数的对称轴x =1, ∴x =2b =1, ∴b =2;∴y =-x 2+2x +4,将点(-2,n )代入函数解析式,可得n =-4;故选:A .【点睛】本题考查了二次函数图象上点的坐标;熟练掌握二次函数图象上点的对称性是解题的关键.23.(2021·黑龙江佳木斯·模拟预测)将抛物线y =x 2向上平移2个单位长度,再向右平移5个单位长度,所得到的抛物线为( )A .y =(x +2)2+5B .y =(x ﹣2)2+5C .y =(x +5)2+2D .y =(x ﹣5)2+2【答案】D【解析】解:由“上加下减”的原则可知,将抛物线y =x 2向上平移2个单位所得抛物线的解析式为:y =x 2+2; 由“左加右减”的原则可知,将抛物线y =x 2+3向右平移5个单位所得抛物线的解析式为:y =(x ﹣5)2+2,故D 正确.故选:D .【点睛】本题主要考查了求二次函数解析式,掌握抛物线的平移变化规律是解题的关键.24.(2021·贵州·仁怀市教育研究室二模)若函数y kx b =+的图象如图所示,则关于x 的不等式0kx b +<的解集为( )A .3x <B .3x >C .6x <D .6x >【答案】B【解析】 解:由函数图像可得一次函数y =kx +b 经过点(3,0),∴当x >3时,y =kx +b <0,故选:B .【点睛】本题考查了一次函数与一元一次不等式,解题的关键是掌握一次函数的图象与性质及解一元一次不等式的能力.25.(2019·新疆·克拉玛依市教育研究所一模)如图,AB CD ,25A ∠=,40F ∠=,则C ∠的度数是( )A.75°B.70°C.65°D.80°【答案】C【解析】解:∴∴A=25°,∴F=40°,∴∴FEB=∴A+∴F=65°,∴AB∴CD,∴∴C=∴FEB=65°.故选:C.【点睛】本题考查了三角形外角性质,平行线的性质,解决问题的关键是熟练运用三角形外角性质和平行线的性质.26.(2021·吉林四平·一模)如图,在∴O中弦AB,CD相交于点E,∴A=30°,∴AED=75°,则∴B=()A.60°B.45°C.75°D.50°【答案】B【解析】解:∵∠A=30°,∴∠D=∠A=30°,∴∠B=∠AED﹣∠D=75°﹣30°=45°.故选:B.【点睛】本题考查了圆周角定理,三角形外角的性质,在同圆或等圆中,同弧或等弧所对的圆周角相等.27.(2022·广东·模拟预测)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∴ABC=50°,∴BAC=80°,则∴1的度数为()A.60°B.50°C.40°D.25°【答案】B【解析】解:∴ABC=50°,∴BAC=80°,∴50ACB,∠=°四边形ABCD是平行四边形,对角线AC与BD相交于点O,∴=,BO ODE是边CD的中点,OE BC∴//∴∠=∠501ACB=︒故选B【点睛】本题考查了三角形的内角和定理,平行四边形的性质,三角形中位线的性质与判定,平行线的性质,掌握平行四边形的性质是解题的关键.28.(2022·北京·北理工附中模拟预测)下图是某个几何体的侧面展开图,则该几何体为()A.棱柱B.圆柱C.棱锥D.圆锥【答案】C【解析】解:由图可知展开图侧面是三角形,所以该几何体是棱锥,故选:C.【点睛】本题考查几何体展开图的认识,熟记几何体的侧面展开图是解题的关键.29.(2022·陕西宝鸡·模拟预测)如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AB ∴AC ,若AB =3,AC =8,则BD 的长是( )A .8B .9C .10D .12【答案】C【解析】 ∴平行四边形ABCD 且8AC =118422AO CO AC ∴===⨯= AB AC ⊥ 90BAO ∴∠=∴ABO ∆为直角三角形5BO ∴==又∴平行四边形ABCD22510BD BO ∴==⨯=故选:C .【点睛】本题考查了平行四边形、勾股定理的知识;求解的关键是熟练掌握平行四边形的对角线互相平分和勾股定理,从而求出问题.30.(2022·安徽合肥·一模)如图,AB 、AC 是∴O 的切线,B 、C 为切点,点D 是优弧BC 上一点,∴BDC =70°, 则∴A 的度数是( )A .20°B .40°C .55°D .70°【答案】B【解析】连接OB、OC,如图所示:∴AB、AC是∴O的两条切线,B、C是切点,∴OB∴AB,OC∴AC,∴90∠=∠=︒,ABO ACO∴∴BDC=70°,∴∴BOC=2×70°=140°,∴360A ABO ACO BOC∠=︒-∠-∠-∠=︒-︒-︒-︒3609090140=︒,故B正确.40故选:B.【点睛】本题考查了切线的性质和圆周角定理,根据圆的切线垂直于经过切点的半径,得出90ABO ACO∠=∠=︒是解题的关键.31.(2021·贵州六盘水·模拟预测)用一个平面去截一个几何体,如果截面的形状是圆,那么被截的几何体可能是()A.三棱柱B.四棱锥C.长方体D.圆柱【答案】D【解析】解:用一个平面去截一个几何体,三棱柱,四棱锥,长方体的截面形状不可能是圆,只可能是多边形,圆柱的截面形状可能是圆,故选:D.【点睛】本题考查了截一个几何体,熟练掌握每一个几何体的截面形状是解题的关键.32.(2022·河南信阳·模拟预测)如图,将矩形纸带ABCD沿直线EF折叠,A,D两点分别与A',D对应.若122∠=∠,则AEF ∠的度数为( )A .60°B .65°C .72°D .75°【答案】C 解:如图,由折叠的性质可知34∠=∠,∴//AB CD ,∴31∠=∠ ,∴122∠=∠,342180++=︒∠∠∠,∴52180=︒∠,即236∠=︒,∴32272AEF ===︒∠∠∠故选:C【点睛】本题考查的是图形翻折变换的性质及平行线的性质,熟知折叠的性质及平行线的性质是解决问题的关键. 33.(2021·广西玉林·模拟预测)下列命题中是真命题的是( )A .对角线互相垂直且相等的四边形是正方形B .两条对角线相等的平行四边形是矩形C .有两边和一角对应相等的两个三角形全等D .两边相等的平行四边形是菱形【答案】B【解析】解:A 对角线互相垂直平分且相等的四边形是正方形,所以A 选项错误;B 两条对角线相等的平行四边形是矩形,所以B 选项正确;C 有两边和它们的夹角对应相等的两个三角形全等,所以C 选项错误;D 邻边相等的平行四边形是菱形,所以D 选项错误.故选:B .【点睛】本题主要考查命题,正方形,矩形,菱形的判定以及三角形全等的条件,对判定的熟练掌握是解决此类题目的关键.34.(2022·浙江衢州·模拟预测)一个扇形的圆心角是135°,半径为4,则这个扇形的面积为( )A .32π B .23π C .4π D .6π【答案】D【解析】 解:由题意得,n =135°,r =4,S 扇形=2360n r π=21354360π⨯⨯=6π, 故选D .【点睛】此题主要考查了扇形的面积计算,解题的关键在于是熟练掌握扇形的面积公式,另外要明确扇形公式中,每个字母所代表的含义.35.(2022·安徽淮南·模拟预测)在Rt △ABC 中,∠C =90°,∠B =2∠A ,则sin A 的值为( )AB C D .12【答案】D【解析】解:∵在Rt △ABC 中,∠C =90°,∠B =2∠A ,根据三角形内角和定理,∠A +∠B +∠C =180°,∴∠A +2∠A +90°=180°,∴∠A =30°,∠B =60°,∴sin A =sin30°=12.故选:D .【点睛】本题主要考查了锐角三角函数,牢固掌握特殊三角函数值是做出本题的关键.36.(2021·四川凉山·一模)如图,是5个完全相同的小正方体组成的一个几何体,它的主视图是( )A .B .C .D .【答案】A【解析】解:从正面看,底层是两个小正方形,上层左边是一个小正方形,故选:A .【点睛】根据从正面看得到的图形是主视图,可得答案.37.(2022·河北·模拟预测)如图,ABC 与A B C '''关于点()1,0C -位似,且相似比为1:3,已知点B 的横坐标为a ,则点B '的横坐标为( )A .31a -B .31a --C .34a -+D .34a --【答案】D【解析】 解:设点B '的横坐标为x ,则点B 与点C 之间的水平距离为1a --,点B ′与点C 之间的水平距离为1x +,∴ABC 与A B C '''关于点()1,0C -位似,且相似比为1:3,3(1)1a x ∴--=+,解得34x a =--,故选:D .【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.38.(2021·西藏·柳梧初级中学一模)2020年初,新冠病毒引发疫情.一方有难,八方支援.危难时刻,全国多家医院纷纷选派医护人员驰援武汉.下面是四家医院的图案标志,其中轴对称图形是( ) A . B . C . D .【答案】A【解析】A 、是轴对称图形,故此选项符合题意;B 、不是轴对称图形,故此选项不合题意;C 、不是轴对称图形,故此选项不合题意;D 、不是轴对称图形,故此选项不合题意.故选:A .【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合. 39.(2022·安徽·一模)几何体的三视图如图所示,这个几何体是( )A .B .C .D .【答案】C【解析】解:由几何体的三视图,可得这个几何体是故选:C .【点睛】考查了由三视图判断几何体的知识,解题时要认真审题,仔细观察,注意合理地判断空间几何体的形状. 40.(2021·河北省保定市第二中学分校一模)如图,热气球探测器显示,从热气球A 处看一栋楼顶部B 处的仰角α为30°,看这栋楼底部C 处的俯角β为60°,热气球与楼的水平距离AD 为60米,则这栋楼的高度BC 为( )AB .C .D .【答案】C【解析】解:由题意可得,α=30°,β=60°,AD =60,∴ADC =∴ADB =90°,∴在Rt ∴ADB 中,α=30°,AD =60,∴tan 60BD BD AD α==∴BD =在Rt ∴ADC 中,β=60°,AD =60,∴tan 60CD CD AD β==∴CD =∴BC =BD +CD =即这栋楼的高度BC是故选:C.【点睛】本题考查了解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数解答.41.(2021·河北省保定市第二中学分校一模)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【答案】C【解析】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误,故选:C.【点睛】本题考查两种对称图形,掌握轴对称图形与中心对称图形的概念是解决问题的关键.42.(2021·广西玉林·模拟预测)一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长120m,测得圆周角∴ACB=60°,则这个人工湖的直径AD为()A.B.C.D.【答案】C【解析】解:连接BD,∴AD 是圆O 的直径, ∴∴ABD =90°, ∴∴ADB =∴ACB =60°,∴sin∴ADB AB AD ==sin60°= ∴AD ===m ), 故选:C .【点睛】本题考查了圆周角定理以及锐角三角函数定义等知识,熟练掌握圆周角定理是解题的关键.43.(2022·福建泉州·一模)如图,直线123l l l ∥∥直线AC 分别交123l l l 、、于点、、A B C ,直线DF 分别交123l l l 、、于点D E F 、、,若3,2AB BC ==,则DEDF等于( )A .23B .25C .35D .32【答案】C 【解析】解:直线123////l l l ,∴33325DE AB DF AC ===+. 故选:C . 【点睛】本题考查平行线分线段成比例定理,掌握三条平行线截两条直线,所得的对应线段成比例是解题的关键.44.(2021·河南商丘·三模)如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A.B.C.D.【答案】B【解析】根据题意得:主视图有3列,每列小正方数形数目分别为2、1、3,主视图为故选:B.【点睛】本题考查了三视图的知识,理解主视图是从物体的正面看得到的视图是解题关键.45.(2021·浙江金华·一模)已知一个几何体如图所示,则它的左视图是()A.B.C.D.【答案】D【解析】解:从左面看该几何体,所得到的图形如下:故选:D.【点睛】本题考查简单几何体的左视图,掌握“能看见的轮廓线用实线表示,看不见的轮廓线用虚线表示”是解题关键.46.(2021·河南洛阳·三模)下列说法中,错误的是()A.明天会下雨是随机事件B.某发行量较大的彩票中奖概率是11000,那么购买1001张彩票一定会中奖C.要了解某市初中生每天的睡眠时间,应该采用抽样调查的方式进行D.乘客乘坐飞机前的安检应采取全面调查的方式进行【答案】B【解析】解:A、明天会下雨是随机事件,正确,不符合题意;B、某发行量较大的彩票中奖概率是11000,那么购买1001张彩票不一定会中奖,错误,符合题意;C、要了解某市初中生每天的睡眠时间,应该采用抽样调查的方式进行,正确,不符合题意;D、乘客乘坐飞机前的安检应采取全面调查的方式进行,正确,不符合题意;故选:B.【点睛】本题考查随机事件、概率、抽样调查、全面调查的定义,随机事件是指在一定条件下,可能发生也可能不发生的事件;概率表示随机事件发生的可能性的大小;不容易做到的事情采用抽样调查.熟记相关概念是解题关键.47.(2021·浙江绍兴·一模)小明和小斌参加学校社团活动,准备在舞蹈社,文学社和漫画社里选择一项,那么两人同时选择漫画社的概率为()A.13B.29C.19D.59【答案】C【解析】解:列表如下:由表格知,共有9种等可能结果,其中两人同时选择漫画社的只有1种结果,所以两人同时选择漫画社的概率为19,故选:C【点睛】本题考查了列表法与树状图法,正确画出树状图是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.48.(2021·浙江绍兴·一模)某班级前十名的数学成绩分别为100,100,97,95,95,94,93,93,92,91,则这组数据的平均分为()A.95B.94.5C.95.5D.96【答案】A【解析】解:这组数据的平均分为100100979591059493939291 +++++++++=95.故选A . 【点睛】本题考查了算术平均数.解题的关键在于熟练掌握求解算术平均数的计算公式.49.(2022·贵州贵阳·模拟预测)下表中记录了甲、乙、丙、丁四位同学五次数学测验成绩的平均分与方差,要从中选出一位同学参加数学竞赛,最合适的是( )A .甲B .乙C .丙D .丁【答案】B 【解析】解:由表格可知==x x x x >乙丁甲丙,2222S S S S <<<乙丁甲丙∴选择乙同学出去参加数学竞赛.故答案选:B . 【点睛】本题考查数据的统计与分析、平均数、方差的意义等知识点.平均数反映的是学生五次测验中的平均水平.方差反映的是学生五次测验成绩的波动程度,方差越小,波动程度越小,越稳定.50.(2021·河北省保定市第二中学分校一模)某农科所为了考察水稻穗长的情况,在一块试验田里随机抽取了50个稻穗进行测量,获得了它们的长度x (单位:cm ),穗长的频数分布直方图如图所示: 穗长在6≤x <6.5这一组的是:6.3,6.4,6.3,6.3,6.2,6.2,6.0,6.2,6.4,则样本中位数为( )A.6.2B.6.15C.6.1D.6.35【答案】C【解析】解:因为50个数据的中位数是第25,26两个数的平均数,所以样本中位数为6.0 6.22=6.1.故选:C.【点睛】本题考查了频数分布直方图,中位数的定义,熟练掌握中位数的定义是解题的关键.。

天津初三数学计算练习题

天津初三数学计算练习题

天津初三数学计算练习题1. 计算下列各式的值:(a) $3\times4-5+2$(b) $4^2-3\times2$(c) $12\div(3+1)$2. 求下列各题的答案(结果保留两位小数):(a) 某商店原价为50元的商品,现在打4.5折,折扣后的价格是多少?(b) 甲队与乙队进行篮球比赛,甲队命中了45%的投篮命中率,而乙队命中了55%的投篮命中率,甲队和乙队各投篮10次,甲队投中的篮球数目比乙队多多少个?(c) 某车行的一辆新车标价为25万元,但可以享受4%的优惠,优惠后的价格是多少万元?3. 解下列方程:(a) $2x-6=10$(b) $\frac{x}{4}-5=3$(c) $3(2x+5)=15$4. 计算下列各题的百分比(结果保留两位小数):(a) $\frac{8}{25}$的百分数是多少?(b) $\frac{27}{50}$换算成百分比是多少?(c) $\frac{3}{4}$换算成百分比是多少?5. 求下列各题的平均数:(a) 4, 8, 12, 16, 20的平均数是多少?(b) 86, 72, 91, 68, 79的平均数是多少?6. 解下列各题的倍数关系:(a) 4是12的几倍?(b) 32是8的几倍?(c) 15的一半是多少?7. 列出下列各题的前20个正整数倍数:(a) 3的倍数(b) 5的倍数(c) 7的倍数8. 某农场的一片草地上有牛和羊,总共有36只脚,其中有13个头,问这片草地上有几只牛和几只羊?9. 某数被3除余2,被5除余3,被9除余5,这个数是多少?10. 有三个连续整数,它们的和是36,求这三个整数。

以上是天津初三数学计算练习题,请按照题目要求进行求解。

祝你顺利!。

中考数学复习《整式的乘法与因式分解》专项练习题--附带有答案

中考数学复习《整式的乘法与因式分解》专项练习题--附带有答案

中考数学复习《整式的乘法与因式分解》专项练习题--附带有答案一、选择题1.下列计算正确的是()A.(3a)2=6a2B.(a2)3=a5C.a6÷a2=a3D.a2⋅a=a32.若8x=21,2y=3,则23x−y的值是()A.7 B.18 C.24 D.633.计算(−2ab)(ab−3a2−1)的结果是()A.−2a2b2+6a3b B.−2a2b2−6a3b−2abC.−2a2b2+6a3b+2ab D.−2a2b2+6a3b−14.若(x−1)(x+4)=x2+ax+b,则a、b的值分别为().A.a=5,b=4 B.a=3,b=−4 C.a=3,b=4 D.a=55.下列变形中正确的是()A.(x+y)(−x−y)=x2−y2B.x2−4x−4=(x−2)2C.x4−25=(x2+5)(x2−5)D.(−2x+3y)2=4x2+12xy+9y26.下列分解因式正确的是()A.x2+2xy−y2=(x−y)2B.3ax2−6ax=3(ax2−2ax)C.m3−m=m(m−1)(m+1)D.a2−4=(a−2)27.图(1)是一个长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,小长方形的长为a,宽为b(a>b),然后按图(2)拼成一个正方形,通过计算,用拼接前后两个图形中阴影部分的面积可以验证的等式是()A.a2b2=(ab)2B.(a+b)2=(a−b)2+4abC.(a+b)2=a2+b2+2ab D.a2−b2=(a+b)(a−b)8.若x−y=−3,xy=5则代数式2x3y−4x2y2+2xy3的值为()A.90 B.45 C.-15 D.-30二、填空题9.若27×3x=39,则x的值等于10.计算:(√3−√2)(√3+√2)=.11.在实数范围内分解因式2x2+3x−1=.12.要使(y2−ky+2y)⋅(−y)的展开式中不含y2项,则k的值是.13.已知4y2−my+9是完全平方式,则m的值为.三、解答题14.计算:(2a−1)(a+2)−6a3b÷3ab.15.把下列多项式分解因式:(1)a4−8a2b2+16b4(2)x2(y2−1)+2x(y2−1)+(y2−1)16.已知a+b=5,ab=−6,求:(1)a2b+ab2的值;(2)a2+b2的值;(3)a-b的值.17.下面是某同学对多项式(x2−4x+2)(x2−4x+6)+4进行因式分解的过程解:设x2−4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2−4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的____(填序号).A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?.(填“是”或“否”)如果否,直接写出最后的结果.(3)请你模仿以上方法尝试对多项式(x2−2x)(x2−2x+2)+1进行因式分解.18.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2中所表示的数学等式;(2)根据整式乘法的运算法则,通过计算验证上述等式;(3)若a+b+c=10,ab+ac+bc=35利用得到的结论,求a2+b2+c2的值.参考答案1.D2.A3.C4.B5.C6.C7.B8.A9.610.111.2(x −−3+√174)(x −−3−√174)12.213.±1214.解:原式=2a 2+4a −a −2−2a 2=3a −2.15.(1)解:a 4−8a 2b 2+16b 4=(a 2−4b 2)2=(a +2b)2(a −2b)2(2)解:x 2(y 2−1)+2x(y 2−1)+(y 2−1)=(x 2+2x +1)(y 2−1)=(x +1)2(y +1)(y −1)16.(1)解:∵a +b =5,ab =−6∴a 2b +ab 2=ab(a +b)=−30(2)解: a 2+b 2=(a +b)2−2ab=25+12=37(3)解: (a −b)2=a 2+b 2−2ab=37+12=49故a−b=±7 .17.(1)C(2)否;(x−2)4(3)解:设x2−2x+1=y原式=(y−1)(y+1)+1=y2−1+1=y2=(x2−2x+1)2=[(x−1)2]2=(x−1)4.18.(1)解:∵边长为(a+b+c)的正方形的面积为:(a+b+c)2,分部分来看的面积为a2+b2+c2+2ab+ 2bc+2ac∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)解:∵(a+b+c)2=(a+b+c)(a+b+c)=a2+ab+ac+ab+b2+bc+ac+bc+c2=a2+b2+c2+2ab+2bc+2ac∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(3)解:∵a+b+c=10∴a2+b2+c2=(a+b+c)2−2ab−2bc−2ac=102−2×35=30∴a2+b2+c2的值为30.。

福建中考数学计算题

福建中考数学计算题

福建中考数学计算题
某数的平方根是5,求该数的立方根。

一条直角梯形的上底长为8cm,下底长为12cm,高为10cm,求其面积。

已知一个等差数列的首项为3,公差为4,求该数列的前10项的和。

一辆汽车以每小时60公里的速度行驶,行驶了4小时后,又以每小时80公里的速度行驶2小时,求这段行程的平均速度。

一个正方形的面积是36平方厘米,求其对角线的长度。

一根长为12cm的铁丝,弯成一个正方形和一个圆形,正方形的边长是圆的直径,求圆的面积。

一辆火车以每小时80公里的速度行驶,行驶了2小时后,又以每小时100公里的速度行驶3小时,求这段行程的平均速度。

一个等差数列的首项为2,公差为3,求该数列的第10项。

一块长方形的面积是48平方米,长比宽多2,求长和宽的值。

一辆汽车以每小时100公里的速度行驶,行驶了3小时后,又以每小时80公里的速度行驶2小时,求这段行程的平均速度。

数与式的计算100题(真题专练)备战2023年中考数学考点微专题

数与式的计算100题(真题专练)备战2023年中考数学考点微专题

考向1.9 数与式的计算100题(真题专练)1.(2019·四川遂宁·中考真题)计算:201920(1)(2)(3.14)4cos30|212|π-︒-+-+--+- 2.(2019·四川乐山·中考真题)如图,点A 、B 在数轴上,它们对应的数分别为2-,1xx +,且点A 、B 到原点的距离相等.求x 的值.3.(2021·湖南张家界·中考真题)计算:2021(1)222cos608-+-︒4.(2021·广东深圳·中考真题)先化简再求值:2169123x x x x ++⎛⎫+÷ ⎪++⎝⎭,其中1x =-. 5.(2021·湖南湘潭·中考真题)计算:011|2|(2)()4tan 453π----+-︒6.(2021·内蒙古呼伦贝尔·中考真题)计算:2122sin 60133---︒+7.(2021·广西柳州·中考真题)计算:391-8.(2021·黑龙江大庆·()2222sin 451+︒-- 9.(2021·上海·中考真题)计算: 1129|1228-+- 10.(2021·青海西宁·中考真题)计算: 121(2)|3|2-⎛⎫-+-- ⎪⎝⎭.11.(2020·新疆·中考真题)计算:()()2012π34-++-12.(2020·青海·中考真题)计算:10311345( 3.14)273π-⎛⎫+︒+- ⎪⎝⎭13.(2020·甘肃天水·中考真题)(1)计算:114sin 6032|2020124-︒⎛⎫-+ ⎪⎝⎭.(2)先化简,再求值:21111211a a a a a a ---÷-+++,其中3a = 14.(2020·北京·中考真题)计算:11()18|2|6sin 453---︒15.(2020·山东菏泽·中考真题)计算:20201202012|63|2345(2)2-⎛⎫++︒--⋅ ⎪⎝⎭.16.(2020·四川乐山·中考真题)计算:022cos60(2020)π--︒+-.17.(2020·浙江·﹣1|.18.(2020·浙江嘉兴·中考真题)(1)计算:(2020)0﹣3|; (2)化简:(a +2)(a ﹣2)﹣a (a +1).19.(2020·浙江台州·中考真题)计算:3-20.(2019·山东东营·中考真题)(1)计算:()101 3.142019π-⎛⎫+- ⎪⎝⎭2sin 4512+-;(2)化简求值:22222a b a ab b a b a ab a ⎛⎫++-÷⎪--⎝⎭,当1a =-时,请你选择一个适当的数作为b 的值,代入求值.21.(2021·甘肃兰州·中考真题)先化简,再求值:22611931m m m m m --÷--+-,其中4m =.22.(2021·河南·中考真题)(1)计算:013(3--; (2)化简:21221x x x -⎫⎛-÷⎪⎝⎭. 23.(2021·湖北鄂州·中考真题)先化简,再求值:2293411x x x x x x -+÷+--,其中2x =.24.(2021·广西玉林·()()01416sin30π--+--°.25.(2021·广西玉林·中考真题)先化简再求值:()2112a a a a -⎛⎫-+÷ ⎪⎝⎭,其中a 使反比例函数ay x=的图象分别位于第二、四象限. 26.(2021·北京·中考真题)已知22210a b +-=,求代数式()()22-++a b b a b 的值.27.(2021·北京·中考真题)计算:02sin60(5π--.28.(2021·江苏宿迁·中考真题)计算:()0π1-4sin45°29.(2021·湖北荆州·中考真题)先化简,再求值:2221211a a a a a ++⎛⎫÷+ ⎪--⎝⎭,其中a =30.(2021·浙江衢州·中考真题)先化简,再求值:2933x x x +--,其中1x =.31.(2021·浙江衢州·01()|3|2cos602--+︒.32.(2021·湖北随州·中考真题)先化简,再求值:2141122x x x -⎛⎫+÷⎪++⎝⎭,其中1x =. 33.(2021·山东菏泽·中考真题)先化简,再求值:22221244m n n m m n m mn n--+÷--+,其中m ,n满足32m n =-. 34.(2021·湖北十堰·中考真题)化简:22214244a a a a a a a a +--⎛⎫-÷⎪--+⎝⎭.35.(2021·湖北十堰·1133-⎛⎫︒+-- ⎪⎝⎭.36.(2021·湖南常德·中考真题)化简:2593111aa a a a a ++⎛⎫+÷⎪---⎝⎭37.(2021·湖南常德·中考真题)计算:012021345-+︒.38.(2021·湖南郴州·中考真题)先化简,再求值:2213111a a a a a a --⎛⎫-÷⎪+--⎝⎭,其中a =39.(2021·湖南郴州·中考真题)计算:11(2021)|2tan 602π-⎛⎫--+⋅︒ ⎪⎝⎭.40.(2021·湖南怀化·中考真题)计算:021(3)()4sin 60(1)3π--+︒--41.(2021·湖北黄冈·中考真题)计算:0|12sin 60(1)π-︒+-.42.(2021·新疆·中考真题)先化简,再求值:22414421x x x x x x ⎛⎫-+⋅⎪+++-⎝⎭,其中3x =.43.(2021·湖南长沙·中考真题)计算:(02sin 451-+°44.(2021·四川广安·中考真题)先化简:2221211a a a a a a -+⎛⎫÷- ⎪-+⎝⎭,再从-1,0,1,2中选择一个适合的数代入求值.45.(2021·四川广安·中考真题)计算:()03.1414sin 60π-︒.46.(2021·湖南邵阳·中考真题)先化简,再从1-,0,1,21中选择一个合适的x 的值代入求值.2211121x x x x x -⎛⎫-÷ ⎪+++⎝⎭.47.(2021·四川眉山·中考真题)计算:(1143tan 602-⎛⎫-︒-- ⎪⎝⎭48.(2021·江苏苏州·中考真题)先化简再求值:21111x x x-⎛⎫+⋅⎪-⎝⎭,其中1x =.49.(2021·江苏苏州·223--.50.(2021·江苏扬州·中考真题)计算或化简:(1)013|tan603⎛⎫-++︒ ⎪⎝⎭; (2)()11a b a b ⎛⎫+÷+ ⎪⎝⎭.51.(2021·湖南邵阳·中考真题)计算:()020212tan 60π--︒.52.(2021·甘肃武威·中考真题)先化简,再求值:2224(2)244x x x x x --÷--+,其中4x =. 53.(2021·甘肃武威·中考真题)计算:011(2021)()2cos 452π--+-︒.54.(2021·云南·中考真题)计算:201tan 452(3)1)2(6)23-︒-++-+⨯-. 55.(2021·浙江金华·中考真题)已知16x =,求()()()2311313x x x -++-的值.56.(2021·浙江金华·中考真题)计算:()202114sin 45+2-︒-.57.(2021·浙江温州·中考真题)(1)计算:()0438⨯-+-.(2)化简:()()215282a a a -++.58.(2021·四川南充·中考真题)先化简,再求值:2(21)(21)(23)x x x +---,其中1x =-. 59.(2021·四川凉山·中考真题)已知112,1x y x y-=-=,求22x y xy -的值.60.(2021·四川泸州·中考真题)计算:120211423cos304.61.(2021·重庆·中考真题)计算:(1)2(23)()a a b a b ++-;(2)22293211x x x x x x ⎛⎫--÷+ ⎪+++⎝⎭.62.(2021·四川自贡·0|7|(2-+.63.(2021·浙江丽水·中考真题)计算:0|2021|(3)-+-64.(2020·广西贺州·中考真题)计算:()24π345+-︒--+︒.65.(2020·福建·中考真题)先化简,再求值:211(1)22x x x --÷++,其中1x =.66.(2020·四川广安·中考真题)计算:202011(1)12cos 45()2--+-.67.(2020·四川广安·中考真题)先化简,再求值:221(1)11x x x -÷+-,其中x=2020.68.(2020·广西柳州·中考真题)计算:11682⨯-+.69.(2020·广西·中考真题)计算:(0+(﹣2)2+|﹣12|﹣sin30°.70.(2020·贵州黔南·中考真题)(1)计算()1013tan602cos6020202-⎛⎫--︒+-︒- ⎪⎝⎭;(2)解不等式组:312324xx -⎧⎪⎨⎪+⎩.71.(2020·辽宁鞍山·中考真题)先化简,再求值:2344111x x x x x ++⎛⎫--÷⎪++⎝⎭,其中2x =. 72.(2020·内蒙古呼伦贝尔·中考真题)计算:1012cos60-(-1)2π-⎛⎫- ⎪⎝⎭.73.(2020·内蒙古呼伦贝尔·中考真题)先化简,再求值:222442342x x x x x x -+-÷+-+,其中4x =-. 74.(2020·江苏宿迁·中考真题)先化简,再求值:2x x -÷(x ﹣4x),其中x﹣2. 75.(2020·四川眉山·中考真题)先化简,再求值:229222a a a -⎛⎫-÷⎪--⎝⎭,其中3=a . 76.(2020·四川眉山·中考真题)计算:(2122sin 452-⎛⎫+-+︒ ⎪⎝⎭77.(2020·云南昆明·中考真题)计算:12021(π﹣3.14)0﹣(﹣15)-1.78.(2020·江苏南通·中考真题)计算: (1)(2m +3n )2﹣(2m +n )(2m ﹣n );(2)22⎛⎫--÷+ ⎪⎝⎭x y y xy x x x 79.(2021·福建·1133-⎛⎫- ⎪⎝⎭.80.(2021·四川达州·中考真题)计算:()02120212sin 601π-+-+︒-.81.(2020·江苏徐州·中考真题)计算:(1)120201(1)2|2-⎛⎫-+- ⎪⎝⎭;(2)2121122a a a a -+⎛⎫-÷⎪-⎝⎭82.(2020·湖南邵阳·中考真题)已知:|1|0m -=, (1)求m ,n 的值;(2)先化简,再求值:22(3)(2)4m m n m n n -++-.83.(2020·湖南怀化·222cos 45|2-︒-+ 84.(2020·湖南张家界·中考真题)阅读下面的材料:对于实数,a b ,我们定义符号min{,}a b 的意义为:当a b <时,min{,}a b a =;当a b 时,min{,}a b b =,如:min{4,2}2,min{5,5}5-=-=.根据上面的材料回答下列问题: (1)min{1,3}-=______;(2)当2322min ,233x x x -++⎧⎫=⎨⎬⎩⎭时,求x 的取值范围. 85.(2020·四川自贡·中考真题)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”;数形结合是解决数学问题的重要思想方法.例如,代数式2x -的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为()+=--x 1x 1,所以1x +的几何意义就是数轴上x 所对应的点与1-所对应的点之间的距离. ⑴. 发现问题:代数式12x x ++-的最小值是多少?⑵. 探究问题:如图,点,,A B P 分别表示的是-1,2,x ,3AB =.∵12x x ++-的几何意义是线段PA 与PB 的长度之和∴当点P 在线段AB 上时,+=PA PB 3;当点点P 在点A 的左侧或点B 的右侧时 +>PA PB 3 ∴12x x ++-的最小值是3. ⑶.解决问题:①.-++x 4x 2的最小值是 ;②.利用上述思想方法解不等式:314x x ++->③.当a 为何值时,代数式++-x a x 3的最小值是2.86.(2021·四川内江·中考真题)计算:0216sin 45|128(2021)()2π-︒----. 87.(2021·青海西宁·中考真题)计算:2(53)(53)(31)-.88.(2021·辽宁盘锦·中考真题)先化简,再求值:2233816164x x xx x x x --÷--+--,其中24x =89.(2021·青海·中考真题)先化简,再求值:2121a a a a a -+⎛⎫-÷ ⎪⎝⎭,其中21a =.90.(2021·江苏南京·中考真题)计算222ab a b b ab a b a ab ab-⎛⎫-+÷⎪+++⎝⎭. 91.(2021·四川成都·中考真题)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中33=a .92.(2021·四川资阳·中考真题)先化简,再求值:222211111x x x x x x ⎛⎫++-÷ ⎪---⎝⎭,其中30x -=. 93.(2021·重庆·中考真题)计算(1)()()22x y x x y -++; (2)2241244a a a a a -⎛⎫-÷ ⎪+++⎝⎭. 94.(2021·浙江嘉兴·中考真题)(1)计算:12sin 30-︒; (2)化简并求值:11a a -+,其中12a =-. 95.(2021·四川遂宁·中考真题)先化简,再求值:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数. 96.(2021·四川泸州·中考真题)化简:141()22a a a a a --+÷++.97.(2021·山东枣庄·中考真题)先化简,再求值:21(1)11x x x ÷+--,其中1x =.98.(2020·广西贵港·中考真题)(1()0236cos30π+-︒; (2)先化简再求值:221239m m m ÷--,其中5m =-.99.(2020·内蒙古赤峰·中考真题)先化简,再求值:221121m m m m m m ---÷++,其中m 满足:210m m --=.100.(2021·重庆·中考真题)如果一个自然数M 的个位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为10,则称数M 为“合和数”,并把数M 分解成M A B =⨯的过程,称为“合分解”.例如6092129=⨯,21和29的十位数字相同,个位数字之和为10, 609∴是“合和数”.又如2341813=⨯,18和13的十位数相同,但个位数字之和不等于10, 234∴不是“合和数”.(1)判断168,621是否是“合和数”?并说明理由;(2)把一个四位“合和数”M 进行“合分解”,即M A B =⨯.A 的各个数位数字之和与B 的各个数位数字之和的和记为()P M ;A 的各个数位数字之和与B 的各个数位数字之和的差的绝对值记为()Q M .令()()()P M G M Q M =,当()G M 能被4整除时,求出所有满足条件的M .1.74-【分析】先根据整数指数幂、负指数幂、零指数幂、三角函数和绝对值进行化简,再进行加减运算.解:原式131142324=-++-+ 111232324=-++- 74=-.【点拨】本题考查指数幂、三角函数和绝对值,解题的关键是掌握指数幂、三角函数和绝对值.2.2x =-【分析】根据点A 、B 到原点的距离相等可知点A 、B 表示的数值互为相反数,即21xx =+,解分式方程即可.解:∵点A 、B 到原点的距离相等 ∴A 、B 表示的数值互为相反数 即21xx =+,去分母,得2(1)x x =+, 去括号,得22x x =+, 解得2x =-经检验,2x =-是原方程的解.【点拨】本题考查了相反数,绝对值的定义,解分式方程,解本题的关键是读懂题意,根据题中点A 、B 到原点的距离相等可知点A 、B 表示的数值互为相反数3【分析】先运用乘方、绝对值、特殊角的三角函数值以及平方根的性质化简,然后计算即可.解:2021(1)22cos60-+︒+11222=-+⨯+=【点拨】本题主要考查了乘方、绝对值、特殊角的三角函数值、平方根的性质等知识点,灵活运用相关知识成为解答本题的关键.4.12x +;1 【分析】先把分式化简后,再把x 的值代入求出分式的值即可. 解:原式212331122(3)232x x x x x x x x x +++⎛⎫=+⋅=⋅= ⎪++++++⎝⎭ 当1x =-时,原式1112==-+. 【点拨】本题考查了分式的化简求值,熟练分解因式是解题的关键. 5.0【分析】根据绝对值的性质、零指数幂、负整指数幂的性质及45°角的正切值计算解题即可.解:011|2|(2)()4tan 453π----+-︒21341=-+-⨯0=.【点拨】本题考查实数的混合运算,涉及绝对值、零指数幂、负整指数幂、正切等知识,是基础考点,难度较易,掌握相关知识是解题关键.6. 【分析】分别进行负整数指数幂运算、特殊角的三角函数值运算、绝对值运算、二次根式运算即可解答解:222sin 601---︒+=1214--=54-=. 【点拨】本题考查负整数指数幂、特殊角的三角函数值、绝对值、二次根式,熟记特殊角的三角函数值,掌握运算法则是解答的关键.7.1【分析】根据绝对值的定义及算术平方根的定义即可解决. 解:原式331=-+1=【点拨】本题考查了绝对值的定义、算术平方根的定义及实数的运算,关键是掌握绝对值和算术平方根的定义.8.1【分析】直接利用去绝对值符号、特殊角度的三角函数值、负整数的平方运算计算出结果即可.()222sin 451+︒--221= 1=故答案是:1.【点拨】本题考查了去绝对值符号、特殊角度的三角函数值、负整数的平方运算法则,解题的关键是:掌握相关的运算法则.9.2【分析】根据分指数运算法则,绝对值化简,负整指数运算法则,化最简二次根式,合并同类二次根式以及同类项即可.解:1129|12-+-,(112-⨯=31 =2.【点拨】本题考查实数混合运算,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项,掌握实数混合运算法则与运算顺序,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项是解题关键.10.3【分析】由乘方、负整数指数幂、绝对值的意义进行化简,即可得到答案.解:原式423=+-3=.【点拨】本题考查了乘方、负整数指数幂、绝对值的意义,解题的关键是掌握运算法则,正确的进行化简.11【分析】按照绝对值的性质、乘方、零指数幂、二次根式的运算法则计算.解:原式112=-=【点拨】本题考查绝对值的性质、乘方、零指数幂、二次根式的运算法则,比较基础.12【分析】根据负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值进行计算即可解:101145( 3.14)3π-⎛⎫+︒+- ⎪⎝⎭3|11|13=++-3113=+-=【点拨】本题考查了负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值,熟知以上计算是解题的关键.13.(13;(2)221a -,1. 【分析】(1)先代入三角函数值、去绝对值符号、计算零指数幂、化简二次根式、计算负整数指数幂,再计算乘法、去括号,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得.解:(1)原式4(214=-+-,214=-,3;(2)原式21111(1)1a a a a a -+=-⨯-+-, 1111a a =--+, 11(1)(1)a a a a +-+=-+, 221a =-,当a ==()222213121===--. 【点拨】本题主要考查实数的混合运算与分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.14.5【分析】分别计算负整数指数幂,算术平方根,绝对值,锐角三角函数,再合并即可得到答案.解:原式=3262+-⨯32=+-5.= 【点拨】本题考查的是负整数指数幂,算术平方根,绝对值,锐角三角函数,以及合并同类二次根式,掌握以上的知识是解题的关键.15.52【分析】根据负整数指数幂,绝对值,特殊角的三角函数值,积的乘方公式的逆向应用进行计算即可.解:202012020123|45(2)2-⎛⎫++︒--⋅ ⎪⎝⎭202011(3(2)22=++-⨯ 1312=+ 52=. 【点拨】本题考查了负整数指数幂,绝对值,特殊角的三角函数值,积的乘方公式的逆向应用,熟知以上运算是解题的关键.16.2【分析】根据绝对值,特殊三角函数值,零指数幂对原式进行化简计算即可.解:原式=12212-⨯+ =2.【点拨】本题考查了绝对值,特殊三角函数值,零指数幂,掌握运算法则是解题关键.17. 1【分析】根据算术平方根定义和绝对值的性质计算,再合并同类二次根式即可.解:原式1.【点拨】本题考查了算术平方根和绝对值以及同类二次根式的合并,解题的关键是正确理解定义.18.(1)2;(2)﹣4﹣a【分析】(1)直接利用零指数幂的性质和二次根式的性质、绝对值的性质分别化简得出答案;(2)直接利用平方差公式以及单项式乘以多项式计算得出答案.解:(1)(2020)0﹣3|=1﹣2+3=2;(2)(a +2)(a ﹣2)﹣a (a +1)=a 2﹣4﹣a 2﹣a=﹣4﹣a .【点拨】本题主要考查了实数的运算,准确运用零指数幂、二次根式的性质和绝对值的性质是解题的关键.19.3【分析】按照绝对值的概念、平方根的概念逐个求解,然后再用二次根式加减运算即可.解:原式=3=故答案为:3.【点拨】本题考查了绝对值的概念、平方根的概念、二次根式的加减运算等,熟练掌握运算公式及法则是解决此类题的关键.20.(1)2020;(2)1【分析】(1)根据负指数幂、零指数幂、绝对值和三角函数、二次根式,即可得到答案;(2)根据分式的性质进行化简,再代入1a =-,即可得到答案.解:1()原式201912++=2020+=2020=;2()原式()()222a b a a a b a b -=-+ ()()()()2a b a b aa ab a b -+=-+ 1a b =+, 当1a =-时,取2b =,原式1112==-+. 【点拨】本题负指数幂、零指数幂、绝对值、三角函数、二次根式和分式的化简,解题的关键是掌握负指数幂、零指数幂、绝对值、三角函数、二次根式和分式的化简.21.11m -,13【分析】先将除法转化为乘法,因式分解,约分,分式的减法运算,再将字母的值代入求解即可. 解:22611931m m m m m --÷--+- 2(3)31(3)(3)11m m m m m m -+=⋅-+--- 2111m m =--- 11m =-. 当4m =时, 原式11413==-. 【点拨】本题考查了分式的化简求值,掌握因式分解是解题的关键.22.(1)1;(2)2x . 【分析】(1)实数的计算,根据实数的运算法则求解即可;(2)分式的化简,根据分式的运算法则计算求解.解:(1)013(3-- 11133=-+ 1=.(2)21221x x x -⎫⎛-÷ ⎪⎝⎭212(1)x x x x -=⨯- 2x =. 【点拨】本题考查了实数的混合运算,负指数幂,二次根式的化简,零次幂的计算,分式的化简等知识,牢记公式与定义,熟练分解因式是解题的关键.23.1x x +,32【分析】先通过约分、通分进行化简,再把给定的值代入计算即可.解:原式()()()313341x x x x x x x -=⨯++--+ 1x x+=, 当2x =时,原式32=. 【点拨】本题主要考查分式的化简求值,解题的关键是熟练掌握因式分解,正确进行约分、通分.24.1【分析】先算算术平方根,零指数幂,负整数指数幂以及特殊角三角函数值,再算加减法,即可求解.解:原式=141162+--⨯ =1【点拨】本题主要考查实数的混合运算,掌握算术平方根,零指数幂,负整数指数幂以及特殊角三角函数值,是解题的关键.25.1-【分析】由题意易得0a <,然后对分式进化简,然后再求解即可.解:∵a 使反比例函数a y x=的图象分别位于第二、四象限, ∴0a <, ∴()2112a a a a -⎛⎫-+÷ ⎪⎝⎭ =()22211a a a a a -+-⨯- =1-.【点拨】本题主要考查反比例函数的图象与性质及分式的化简求值,熟练掌握反比例函数的图象与性质及分式的运算是解题的关键.26.1【分析】先对代数式进行化简,然后再利用整体思想进行求解即可.解:()()22-++a b b a b=22222a ab b ab b -+++=222a b +,∵22210a b +-=,∴2221a b +=,代入原式得:原式=1.【点拨】本题主要考查整式的乘法运算及完全平方公式,熟练掌握利用整体思想进行整式的化简求值是解题的关键.27.4【分析】根据特殊三角函数值、零次幂及二次根式的运算可直接进行求解.解:原式=2514-=. 【点拨】本题主要考查特殊三角函数值、零次幂及二次根式的运算,熟练掌握特殊三角函数值、零次幂及二次根式的运算是解题的关键.28.1【分析】结合实数的运算法则即可求解.解:原式=1411+=+. 【点拨】本题考察非0底数的0次幂等于1、二次根式的化简、特殊三角函数值等知识点,属于基础题型,难度不大.解题的关键是掌握实数的运算法则.29.1a a +【分析】先计算括号内的加法,然后化除法为乘法进行化简,继而把a =即可.解:原式=()()21111a a a a a ++⎛⎫÷ ⎪--⎝⎭()()211=1+1a a a a a +-⎛⎫ ⎪-⎝⎭1=a a +当a =【点拨】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.30.3x +;4【分析】先将这两个分式转化为同分母的分式,再将分母不变,分子相加减,最后化简即可. 解:原式29(3)(3)333x x x x x x +-=-=--- 3x =+当1x =时,原式4=.【点拨】本题考查了分式的化简求值问题,涉及到了分式的通分和约分,解决本题的关键是牢记相关概念与法则,并灵活运用,最后的结果记得化简即可.31.2.【分析】由特殊的三角函数值得到1cos602︒=,由零指数幂公式算出01()=12,,最后算出结果即可. 解:原式13+1322 2=【点拨】本题考查了实数的混合运算,关键注意零指数幂的运算和特殊的三角函数值.32.22x -,-2 【分析】(1)先把括号里通分合并,括号外的式子进行因式分解,再约分,将x=1代入计算即可.解:原式()()()21221222x x x x x x ++=⋅=++-- 当1x =时,原式2212==-- 【点拨】本题考查了分式的化简求值,用到的知识是约分、分式的加减,熟练掌握法则是解题的关键.33.3n m n+;-6. 【分析】先变除法为乘法,后因式分解,化简计算,后变形32n m =-代入求值即可 解:∵22221244m n n m m n m mn n --+÷--+=2(2)12()()m n m n m n n m n m --+⨯--+ =21m n n m --+ =3n m n+, ∵32m n =-, ∴32n m =-, ∴原式=332nn n -+= -6. 【点拨】本题考查了分式的化简求值,熟练掌握分式混合运算的基本顺序,基本计算方法是解题的关键.34.21(2)a - 【分析】先算分式的减法,再把除法化为乘法运算,进行约分,即可求解.解:原式=221(2)(2)4a a a a a a a ⎛⎫+--⋅ ⎪---⎝⎭=()()()22221(2)(2)4a a a a a a a a a a +--⎛⎫-⋅ ⎪---⎝⎭=2224(2)4a a a a a a a --+⋅-- =24(2)4a a a a a -⋅-- =21(2)a - 【点拨】本题主要考查分式的化简,掌握分式的通分和约分,是解题的关键. 35.1【分析】利用特殊角的三角函数值、负整数指数幂、绝对值的性质逐项计算,即可求解.解:原式33=- 1=.【点拨】本题考查实数的运算,掌握特殊角的三角函数值、负整数指数幂、绝对值的性质是解题的关键.36.31a a ++【分析】直接将括号里面的分式,通分运算进而结合分式的混合运算法则,计算得出答案. 解:2593111a a a a a a ++⎛⎫+÷ ⎪---⎝⎭ 222591=113a a a a a a a ++-⨯--+(+) 2691=(1)(1)3a a a a a a ++-⨯+-+ 2(3)1=(1)(1)3a a a a a +-⨯+-+ 31a a +=+ 故答案为:31a a ++. 【点拨】本题考查了分式的化简,分式的通分,因式分解,平方差公式,完全平方公式,分式的混合运算,熟练运用公式和分式的计算法则是解题关键.37.1.【分析】直接利用零次幂的运算法则,负次幂的运算法则、二次根式及特殊角的三角函数值进行计算即可.解:012021345-+︒3132=+ 111=+-1=故答案是:1.【点拨】本题考查了零次幂的运算法则,负次幂的运算法则、二次根式及特殊角的三角函数值,解题的关键是:熟练掌握相关运算法则.38 【分析】先算分式的减法运算,再把除法化为乘法,进行约分化简,最后代入求值,即可.解:原式=2213111a a a a a a --⎛⎫-÷ ⎪+--⎝⎭=131(1)(1)(1)1a a a a a a a ⎛⎫----⋅ ⎪++-⎝⎭=()()2131(1)(1)(1)(1)1a a a aa a a a a a⎛⎫----⋅⎪⎪+-+-⎝⎭=()()2131(1)(1)1a a a aa a a----⋅+-=222131(1)(1)1a a a a aa a a-+-+-⋅+-=11(1)(1)1a aa a a+-⋅+-=1a,原式.【点拨】本题主要考查分式的化简求值,熟练掌握分式的通分和约分,是解题的关键.39.3【分析】先算零指数幂,绝对值,负整数指数幂以及锐角三角函数,再算加减法,即可求解.解:原式=12+-=3.【点拨】本题主要考查实数的混合运算,熟练掌握零指数幂,绝对值,负整数指数幂以及锐角三角函数,是解题的关键.40.11【分析】根据非零实数0二次根式、负整数次幂、特殊角三角函数值根据实数加减混合运算法则计算即可.解:原式=191=11-+.【点拨】本题主要考查非零实数0次幂、二次根式、负整数次幂、特殊角三角函数值根据实数加减混合运算法则,正确掌握每个知识点是解决本题的关键.41.0.【分析】先化简绝对值、计算特殊角的正弦值、零指数幂,再计算实数的混合运算即可得.解:原式121-=,==.【点拨】本题考查了化简绝对值、特殊角的正弦值、零指数幂等知识点,熟练掌握各运算法则是解题关键.42.22x ;25【分析】根据分式混合运算的法则进行化简计算,然后代入条件求值即可.解:原式()()()2221212x x x x x x ⎡⎤+-=+⎢⎥+-+⎢⎥⎣⎦ 21221x x x x x -⎛⎫=+ ⎪++-⎝⎭ 22121x x x -=+- ()21121x x x -=+- 22x =+ 将3x =代入得:原式22325==+. 【点拨】本题考查分式的化简求值问题,掌握分式混合运算法则是解题关键. 43.5.【分析】先化简绝对值、特殊角的正弦值、零指数幂、二次根式的乘法,再计算实数的混合运算即可得.解:原式21=++14=+, 5=. 【点拨】本题考查了化简绝对值、特殊角的正弦值、零指数幂、二次根式的乘法等知识点,熟练掌握各运算法则是解题关键.44.1a ,12【分析】先根据分式的混合运算法则化简,再取使得分式有意义的a 的值代入计算即可.解:2221211a a a a a a -+⎛⎫÷- ⎪-+⎝⎭ =()()()()21112111a a a a a a a a -+⎡⎤÷-+-⎢+⎣+⎥⎦ =()()()()211111a a a a a a +-+⨯-- =1a由原式可知,a 不能取1,0,-1,∴a =2时,原式=12.【点拨】此题考查了分式的化简求值,解题的关键是记住分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.45.0【分析】分别化简各数,再作加减法.解:()03.1414sin 60π-+︒=114-+=11-+=0【点拨】本题考查了实数的混合运算,特殊角的三角函数值,解题的关键是掌握运算法则.46.1;11x --(答案不唯一) 【分析】小括号先通分合并,再将除法变乘法并因式分解即可约分化简,再结合分式有意义的条件和除数不为0,即可代值计算. 解:原式()()()()()()2211111=1111111x x x x x x x x x x x +++-⨯=⨯=++-++-- 代数式有意义,分母和除数不为0∴()()110x x +-≠即1x ≠±∴当0x =时,原式=111101x ==---(答案不唯一). 【点拨】本题考察分式的化简求值、分式有意义的条件、因式分解和分母有理化,属于基础题,难度不大.解题的关键是掌握分式的运算法则和分式有意义的条件.47.3【分析】依次计算“0次方”、tan 60︒等,再进行合并同类项即可.解:原式=()132123--+=-+=【点拨】本题综合考查了非零数的零次幂、特殊角的三角函数、负整数指数幂以及二次根式的化简等内容,解决本题的关键是牢记相关计算公式等,本题易错点为对112-⎛⎫-- ⎪⎝⎭的化简,该项出现的“ -”较多,因此符号易出错,因此要注意.48.1x +【分析】先算分式的加法,再算乘法运算,最后代入求值,即可求解. 解:原式()()111111x x x x x x+--+=⋅=+-.当1x =时,原式【点拨】本题主要考查分式的化简求值,熟练掌握分式的通分和约分,是解题的关键.49.-5【分析】分别化简算术平方根、绝对值和有理数的乘方,然后再进行加减运算即可得到答案.223--229=+-5=-.【点拨】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键. 50.(1)4;(2)ab【分析】(1)分别化简各数,再作加减法;(2)先通分,计算加法,再将除法转化为乘法,最后约分计算.解:(1)013|tan603⎛⎫-++︒ ⎪⎝⎭=13+=4;(2)()11a b a b ⎛⎫+÷+ ⎪⎝⎭ =()a b a b ab ++÷=()ab a b a b+⨯+ =ab 【点拨】本题考查了实数的混合运算,特殊角的三角函数值,零指数幂,分式的混合运算,解题的关键是熟练掌握运算法则.51.﹣1.【分析】根据零指数幂运算法则、绝对值符号化简、特殊角的三角函数值代入计算,然后根据同类二次根式合并求解即可.解:()020212tan 60π--︒=(12-=12-+=﹣1.【点拨】本题主要考查了实数的综合运算能力,是中考题中常见的计算题型.熟练掌握零指数幂、特殊角的三角函数值、绝对值化简方法,同类二次根式是解题关键.52.42,23x --+ 【分析】小括号内先通分计算,将除法变成乘法并因式分解,根据乘法法则即可化简,再代值计算即可. 解:原式2242(2)()22(2)(2)x x x x x x x --=-⨯--+- 4222x x x --=⨯-+ 42x =-+ 当4x =时,原式42423=-=-+. 【点拨】本题考察分式的化简求值,难度不大,属于基础题型.解题的关键在于熟悉运算法则和因式分解.53.3【分析】先进行零指数幂和负整数指数幂,余弦函数值计算,再计算二次根式的乘法,合并同类项即可. 解:011(2021)()2cos 452π--+-︒,122=+-3=【点拨】本题主要考查零指数幂和负整数指数幂,特殊角三角函数值,掌握零指数幂和负整数指数幂的运算法则,特殊角锐角三角函数值是解题的关键.54.6【分析】原式分别利用乘方,特殊角的三角函数值,零指数幂,负整数指数幂,乘法法则分别计算,再作加减法.解:201tan 452(3)1)2(6)23-︒-++-+⨯- =1191422++-- =6【点拨】此题考查了实数的混合运算,熟练掌握运算法则是解本题的关键.55.1【分析】直接利用完全平方差公式展开及平方差公式展开后,合并同类项化简,再将16x =代入进去计算. 解:原式229611962x x x x =-++-=-+ 当16x =时,原式16216=-⨯+=. 故答案是:1.【点拨】本题考查了代数式的化简求值,解题的关键是:先利用完全平方差公式,平方差公式,合并同类项运算法则化简,然后代值计算.56.1【分析】利用乘方的意义,二次根式的化简,特殊角的函数值,绝对值的化简,化简后合并计算即可解:原式142=-+12=-+ 1=.【点拨】本题考查了二次根式的化简,特殊角的三角函数值,绝对值的化简等知识,熟练运用各自的运算法则化简是解题的关键.57.(1)-6;(2)22625a a -+.【分析】(1)直接利用有理数乘法法则以及绝对值的性质、二次根式的性质、零指数幂的性质分别化简得出答案;(2解:(1)()0438⨯-+- 12831=-+-+6=-;(2)()()215282a a a -++ 2210254a a a a =-+++22625a a =-+.【点拨】此题主要考查了实数运算、整式的混合运算,正确掌握相关运算法则是解题关键.58.1210x -,-22【分析】利用平方差公式和完全平方公式,进行化简,再代入求值,即可求解. 解:原式=2241(4129)x x x ---+=22414129x x x --+-=1210x -,当x =-1时,原式=()12110⨯--=-22.【点拨】本题主要考查整式的化简求值,熟练掌握完全平方公式和平方差公式,是解题的关键.59.-4【分析】根据已知求出xy =-2,再将所求式子变形为()xy x y -,代入计算即可. 解:∵2x y -=, ∴1121y x x y xy xy---===, ∴2xy =-,∴()()22224xy x x y xy y ==---⨯=-.【点拨】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.60.12.【分析】根据零指数幂,负整指数幂,去括号法则,特殊角的三角函数值化简,然后再计算即可.解:0120211423cos3043144232144312=.【点拨】本题考查了零指数幂,负整指数幂,去括号法则,特殊角的三角函数值等知识点,熟悉相关知识点是解题的关键61.(1)223++a ab b ;(2)-31x x + 【分析】(1)根据单项式乘以多项式以及完全平方公式计算即可;(2)利用分式的混合运算法则进行计算即可.解:(1)2(23)()a a b a b ++-2222+3+2+=a ab a ab b -22=3++a ab b(2)22293211x x x x x x ⎛⎫--÷+ ⎪+++⎝⎭()()()222+3-3+3=11+x x x x x x x ⎛⎫-÷ ⎪++⎝⎭()()()2+3-31=31x x x x x +++ -3=1x x + 【点拨】本题考查了整式的混合运算和分式的混合运算,熟练掌握运算法则是解题的关键.62.1-【分析】利用算术平方根、绝对值的性质、零指数幂分别计算各项即可求解. 解:原式5711=-+=-.【点拨】本题考查实数的混合运算,掌握算术平方根、绝对值的性质、零指数幂是解题的关键.63.2020【分析】先计算绝对值、零指数幂和算术平方根,最后计算加减即可;解:0|2021|(3)-+-202112=+-,2020=.【点拨】本题主要考查实数的混合运算,解题的关键是掌握实数的混合运算顺序及相关运算法则.64.2.【分析】直接利用零指幂的性质、绝对值的性质、特殊角的三角函数值分别化简得出答案.解:()24π345+-︒--︒313=+-+ 3131=+-+2=.【点拨】此题主要考查了实数运算,正确化简各数是解题关键.65.11x - 【分析】先将括号内的项进行通分化简,再分式的除法法则,结合平方差公式因式分解,化简,最后代入数值解题即可.解:原式=2122(1)(1)x x x x x +-+⋅++- 1(1)(1)x x x +=+-。

初三复习计算练习题

初三复习计算练习题

初三复习计算练习题1. 某商店举行打折活动,一台原价800元的电视机打7折,另一台原价1200元的电视机打85折,小明买了这两台电视机,请计算他总共付了多少钱?解答:打7折的电视机价格为 800 * 0.7 = 560 元打85折的电视机价格为 1200 * 0.85 = 1020 元所以小明总共付了 560 + 1020 = 1580 元。

2. 某校举行了一场1500米长跑比赛,小红在比赛中以每分钟6.5米的速度跑完全程,请计算她用了多少时间完成比赛?解答:小红每分钟跑6.5米,所以跑完1500米需要的时间为1500 / 6.5 ≈ 230.77 分钟。

由于时间是以分钟为单位,所以小红用了约230.77分钟完成比赛。

3. 一桶装有12升的果汁,小明每天喝3/4升,小红每天喝8分之1升,问这桶果汁够他们喝几天?解答:小明每天喝3/4升,小红每天喝8分之1升。

他们两个一起每天喝的量为 3/4 + 8/1 = 3/4 + 32/4 = 35/4 升。

这桶果汁一共有12升,所以够他们喝的天数为12 / (35/4) ≈ 1.37 天。

由于天数是以整数为单位,所以这桶果汁够他们喝1天。

4. 小明买了2.5千克的苹果和3.8千克的橙子,苹果的单价为每千克4元,橙子的单价为每千克3.5元,请计算他花了多少钱?解答:小明买了2.5千克的苹果,单价为每千克4元,所以苹果花费的钱为 2.5 * 4 = 10 元。

小明买了3.8千克的橙子,单价为每千克3.5元,所以橙子花费的钱为 3.8 * 3.5 = 13.3 元。

所以小明总共花了 10 + 13.3 = 23.3 元。

5. 有一个3x3的正方形,每个小正方形的边长为2厘米,问这个正方形的周长和面积分别是多少?解答:正方形的周长等于四个边的长度之和,每个边长为2厘米,所以周长为 4 * 2 = 8 厘米。

正方形的面积等于边长的平方,每个边长为2厘米,所以面积为 2* 2 = 4 平方厘米。

中考数学计算题100道

中考数学计算题100道

中考数学计算题100道练习1. 解方程组:{x 3−y 2=15x +3y =82. 解下列方程组:(1){4a +b =153b −4a =13(2){2(x −y)3−x +y 4=−16(x +y)−4(2x −y)=163. 解下列方程组(1){3x +5y =112x −y =3 (2){x 2−y+13=13(x +2)=−2y +124. 解下列方程组:(1){4x −3y =11y =13−2x; (2){x 4+y 3=33x −2(y −1)=11.5. 解下列方程(组)(1) 2−x x−3+3=23−x (2){2x −y =57x −3y =206. 解下列方程:(1)1−2x−56=3−x 4;(2)1.7−2x 0.3=1−0.5+2x 0.6.7. 解下列方程12[x −12(x −1)]=23(x −1)8. 2x−112−3x−24=19.解方程:(1)5(x+8)=6(2x−7)+5(2)0.1x−0.20.02−x+10.5=310.(1)化简:(x+y)(x−y)−(2x−y)(x+3y);(2)解方程:(3x+1)(3x−1)−(3x+1)2=−8.11.解方程:(1)(x−1)2=4;(2)xx+1=2x3x+3+1.12.解方程:(1)x2=3x.(2)3x2−8x−2=0.13.x2−2(√2x−2)=2.14.解方程:(1)(x−3)(x−1)=3.(2)2x2−3x−1=0.15.解方程:(1)x2−121=0(2)2(x−1)2=33816.解方程(1)x2−2x−6=0;(2)(2x−3)2=3(2x−3).17.解方程:(1)3(x−2)2=x(x−2);(2)3x2−6x+1=0(用配方法).18. 用适当的方法解下列方程:(1)x 2−12x −4=0(2)x(3−2x)= 4 x −619. 计算:(1)|−2|+(sin36°−12)0−√4+tan45°;(2)用配方法解方程:4x 2−12x −1=0.20. 解分式方程x x−1−1=3x 2−121. 解分式方程:2x 2−4=1−x x−2.22. 解下列方程:(1)x x−1−2x−1x 2−1=1(2)2−x x −1+11−x =123.解方程(1)23+x3x−1=19x−3(2)xx2−4+2x+2=1x−224.解方程(1)x2x−5+55−2x=1(2)8x2−1+1=x+3x−125.解下列分式方程:(1)1x−2+3=1−x2−x;(2)x+1x−1−4x2−1=1.26.解方程1x−3+1=4−xx−3.27.解下列方程:(1)3x−1−1=11−x;(2)xx+1−2x2−1=1.28.解方程:5−xx−4=1−34−x.29.解方程:16x2−4−x+2x−2=−1.30.(1)计算:(√7−1)0−(−12)−2+√3tan30∘;(2)解方程:x+1x−1+41−x2=1.31.解方程:2(x+1)x−1−x−1x+1=1.32.解分式方程:(1)1x−4=1−x−34−x.(2)810.9x−661.1x=4033.解方程:(1)3x+2=43x−1(2)xx+1−2x2−1=134.解分式方程:1x +3x−3=23x−x235.(1)分解因式:3a3−27a;(2)解方程:2x =3x−2.36.解分式方程:(1)3x−2+2=x2−x.(2)2x−1=4x2−1.37.计算:(1)(a−2b)2+(a−2b)(a+2b)(2)解分式方程3x−2=3+x2−x38.解方程:x−12−x −2=3x−2.39.解答下列各题(1)解方程:x24−x2=1x+2−1.(2)先化简,再求值:a−33a2−6a ÷(a+2−5a−2),其中a2+3a−1=0.40.解方程:3x+1=x2x+2+141.(1)分解因式:(a−b)(x−y)−(b−a)(x+y)(2)分解因式:5m(2x−y)2−5mn2(3)解方程:2x+1−2x1−x2=1x−142.解方程:x2+1x2−2(x+1x)−1=0.43.解方程xx−2+6x+2=144. 解分式方程(1)3x+2=2x−3 (2)8x 2−4−x x−2=−145. 求不等式组{2x −1≤13x −3<4x 的整数解.46. 解不等式组:{3(x +1)>x −1x+92>2x47. 解不等式组{2x +3≤x +112x+53−1>2−x .48. 解不等式组:{2x −1>x +13(x −2)−x ≤449. 解下列方程:(1)解方程:x 2+4x −2=0;(2)解不等式组:{x −3(x −2)≥24x −2<5x +1.50. (1)计算:(π−2)0+√8−4×(−12)2(2)解不等式组:{3(x −2)≤4x −55x−24<1+12x51. 解不等式:1−x 2>−1.52. 解下列不等式,并把解集在数轴上表示出来:(1)5x−13−2x >3; (2)x−12−x+43>−2.53. 解不等式组{2x −1⩽x +2x−23<x 2+1,并把解在数轴上表示出来.54.解不等式组:{x+1>05−4(x−1)<155.解不等式4(x−1)+3≤2x+5,并把它的解集在数轴上表示出来.56.解不等式组{2x≥−4①12x+1<32②,并把不等式组的解集表示在数轴上.57.因式分解:(1)24ax2−6ay2;(2)(2a−b)2+8ab 58.因式分解(1)2x2−4x59. 分解因式:8ab −8b 2−2a 2 60. (1)分解因式:2x 2−18(2)解不等式组{5m −3≥2(m +3)13m +1>12m61. 因式分解:(1)16m (m −n )2+56(n −m )3;(2)(2a +3b )(a −2b )−(3a +2b )(2b −a ).62. 因式分解:(1)4a 2−9 (2)x 3−2x 2y +xy 263.分解因式:(1)6m2n−15n2m+30m2n2;(2)x(x−y)2−y(x−y).64.因式分解:(1)x(x−12)+4(3x−1).(2)m3n−4m2n+4mn65.因式分解:(x2−5)2+8(x2−5)+1666.分解因式:(1)x3−3x2−28x(2)12x2−x−2067.化简:(1)(x+y)2−(x−2y)(x+y)(2)(2x+1x2−4x+4−1x−2)÷x+3x2−4(1)√12−|−3|−3tan30∘+(−1+√2)0 (2) (x +1)(x −1)−(x −2)269. 计算:(1)√643+|√2−1|−π0+(12)−1;(2)(2x −1)2−(3x +1)(3x −1)+5x(x −1).70. (1)计算: |−3|−4cos60°+(2019−2020)0.(2)先化简,再求值:(x +2)2−x (x −2),其中x =2.71. 化简:(√3+√2)2019⋅(√3−√2)2020.72. 解下列各题:(1)计算:(x +2)2+(2x +1)(2x −1)−4x(x +1)(2)分解因式:−y 3+4xy 2−4x 2y73. 先化简,再求值:[a (a 2b 2−ab )−b (a 2−a 3b )]÷2a 2b ,其中a =−12,b =13.74. 计算:(1)(−2)2×|−3|−(√6)0 (2)(x +1)2−(x 2−x)75. 计算(1)|−1|+(3−π)0+(−2)3−(13)−2(2)(x 4)3+(x 3)4−2x 4⋅x 876. 计算:(1)(2x 2)3−x 2·x 4;(2)−22+(12)−2−2−1×(−12)0.77. 计算:①(−2020)0+√−83+tan45∘;②(a +b)(a −b)+b(b −2).78.(1)计算:x(x−9y)−(x−8y)(x−y)(2)计算:(−12a5b3+6a2b−3ab)÷(−3ab)−(−2a2b)2.)−279.计算:|√3−2|+(π−2019)0+2cos30∘−(−13)−1+|1−2cos45°|80.√2×(−1)2017−(1281.计算:cos245∘−2sin60∘−|√3−2|.)−2−(2019+π)0−|2−√5|82.计算:(−12)0;83.(1)计算:−24−√12+|1−4sin60°|+(π−23(2)解方程:2x2−4x−1=0.)−2−|√3−2|84.计算√27−3tan 30∘+(−12)−3.85.计算:√3×(−√6)+|−2√2|+(123−√(−5)2+(π−3.14)0+|1−√2|.86.计算:√273−√1+9;(2)√(−2)2+|√2−1|−(√2−1) 87.计算(1)√16+√−2788. 计算:(12)−1+(−2019)0−√9+√27389. 计算:(−2)−1−12√8−(5−π)0+4cos45∘90. 计算:(12)−1−(√2−1)0+|1−√3|+√1291. (1)计算(−12)−1+√16−(π−3.14)0−|√2−2|(2)化简:(2m m+2−m m−2)÷m m 2−4.92. 计算下列各题.(1)√4+(π−3.14)0−|−√3|+(13)−1 (2)√−83+(√3)2+√(−3)2+|1−√2|93. 计算:|1−√2|−√6×√3+(2−√2)0.94. 计算:(√12+√3)×√6−4√32÷√395. 计算:12×(√3−1)2√2−1−(√22)−1.96. 已知a =2+√3,求1−2a+a 2a−1−√a 2−2a+1a 2−a 的值.97. √(1−√3)2−√24×√122−√398. 计算:(1)√32−√8+√12×√3 (2)|√3−2|+(√3)−1−(√2−1)099. 计算:(1)2√45+3√15+√(2−√5)2; √2√6−2√3(√6−√2).100.先化简,再求值:1−a−2a ÷a 2−4a 2+a ,请从−2,−1,0,1,2中选择一个合适的数,求此分式的值.答案和解析1.【答案】解:{x 3−y 2=1①5x +3y =8②,①×6,得2x −3y =6③②+③,得7x =14,解得x =2,把x =2代入②,得10+3y =8,解得y =−23,∴原方程组的解为{x =2y =−23.【解析】本题主要考查二元一次方程组的解法,可利用加减消元法求解,将①×6得③,再利用②+③解得x 值,再将x 值代入②求解y 值,即可得解.2.【答案】解:(1){4a +b =15 ①3b −4a =13 ②, ①+②得,4b =28,解得:b =7,把b =7代入①得:4a +7=15,解得:a =2, 则方程组的解为{a =2b =7; (2)将原方程组变形得{5x −11y =−12①x −5y =−8②, ②×5−①得:−14y =−28,解得:y =2,把y =2代入②得:x =2, 则方程组的解为{x =2y =2.【解析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.3.【答案】 解:(1){3x +5y =11①2x −y =3②, ①+②×5,得:13x =26,解得:x =2,将x =2代入②,得:4−y =3,解得:y =1,所以方程组的解为{x =2y =1; (2)将方程组整理成一般式为{3x −2y =8①3x +2y =6②, ①+②,得:6x =14,解得:x =73,将x =73代入①,得:7−2y =8,解得:y =−12,所以方程组的解为{x =73y =−12.【解析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.4.【答案】解:(1)原方程可化为{4x −3y =11①2x +y =13②, ②×2−①得:5y =15,解得:y =3,把y =3代入②得:x =5,所以方程组的解为{x =5y =3; (2)整理原方程组得{3x +4y =36①3x −2y =9②, ①−②得:6y =27,解得:y =92,把y =92代入②得:x =6,所以方程组的解为{x =6y =92.【解析】本题主要考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.5.【答案】解:(1)去分母得:2−x +3(x −3)=−2,解得:x =2.5,经检验x =2.5为原分式方程的解;(2){2x −y =5①7x −3y =20②, ②−①×3得:x =5,把x =5代入①得:y =5,则方程组的解为{x =5y =5.【解析】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)方程组利用加减消元法求出方程组的解即可.6.【答案】解:(1)去分母,得12−4x +10=9−3x ,移项、合并同类项,得−x =−13;系数化为1,得x =13;(2)去分母得:3.4−4x =0.6−0.5−2x ,移项合并得:2x =3.3,解得:x =1.65.【解析】本考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x 系数化为1,求出解;方程整理后,去分母,去括号,移项合并,把x 系数化为1,即可求出解.7.【答案】12[x −12(x −1)]=23(x −1)解:12x −14(x −1)]=23(x −1)6x −3(x −1)]=8(x −1)6x −3x +3=8x −86x −3x −8x =−8−3−5x =−11x =115【解析】此题考查了解一元一次方程,去括号,去分母,再去括号,移项合并,把未知数系数化为1,求出解.8.【答案】解:去分母,得2x −1−3(3x −2)=12,去括号,得2x −1−9x +6=12,移项,得2x −9x =12+1−6,合并同类项,得−7x =7,系数化成1,得x =−1.【解析】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.先去分母,再去括号,最后移项,合并同类项,化系数为1,从而得到方程的解.9.【答案】解:(1)原方程去括号得5x +40=12x −42+5,移项可得:12x −5x =40+42−5,合并同类项可得:7x =77,解得:x =11.(2)原方程去分母得5x −10−2(x +1)=3,去括号得5x −10−2x −2=3,移项合并可得:3x =15,解得:x=5.【解析】本题考查的是解一元一次方程有关知识.(1)首先对该方程去括号变形,然后再进行合并,最后再解答即可;(2)首先对该方程去分母变形,然后再解答即可.10.【答案】解:(1)原式=x2−y2−(2x2+5xy−3y2)=−x2−5xy+2y2;(2)去括号,得9x2−1−(9x2+6x+1)=−8,9x2−1−9x2−6x−1=−8,合并,得−6x−2=−8,解得x=1.【解析】(1)先根据平方差公式和多项式乘多项式法则计算,再合并同类项即可求解;(1)先根据平方差公式和完全平方公式计算,再合并同类项得到−6x−2=−8,再解一元一次方程即可求解.本题考查了平方差公式,多项式乘多项式,完全平方公式,解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.11.【答案】解:(1)(x−1)2=4,两边直接开平方得:x−1=±2,∴x−1=2或x−1=−2,解得:x1=3,x2=−1;(2)xx+1=2x3x+3+1方程两边都乘3(x+1),得:3x=2x+3(x+1),解得:x=−32,经检验x=−32是方程的解,∴原方程的解为x=−32.【解析】本题主要考查了一元二次方程的解法和分式方程的解法,解分式方程的关键是去分母,将分式方程转化为整式方程,注意解分式方程要检验.(1)先两边直接开平方,然后转化为两个一元一次方程,解之即可;(2)先在方程两边同时乘以3(x+1),去掉分母,然后解整式方程,最后检验即可.12.【答案】解:(1)x2=3xx2−3x=0x(x−3)=0x 1=0 ,x 2=3(2)3x 2−8x −2=0∵△=64−4×3×(−2)=88∴x =8±√886=4±√223 x 1=4+√223 ,x =4−√223【解析】本题考查一元二次方程的解法,熟练应用各种解法是解题的关键.(1)先把方程化为一元二次方程的一般形式,用因式分解法解方程即可;(2)用公式法解方程,先求出△的值,然后运用一元二次方程的求根公式求出方程的根即可.13.【答案】解:∵x 2−2(√2x −2)=2,∴x 2−2√2x +4=2,∴x 2−2√2x +2=0,∴(x −√2)2=0,解得:x 1=x 2=√2.【解析】本题主要考查的是直接开平方法解一元二次方程的有关知识,先将给出的方程进行变形为(x −√2)2=0,然后直接开平方求解即可.14.【答案】解:(1)原式化简得x 2−4x =0,因式分解得x(x −4)=0,即x =0或x −4=0,解得x 1=0,x 2=4;(2)2x 2−3x −1=0,∵a =2,b =−3,c =−1,则b 2−4ac =9+8=17>0,则x = 3±√174 , 则x 1= 3+√174 ,x 2= 3−√174 .【解析】本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.(1)先化简,提取公因式x 可得x(x −4)=0,然后解两个一元一次方程即可;(2)直接运用公式法来解方程.15.【答案】解:(1)x 2=121,x =±11,x 1=11,x 2=−11;(2)(x −1)2=169,x −1=±13,x 1=14, x 2=−12.【解析】略16.【答案】解:(1)x 2−2x −6=0,x 2−2x =6,x 2−2x +1=7,(x −1)2=7,x −1=±√7,∴x 1=1+√7,x 2=1−√7;(2)(2x −3)2=3(2x −3).(2x −3)2−3(2x −3)=0,(2x −3)(2x −3−3)=0,∴2x −3=0或2x −6=0,∴x 1=32,x 2=3.【解析】本题主要考查了一元二次方程的解法,解一元二次方程常用的方法有:直接开平方法,因式分解法,配方法,公式法,解答时应根据方程的特征选择恰当的方法.(1)根据方程的特征可用直接开平方法解答,解答时先将常数项移项到方程的右边将方程变为x 2−2x =6,然后方程两边同时加上1分解可得(x −1)2=7,再用直接开平方法解答即可;(2)先移项,然后分解因式可得(2x −3)(2x −6)=0,可得2x −3=0或2x −6=0,然后解之即可.17.【答案】解:(1)原方程可变形为(x −2)(3x −6−x )=0,∴x −2=0或2x −6=0,解得:x 1=2,x 2=3(2)∵3(x 2−2x +1−1)+1=0,∴3(x −1)2−3+1=0,∴3(x −1)2=2,∴x −1=±√63, ∴x 1=1+√63,x 2=1−√63【解析】本题考查的是解一元二次方程有关知识.(1)首先对该方程进行因式分解,然后再进行解答即可;(2)首先对该方程进行配方,然后再解答.18.【答案】解:(1)∵a =1,b =−12,c =−4,∴Δ=144+16=160,∴x =12±4√102, x 1=6+2√10,x 2=6−2√10;(2)x(3−2x)+2(3−2x)= 0,(x +2)(3−2x)= 0,x 1=−2,x 2=32.【解析】本题考查利用公式法和因式分解法求一元二次方程的解.(1)按公式法,先求出判别式的值,再代入公式求解;(2)将方程右边移项到左边,提取公因式后,利用因式分解法求解.19.【答案】解:(1)原式=2+1−2+1=2(2)原方程化为x 2−3x =14x 2−3x +(32)2=104 (x −32)2=±√102∴原方程的根x 1=3+√102,x 2=3−√102.【解析】本题主要考查了实数的运算和解一元二次方程,关键是熟练掌握特殊角的三角函数值和配方法解方程的方法.(1)利用零指数幂公式、绝对值和算术平方根、特殊角的三角函数值计算,最后计算加减可得结果;(2)利用配方法进行解方程即可.20.【答案】解:x x−1−1=3(x−1)(x+1),x(x +1)−(x −1)(x +1)=3,解得,x =2,经检验:当x =2时,(x −1)(x +1)≠0,∴x =2是原分式方程的解.【解析】本题考查了解分式方程,解分式方程的基本思想是转化,把分式方程转化为整式方程求解,解分式方程一定注意要验根;先把分式方程去分母,注意没有分母的项也要乘以公分母(x −1)(x +1),求出整式方程的解得到x 的值,经检验即可得到分式方程的解.21.【答案】解:等号两边同乘(x +2)(x −2)得:2=x 2−4−x 2−2x ,2x =−6,解得:x =−3,检验,当x =−3时,(x +2)(x −2)≠0,所以x =−3是原方程的解.【解析】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.22.【答案】解:(1)方程两边同时乘以x 2−1得:x (x +1)−2x +1=x 2−1, 解得:x =2,经检验,x =2是原方程的解;(2)方程两边同时乘以x −1得:2−x −1=x −1,解得:x =1,经检验,x =1是增根,∴原方程无解.【解析】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,注意解分式方程一定要验根.(1)方程两边同时乘以x 2−1去分母,转化为整式方程x (x +1)−2x +1=x 2−1,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)方程两边同时乘以x −1去分母,转化为整式方程2−x −1=x −1,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.23.【答案】解:(1)23+x3x−1=19x−3,两边同乘以3(3x−1)得,2(3x−1)+3x=1,去括号得,6x−2+3x=1,移项合并得,9x=3,系数化为1得,x=13,检验:当x=13时,3(3x−1)=0,∴x=13时原方程的增根,原方程无解;(2)xx2−4+2x+2=1x−2方程两边同乘以(x+2)(x−2)得,x+2(x−2)=x+2,去括号得,x+2x−4=x+2,移项合并得,2x=6,系数化为1得,x=3,当x=3时,(x+2)(x−2)≠0,所以原方程的解为x=3.【解析】本题主要考查了解分式方程,熟练掌握解分式方程的方法是解题的关键,两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.(1)方程两边同乘以3(3x−1)转化为整式方程2(3x−1)+3x=1,解出x并检验即可;(2)方程两边同乘以(x+2)(x−2)转化为整式方程x+2(x−2)=x+2,解出x并检验即可.24.【答案】解:(1)去分母,得x−5=2x−5,移项,得x−2x=−5+5,解得x=0,检验:把x=0代入2x−5≠0,所以x=0是原方程的解;(2)去分母,得8+x2−1=(x+3)(x+1),去括号,得8+x2−1=x2+4x+3,解得x=1,把x=1代入(x+1)(x−1)=0,所以x=1是原方程的增根,所以原方程无解.【解析】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到结论.25.【答案】解:(1)原方程可变形为1+3(x−2)=x−1,整理可得:2x=4,解得:x=2,经检验:x=2是原方程的增根,所以原方程无解;(2)原方程可变形为(x+1)2−4=x2−1,整理可得:2x=2,解得:x=1,经检验:x=1是原方程的增根,所以原方程无解;【解析】本题考查的是解分式方程有关知识.(1)首先对该方程变形,然后再进行解答即可;(2)首先对该方程变形,然后再进行解答即可.26.【答案】解:去分母得1+x−3=4−x解得x=3.经检验x=3是原方程的增根.∴原方程无解【解析】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验是原方程的增根,所以原方程无解.27.【答案】解:(1)方程两边同时乘以(x−1)得3−x+1=−1,解得x=5,经检验x=5是分式方程的解;(2)方程两边同时乘以(x2−1)得x(x−1)−2=x2−1解得x=−1,经检验x=−1是方程的增根,∴原分式方程无解.【解析】本题考查解分式方程,关键是熟练分式方程的解法步骤.(1)先将分式方程转化为整式方程,解得x的值进行检验即可得出方程的解;(2)先将分式方程转化为整式方程,解得x的值进行检验即可得出方程的解.28.【答案】解:方程两边同时乘以最简公分母(x−4),得5−x=x−4+3,整理,得−2x=−6,解得x=3,检验:当x=3时,x−4≠0,所以原分式方程的根是x=3.【解析】本题考查的知识点是解分式方程,在解分式方程去分母时,两边同时乘以最简公分母,每一项都要乘,不能漏乘某一项,本题易出现如下错解:方程两边同时乘以最简公分母(x−4),得5−x=1+3,解得x=1,检验:当x=1时,x−4≠0,所以原分式方程的根是x=1,错误的原因是去分母时,常数项漏乘最简公分母,故一定要注意不能漏乘.29.【答案】解:16x2−4−x+2x−2=−1,16−(x+2)2=4−x2,16−x2−4x−4−4+x2=0,16−4x−8=0,x=2,经检验,x=2为增根,此方程无解.【解析】本题综合考查了解分式方程的解法.注意,分式方程需要验根.先去分母,然后移项、合并同类项,最后化未知数系数为1.30.【答案】解:(1)原式=1−4+√3×√33=1−4+1=−2;(2)x+1x−1+41−x2=1整理得:x+1x−1−4x2−1=1,去分母得:(x+1)2−4=x2−1,去括号得:x2+2x+1−4=x2−1,移项得:2x=−1−1+4,合并同类项得:2x=2,系数化为1得:x=1,经检验:x=1时,x−1=0,∴此方程无解.【解析】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.(1)原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.31.【答案】解:去分母,得2(x+1)2−(x−1)2=x2−1,化简,得6x=−2,解得x=−13.经检验,x=−13是原方程的根.所以原方程的根为x=−13.【解析】本题考查了解分式方程,根据解分式方程的步骤,去分母,去括号,化简x系数为1,即可求得答案.(注意,一定要验根)32.【答案】解:(1)去分母得:1=x−4+x−3,解得:x=4,检验:当x=4时,x−4=0,所以x=4是原方程的增根,原方程无解;(2)原方程整理得:90x −60x=40,去分母得:40x=30,解得:x=34,检验:当x=34时,0.99x≠0,所以x=34是原方程的根.【解析】本题主要考查的是解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.(1)方程两边都乘以x−4,分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)先化简方程,然后方程两边都乘以x,分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.33.【答案】解:(1)方程两边乘(x+2)(3x−1),得3(3x−1)=4(x+2)解得x=115检验:当x=115时,(x+2)(3x−1)≠0是原分式方程的解,∴原分式方程的解为x=115;(2)方程两边乘(x+1)(x−1),得x(x−1)−2=(x+1)(x−1)解得x=−1检验:当x=−1时,(x+1)(x−1)=0∴x=−1不是原分式方程的解,∴原分式方程无解【解析】本题考查了分式方程的解法.解题关键是把分式方程转化为整式方程,掌握解分式方程的一般步骤,特别最后需要验根.(1)先找出最简公分母,去分母,把分式方程化为整式方程,解出整式方程后,再验根即可.(2)先把各分母分解因式,找出最简公分母,去分母,把分式方程化为整式方程,解出整式方程后,再验根即可.注意在去分母时不能漏乘不含分母的项“1”.34.【答案】解:原方程可化为1x +3x−3=−2x(x−3)方程两边同乘x(x−3),得x−3+3x=−2,4x=1,x=14,检验:当x=14时,x(x−3)≠0,∴x=14是原分式方程的解.【解析】本题考查了解分式方程,掌握解分式方程的步骤是解题的关键,属于基础题.方程的两边同时乘以x(x−3)化为x−3+3x=−2,解之即可,注意分式方程要检验.35.【答案】(1)解:原式=3a(a2−9)=3a(a+3)(a−3);(2)解:方程两边同乘x(x−2),得2(x−2)=3x2x−4=3x2x−3x=4−x=4x=−4检验:当x=−4时,x(x−2)≠0,∴原方程的解为x=−4.【解析】此题考查了解分式方程,以及提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.(1)原式提取3a,再利用平方差公式分解即可;(2)分式方程两边同乘x(x−2),转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.36.【答案】解:(1)方程两边乘x−2,得3+2x−4=−x,−x−2x=−4+3,−3x=−1x=13,检验:x=13时,x−2≠0.∴原方程的根是x=1;3(2)方程两边乘(x+1)(x−1),得2(x+1)=4,2x+2=4,2x=2,解得x=1.检验:当x=1时,(x+1)(x−1)=0,x=1是增根.∴原方程无解.【解析】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;解分式方程一定注意要验根.(1)观察可得最简公分母是x−2,方程两边乘最简公分母,可以把分式方程转化为整式方程,求解即可;(2)观察可得最简公分母是(x+1)(x−1),方程两边乘最简公分母,可以把分式方程转化为整式方程,求解.37.【答案】解:(1)原式=a2−4ab+4b2+a2−4b2=2a2−4ab; (2)两边同乘以x−2得,3=3(x−2)−x,3=3x−6−x,2x=9,x=4.5,检验:当x=4.5时,x−2≠0,∴x=4.5是原方程的解,∴原分式方程的解为x=4.5.【解析】(1)此题考查了整式的混合运算,完全平方公式,平方差公式,掌握整式的混合运算法则是关键,先去括号再合并,即可得到答案.(2)此题考查了解分式方程,掌握解分式方程的步骤是关键,分式方程去分母转化为整式方程,求出整式方程的解得到x的值,检验后即可得到分式方程的解.38.【答案】解:x−1−2(2−x)=−3,x−1−4+2x=−3,3x=2,x=2,3时,2−x≠0,检验:当x=23∴x=2是原分式方程的解.3【解析】此题考查了分式方程的求解方法,此题难度不大,注意转化思想的应用,注意解分式方程一定要验根.本题的最简公分母是2−x,方程两边都乘以最简公分母转化为整式方程求解,最后要代入最简公分母验根.39.【答案】解:(1)方程两边都乘(2−x)(2+x),得x2=2−x−4+x2,解得:x=−2,检验:当x=−2时,(2−x)(2+x)=0,∴x=−2是增根,原方程无解;(2)原式=a−33a(a−2)÷(a+3)(a−3)a−2=a−33a(a−2)⋅a−2(a+3)(a−3)=13a(a+3),由a2+3a−1=0,得到a2+3a=a(a+3)=1,则原式=13.【解析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.此题考查了分式的化简求值,以及解分式方程,熟练掌握运算法则是解本题的关键.40.【答案】解:去分母得:6=x+2x+2,移项合并得:3x=4,解得:x=43,经检验x=43是分式方程的解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.41.【答案】解:(1)原式=(a−b)(x−y)+(a−b)(x+y)=(a−b)(x−y+x+y)=2x(a−b);(2)原式=5m[(2x−y)2−n2]=5m(2x−y+n)(2x−y−n);(3)方程两边都乘以(x+1)(x−1),得:2(x−1)+2x=x+1,解得:x=1,,检验:当x=1时,(x+1)(x−1)=0,则x=1是原分式方程的增根,所以分式方程无解.【解析】本题考查因式分解及其解分式方程,掌握运算法则是解题关键.(1)直接提取公因式(a−b)进行分解即可;(2)首先提取公因式5m,然后运用平方差公式进行分解即可;(3)首先方程两边都乘以(x+1)(x−1),得到整式方程2(x−1)+2x=x+1,解这个方程并检验即可.42.【答案】解:原方程可化为(x+1x )2−2−2(x+1x)−1=0即:(x+1x )2−2(x+1x)−3=0设x+1x=y,则y2−2y−3=0,即(y−3)(y+1)=0.解得y =3或y =−1.当y =3时,x +1x =3,即x 2−3x +1=0解得∴x 1=3+√52,x 2=3−√52; 当y =−1时,x +1x =−1无实数根.经检验,x 1=3+√52,x 2=3−√52都是原方程的根. ∴原方程的根为x 1=3+√52,x 2=3−√52.【解析】本题考查了换元法解分式方程,换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.整理可知,方程的两个分式具备平方关系,设x +1x =y ,则原方程化为y 2−2y −3=0.用换元法解一元二次方程先求y ,再求x.注意检验. 43.【答案】解:x x−2+6x+2=1x (x +2)+6(x −2)=x 2−4x 2+2x +6x −12=x 2−48x =8x =1,经检验,x =1是分式方程的解.【解析】本题考查了解分式方程,先将分式方程化为整式方程,求得整式方程的解,然后进行检验即可.44.【答案】解:(1)3x+2=2x−3,3(x −3)=2(x +2)3x −9=2x +43x −2x =4+9x =13,检验:当x =13时,(x +2)(x −3)≠0,所以x =13是原方程的解;(2)2x 2−4+x x−2=12+x (x +2)=x 2−4 2+x 2+2x =x 2−42x =−6x =−3 检验:当x =−3时,(x +2)(x −2)≠0,所以x =−3是原方程的解.【解析】本题考查了解分式方程.注意验根.先去分母、去括号、合并同类项、称项、系数为1即可求出.45.【答案】解:解不等式2x −1≤1得x ≤1,解不等式3x −3<4x 得x > −3,则不等式组的解集是−3<x ≤1,则符合条件的整数解有−2、−1、0、1【解析】本题主要考查一元一次不等式组的整数解,熟练掌握解一元一次不等式组的方法是解决问题的关键.先求出每一个不等式的解集。

汇总)初中数学中考计算题(最全)-含答案

汇总)初中数学中考计算题(最全)-含答案

汇总)初中数学中考计算题(最全)-含答案.doc1.解答题(共30小题)1.1 计算题:① 2+3=5;②解方程:x+5=10,解得x=5.1.2 计算:π+(π﹣2013)=2π-2013.1.3 计算:|1﹣|﹣2cos30°+(﹣)×(﹣1)2013|=|1-|-2cos30°+(-1)×(-1)2013||=|1-|-2×√3/2+1||=|1-√3+1|=|2-√3|。

1.4 计算:﹣(-2)+(-3)=1.1.5 计算:√(5+2√6)+√(5-2√6)=√2+√3.1.6 计算:(2+√3)(2-√3)=1.1.7 计算:(1+√2)²=3+2√2.1.8 计算:(1-√3)²=4-2√3.1.9 计算:(√2+1)²=3+2√2.1.10 计算:(√2-1)²=3-2√2.1.11 计算:(3+√5)(3-√5)=4.1.12 计算:(√3+1)(√3-1)=2.1.13 计算:(√2+√3)²=5+2√6.1.14 计算:﹣(π﹣3.14)+|﹣3|+(﹣1)2013+tan45°=0.1.15 计算:√3+√2-√6=√3-√2+√6.1.16 计算或化简:1)计算2﹣1﹣tan60°+(π﹣2013)+|﹣|=-tan60°-2011;2)(a﹣2)²+4(a﹣1)﹣(a+2)(a﹣2)=-3a²+10a-6.1.17 计算:1)(﹣1)2013﹣|﹣7|+(√2)﹣1=-√2-8;2)(2+√3)÷(√3-1)=1+√3.1.18 计算:(1+√2)(1-√2)=﹣1.1.19 解方程:x²+2x+1=0,解得x=-1.1.20 计算:1)tan45°+sin230°﹣cos30°•tan60°+cos245°=√2-1;2)(√2+1)²-(√2-1)²=4√2.1.211)|﹣3|+16÷(﹣2)³+(2013﹣)﹣tan60°=2010;2)解方程:(1-2x)²=3,解得x=√2﹣1.1.222)求不等式组:{x²-2x0},解得0<x<1.1.232)先化简,再求值:(√3+1)÷(√3-1)=2.1.241)计算:tan30°=√3/3;2)解方程:x²-2x+1=0,解得x=1.1.25 计算:1)√2-√3+√6=(√2-1)(√3-1);2)先化简,再求值:(√2+1)²+(√2-1)²=8.1.261)计算:(1-√2)÷(1+√2)=-1+√2;2)解方程:x²-2x+2=0,解得x=1-√3.1.27 计算:1)(√2+√3)²-(√2-√3)²=4√6;2)先化简,再求值:(x²+2x+1)÷(x²-1)=1+x。

初三数学计算题训练

初三数学计算题训练

初三数学计算题训练
1. 四则运算,加减乘除是数学的基本运算,通过大量的练习可以帮助学生熟练掌握加减乘除的运算技巧,提高他们的计算速度和准确性。

2. 分数、百分数和小数的运算,这些是初中阶段的重要内容,学生需要掌握分数、百分数和小数的相互转化,以及它们之间的加减乘除运算规则。

3. 代数式的计算,学生需要学会对代数式进行加减乘除、合并同类项、因式分解等操作,这可以培养学生的抽象思维能力和逻辑推理能力。

4. 方程与不等式的计算,学生需要学会解一元一次方程、一元一次不等式以及简单的二元一次方程,这对于培养学生的问题解决能力和数学建模能力非常重要。

5. 几何图形的计算,学生需要学会计算各种几何图形的周长、面积、体积等,这可以帮助他们理解几何图形的性质和运用数学知识解决实际问题。

在进行数学计算题训练时,可以通过课堂练习、作业布置、小组讨论等方式进行,同时可以结合实际问题进行综合训练,提高学生的数学运用能力。

另外,老师还可以根据学生的实际情况进行个性化指导,帮助他们克服困难,提高学习效果。

总之,通过系统的数学计算题训练,可以帮助学生建立扎实的数学基础,为他们将来的学习打下坚实的基础。

完整)初中数学中考计算题

完整)初中数学中考计算题

完整)初中数学中考计算题初中数学中考计算题一.解答题(共30小题)1.计算题:① 1/2 + 1/3 + 1/4 + 1/5 = 77/60②解方程:2x - 1 = 3x + 4,解得 x = -52.计算:(3√3 + 2√2)² = 39 + 12√63.计算:|1-2| + |2-3| + |-3-(-4)| = 64.计算:(√2 - 1)/(√2 + 1) = 1 - 2√25.计算:(1+√3)/(1-√3) = -2-√36.略7.计算:(2+√3)/(2-√3) = 7+4√38.计算:(1+√2)/(1-√2) = -1-√29.计算:(√3+1)/(√3-1) = 4+2√310.计算:(1+√5)/(1-√5) = -2-√511.计算:(1+√2+√3)/(1-√2+√3) = 2+√212.略13.计算:(1-√2)/(1+√2) = -1+√214.计算:(1+√3)/(1-√3) = -1/215.计算:(2+√3)² = 7+4√316.计算或化简:1)计算 21-π+|3|+(-1)2013+tan45° = 22-π2)(a-2)²+4(a-1)-(a+2)(a-2) = -a²+10a-1217.计算:1)(-1)2013-|-7|+(-2)2013 = -22)略18.计算:(1/2)×(1/2+1/3-1/4-1/5) = 1/1519.(1)略2)解方程:x²-2x-3 = 0,解得 x = -1 或 x = 3 20.计算:1)tan45°+sin(230°)-cos30°×tan60°+cos(245°) = -√2-1/22)略21.(1)|(-3)|+16/(-2)³+(2013-π)-tan60° = 2012-π2)解方程:x²-3|x|-10 = 0,解得 x = -2 或 x = 522.(1)计算:√(3/4) = √3/22)求不等式组的整数解:x-y。

初三数学下册综合算式专项练习题乘法运算

初三数学下册综合算式专项练习题乘法运算

初三数学下册综合算式专项练习题乘法运算乘法运算是数学中最基础、最常用的运算之一,它在我们的生活中也随处可见。

在初三数学下册综合算式中,乘法运算是一种重要的考察内容。

为了帮助同学们更好地理解和掌握乘法运算,本文将围绕乘法运算的概念、性质和应用进行详细的讲解和练习。

一、乘法运算的概念乘法运算是指两个或多个数相乘的过程,其中,被乘数、乘数和积是乘法运算的三个要素。

例题1:计算2乘以3的积。

解析:在这个例子中,2是被乘数,3是乘数,积是6。

在乘法运算中,我们常用“×”来表示乘法。

二、乘法运算的性质1. 乘法的交换律:对于任意两个实数a和b,a乘以b的积等于b乘以a的积。

例题2:计算5乘以4的积和4乘以5的积,并比较两个积的大小。

解析:根据乘法的交换律,5乘以4的积等于4乘以5的积,都等于20。

所以,这两个积是相等的。

2. 乘法的结合律:对于任意三个实数a、b和c,先把a与b相乘,再把积与c相乘,结果与先把b与c相乘,再把积与a相乘得到的结果相等。

例题3:计算2乘以3乘以4的积和3乘以4乘以2的积,并比较两个积的大小。

解析:根据乘法的结合律,2乘以3乘以4的积等于4乘以3乘以2的积,都等于24。

所以,这两个积是相等的。

三、乘法运算的应用乘法运算在实际问题中有广泛的应用,下面我们通过例题来具体了解一下。

例题4:某公司的年利润为500万元,如果今年的利润是去年的两倍,那么去年的利润是多少?解析:设去年的利润为x万元,根据题意可得方程2x = 500,解方程可得x = 250。

因此,去年的利润是250万元。

例题5:小明一共有8个苹果,他要把这些苹果每袋装4个,最后一袋只装3个。

那么,小明一共需要几袋袋子来装这些苹果?解析:设小明需要装的袋子数为y袋,根据题意可得方程4y + 3 = 8,解方程可得y = 1。

因此,小明一共需要1袋袋子来装这些苹果。

综合算式中的乘法运算涵盖了乘法的概念、性质和应用,通过大量的练习题,同学们可以加深对乘法运算的理解和掌握,提高解决实际问题的能力。

中考数学计算题100道

中考数学计算题100道

精品word 完整版-行业资料分享中考数学计算题100道练习1. 解方程组:{x 3−y 2=15x +3y =82. 解下列方程组:(1){4a +b =153b −4a =13(2){2(x −y)3−x +y 4=−16(x +y)−4(2x −y)=163. 解下列方程组(1){3x +5y =112x −y =3 (2){x 2−y+13=13(x +2)=−2y +124. 解下列方程组:(1){4x −3y =11y =13−2x; (2){x 4+y 3=33x −2(y −1)=11.5. 解下列方程(组)(1) 2−x x−3+3=23−x (2){2x −y =57x −3y =206. 解下列方程:(1)1−2x−56=3−x 4;(2)1.7−2x 0.3=1−0.5+2x 0.6.7. 解下列方程12[x −12(x −1)]=23(x −1)精品word完整版-行业资料分享8.2x−112−3x−24=19.解方程:(1)5(x+8)=6(2x−7)+5(2)0.1x−0.20.02−x+10.5=310.(1)化简:(x+y)(x−y)−(2x−y)(x+3y);(2)解方程:(3x+1)(3x−1)−(3x+1)2=−8.11.解方程:(1)(x−1)2=4;(2)xx+1=2x3x+3+1.12.解方程:(1)x2=3x.(2)3x2−8x−2=0.13.x2−2(√2x−2)=2.14.解方程:(1)(x−3)(x−1)=3.(2)2x2−3x−1=0.15.解方程:(1)x2−121=0(2)2(x−1)2=338精品word 完整版-行业资料分享16. 解方程(1)x 2−2x −6=0; (2)(2x −3)2=3(2x −3).17. 解方程:(1)3(x −2)2=x(x −2);(2)3x 2−6x +1=0(用配方法).18. 用适当的方法解下列方程:(1)x 2−12x −4=0(2)x(3−2x)= 4 x −619. 计算:(1)|−2|+(sin36°−12)0−√4+tan45°; (2)用配方法解方程:4x 2−12x −1=0.20.解分式方程xx−1−1=3x2−121.解分式方程:2x2−4=1−xx−2.22.解下列方程:(1)xx−1−2x−1x2−1=1(2)2−xx−1+11−x=123.解方程(1)23+x3x−1=19x−3(2)xx2−4+2x+2=1x−2精品word完整版-行业资料分享24.解方程(1)x2x−5+55−2x=1(2)8x2−1+1=x+3x−125.解下列分式方程:(1)1x−2+3=1−x2−x;(2)x+1x−1−4x2−1=1.26.解方程1x−3+1=4−xx−3.27.解下列方程:(1)3x−1−1=11−x;(2)xx+1−2x2−1=1.28.解方程:5−xx−4=1−34−x.29.解方程:16x2−4−x+2x−2=−1.30.(1)计算:(√7−1)0−(−12)−2+√3tan30∘;(2)解方程:x+1x−1+41−x2=1.精品word完整版-行业资料分享31.解方程:2(x+1)x−1−x−1x+1=1.32.解分式方程:(1)1x−4=1−x−34−x.(2)810.9x−661.1x=4033.解方程:(1)3x+2=43x−1(2)xx+1−2x2−1=134.解分式方程:1x +3x−3=23x−x235.(1)分解因式:3a3−27a;(2)解方程:2x =3x−2.36.解分式方程:(1)3x−2+2=x2−x.(2)2x−1=4x2−1.37.计算:(1)(a−2b)2+(a−2b)(a+2b)(2)解分式方程3x−2=3+x2−x38.解方程:x−12−x −2=3x−2.39.解答下列各题(1)解方程:x24−x2=1x+2−1.(2)先化简,再求值:a−33a2−6a ÷(a+2−5a−2),其中a2+3a−1=0.40.解方程:3x+1=x2x+2+141.(1)分解因式:(a−b)(x−y)−(b−a)(x+y)(2)分解因式:5m(2x−y)2−5mn2(3)解方程:2x+1−2x1−x2=1x−142.解方程:x2+1x2−2(x+1x)−1=0.43.解方程xx−2+6x+2=144.解分式方程(1)3x+2=2x−3(2)8x2−4−xx−2=−145.求不等式组{2x−1≤13x−3<4x的整数解.46.解不等式组:{3(x+1)>x−1 x+92>2x47. 解不等式组{2x +3≤x +112x+53−1>2−x .48. 解不等式组:{2x −1>x +13(x −2)−x ≤449. 解下列方程:(1)解方程:x 2+4x −2=0;(2)解不等式组:{x −3(x −2)≥24x −2<5x +1.50. (1)计算:(π−2)0+√8−4×(−12)2(2)解不等式组:{3(x −2)≤4x −55x−24<1+12x51. 解不等式:1−x 2>−1.52. 解下列不等式,并把解集在数轴上表示出来:(1)5x−13−2x >3; (2)x−12−x+43>−2.53. 解不等式组{2x −1⩽x +2x−23<x 2+1,并把解在数轴上表示出来.54. 解不等式组:{x +1>05−4(x −1)<155.解不等式4(x−1)+3≤2x+5,并把它的解集在数轴上表示出来.56.解不等式组{2x≥−4①12x+1<32②,并把不等式组的解集表示在数轴上.57.因式分解:(1)24ax2−6ay2;(2)(2a−b)2+8ab58.因式分解(1)2x2−4x(2)a2−4ab+4b2(3)a4−1(4)(y2−1)2+6(1−y2)+959. 分解因式:8ab −8b 2−2a 2 60. (1)分解因式:2x 2−18(2)解不等式组{5m −3≥2(m +3)13m +1>12m61. 因式分解:(1)16m (m −n )2+56(n −m )3;(2)(2a +3b )(a −2b )−(3a +2b )(2b −a ).62. 因式分解:(1)4a 2−9 (2)x 3−2x 2y +xy 263.分解因式:(1)6m2n−15n2m+30m2n2;(2)x(x−y)2−y(x−y).64.因式分解:(1)x(x−12)+4(3x−1).(2)m3n−4m2n+4mn65.因式分解:(x2−5)2+8(x2−5)+1666.分解因式:(1)x3−3x2−28x(2)12x2−x−2067.化简:(1)(x+y)2−(x−2y)(x+y)(2)(2x+1x2−4x+4−1x−2)÷x+3x2−468. 计算(1)√12−|−3|−3tan30∘+(−1+√2)0 (2) (x +1)(x −1)−(x −2)269. 计算:(1)√643+|√2−1|−π0+(12)−1;(2)(2x −1)2−(3x +1)(3x −1)+5x(x −1).70. (1)计算: |−3|−4cos60°+(2019−2020)0.(2)先化简,再求值:(x +2)2−x (x −2),其中x =2.71. 化简:(√3+√2)2019⋅(√3−√2)2020.72. 解下列各题:(1)计算:(x +2)2+(2x +1)(2x −1)−4x(x +1)(2)分解因式:−y 3+4xy 2−4x 2y73. 先化简,再求值:[a (a 2b 2−ab )−b (a 2−a 3b )]÷2a 2b ,其中a =−12,b =13.74. 计算:(1)(−2)2×|−3|−(√6)0 (2)(x +1)2−(x 2−x)75. 计算(1)|−1|+(3−π)0+(−2)3−(13)−2(2)(x 4)3+(x 3)4−2x 4⋅x 876. 计算:(1)(2x 2)3−x 2·x 4;(2)−22+(12)−2−2−1×(−12)0.77. 计算:①(−2020)0+√−83+tan45∘; ②(a +b)(a −b)+b(b −2).78. (1)计算:x(x −9y)−(x −8y)(x −y)(2)计算:(−12a 5b 3+6a 2b −3ab)÷(−3ab)−(−2a 2b)2.79. 计算:|√3−2|+(π−2019)0+2cos30∘−(−13)−2精品word完整版-行业资料分享)−1+|1−2cos45°|80.√2×(−1)2017−(1281.计算:cos245∘−2sin60∘−|√3−2|.)−2−(2019+π)0−|2−√5|82.计算:(−12)0;83.(1)计算:−24−√12+|1−4sin60°|+(π−23(2)解方程:2x2−4x−1=0.84. 计算√27−3tan 30∘+(−12)−2−|√3−2|85. 计算:√3×(−√6)+|−2√2|+(12)−3.86. 计算:√273−√(−5)2+(π−3.14)0+|1−√2|.87. 计算(1)√16+√−273−√1+916; (2)√(−2)2+|√2−1|−(√2−1)88. 计算:(12)−1+(−2019)0−√9+√273精品word 完整版-行业资料分享89. 计算:(−2)−1−12√8−(5−π)0+4cos45∘90. 计算:(12)−1−(√2−1)0+|1−√3|+√1291. (1)计算(−12)−1+√16−(π−3.14)0−|√2−2|(2)化简:(2m m+2−m m−2)÷m m 2−4.92. 计算下列各题.(1)√4+(π−3.14)0−|−√3|+(13)−1 (2)√−83+(√3)2+√(−3)2+|1−√2|93. 计算:|1−√2|−√6×√3+(2−√2)0.94. 计算:(√12+√3)×√6−4√32÷√395. 计算:12×(√3−1)2√2−1(√22)−1.96. 已知a =2+√3,求1−2a+a 2a−1−√a 2−2a+1a 2−a 的值.精品word 完整版-行业资料分享97. √(1−√3)2−√24×√122−√398. 计算:(1)√32−√8+√12×√3 (2)|√3−2|+(√3)−1−(√2−1)099. 计算:(1)2√45+3√15+√(2−√5)2; √2√6−2√3(√6−√2).100.先化简,再求值:1−a−2a ÷a 2−4a 2+a ,请从−2,−1,0,1,2中选择一个合适的数,求此分式的值.精品word 完整版-行业资料分享答案和解析1.【答案】解:{x 3−y 2=1①5x +3y =8②,①×6,得2x −3y =6③②+③,得7x =14,解得x =2,把x =2代入②,得10+3y =8,解得y =−23,∴原方程组的解为{x =2y =−23.【解析】本题主要考查二元一次方程组的解法,可利用加减消元法求解,将①×6得③,再利用②+③解得x 值,再将x 值代入②求解y 值,即可得解.2.【答案】解:(1){4a +b =15 ①3b −4a =13 ②, ①+②得,4b =28,解得:b =7,把b =7代入①得:4a +7=15,解得:a =2,则方程组的解为{a =2b =7; (2)将原方程组变形得{5x −11y =−12①x −5y =−8②, ②×5−①得:−14y =−28,解得:y =2,把y =2代入②得:x =2,则方程组的解为{x =2y =2.【解析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.3.【答案】 解:(1){3x +5y =11①2x −y =3②, ①+②×5,得:13x =26,解得:x =2,将x =2代入②,得:4−y =3,解得:y =1,所以方程组的解为{x =2y =1; (2)将方程组整理成一般式为{3x −2y =8①3x +2y =6②, ①+②,得:6x =14,解得:x =73,将x =73代入①,得:7−2y =8,解得:y =−12,所以方程组的解为{x =73y =−12.【解析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.4.【答案】解:(1)原方程可化为{4x −3y =11①2x +y =13②, ②×2−①得:5y =15,解得:y =3,把y =3代入②得:x =5,所以方程组的解为{x =5y =3; (2)整理原方程组得{3x +4y =36①3x −2y =9②, ①−②得:6y =27,解得:y =92,把y =92代入②得:x =6,所以方程组的解为{x =6y =92.【解析】本题主要考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.精品word 完整版-行业资料分享(2)方程组整理后,利用加减消元法求出解即可.5.【答案】解:(1)去分母得:2−x +3(x −3)=−2,解得:x =2.5,经检验x =2.5为原分式方程的解;(2){2x −y =5①7x −3y =20②, ②−①×3得:x =5,把x =5代入①得:y =5,则方程组的解为{x =5y =5.【解析】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)方程组利用加减消元法求出方程组的解即可.6.【答案】解:(1)去分母,得12−4x +10=9−3x ,移项、合并同类项,得−x =−13;系数化为1,得x =13;(2)去分母得:3.4−4x =0.6−0.5−2x ,移项合并得:2x =3.3,解得:x =1.65.【解析】本考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x 系数化为1,求出解;方程整理后,去分母,去括号,移项合并,把x 系数化为1,即可求出解.7.【答案】12[x −12(x −1)]=23(x −1)解:12x −14(x −1)]=23(x −1)6x −3(x −1)]=8(x −1)6x −3x +3=8x −86x −3x −8x =−8−3−5x =−11x =115【解析】此题考查了解一元一次方程,去括号,去分母,再去括号,移项合并,把未知数系数化为1,求出解.8.【答案】解:去分母,得2x −1−3(3x −2)=12,去括号,得2x −1−9x +6=12,移项,得2x −9x =12+1−6,合并同类项,得−7x =7,系数化成1,得x =−1.【解析】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.先去分母,再去括号,最后移项,合并同类项,化系数为1,从而得到方程的解.9.【答案】解:(1)原方程去括号得5x+40=12x−42+5,移项可得:12x−5x=40+42−5,合并同类项可得:7x=77,解得:x=11.(2)原方程去分母得5x−10−2(x+1)=3,去括号得5x−10−2x−2=3,移项合并可得:3x=15,解得:x=5.【解析】本题考查的是解一元一次方程有关知识.(1)首先对该方程去括号变形,然后再进行合并,最后再解答即可;(2)首先对该方程去分母变形,然后再解答即可.10.【答案】解:(1)原式=x2−y2−(2x2+5xy−3y2)=−x2−5xy+2y2;(2)去括号,得9x2−1−(9x2+6x+1)=−8,9x2−1−9x2−6x−1=−8,合并,得−6x−2=−8,解得x=1.【解析】(1)先根据平方差公式和多项式乘多项式法则计算,再合并同类项即可求解;(1)先根据平方差公式和完全平方公式计算,再合并同类项得到−6x−2=−8,再解一元一次方程即可求解.本题考查了平方差公式,多项式乘多项式,完全平方公式,解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.11.【答案】解:(1)(x−1)2=4,两边直接开平方得:x−1=±2,∴x−1=2或x−1=−2,解得:x1=3,x2=−1;(2)xx+1=2x3x+3+1方程两边都乘3(x+1),得:3x=2x+3(x+1),解得:x=−32,精品word完整版-行业资料分享经检验x=−32是方程的解,∴原方程的解为x=−32.【解析】本题主要考查了一元二次方程的解法和分式方程的解法,解分式方程的关键是去分母,将分式方程转化为整式方程,注意解分式方程要检验.(1)先两边直接开平方,然后转化为两个一元一次方程,解之即可;(2)先在方程两边同时乘以3(x+1),去掉分母,然后解整式方程,最后检验即可.12.【答案】解:(1)x2=3xx2−3x=0x(x−3)=0x1=0 ,x2=3(2)3x2−8x−2=0∵△=64−4×3×(−2)=88∴x=8±√886=4±√223x1=4+√223 ,x=4−√223【解析】本题考查一元二次方程的解法,熟练应用各种解法是解题的关键.(1)先把方程化为一元二次方程的一般形式,用因式分解法解方程即可;(2)用公式法解方程,先求出△的值,然后运用一元二次方程的求根公式求出方程的根即可.13.【答案】解:∵x2−2(√2x−2)=2,∴x2−2√2x+4=2,∴x2−2√2x+2=0,∴(x−√2)2=0,解得:x1=x2=√2.【解析】本题主要考查的是直接开平方法解一元二次方程的有关知识,先将给出的方程进行变形为(x−√2)2=0,然后直接开平方求解即可.14.【答案】解:(1)原式化简得x2−4x=0,因式分解得x(x−4)=0,即x=0或x−4=0,解得x1=0,x2=4;(2)2x2−3x−1=0,∵a=2,b=−3,c=−1,则b2−4ac=9+8=17>0,则x = 3±√174 , 则x 1= 3+√174 ,x 2= 3−√174 .【解析】本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.(1)先化简,提取公因式x 可得x(x −4)=0,然后解两个一元一次方程即可;(2)直接运用公式法来解方程.15.【答案】解:(1)x 2=121,x =±11,x 1=11,x 2=−11;(2)(x −1)2=169,x −1=±13,x 1=14, x 2=−12.【解析】略16.【答案】解:(1)x 2−2x −6=0,x 2−2x =6,x 2−2x +1=7,(x −1)2=7,x −1=±√7,∴x 1=1+√7,x 2=1−√7;(2)(2x −3)2=3(2x −3).(2x −3)2−3(2x −3)=0,(2x −3)(2x −3−3)=0,∴2x −3=0或2x −6=0,∴x 1=32,x 2=3.【解析】本题主要考查了一元二次方程的解法,解一元二次方程常用的方法有:直接开平方法,因式分解法,配方法,公式法,解答时应根据方程的特征选择恰当的方法.(1)根据方程的特征可用直接开平方法解答,解答时先将常数项移项到方程的右边将方程变为x 2−2x =6,然后方程两边同时加上1分解可得(x −1)2=7,再用直接开平方法解答即可;(2)先移项,然后分解因式可得(2x −3)(2x −6)=0,可得2x −3=0或2x −6=0,然后解之即可. 17.【答案】解:(1)原方程可变形为(x −2)(3x −6−x )=0,∴x −2=0或2x −6=0,解得:x 1=2,x 2=3(2)∵3(x 2−2x +1−1)+1=0,∴3(x −1)2−3+1=0,∴3(x −1)2=2,精品word 完整版-行业资料分享∴x −1=±√63, ∴x 1=1+√63,x 2=1−√63【解析】本题考查的是解一元二次方程有关知识.(1)首先对该方程进行因式分解,然后再进行解答即可;(2)首先对该方程进行配方,然后再解答.18.【答案】解:(1)∵a =1,b =−12,c =−4,∴Δ=144+16=160,∴x =12±4√102, x 1=6+2√10,x 2=6−2√10;(2)x(3−2x)+2(3−2x)= 0,(x +2)(3−2x)= 0,x 1=−2,x 2=32.【解析】本题考查利用公式法和因式分解法求一元二次方程的解.(1)按公式法,先求出判别式的值,再代入公式求解;(2)将方程右边移项到左边,提取公因式后,利用因式分解法求解.19.【答案】解:(1)原式=2+1−2+1=2(2)原方程化为x 2−3x =14 x 2−3x +(32)2=104 (x −32)2=±√102∴原方程的根x 1=3+√102,x 2=3−√102.【解析】本题主要考查了实数的运算和解一元二次方程,关键是熟练掌握特殊角的三角函数值和配方法解方程的方法.(1)利用零指数幂公式、绝对值和算术平方根、特殊角的三角函数值计算,最后计算加减可得结果;(2)利用配方法进行解方程即可.20.【答案】解:x x−1−1=3(x−1)(x+1),x(x +1)−(x −1)(x +1)=3,解得,x =2,经检验:当x =2时,(x −1)(x +1)≠0,∴x=2是原分式方程的解.【解析】本题考查了解分式方程,解分式方程的基本思想是转化,把分式方程转化为整式方程求解,解分式方程一定注意要验根;先把分式方程去分母,注意没有分母的项也要乘以公分母(x−1)(x+1),求出整式方程的解得到x的值,经检验即可得到分式方程的解.21.【答案】解:等号两边同乘(x+2)(x−2)得:2=x2−4−x2−2x,2x=−6,解得:x=−3,检验,当x=−3时,(x+2)(x−2)≠0,所以x=−3是原方程的解.【解析】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.22.【答案】解:(1)方程两边同时乘以x2−1得:x(x+1)−2x+1=x2−1,解得:x=2,经检验,x=2是原方程的解;(2)方程两边同时乘以x−1得:2−x−1=x−1,解得:x=1,经检验,x=1是增根,∴原方程无解.【解析】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,注意解分式方程一定要验根.(1)方程两边同时乘以x2−1去分母,转化为整式方程x(x+1)−2x+1=x2−1,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)方程两边同时乘以x−1去分母,转化为整式方程2−x−1=x−1,求出整式方程的解得到x的值,经检验即可得到分式方程的解.23.【答案】解:(1)23+x3x−1=19x−3,两边同乘以3(3x−1)得,2(3x−1)+3x=1,去括号得,6x−2+3x=1,移项合并得,9x=3,系数化为1得,x=13,检验:当x=13时,3(3x−1)=0,∴x=13时原方程的增根,原方程无解;(2)xx2−4+2x+2=1x−2方程两边同乘以(x+2)(x−2)得,x+2(x−2)=x+2,精品word完整版-行业资料分享去括号得,x+2x−4=x+2,移项合并得,2x=6,系数化为1得,x=3,当x=3时,(x+2)(x−2)≠0,所以原方程的解为x=3.【解析】本题主要考查了解分式方程,熟练掌握解分式方程的方法是解题的关键,两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.(1)方程两边同乘以3(3x−1)转化为整式方程2(3x−1)+3x=1,解出x并检验即可;(2)方程两边同乘以(x+2)(x−2)转化为整式方程x+2(x−2)=x+2,解出x并检验即可.24.【答案】解:(1)去分母,得x−5=2x−5,移项,得x−2x=−5+5,解得x=0,检验:把x=0代入2x−5≠0,所以x=0是原方程的解;(2)去分母,得8+x2−1=(x+3)(x+1),去括号,得8+x2−1=x2+4x+3,解得x=1,把x=1代入(x+1)(x−1)=0,所以x=1是原方程的增根,所以原方程无解.【解析】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到结论.25.【答案】解:(1)原方程可变形为1+3(x−2)=x−1,整理可得:2x=4,解得:x=2,经检验:x=2是原方程的增根,所以原方程无解;(2)原方程可变形为(x+1)2−4=x2−1,整理可得:2x=2,解得:x=1,经检验:x=1是原方程的增根,所以原方程无解;【解析】本题考查的是解分式方程有关知识.(1)首先对该方程变形,然后再进行解答即可;(2)首先对该方程变形,然后再进行解答即可.26.【答案】解:去分母得1+x−3=4−x解得x=3.经检验x=3是原方程的增根.∴原方程无解【解析】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验是原方程的增根,所以原方程无解.27.【答案】解:(1)方程两边同时乘以(x−1)得3−x+1=−1,解得x=5,经检验x=5是分式方程的解;(2)方程两边同时乘以(x2−1)得x(x−1)−2=x2−1解得x=−1,经检验x=−1是方程的增根,∴原分式方程无解.【解析】本题考查解分式方程,关键是熟练分式方程的解法步骤.(1)先将分式方程转化为整式方程,解得x的值进行检验即可得出方程的解;(2)先将分式方程转化为整式方程,解得x的值进行检验即可得出方程的解.28.【答案】解:方程两边同时乘以最简公分母(x−4),得5−x=x−4+3,整理,得−2x=−6,解得x=3,检验:当x=3时,x−4≠0,所以原分式方程的根是x=3.【解析】本题考查的知识点是解分式方程,在解分式方程去分母时,两边同时乘以最简公分母,每一项都要乘,不能漏乘某一项,本题易出现如下错解:方程两边同时乘以最简公分母(x−4),得5−x=1+3,解得x=1,检验:当x=1时,x−4≠0,所以原分式方程的根是x=1,错误的原因是去分母时,常数项漏乘最简公分母,故一定要注意不能漏乘.29.【答案】解:16x2−4−x+2x−2=−1,精品word完整版-行业资料分享16−(x+2)2=4−x2,16−x2−4x−4−4+x2=0,16−4x−8=0,x=2,经检验,x=2为增根,此方程无解.【解析】本题综合考查了解分式方程的解法.注意,分式方程需要验根.先去分母,然后移项、合并同类项,最后化未知数系数为1.30.【答案】解:(1)原式=1−4+√3×√33=1−4+1=−2;(2)x+1x−1+41−x2=1整理得:x+1x−1−4x2−1=1,去分母得:(x+1)2−4=x2−1,去括号得:x2+2x+1−4=x2−1,移项得:2x=−1−1+4,合并同类项得:2x=2,系数化为1得:x=1,经检验:x=1时,x−1=0,∴此方程无解.【解析】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.(1)原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.31.【答案】解:去分母,得2(x+1)2−(x−1)2=x2−1,化简,得6x=−2,解得x=−13.经检验,x=−13是原方程的根.所以原方程的根为x=−13.【解析】本题考查了解分式方程,根据解分式方程的步骤,去分母,去括号,化简x系数为1,即可求得答案.(注意,一定要验根)32.【答案】解:(1)去分母得:1=x−4+x−3,解得:x=4,检验:当x=4时,x−4=0,所以x=4是原方程的增根,原方程无解;(2)原方程整理得:90x −60x=40,去分母得:40x=30,解得:x=34,检验:当x=34时,0.99x≠0,所以x=34是原方程的根.【解析】本题主要考查的是解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.(1)方程两边都乘以x−4,分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)先化简方程,然后方程两边都乘以x,分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.33.【答案】解:(1)方程两边乘(x+2)(3x−1),得3(3x−1)=4(x+2)解得x=115检验:当x=115时,(x+2)(3x−1)≠0是原分式方程的解,∴原分式方程的解为x=115;(2)方程两边乘(x+1)(x−1),得x(x−1)−2=(x+1)(x−1)解得x=−1检验:当x=−1时,(x+1)(x−1)=0∴x=−1不是原分式方程的解,∴原分式方程无解【解析】本题考查了分式方程的解法.解题关键是把分式方程转化为整式方程,掌握解分式方程的一般步骤,特别最后需要验根.(1)先找出最简公分母,去分母,把分式方程化为整式方程,解出整式方程后,再验根即可.精品word完整版-行业资料分享(2)先把各分母分解因式,找出最简公分母,去分母,把分式方程化为整式方程,解出整式方程后,再验根即可.注意在去分母时不能漏乘不含分母的项“1”.34.【答案】解:原方程可化为1x +3x−3=−2x(x−3)方程两边同乘x(x−3),得x−3+3x=−2,4x=1,x=14,检验:当x=14时,x(x−3)≠0,∴x=14是原分式方程的解.【解析】本题考查了解分式方程,掌握解分式方程的步骤是解题的关键,属于基础题.方程的两边同时乘以x(x−3)化为x−3+3x=−2,解之即可,注意分式方程要检验.35.【答案】(1)解:原式=3a(a2−9)=3a(a+3)(a−3);(2)解:方程两边同乘x(x−2),得2(x−2)=3x2x−4=3x2x−3x=4−x=4x=−4检验:当x=−4时,x(x−2)≠0,∴原方程的解为x=−4.【解析】此题考查了解分式方程,以及提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.(1)原式提取3a,再利用平方差公式分解即可;(2)分式方程两边同乘x(x−2),转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.36.【答案】解:(1)方程两边乘x−2,得3+2x−4=−x,−x−2x=−4+3,−3x=−1x=1,3时,x−2≠0.检验:x=13∴原方程的根是x=1;3(2)方程两边乘(x+1)(x−1),得2(x+1)=4,2x+2=4,2x=2,解得x=1.检验:当x=1时,(x+1)(x−1)=0,x=1是增根.∴原方程无解.【解析】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;解分式方程一定注意要验根.(1)观察可得最简公分母是x−2,方程两边乘最简公分母,可以把分式方程转化为整式方程,求解即可;(2)观察可得最简公分母是(x+1)(x−1),方程两边乘最简公分母,可以把分式方程转化为整式方程,求解.37.【答案】解:(1)原式=a2−4ab+4b2+a2−4b2=2a2−4ab; (2)两边同乘以x−2得,3=3(x−2)−x,3=3x−6−x,2x=9,x=4.5,检验:当x=4.5时,x−2≠0,∴x=4.5是原方程的解,∴原分式方程的解为x=4.5.【解析】(1)此题考查了整式的混合运算,完全平方公式,平方差公式,掌握整式的混合运算法则是关键,先去括号再合并,即可得到答案.(2)此题考查了解分式方程,掌握解分式方程的步骤是关键,分式方程去分母转化为整式方程,求出整式方程的解得到x的值,检验后即可得到分式方程的解.精品word完整版-行业资料分享38.【答案】解:x−1−2(2−x)=−3,x−1−4+2x=−3,3x=2,x=23,检验:当x=23时,2−x≠0,∴x=23是原分式方程的解.【解析】此题考查了分式方程的求解方法,此题难度不大,注意转化思想的应用,注意解分式方程一定要验根.本题的最简公分母是2−x,方程两边都乘以最简公分母转化为整式方程求解,最后要代入最简公分母验根.39.【答案】解:(1)方程两边都乘(2−x)(2+x),得x2=2−x−4+x2,解得:x=−2,检验:当x=−2时,(2−x)(2+x)=0,∴x=−2是增根,原方程无解;(2)原式=a−33a(a−2)÷(a+3)(a−3)a−2=a−33a(a−2)⋅a−2(a+3)(a−3)=13a(a+3),由a2+3a−1=0,得到a2+3a=a(a+3)=1,则原式=13.【解析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.此题考查了分式的化简求值,以及解分式方程,熟练掌握运算法则是解本题的关键.40.【答案】解:去分母得:6=x+2x+2,移项合并得:3x=4,解得:x=43,经检验x=43是分式方程的解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.41.【答案】解:(1)原式=(a−b)(x−y)+(a−b)(x+y)=(a−b)(x−y+x+y)=2x(a−b);(2)原式=5m[(2x −y)2−n 2]=5m(2x −y +n)(2x −y −n);(3)方程两边都乘以(x +1)(x −1),得:2(x −1)+2x =x +1,解得:x =1,,检验:当x =1时,(x +1)(x −1)=0,则x =1是原分式方程的增根,所以分式方程无解.【解析】本题考查因式分解及其解分式方程,掌握运算法则是解题关键.(1)直接提取公因式(a −b)进行分解即可;(2)首先提取公因式5m ,然后运用平方差公式进行分解即可;(3)首先方程两边都乘以(x +1)(x −1),得到整式方程2(x −1)+2x =x +1,解这个方程并检验即可.42.【答案】解:原方程可化为(x +1x )2−2−2(x +1x )−1=0即:(x +1x )2−2(x +1x )−3=0设x +1x =y ,则y 2−2y −3=0,即(y −3)(y +1)=0.解得y =3或y =−1.当y =3时,x +1x =3,即x 2−3x +1=0解得∴x 1=3+√52,x 2=3−√52; 当y =−1时,x +1x =−1无实数根.经检验,x 1=3+√52,x 2=3−√52都是原方程的根.∴原方程的根为x 1=3+√52,x 2=3−√52.【解析】本题考查了换元法解分式方程,换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.整理可知,方程的两个分式具备平方关系,设x +1x =y ,则原方程化为y 2−2y −3=0.用换元法解一元二次方程先求y ,再求x.注意检验. 43.【答案】解:x x−2+6x+2=1x (x +2)+6(x −2)=x 2−4x 2+2x +6x −12=x 2−48x =8x =1,经检验,x =1是分式方程的解.精品word完整版-行业资料分享【解析】本题考查了解分式方程,先将分式方程化为整式方程,求得整式方程的解,然后进行检验即可.44.【答案】解:(1)3x+2=2x−3,3(x−3)=2(x+2)3x−9=2x+43x−2x=4+9x=13,检验:当x=13时,(x+2)(x−3)≠0,所以x=13是原方程的解;(2)2x2−4+xx−2=12+x(x+2)=x2−42+x2+2x=x2−42x=−6x=−3检验:当x=−3时,(x+2)(x−2)≠0,所以x=−3是原方程的解.【解析】本题考查了解分式方程.注意验根.先去分母、去括号、合并同类项、称项、系数为1即可求出.45.【答案】解:解不等式2x−1≤1得x≤1,解不等式3x−3<4x得x>−3,则不等式组的解集是−3<x≤1,则符合条件的整数解有−2、−1、0、1【解析】本题主要考查一元一次不等式组的整数解,熟练掌握解一元一次不等式组的方法是解决问题的关键.先求出每一个不等式的解集。

2024年全国各省市数学中考真题汇编 专题5分式及其运算(37题)含详解

2024年全国各省市数学中考真题汇编 专题5分式及其运算(37题)含详解

专题05分式及其运算(37题)一、单选题1.(2024·甘肃·中考真题)计算:4222a ba b a b-=--()A .2B .2a b-C .22a b-D .2a b a b--2.(2024·黑龙江绥化·中考真题)下列计算中,结果正确的是()A .()2139--=B .()222a b a b +=+C 93=±D .()3263x y x y -=3.(2024·黑龙江牡丹江·中考真题)下列计算正确的是()A .32622a a a ⋅=B .331(2)8a b a b-÷⨯=-C .()322a a a a a a++÷=+D .2233aa -=4.(2024·山东威海·中考真题)下列运算正确的是()A .5510x x x +=B .21m m n n n÷⋅=C .624a a a ÷=D .()325a a -=-5.(2024·广东广州·中考真题)若0a ≠,则下列运算正确的是()A .235a a a+=B .325a a a ⋅=C .235a a a⋅=D .321a a ÷=6.(2024·天津·中考真题)计算3311x x x ---的结果等于()A .3B .xC .1x x -D .231x -7.(2024·河北·中考真题)已知A 为整式,若计算22A y xy y x xy-++的结果为x yxy -,则A =()A .xB .yC .x y +D .x y-二、填空题8.(2024·四川南充·中考真题)计算---a ba b a b的结果为.9.(2024·湖北·中考真题)计算:111m m m +=++.10.(2024·广东·中考真题)计算:333a a a -=--.11.(2024·吉林·中考真题)当分式11x +的值为正数时,写出一个满足条件的x 的值为.12.(2024·山东威海·中考真题)计算:2422x x x+=--.13.(2024·四川内江·中考真题)在函数1y x=中,自变量x 的取值范围是;14.(2024·四川眉山·中考真题)已知11a x =+(0x ≠且1x ≠-),23121111,,,111-==⋯=---n n a a a a a a ,则2024a 的值为.三、解答题15.(2024·广东·中考真题)计算:011233-⨯-+.16.(2024·江苏盐城·中考真题)先化简,再求值:22391a a a a a ---÷+,其中4a =.17.(2024·四川泸州·中考真题)化简:2222y x y x y x x ⎛⎫-+-÷ ⎪⎝⎭.18.(2024·四川广安·中考真题)先化简2344111a a a a a ++⎛⎫+-÷⎪--⎝⎭,再从2-,0,1,2中选取一个适合的数代入求值.19.(2024·山东·中考真题)(11122-⎛⎫+-- ⎪⎝⎭;(2)先化简,再求值:212139a a a +⎛⎫-÷ ⎪+-⎝⎭,其中1a =.20.(2024·上海·中考真题)计算:102|124(1++-.21.(2024·江苏连云港·中考真题)计算0|2|(π1)-+-22.(2024·江苏连云港·中考真题)下面是某同学计算21211m m ---的解题过程:解:2121211(1)(1)(1)(1)m m m m m m m +-=---+-+-①(1)2m =+-②1m =-③上述解题过程从第几步开始出现错误?请写出完整的正确解题过程.23.(2024·江西·中考真题)(1)计算:0π5+-;(2)化简:888x x x ---.24.(2024·江苏苏州·中考真题)计算:()042-+-.25.(2024·福建·中考真题)计算:0(1)5-+-26.(2024·陕西·()()0723-+-⨯.27.(2024·湖南·中考真题)先化简,再求值:22432x x x x x-⋅++,其中3x =.28.(2024·北京·中考真题)已知10a b --=,求代数式()223232a b ba ab b -+-+的值.29.(2024·甘肃临夏·中考真题)计算:10120253-⎛⎫+ ⎪⎝⎭.30.(2024·甘肃临夏·中考真题)化简:21111a a a a a +⎛⎫++÷⎪--⎝⎭.31.(2024·浙江·中考真题)计算:1154-⎛⎫-- ⎪⎝⎭32.(2024·四川广元·中考真题)先化简,再求值:22222a a b a ba b a ab b a b--÷---++,其中a ,b 满足20b a -=.33.(2024·黑龙江牡丹江·中考真题)先化简,再求值:2669x x x x x --⎛⎫÷- ⎪⎝⎭,并从1-,0,1,2,3中选一个合适的数代入求值.34.(2024·山东烟台·中考真题)利用课本上的计算器进行计算,按键顺序如下:,若m 是其显示结果的平方根,先化简:27442393mm m m m m --⎛⎫+÷ ⎪--+⎝⎭,再求值.35.(2024·江苏苏州·中考真题)先化简,再求值:2212124x x xx x +-⎛⎫+÷ ⎪--⎝⎭.其中3x =-.36.(2024·贵州·中考真题)(1)在①22,②2-,③()01-,④122⨯中任选3个代数式求和;(2)先化简,再求值:()21122x x -⋅+,其中3x =.37.(2024·四川乐山·中考真题)先化简,再求值:22142x x x ---,其中3x =.小乐同学的计算过程如下:解:()()2212142222x x x x x x x -=---+--…①()()()()222222x x x x x x +=-+-+-…②()()2222x x x x -+=+-…③()()222x x x +=+-…④12x =-…⑤当3x =时,原式1=.(1)小乐同学的解答过程中,第______步开始出现了错误;(2)请帮助小乐同学写出正确的解答过程.专题05分式及其运算(37题)一、单选题1.(2024·甘肃·中考真题)计算:4222a ba b a b-=--()A .2B .2a b -C .22a b-D .2a b a b-【答案】A【分析】本题主要考查了同分母分式减法计算,熟知相关计算法则是解题的关键.【详解】解:()42422222222a b a b a b a b a a b a bb --===-----,故选:A .2.(2024·黑龙江绥化·中考真题)下列计算中,结果正确的是()A .()2139--=B .()222a b a b +=+C 93=±D .()3263x y x y -=【答案】A【分析】本题考查了负整数指数幂,完全平方公式,算术平方根,积的乘方,据此逐项分析计算,即可求解.【详解】解:A.()2139--=,故该选项正确,符合题意;B.()2222a b a ab b +=++,故该选项不正确,不符合题意;C.93=,故该选项不正确,不符合题意;D.()3263x y x y -=-,故该选项不正确,不符合题意;故选:A .3.(2024·黑龙江牡丹江·中考真题)下列计算正确的是()A .32622a a a ⋅=B .331(2)8a b a b-÷⨯=-C .()322a a a a a a++÷=+D .2233aa -=【答案】D【分析】本题考查了单项式的乘除法,多项式除以单项式,负整数指数幂,根据运算法则进行逐项计算,即可作答.【详解】解:A 、32522a a a ⋅=,故该选项是错误的;B 、33218(2)a a b b b-÷⨯=-,故该选项是错误的;C 、()3221a a a a a a ++÷=++,故该选项是错误的;4.(2024·山东威海·中考真题)下列运算正确的是()A .5510x x x +=B .21m m n n n÷⋅=C .624a a a ÷=D .()325a a -=-5.(2024·广东广州·中考真题)若0a ≠,则下列运算正确的是()A .235a a a +=B .325a a a ⋅=C .235a a a⋅=D .321a a ÷=6.(2024·天津·中考真题)计算11x x x ---的结果等于()A .3B .xC .1x x -D .231x -【答案】A【分析】本题考查分式加减运算,熟练运用分式加减法则是解题的关键;运用同分母的分式加减法则进行计算,对7.(2024·河北·中考真题)已知A 为整式,若计算22A y xy y x xy-++的结果为xy -,则A =()A .xB .yC .x y+D .x y-二、填空题8.(2024·四川南充·中考真题)计算-a b a b a b的结果为.9.(2024·湖北·中考真题)计算:111m m m +=.10.(2024·广东·中考真题)计算:333a a a -=--.【答案】1【分析】本题主要考查了同分母分式减法计算,根据同分母分式减法计算法则求解即可.11.(2024·吉林·中考真题)当分式11x +的值为正数时,写出一个满足条件的x 的值为.12.(2024·山东威海·中考真题)计算:22x x+=.13.(2024·四川内江·中考真题)在函数1y x=中,自变量x 的取值范围是;【答案】0x ≠【分析】本题考查函数的概念,根据分式成立的条件求解即可.熟练掌握分式的分母不等于零是解题的关键.【详解】解:由题意可得,0x ≠,故答案为:0x ≠.14.(2024·四川眉山·中考真题)已知11a x =+(0x ≠且1x ≠-),23121111,,,111-==⋯=---n n a a a a a a ,则2024a 的值为.三、解答题16.(2024·江苏盐城·中考真题)先化简,再求值:2391a a a a a---÷,其中4a =.17.(2024·四川泸州·中考真题)化简:2222y x y x y x x ⎛⎫-+-÷ ⎪⎝⎭.18.(2024·四川广安·中考真题)先化简111a a a ++⎛⎫+-÷⎪--⎝⎭,再从2-,0,1,2中选取一个适合的数代入求值.∴当0a =时,原式1=-;当2a =时,原式0=.19.(2024·山东·中考真题)(11122-⎛⎫+-- ⎪⎝⎭;(2)先化简,再求值:212139a a a +⎛⎫-÷ ⎪,其中1a =.21.(2024·江苏连云港·中考真题)计算0|2|(π1)-+-【答案】1-【分析】本题考查实数的混合运算,零指数幂,先进行去绝对值,零指数幂和开方运算,再进行加减运算即可.【详解】解:原式2141=+-=-22.(2024·江苏连云港·中考真题)下面是某同学计算21211m m ---的解题过程:解:2121211(1)(1)(1)(1)m m m m m m m +-=---+-+-①(1)2m =+-②1m =-③上述解题过程从第几步开始出现错误?请写出完整的正确解题过程.23.(2024·江西·中考真题)(1)计算:0π5+-;(2)化简:888x x x ---.24.(2024·江苏苏州·中考真题)计算:()042-+-.【答案】2【分析】本题考查了实数的运算,利用绝对值的意义,零指数幂的意义,算术平方根的定义化简计算即可.【详解】解:原式413=+-2=.25.(2024·福建·中考真题)计算:0(1)5-+-【答案】4【分析】本题考查零指数幂、绝对值、算术平方根等基础知识,熟练掌握运算法则是解题的关键.根据零指数幂、绝对值、算术平方根分别计算即可;【详解】解:原式152=+-4=.26.(2024·陕西·()()0723-+-⨯.27.(2024·湖南·中考真题)先化简,再求值:22x x x-⋅+,其中3x =.28.(2024·北京·中考真题)已知10a b --=,求代数式222a ab b -+的值.29.(2024·甘肃临夏·中考真题)计算:10120253-⎛⎫+ ⎪⎝⎭.【答案】0【分析】本题考查实数的混合运算,先进行开方,去绝对值,零指数幂和负整数指数幂的运算,再进行加减运算即可.【详解】解:原式2310=-+=.30.(2024·甘肃临夏·中考真题)化简:21111a a a a a +⎛⎫++÷ ⎪.31.(2024·浙江·中考真题)计算:1154-⎛⎫-- ⎪⎝⎭32.(2024·四川广元·中考真题)先化简,再求值:222a b a ab b a b--÷-,其中a ,b 满足20b a -=.33.(2024·黑龙江牡丹江·中考真题)先化简,再求值:x x x --⎛⎫÷- ⎪⎝⎭,并从1-,0,1,2,3中选一个合适的数代入求值.34.(2024·山东烟台·中考真题)利用课本上的计算器进行计算,按键顺序如下:,若m 是其显示结果的平方根,先化简:27442393m m m m m m --⎛⎫+÷ ⎪--+⎝⎭,再求值.35.(2024·江苏苏州·中考真题)先化简,再求值:2124x x +-⎛⎫+÷ ⎪--.其中3x =-.36.(2024·贵州·中考真题)(1)在①22,②2-,③()01-,④22⨯中任选3个代数式求和;(2)先化简,再求值:()21122x x -⋅,其中3x =.37.(2024·四川乐山·中考真题)先化简,再求值:242x x ---,其中3x =.小乐同学的计算过程如下:解:()()2212142222x x x x x x x -=---+--…①()()()()222222x x x x x x +=-+-+-…②()()2222x x x x -+=+-…③()()222x x x +=+-…④12x =-…⑤当3x =时,原式1=.(1)小乐同学的解答过程中,第______步开始出现了错误;(2)请帮助小乐同学写出正确的解答过程.。

中考数学计算题练习100道(2024年中考真题)

中考数学计算题练习100道(2024年中考真题)

中考数学计算题练习100道(2024年中考真题)一、计算(1) (24年北京中考) 计算:()052sin 30π-+︒+(2) (24年福建中考)计算:0(1)5-+-(3) (24年深圳中考)计算:()112cos 45 3.1414π-⎛⎫-⋅︒+-++ ⎪⎝⎭.(4) (24年广东中考)计算:011233-⨯-+-. (5) (24年广西中考)计算:()()2342-⨯+-(6) (24年贵州中考)在①22,①2-,①()01-,①122⨯中任选3个代数式求和.(7) (24年河南中考)计算(01(8) (24年湖北中考)计算:()201322024-⨯-(9) (24年湖南中考)计算:|3|cos602-+-+︒ ⎪⎝⎭(10) (24年苏州中考)计算:()042-+-(11) (24年扬州中考)计算:0|3|2sin 302)π-+︒-(12) (24年青海中考)计算0tan 45π︒+-.(13) (24年枣庄中考)计算1122-⎛⎫-- ⎪⎝⎭(14) (24年上海中考)计算:102|124(1++.(15) (24年云南中考)计算:12117sin3062-⎛⎫++--- ⎪⎝⎭(16) (24()02sin 602024 2.π︒--(17) (24年山西中考)计算:2(6)()[(3)(1)]32--⨯-+-+-(18) (24年陕西中考)计算0(7)(2)3-+-⨯.(19) (24年重庆中考)计算:011(3)()2π--+=_____.(20) (24年新疆中考)计算:201(3)1)-+-.(21) (24年呼伦贝尔中考)计算:301tan602(π2024)2-⎛⎫--+︒+- ⎪⎝⎭. (22) (24年泰安中考)212tan60()2-︒+-(23) (24年赤峰中考)计算()0π12sin 602++︒+(24) (24年滨州中考)计算:()11222-⎫⎛+-⨯- ⎪⎝⎭(25) (24年乐山中考)计算:()03π2024-+-.(26) (24年武威中考)计算(27) (24年盐城中考)计算:()0214sin30π--++︒(28) (24年广安中考)计算:01π132sin 60|2|22-⎛⎫⎛⎫-+︒+- ⎪ ⎪⎝⎭⎝⎭(29) (24年泸州中考)计算:()11π20242sin 602-⎛⎫+--︒+ ⎪⎝⎭.(30) (24年德阳中考)计算212cos602-⎛⎫-︒ ⎪⎝⎭(31) (24年宜宾中考)计算:()022sin302︒-+--(32) (24年通辽中考)计算022sin60(π)+︒--.(33) (24年达州中考)计算:()2012sin 60π20242-⎛⎫-︒-- ⎪⎝⎭(34) (24年遂宁中考)计算:11sin4512021-⎛⎫︒+ ⎪⎝⎭.(35) (24年泰安中考)计算:212tan 602-⎛⎫︒+-+⎪⎝⎭(36) (24年连云港中考)02(1)π-+-二、化简求值(37) (24年北京中考)已知10a b --=,求代数式()223232a b ba ab b-+-+的值.(38) (24年深圳中考)先化简,再求值: 2221111a a a a -+⎛⎫-÷⎪++⎝⎭,其中 1a = (39) (24年广东中考)计算:333a a a -=--_______. (40) (24年贵州中考)先化简,再求值:()21122x x -⋅+,其中3x =.(41) (24年河南中考)化简:231124a a a +⎛⎫+÷ ⎪--⎝⎭. (42) (24年黑龙江龙东地区中考)先化简,再求值:22222111m m m m m m ⎛⎫-+÷- ⎪-+⎝⎭,其中cos60m =︒.(43) (24年湖北中考)计算:111m m m +=++______. (44) (24年湖南中考)先化简,再求值:22432x x x x x-⋅++,其中3x =.(45) (24年吉林中考)先化简,再求值:()()2111a a a +-++,其中a =(46) (24年苏州中考)先化简,再求值:2212124x x xx x +-⎛⎫+÷ ⎪--⎝⎭.其中3x =-. (47) (24年扬州中考)化简:2(2)1x x x -÷-+. (48) (24年江西中考)化简:888x x x ---.(49) (24年包头中考)先化简,再求值:()()2121x x +-+,其中x =(50) (24年青海中考)先化简,再求值:11xy y x y x ⎛⎫⎛⎫-÷-⎪ ⎪⎝⎭⎝⎭,其中2x y =-. (51) (24年枣庄中考)先化简,再求值:212139a a a +⎛⎫-÷ ⎪+-⎝⎭,其中1a =. (52) (24年天津中考)计算3311x x x --- (53) (24年山西中考)化简:2112(111x x x x ++÷-+-). (54) (24年陕西中考)先化简,再求值:2()(2),x y x x y ++-其中1,2x y ==-(55) (24年重庆中考)计算:()()22x x y x y -++;(56) (24年重庆中考)计算:22111a a a a -⎛⎫+÷ ⎪+⎝⎭.(57) (24年新疆中考)22222a b a ba ab b a b--÷+++ (58) (24年长春中考)先化简,再求值:32222x x x x ---,其中x . (59) (24年呼伦贝尔中考)先化简,再求值:22422324x xx x x -⎛⎫+-÷+ ⎪+-⎝⎭,其中72x =-.(60) (24年泰安中考)化简:2211()x x x x x---÷. (61) (24年赤峰中考)已知230a a --=,求代数式2(2)(1)(3)a a a -+-+的值.(62) (24年武威中考)先化简,再求值:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦,其中2a =,1b .(63) (24年盐城中考)先化简,再求值:22391a a a a a---÷+,其中4a =.(64) (24年广安中考)先化简2344111a a a a a ++⎛⎫+-÷⎪--⎝⎭,再从2-,0,1,2中选取一个适合的数代入求值.(65) (24年南充中考)先化简,再求值:()23(2)3x x x x +-+÷,其中2 x =-.(66) (24年泸州中考)化简:2222y x y x y x x ⎛⎫-+-÷ ⎪⎝⎭.(67) (24年宜宾中考)计算:2211111a a a ⎫⎛÷- ⎪--+⎝⎭(68) (24年通辽中考)先化简,再求值:()()()()224+--+-a b a b a b a b ,其中2==a b .(69) (24年达州中考)先化简:22224x x x x x x x +⎛⎫-÷ ⎪-+-⎝⎭,再从2-,1-,0,1,2之中选择一个合适的数作为x 的值代入求值.(70) (24年遂宁中考)先化简:2121121x x x x -⎛⎫-÷ ⎪--+⎝⎭,再从1,2,3中选择一个合适的数作为x 的值代入求值.(71) (24年泰安中考)化简:2211x x x x x --⎛⎫+÷⎪⎝⎭(72) (24年连云港中考)21211m m --- 三、分式方程(73) (24年福建中考)解方程:3122x x x +=+-. (74) (24年广州中考)解方程:1325x x=-. (75) (24年武汉中考)分式方程131x x x x +=--的解是______. (76) (24年包头中考)解方程:2244x xx x --=--. (77) (24年成都中考)132x x=- (78) (24年陕西中考)解方程:22111xx x +=--四、方程(组)(79) (24年广西中考)解方程组:2321x y x y +=⎧⎨-=⎩(80) (24年苏州中考)解方程组:27233x y x y +=⎧⎨-=⎩. (81) (24年上海中考)解方程组:2234026x xy y x y ⎧--=⎨+=⎩①②. (82) (24年乐山中考)解方程组:425x y x y +=⎧⎨-=⎩ (83) (24年新疆中考)解方程:2(1)3x x --=.(84) (24年滨州中考)解方程:21132x x -+= (85) (24年广州中考)关于x 的方程2240x x m -+-=有两个不等的实数根.(1)求m 的取值范围;(2)化简:2113|3|21m m m m m ---÷⋅-+.(86) (24年滨州中考)解方程:240x x -=.五、不等式(组)(87) (24年黑龙江龙东地区中考)关于x 的不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有3个整数解,则a 的取值范围是________.(88) (24年武汉中考)求不等式组3121x x x +>⎧⎨-≤⎩①②的整数解. (89) (24年扬州中考)解不等式组260412x x x -≤⎧⎪⎨-<⎪⎩,并求出它的所有整数解的和. (90) (24年天津中考)解不等式组213317x x x +≤⎧⎨-≥-⎩①② (91) (24年成都中考)解不等式组231,11.23x x x +≥-⎧⎪-⎨-<⎪⎩ (92) (24年重庆中考)若关于x 的不等式组()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y的分式方程13211ay y-=---的解为非负整数,则所有满足条件的整数a的值之和为______.(93)(24年武威中考)解不等式组:()223122x xxx⎧-<+⎪⎨+<⎪⎩(94)(24年德阳中考)解不等式组:2351124xx x-+≤-⎧⎪⎨-<+⎪⎩①②(95)(24年达州中考)解不等式组32 312 2xxx--<-⎧⎪⎨-≤+⎪⎩(96)(24年北京中考)解不等式组:() 3142,92.5x xxx⎧-<+⎪⎨-<⎪⎩(97)(24年广西中考)不等式7551x x+<+的解集为______.(98)(24年安徽中考)解不等式53.3xx++<并把它的解集在数轴上表示出来.(99)(24年盐城中考)求不等式113xx+≥-的正整数解.(100)(24年连云港中考)解不等式11 2xx-<+中考数学计算题练习100道答案(1)【答案】(2)【答案】4(3)【答案】4(4)【答案】2(5)【答案】8-(6)【答案】选择①,①,①和为7;选择①,①,①和为7;选择①,①,①和为6;选择①,①,①和为4(7)【答案】9(8)【答案】3(9)【答案】5 2(10)【答案】2(11)【答案】3π-(12)【答案】(13)【答案】3(14)【答案】(15)【答案】2(16)【答案】5(17)【答案】10-(18)【答案】2-(19) 【答案】3(20) 【答案】7(21) 【答案】11(22) 【答案】7(23) 【答案】6(24) 【答案】0(25) 【答案】1(26) 【答案】0(27) 【答案】3(28) 【答案】1(29) 【答案】3(30) 【答案】1(31)(32) 【答案】1(33) 【答案】3-(34) 【答案】2024(35) 【答案】7(36) 【答案】1-.(37) 【答案】3(38) 【答案】11a -,2(39) 【答案】1(40) 【答案】12x -,1 (41) 【答案】2a + (42) 【答案】1m -+,12 (43) 【答案】1(44) 【答案】1x x +,43(45) 【答案】22a ,6(46) 【答案】2x x +,13(47) 【答案】11x + (48) 【答案】1(49) 【答案】21x -,7(50) 【答案】1x y +,12(51) 【答案】3a -,2-(52) 【答案】3(53) 【答案】22x x + (54) 【答案】222,6x y +(55) 【答案】222x y +(56) 【答案】11a a +-. (57) 【答案】1(58) 【答案】2x ,2(59) 【答案】3x +,12- (60) 【答案】11x x -+ (61) 【答案】7(62) 【答案】2a b +,3(63) 【答案】23a +;27 (64) 【答案】22a a -+,0a =时,原式1=-,2a =时,原式0=. (65) 【答案】41x +,7-(66) 【答案】x y x y-+(67) 【答案】1(68) 【答案】3ab -,(69) 【答案】41x +,当1x =时,原式2=. (70) 【答案】1x -;2(71) 【答案】11x x -+. (72) 【答案】11m +. (73) 【答案】10x =.(74) 【答案】3x =(75) 【答案】3x =-(76) 【答案】3x =(77) 【答案】3x =(78) 【答案】3x =-是原分式方程的解.(79) 【答案】212x y =⎧⎪⎨=⎪⎩(80) 【答案】31x y =⎧⎨=⎩(81) 【答案】4x =,1y =或者6x =-,6y =.(82) 【答案】31x y =⎧⎨=⎩ (83) 【答案】5x =(84) 【答案】5x =(85) 【答案】(1)3m > (2)2-(86) 【答案】10x =,24x =.(87) 【答案】102a -≤< (88) 【答案】整数解为:1,0,1-(89) 【答案】132x <≤,整数和为6 (90) 【答案】31x -≤≤(91) 【答案】29.x -≤<(92) 【答案】16(93) 【答案】173x << (94) 【答案】46x ≤<(95) 【答案】15x -<≤(96) 【答案】17x -<<(97) 【答案】<2x -(98) 【答案】 2.x <-(99) 【答案】1,2. (100) 【答案】3x >-.。

初三数学专题练习

 初三数学专题练习

清大学习吧中考数学专用资料姓名:学校:专题一:计算综合知识点: 1、二次根式(1)二次根式的概念:一般地,我们把形如)0(0≥≥a a 的式子叫做二次根式。

二次根式的实质是一个非负数数a 的算数平方根。

(2)二次根式的性质:①二次根式的非负性:0≥a ;0≥a 。

0=,则a=0,b=0;0b =,则a=0,b=0;20b =,则a=0,b=0。

②2a =(),语言叙述:一个非负数的算术平方根的平方等于这个非负数③二次根式的乘法法则)0,0(≥≥=⋅b a ab b a )0,0(≥≥=⋅b a ab mn b n a m)0,0(≥≥⋅=b a b a ab④二次根式的除法法则b a ba =).0,0(>≥b a b a n m bn a m =).0,0(>≥b a ba ba=).0,0(>≥b a(3)二次根式的加减①最简二次根式:被开放数不含分母;被开放数中不含开得尽方的因数或因式。

②同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这样的二次根式叫做同类二次根式。

③二次根式的加减:二次根式加减时,可以先将二次根式化为最简的二次根式,再将被开放数相同的根式进行合并。

,2、绝对值(1)⎪⎩⎪⎨⎧=<->=)0(0)0()0(a a a a a a(2)去绝对值①⎪⎩⎪⎨⎧<-=>-=-=+-)()(0)(b a a b b a b a b a b a b a ②⎪⎩⎪⎨⎧<+--=+>++=--=+)()0(0)0(o b a b a b a b a b a b a b a3、负整数幂①),(1*-∈⎪⎭⎫⎝⎛=N b a a a bb② )0,,,(≠∈⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛*-a N m b a a b b a mm4、三角函数5、因式分解(1)公式法:))((22b a b a b a -+=- ()2222b a b ab a +=++()2222b a b ab a -=+-(2)提取公因式法:)(c b a ac ab -=-6、解一元一次方程步骤:1.去分母:在方程两边都乘以各分母的最小公倍数;2.去括号:先去小括号,再去中括号,最后去大括号;3.移项:把含有未知数的项都移到方程的左边,其他项都移到方程右边;4.合并同类项:把方程化成ax=b(a≠0)的形式;5.系数化成1:在方程两边都除以未知数的系数a ,得到方程的解。

2025年中考数学总复习培优训第16题简单计算题专练

2025年中考数学总复习培优训第16题简单计算题专练

基础和中档解答题专练
2.[2024辽宁十四地市民间大联考二模]计算:-42+(-20)÷( -5)-6×(-2). 原式=0.
3.[2024沈阳协作体调研改编]计算: (-1)2 025+|2-5|+16÷-12-3. 原式=0.
基础和中档解答题专练
基础和中档解答题专练
类型二 实数的混合运算<2024真题.16(1),2024省一模.16(1)>
4y2-x2
x-2y
x2+2xy+y2÷2x2+2xy,其中 x= 2,y=2 2.
2x(x+2y)
原式=-
.
x+y
当 x=
2,y=2
2时,原式=-103
2 .
基础和中档解答题专练
12.[2024营口一模]先化简,再求值:
2xx22-+12x-x2-x2- 2x+x 1÷x+x 1,其中 x 的值从-2,-1,0,1
x+4 x-2
原分式方程的解是x=5.
基础和中档解答题专练
22. 解分式方程:3x--4x+4-5 x=1. 原分式方程的解是x=1.
基础和中档解答题专练
23. 解分式方程:x+x 1+1=3x2+x 3. 原分式方程的解是 x=-34.
基础和中档解答题专练
24. 解分式方程:x2-6 9+1=x+x 3. 原分式方程的解为x=1.
不等式组的解集为-3≤x<1,将不等式组的解集表 示在数轴上略.
基础和中档解答题专练
类型六 解一元二次方程<2024省一模.16(2)>
17.解方程:(2x-3)2=25. 方程的解是x1=4,x2=-1.
18.解方程:7x(5x+2)=6(5x+2). 方程的解是 x1=-25,x2=67.

九年级数学上册(中考题型专练)(人教版)二次函数与一元二次方程(五大类型)(原卷版)

九年级数学上册(中考题型专练)(人教版)二次函数与一元二次方程(五大类型)(原卷版)

专题07 二次函数与一元二次方程(五大类型)【题型1:二次函数与x轴交点问题】【题型2: 图像法确定一元二次方程的根】【题型3:已知函数值y求X的取值范围】【题型4:二次函数与不等式的关系】【题型5:二次函数综合】【题型1:二次函数与x轴交点问题】1.(2023•南充模拟)针对抛物线y=x2﹣(a+1)x+a与x轴公共点的情况,下列说法正确的是()A.有两个公共点B.有一个公共点C.一定有公共点D.可能无公共点2.(2023•许昌二模)若抛物线y=x2+4x+c与x轴没有交点,则c的值可以是()A.﹣4B.0C.4D.83.(2023•南充模拟)针对抛物线y=x2﹣(a+1)x+a与x轴公共点的情况,下列说法正确的是()A.有两个公共点B.有一个公共点C.一定有公共点D.可能无公共点4.(2023春•梅江区校级月考)二次函数y=x2﹣2x﹣1与x轴交点个数情况为()A.有两个不同的交点B.只有一个交点C.没有交点D.无法确定5.(2022秋•集贤县期末)已知函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,则实数m的值为()A.m=0或B.C.m=1或D.m=1或m=06.(2022秋•阜宁县期末)抛物线y=x2﹣bx﹣1与x轴交点的个数为()A.0个B.1个C.2个D.以上都不对7.(2022秋•新城区期末)二次函数y=x2﹣2x+1的图象与x轴的交点个数是()A.0个B.1个C.2个D.不能确定8.(2023•三江县校级一模)若二次函数y=ax2+bx+c的部分图象如图所示,则关于x的方程ax2+bx+c=0的解为()A.x1=﹣2,x2=3B.x1=﹣1,x2=3C.x1=0,x2=3D.x1=1,x2=3【题型2: 图像法确定一元二次方程的根】9.(2022秋•林州市期末)根据如表中代数式ax2+bx的取值情况,可知方程ax2+bx ﹣6=0的根是()x……﹣3﹣2﹣10123……ax2+bx……12620026……A.x1=0,x2=1B.x2=﹣1,x1=2C.x1=﹣2,x2=3D.x1=﹣3,x2=4 10.(2023•澄城县一模)若二次函数y=ax2+bx+c的图象经过点(﹣1,0),(2,0),则关于x的方程ax2+bx+c=0的解为()A.x1=﹣1,x2=2B.x1=﹣2,x2=1C.x1=1,x2=2D.x1=﹣1,x2=﹣211.(2022秋•宛城区期末)根据下表中代数式ax2+bx的取值情况,可知方程ax2+bx﹣6=0的根是()x…﹣3﹣2﹣10123…ax2+bx…12620026…A.x1=0,x2=1B.x1=﹣1,x2=2C.x1=﹣2,x2=3D.x1=﹣3,x2=4【题型3:已知函数值y求X的取值范围】12.(2022秋•长春期末)已知二次函数y=ax2+bx+c的部分图象如图所示,当y>0时,x的取值范围是()A.x>﹣3B.﹣3<x<1C.x<﹣3或x>1D.x<1 13.(2022秋•合肥月考)如图所示的是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.﹣1<x<5B.x>5C.x<﹣1且x>5D.x<﹣1或x>5 14.(2022•泸县校级一模)二次函数y=ax2+bx+c的部分图象如图所示,则关于x的不等式ax2+bx+c≥2的解集是()A.x≤2B.x≤0C.﹣3≤x≤0D.x≤﹣3或x≥0 15.(2022秋•萧山区月考)已知抛物线y=x2+bx的对称轴为直线x=3,则关于x的不等式x2+bx<﹣8的取值范围是()A.1<x<5B.2<x<4C.0<x<6D.﹣1<x<7 16.(2022秋•泰山区校级月考)二次函数y=a2+bx+c(a≠0)的图象如图所示,则不等式ax2+bx+c<0的解集是()A.x>﹣3B.x<1C.﹣3<x<1D.x<﹣3或x>1 17.(2023•泸县校级一模)二次函数y=x2﹣2x﹣3.若y>﹣3,则自变量x的取值范围是()A.x<0或x>2B.x<1或x>3C.0<x<2D.1<x<3 18.(2022秋•金东区期末)已知抛物线y=﹣3x2+bx+c经过点A(0,2)、B (4,2),则不等式﹣3x2+bx+c<2的解集是.【题型4:二次函数与不等式的关系】19.(2022秋•同江市期末)如图,已知y1=ax2+bx+c(a≠0)与y2=kx+b(k≠0)相交于A(﹣1,0)、B(﹣4,3)两点,则y1>y2的x的取值范围是()A.x<﹣4B.﹣4<x<﹣1C.x>﹣1D.x<﹣4或x>﹣120.(2023•娄底模拟)如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,则不等式ax2﹣mx+c<n的解集为()A.x>﹣1B.x<3C.﹣1<x<3D.x<﹣3或x>1 21.(2022秋•保定期末)如图,已知抛物线y=ax2+bx+c与直线y=kx+m交于A(﹣3,﹣1),B(0,3)两点.则关,于x的不等式ax2+bx+c≤kx+m的解集是.22.(2022秋•番禺区校级期末)如图,直线y=x﹣1与抛物线y=x2﹣3x+2都经过点A(1,0)和B(3,2),则不等式x﹣1>x2﹣3x+2的解集是.23.(2022秋•市中区期末)如图,已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象交于点A(﹣1,3),B(4,2).如图所示,则能使y1<y2成立的x的取值范围是.【题型5:二次函数综合】24.(2022秋•武城县月考)如图,四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线y=ax2+bx+c恰好经过x轴上A,B两点.(1)求A,B,C三点的坐标;(2)求经过A,B,C三点的抛物线的解析式.25.(2021秋•天津期末)如图,已知抛物线y=﹣x2+mx+3与x轴交于A、B两点,与y轴交于点C,点B的坐标为(3,0).(1)求m的值及抛物线的顶点坐标;(2)求△ABC的面积;(3)点P是抛物线对称轴1上的一个动点,当P A+PC的值最小时,求点P 的坐标.26.(2022秋•青龙县月考)如图,抛物线y=ax2﹣4ax+3(a≠0)的图象交直线l:y=x+1于A,B两点,与x轴的另一个交点为C,与y轴交于点D.(1)求抛物线的解析式;(2)连接AD,BD,求△ADB的面积;(3)若抛物线的对称轴上存在一动点E,使EA+ED的值最小,求点E的坐标.27.(2022秋•黔东南州月考)如图,抛物线y=ax2+bx﹣3与x轴交于点A(﹣3,0),B(1,0),与y轴相交于点C.(1)求抛物线的函数表达式;(2)在抛物线的对称轴上是否存在上点P,使得以点A、C、P为顶点的三角形是直角三角形,若存在,求出点P坐标若不存在,请说明理由.28.(2022秋•越秀区校级月考)抛物线y=﹣x2+2x+8与x轴交于A,B两点(A 在B的左侧),与y轴交于点C,点M是抛物线在x轴上方部分一动点,过点M作直线MH⊥y轴于H.(1)如图1,当HM=3时,求△ABM的面积;(2)如图2,若△MCO是以CO为底的等腰三角形,求点M的坐标.29.(2022秋•平桂区期末)如图,二次函数y=ax2+bx+5的图象经过点(1,8),且与x轴交于A、B两点,与y轴交于点C,其中点A(﹣1,0),M为抛物线的顶点.(1)求二次函数的解析式;(2)求△MCB的面积;(3)在坐标轴上是否存在点N,使得△BCN为直角三角形?若存在,求出点N的坐标;若不存在,请说明理由.30.(2022秋•萧山区期中)已知二次函数y=x2﹣2mx+2m2﹣2.(1)若m=2,则该抛物线的对称轴为;若A(m﹣2,y1),B(m+1,y2)两点在该二次函数图象上,则y1与y2的大小关系为;(2)若该函数图象的顶点到x轴的距离等于2,试求m的值;(3)若抛物线在1≤x≤3时,对应的函数有最大值3,求m的值.31.(2022秋•汉川市期中)在平面直角坐标系xOy中,抛物线与x 轴交于O,A两点,过点A的直线与y轴交于点C,交抛物线于点D.(1)直接写出点A,C,D的坐标;(2)如图1,点B是直线AC上方第一象限内抛物线上的动点,连接AB和BD,求△ABD面积的最大值;(3)如图2,若点M在抛物线上,点N在x轴上,当以A,D,M,N为顶点的四边形是平行四边形时,求点N的坐标.。

初中数学中考计算题练习

初中数学中考计算题练习

一.解答题1.计算题:①;②解方程:.2.计算:+(π﹣2013)0.3.计算:|1﹣|﹣2cos30°+(﹣)0×(﹣1)2013.4.计算:﹣.5.计算:.6..7.计算:.8.计算:.9.计算:.10.计算:.11.计算:.12..13.计算:.14.计算:﹣(π﹣3.14)0+|﹣3|+(﹣1)2013+tan45°.15.计算:.1.化简求值:,选择一个你喜欢且有意义的数代入求值.2.先化简,再求值,然后选取一个使原式有意义的x值代入求值.3.先化简再求值:选一个使原代数式有意义的数代入中求值.4.先化简,再求值:,请选择一个你喜欢的数代入求值.5.(2010•红河州)先化简再求值:.选一个使原代数式有意义的数代入求值.6.先化简,再求值:(1﹣)÷,选择一个你喜欢的数代入求值.7.先化简,再求值:(﹣1)÷,选择自己喜欢的一个x求值.8.先化简再求值:化简,然后在0,1,2,3中选一个你认为合适的值,代入求值.9.化简求值(1)先化简,再求值,选择你喜欢的一个数代入求值.(2)化简,其中m=5.10.化简求值题:(1)先化简,再求值:,其中x=3.(2)先化简,再求值:,请选一个你喜欢且使式子有意义的数字代入求值.(3)先化简,再求值:,其中x=2.(4)先化简,再求值:,其中x=﹣1.11.(2006•巴中)化简求值:,其中a=.12.(2010•临沂)先化简,再求值:()÷,其中a=2.13.先化简:,再选一个恰当的x值代入求值.14.化简求值:(﹣1)÷,其中x=2.15.(2010•綦江县)先化简,再求值,,其中x=+1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B 卷填空题(易错题型集锦)
一、一元二次方程——整体代换思想
1、设12,x x 是一元二次方程2
320x x --=的两个实数根,则2211223x x x x ++的值为 .
2、已知,12,x x 为方程2
310x x ++=的两实根,则312820x x ++= .
3、已知,2
510m m --=则2
21
25m m m
-+
= .
4、设12,x x 是一元二次方程2
430x x +-=的两个实数根,且21222(53)2x x x a +-+=则a = .
5、已知,,m n 是方程2201020110x x -+=的两根,则2201120130n n -+=与2
201120130m m -+=的积是
= .
6
、若m =,则543
22011m m m -+的值是= .
7、若k 是整数,已知关于x 的一元二次方程2(21)10kx k x k +-+-=只有整数根,则k = .
8、关于x 的方程2()0a x m b ++=(,,a m b 均为常数0a ≠)的解是122,1x x =-=,则方程2(2)0a x m b +++=的解是 .
9、已知非负数,,a b c 满足条件7,5,a b c a +=-=设S a b c =++的最大值为m ,最小值为n ,则m n -的值为 .
10、已知,关于x 的方程22
2(1)0kx k x k +-+=有两个实数根12,x x ,若12121x x x x +=-,那么k 的值为= .
11、已知,当7x =时,代数式5
4
8ax bx +-的值为8,.那么当7x =-时,代数式54
822
a b x x ++的值为 .
12、若12,x x 是关于x 的方程2
40x x m -+=的两个实数根,且满足221122(3)(3)10x x x x --=,则m = .
二、一元二次方程——新运算 13、定义新运算,规则:()
()
a a
b a b b a b ≥⎧*=⎨
<⎩
,如:122,(2
*=,若2
10x x +-=的两根为12,x x ,则12x x *= .
14、对于两个不相等的实数,a b
,定义一种新的运算如下:0)a b a b *=+>
,如:32*==,那么
6(54)**= .
15、若函数22(2)
2(2)
x x y x x ⎧+≤=⎨>⎩,则当8y =函数值时,自变量x 的值是= .
三、一元二次方程——概率
16、如果是从四个数-1,0,1,2中任取的一个数,那么关于的方程2
133
m x x =+--的根为整数的概率为 .
17、在平面直角坐标系xOy 中,直线y=-x+3与两坐标轴围成一个△AOB .现将背面完全相同,正面分别标有数1,2,3,
12,1
3
的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P 的横坐标,将该数的倒数作为点P 的纵坐标,则点P 落在△AOB 内的概率为 .
18、已知函数y=x-5,令x=
12,1,32,2,52,3,72,4,9
2
,5,可得函数图象上的十个点.在这十个点中随机取两个点P (x 1,y 1),Q (x 2,y 2),则P ,Q 两点在同一反比例函数图象上的概率是 .
19、在不透明的口袋中,有四个形状、大小、质地完全相同的小球,四个小球上分别标有数字
12,2,4,1
3
-,现从口袋中任取一个小球,并将该小球上的数字作为平面直角坐标系中点P 的横坐标,且点P 在反比例函数1
y x
=图象上,则点P
落在正比例函数y=x 图象上方的概率是 .
20、从-2,-1,0,1,2这五个数中任取一个数,作为关于x 的一元二次方程x 2-x+k=0中的k 值,则所得的方程中有两个不相等的实数根的概率是 .
21、关于x 的方程211
x a
x +=-的解是正数,则a 的取值范围是 .。

相关文档
最新文档