科教所:2018年长沙市中考模拟数学试卷(6)

合集下载

2018长沙市中考数学试卷及详细答案

2018长沙市中考数学试卷及详细答案

一、填空题(本大题10个小题,每题3分,共计30分) 1.21的倒数是( )A .2B .-2C .21 D .-212.下列几何体中主视图、左视图、俯视图完全相同的是( )A .圆锥B .六棱柱C .球D .四棱锥3.一组数据3,3,4,2,8的中位数和平均数分别是 ( )A . 3和3B . 3和4C . 4和3D . 4和4 4.平行四边形的对角线一定具有的性质是( )A .相等B .互相平分C . 互相垂直D .互相垂直且相等 5 .下列计算正确的是( )A .752=+ B .422)(ab ab = C .a a a 632=+ D .43a a a =⋅6 .如图,C 、D 是线段AB 上两点,D 是线段AC 的中点,若AB=10cm,BC=4cm,则AD 的长等于( )A . 2 cmB . 3 cmC . 4 cmD . 6 cm7 .一个关于x 的一元一次不等式组在数轴上的解集如图所示,则此不等式组的解集是( )A . x >1B .x ≥1C .x >3D .x ≥38.如图,已知菱形ABCD 的边长等于2,∠DAB=60°,则对角线BD 的长为 ( )A . 1B . 2 D .9.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后能与原图形完全重合的是( )10.函数a y x=与函数2y ax =(0a ≠)在同一坐标系中的图像可能是( )二、填空题:(本大题8个小题,每小题3分,共24分).11.如图,直线a ∥b,直线c 与a,b 相交,∠1=70°,则∠2= 度; 12.抛物线23(2)5y x =-+的顶点坐标为 ;A BDC 321· 第6题第7题13.如图,A 、B 、C 是⊙O 上的三点,∠AOB=100°,则∠ACB= 度; 14.已知关于x 的 一元二次方程22340xkx -+=的一个根是1,则k= .15.100件外观相同的产品中有5件不合格,从中任意抽出1件进行检测,则抽到不合格产品的概率为 . 16.如图,△ABC 中,DE ∥BC,23DE BC =,△ADE 的面积为8,则△ABC 的面积为 ;17.如图,B 、E 、C、F 在同一直线上,AB ∥DE,AB=DE,BE=CF,AC=6,则DF= ;18.如图,在平面直角坐标系中,A(2,3),B(-2,1),在x 轴上存在点P ,使P 到A,B 两点的距离之和最小,则P 的坐标为 ; 三、解答题:19.(本题6分)计算:201411(1)()453--+︒20.(本题6分)先化简,再求值:22121(1)24x x x x -++÷--,其中,x =3;21.(本题8分)某数学兴趣小组在全校范围内随机抽取了50个同学进行“舌尖上的长沙——我最喜欢的小吃”调查活动,将调查问卷整理后绘成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若全校有2000名学生,请估计全校同学中最喜欢“臭豆腐”的同学有多少人;(3)在一个不透明的口袋中有四个完全相同的小球,把他们分别标号为四种小吃的序号A,B,C,D ,随机摸出一个小球然后放回,再随机摸出一个小球,请用列表或画树形图的方法,求两次都摸到“A ”的概率; abc 12第11题图 AEDC第16题图CA FDE 第17题图小吃类别口味虾人数臭豆腐 唆螺糖油粑粑22.(本题8分)如图,四边形ABCD 是矩形,把矩形沿对角线AC 折叠,点B 落在点E 处,CE 与AD 相交于点O, (1) 求证:△AEO ≌△CDO ; (2)若∠OCD=30°,求△ACO 的面积;23.(本题9分) 为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼的进行,某施工队准备购买甲、乙两种树苗共400棵,对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元。

2018年长沙市中考数学试卷及答案解析-最新汇编

2018年长沙市中考数学试卷及答案解析-最新汇编

2018年湖南省长沙市中考数学试卷一、选择题(在下列各题的四个选项中,只有一项是符合要求的,请在答题卡中填涂符合题意的选项,本大题共12个小题,每小题3分,共36分)1.(3.00分)﹣2的相反数是()A.﹣2 B.﹣C.2 D.2.(3.00分)据统计,2017年长沙市地区生产总值约为10200亿元,经济总量迈入“万亿俱乐部”,数据10200用科学记数法表示为()A.0.102×105B.10.2×103C.1.02×104D.1.02×1033.(3.00分)下列计算正确的是()A.a2+a3=a5 B.3C.(x2)3=x5D.m5÷m3=m24.(3.00分)下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm5.(3.00分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.(3.00分)不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(3.00分)将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A. B. C. D.8.(3.00分)下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件9.(3.00分)估计+1的值是()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间10.(3.00分)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min11.(3.00分)我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为()A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米12.(3.00分)若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x2﹣16),则符合条件的点P()A.有且只有1个B.有且只有2个C.有且只有3个D.有无穷多个二、填空题(本大题共6个小题,每小题3分,共18分)13.(3.00分)化简:= .14.(3.00分)某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为度.15.(3.00分)在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是.16.(3.00分)掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是.17.(3.00分)已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为.18.(3.00分)如图,点A,B,D在⊙O上,∠A=20°,BC是⊙O的切线,B为切点,OD的延长线交BC于点C,则∠OCB= 度.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第22、23题每小题6分,第25、26题每小题6分,共66分。

2018年湖南省长沙市中考数学试题(含答案解析版)

2018年湖南省长沙市中考数学试题(含答案解析版)

注意事项:2018 年长沙市初中学业水平考试试卷数学1、答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2、必须在答题卡上答题,在草稿纸、试题卷上答题无效;3、答题时,请考生注意各大题号后面的答题提示;4、请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5、答题卡上不得使用涂改液、涂改胶和贴纸;6、本学科试卷共26个小题,考试时量120分钟,满分120分。

一、选择题(在下列各题的四个选项中,只有一项是符合题意的。

请在答题卡中填涂符合题意的选项。

本大题共12个小题,每小题3分,共36分)1、(长沙市)-2 的相反数是A、-2B、-12 C、2D、122、(长沙市)据统计, 2017 年长沙市地区生产总值约为10200 亿元,经济总量迈入”万亿俱乐部”,数据10200用科学记数法表示为A、0.102⨯1053、下面计算正确的是B、10.2 ⨯10 3C、1.0.2 ⨯10 4D、10.2 ⨯10 5A、a2 +a 3 =a 5B、3 2 - 2 2 = 1C、(x 2 )3=x 5D、m5 ÷m 3 =m 24、下列长度的三条线段,能组成三角形的是A、459cm B、8815cmC、5510cmD、6714cm5、下列四个图形中,既是轴对称图形又是中心对称图形的是A 、B 、C 、D、6、不等式20240xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是A、B、C、D、0 0 7、将下面左侧的平面图形绕轴l 旋转一周,可以得到的立体图形是A 、B 、C 、D 、8、下面说法正确的是A 、任意掷一枚质地均匀的硬币10 次,一定有 5 次正面朝上B 、天气预报说”明天降水概率为 40% ”,表示明天有 40% 的时间在下雨C 、“篮球队员在罚球线上投筐一次,投中”为随机事件D 、“ a 是实数, a ≥ 0 ”是不可能事件9、估计 10 + 1 的值 A 、在 2 和 3 之间 B 、在 3 和 4 之间 C 、在 4 和 5 之间 D 、在 5 和 6 之间 10、小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回 家.下图反映了这个过程中,小明离家的距离 y 与时间 x 之间的对应关系.根据图像下列说法正确 的是A 、小明吃早餐用了 25 min C 、食堂到图书馆的距离为 0.8kmB 、小明读报用了30 minD 、小明从图书馆回家的速度为 0.8km / min11、我国南宋著名数学家秦九韶的著作《数书九章》里记A 、7.5 平方千米 B 、15 平方千米 C 、75 平方千米 D 、750 平方千米 12、若对于任意非零实数 a ,抛物线 y = ax 2 + ax - 2a 总不经过点 P (x - 3,x 2- 16),则符合条件的点 P A 、有且只有 1 个 B 、有且只有 2 个 C 、至少有 3 个 D 、有无穷多个 二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分) m 1 13、化简 -= 。

2018年湖南省长沙市中考数学试题含答案(pdf版)

2018年湖南省长沙市中考数学试题含答案(pdf版)

注意事项: 2018 年长沙市初中学业水平考试试卷 数学1、答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和 座位号;2、必须在答题卡上答题,在草稿纸、试题卷上答题无效;3、答题时,请考生注意各大题号后面的答题提示;4、请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5、答题卡上不得使用涂改液、涂改胶和贴纸;6、本学科试卷共 26 个小题,考试时量 120 分钟,满分 120 分。

一、选择题(在下列各题的四个选项中,只有一项是符合题意的。

请在答题卡中填涂符合题意的选项。

本大 题共 12 个小题,每小题 3 分,共 36 分)1、 -2 的相反数是A 、 -2B 、 - 1 2C 、 2D 、 122、据统计, 2017 年长沙市地区生产总值约为10200 亿元,经济总量迈入”万亿俱乐部”,数据10200 用科学记数法表示为A 、 0.102⨯105 3、下面计算正确的是B 、10.2 ⨯10 3C 、1.0.2 ⨯10 4D 、10.2 ⨯10 5A 、 a 2 + a 3 = a 5B 、 3 2 - 2 2 = 1C 、 (x 2 )3 = x 5D 、 m 5 ÷ m 3 = m 2 4、下列长度的三条线段,能组成三角形的是A 、 4cm ,5cm ,9cmB 、8cm ,8cm ,15cmC 、5cm ,5cm ,10cmD 、 6cm ,7cm ,14cm5、下列四个图形中,既是轴对称图形又是中心对称图形的是 A 、B 、C 、D 、6、不等式20240x x +>⎧⎨-≤⎩的 解 集 在 数 轴 上 表 示 正 确 的 是A 、B 、C 、D 、0 0 7、将下面左侧的平面图形绕轴l 旋转一周,可以得到的立体图形是A 、B 、C 、D 、 8、下面说法正确的是A 、任意掷一枚质地均匀的硬币10 次,一定有 5 次正面朝上B 、天气预报说”明天降水概率为 40% ”,表示明天有 40% 的时间在下雨 C 、“篮球队员在罚球线上投筐一次,投中”为随机事件D 、“ a 是实数, a ≥ 0 ”是不可能事件 9、估计 10 + 1 的值A 、在 2 和 3 之间B 、在 3 和 4 之间C 、在 4 和 5 之间D 、在 5 和 6 之间10、小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回 家.下图反映了这个过程中,小明离家的距离 y 与时间 x 之间的对应关系.根据图像下列说法正确 的是A 、小明吃早餐用了 25 minC 、食堂到图书馆的距离为 0.8km B 、小明读报用了30 minD 、小明从图书馆回家的速度为 0.8km / min11、我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中 小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别 为 5 里,12 里,13 里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1 里=500 米,则该沙 田的面积为A 、7.5 平方千米B 、15 平方千米C 、75 平方千米D 、750 平方千米12、若对于任意非零实数 a ,抛物线 y = ax 2 + ax - 2a 总不经过点 P (x - 3,x 2 -16),则符合条件的点 P A 、有且只有 1 个B 、有且只有 2 个C 、至少有 3 个D 、有无穷多个二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)m 1 13、化简 - = 。

2018年湖南省长沙市中考数学试题(含答案解析版).(优选.)

2018年湖南省长沙市中考数学试题(含答案解析版).(优选.)

最新文件---- 仅供参考------已改成word文本------ 方便更改注意事项:2018 年长沙市初中学业水平考试试卷数学1、答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2、必须在答题卡上答题,在草稿纸、试题卷上答题无效;3、答题时,请考生注意各大题号后面的答题提示;4、请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5、答题卡上不得使用涂改液、涂改胶和贴纸;6、本学科试卷共26个小题,考试时量120分钟,满分120分。

一、选择题(在下列各题的四个选项中,只有一项是符合题意的。

请在答题卡中填涂符合题意的选项。

本大题共12个小题,每小题3分,共36分)1、(长沙市)-2 的相反数是A、-2B、-12 C、2D、122、(长沙市)据统计, 2017 年长沙市地区生产总值约为10200 亿元,经济总量迈入”万亿俱乐部”,数据10200用科学记数法表示为A、0.102⨯1053、下面计算正确的是B、10.2 ⨯10 3C、1.0.2 ⨯10 4D、10.2 ⨯10 5A、a2 +a 3 =a 5B、3 2 - 2 2 = 1C、(x 2 )3=x 5D、m5 ÷m 3 =m 24、下列长度的三条线段,能组成三角形的是A、459cm B、8815cmC、5510cmD、6714cm5、下列四个图形中,既是轴对称图形又是中心对称图形的是A 、B 、C 、D、6、不等式20240xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是A、B、C、D、0 0 7、将下面左侧的平面图形绕轴l 旋转一周,可以得到的立体图形是A 、B 、C 、D 、8、下面说法正确的是A 、任意掷一枚质地均匀的硬币10 次,一定有 5 次正面朝上B 、天气预报说”明天降水概率为 40% ”,表示明天有 40% 的时间在下雨C 、“篮球队员在罚球线上投筐一次,投中”为随机事件D 、“ a 是实数, a ≥ 0 ”是不可能事件9、估计 10 + 1 的值 A 、在 2 和 3 之间 B 、在 3 和 4 之间 C 、在 4 和 5 之间 D 、在 5 和 6 之间 10、小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回 家.下图反映了这个过程中,小明离家的距离 y 与时间 x 之间的对应关系.根据图像下列说法正确 的是A 、小明吃早餐用了 25 min C 、食堂到图书馆的距离为 0.8kmB 、小明读报用了30 minD 、小明从图书馆回家的速度为 0.8km / min11、我国南宋著名数学家秦九韶的著作《数书九章》里记载A 、7.5 平方千米 B 、15 平方千米 C 、75 平方千米 D 、750 平方千米 12、若对于任意非零实数 a ,抛物线 y = ax 2 + ax - 2a 总不经过点 P (x - 3,x 2- 16),则符合条件的点 P A 、有且只有 1 个 B 、有且只有 2 个 C 、至少有 3 个 D 、有无穷多个 二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分) m 1 13、化简 -= 。

湖南省长沙市2018年中考数学试题(原卷版)

湖南省长沙市2018年中考数学试题(原卷版)

2018年湖南省长沙市中考数学试卷一、选择题(在下列各题的四个选项中,只有一项是符合要求的,请在答题卡中填涂符合题意的选项,本大题共12个小题,每小题3分,共36分)1.2-的相反数是()A. 2-B. 2C. 12D.12-2.据统计,2017年长沙市地区生产总值约为10200亿元,经济总量迈入“万亿俱乐部”,数据10200用科学记数法表示为()A. 0.102×105B. 10.2×103C. 1.02×104D. 1.02×1033.下列计算正确的是()A. a2+a3=a5B. 1= C. (x2)3=x5 D. m5÷m3=m24.下列长度的三条线段,能组成三角形的是()A. 4cm,5cm,9cmB. 8cm,8cm,15cmC. 5cm,5cm,10cmD. 6cm,7cm,14cm5.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.6.不等式组20240xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是()A. B.C. D.7.将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A. B. C. D.8.下列判断正确是()A. 任意掷一枚质地均匀硬币10次,一定有5次正面向上B. 天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C. “篮球队员在罚球线上投篮一次,投中”为随机事件D. “a是实数,|a|≥0”是不可能事件9.1的值在( )A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间10.小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A. 小明吃早餐用了25minB. 小明读报用了30minC. 食堂到图书馆的距离为0.8kmD. 小明从图书馆回家的速度为0.8km/min11.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为()A. 7.5平方千米B. 15平方千米C. 75平方千米D. 750平方千米12.若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件的点P()A. 有且只有1个B. 有且只有2个C. 有且只有3个D. 有无穷多个二、填空题(本大题共6个小题,每小题3分,共18分)13.计算:111mm m-=--.14.某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为_____度.15.在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.16.掷一枚质地均匀正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是_____.17.已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.18.如图,点A,B,D在⊙O上,∠A=20°,BC是⊙O的切线,B为切点,OD的延长线交BC于点C,则∠OCB=_____度.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第22、23题每小题6分,第25、26题每小题6分,共66分。

2018年湖南长沙中考数学模拟试题

2018年湖南长沙中考数学模拟试题

2018年湖南省长沙市中考数学试卷一、选择题(在下列各题地四个选项中,只有一项是符合要求地,请在答题卡中填涂符合题意地选项,本大题共12个小题,每小题3分,共36分) 1.(3.00分)(2018•长沙)﹣2地相反数是()A.﹣2 B.﹣C.2 D.2.(3.00分)(2018•长沙)据统计,2017年长沙市地区生产总值约为10200亿元,经济总量迈入“万亿俱乐部”,数据10200用科学记数法表示为()b5E2A.0.102×105B.10.2×103C.1.02×104D.1.02×103 3.(3.00分)(2018•长沙)下列计算正确地是()A.a235B.3 C.(x2)35D.m5÷m324.(3.00分)(2018•长沙)下列长度地三条线段,能组成三角形地是()A.4,5,9.8,8,15 C.5,5,10 D.6,7,1415.(3.00分)(2018•长沙)下列四个图形中,既是轴对称图形又是中心对称图形地是()A.B.C.D.6.(3.00分)(2018•长沙)不等式组地解集在数轴上表示正确地是()9E3dA.B.C.D.7.(3.00分)(2018•长沙)将下列如图地平面图形绕轴l旋转一周,可以得到地立体图形是()A.B.C.D.8.(3.00分)(2018•长沙)下列说法正确地是()A.任意掷一枚质地均匀地硬币10次,一定有5次正面向上B.天气预报说“明天地降水概率为40%”,表示明天有40%地时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,≥0”是不可能事件9.(3.00分)(2018•长沙)估计+1地值是()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间10.(3.00分)(2018•长沙)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家地距离y与时间x之间地对应关系.根据图象,下列说法正确地是()A.小明吃早餐用了25B.小明读报用了30C.食堂到图书馆地距离为0.8D.小明从图书馆回家地速度为0.811.(3.00分)(2018•长沙)我国南宋著名数学家秦九韶地著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲地是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田地面积为()57 A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米12.(3.00分)(2018•长沙)若对于任意非零实数a,抛物线2﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件地点P()A.有且只有1个B.有且只有2个C.有且只有3个D.有无穷多个二、填空题(本大题共6个小题,每小题3分,共18分)13.(3.00分)(2018•长沙)化简:=.14.(3.00分)(2018•长沙)某校九年级准备开展春季研学活动,对全年级学生各自最想去地活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形地圆心角为度.74J0X15.(3.00分)(2018•长沙)在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应地点A′地坐标是.16.(3.00分)(2018•长沙)掷一枚质地均匀地正方体骰子,骰子地六个面上分别刻有1到6地点数,掷得面朝上地点数为偶数地概率是.62 17.(3.00分)(2018•长沙)已知关于x方程x2﹣30有一个根为1,则方程地另一个根为.118.(3.00分)(2018•长沙)如图,点A,B,D在⊙O上,∠20°,是⊙O地切线,B为切点,地延长线交于点C,则∠度.14三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第22、23题每小题6分,第25、26题每小题6分,共66分.解答时写出必要地文字说明、证明过程或演算步骤)19.(6.00分)(2018•长沙)计算:(﹣1)2018﹣+(π﹣3)0+445°20.(6.00分)(2018•长沙)先化简,再求值:()2(a﹣b)﹣4,其中2,﹣.2521.(8.00分)(2018•长沙)为了了解居民地环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”地环保知识有奖问答活动,并用得到地数据绘制了如图条形统计图(得分为整数,满分为10分,最低分为6分)6请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取地样本数据地平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品?4222.(8.00分)(2018•长沙)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间地公路进行改建.如图,A、B两地之间有一座山.汽车原来从A地到B地需途径C地沿折线行驶,现开通隧道后,汽车可直接沿直线行驶.已知80千米,∠45°,∠30°.y6v389(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈141,≈1.73)M2623.(9.00分)(2018•长沙)随着中国传统节日“端午节”地临近,东方红商场决定开展“欢度端午,回馈顾客”地让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.0(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?824.(9.00分)(2018•长沙)如图,在△中,是边上地中线,∠∠,∥,交地延长线于点E,8,3.5T(1)求地长;(2)求证:△为等腰三角形.(3)求△地外接圆圆心P与内切圆圆心Q之间地距离.25.(10.00分)(2018•长沙)如图,在平面直角坐标系中,函数(m 为常数,m>1,x>0)地图象经过点P(m,1)和Q(1,m),直线与x轴,y轴分别交于C,D两点,点M(x,y)是该函数图象上地一个动点,过点M分别作x轴和y轴地垂线,垂足分别为A,B.(1)求∠地度数;(2)当3,1<x<3时,存在点M使得△∽△,求此时点M地坐标;(3)当5时,矩形与△地重叠部分地面积能否等于4.1?请说明你地理由.26.(10.00分)(2018•长沙)我们不妨约定:对角线互相垂直地凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”地有;②在凸四边形中,且≠,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1地⊙O上按逆时针方向排列地四个动点,与交于点E,∠﹣∠∠﹣∠,当6≤22≤7时,求地取值范围;(3)如图2,在平面直角坐标系中,抛物线2(a,b,c为常数,a>0,c <0)与x轴交于A,C两点(点A在点C地左侧),B是抛物线与y轴地交点,点D地坐标为(0,﹣),记“十字形”地面积为S,记△,△,△,△地面积分别为S1,S2,S3,S4.求同时满足下列三个条件地抛物线地解析式;7①=;②=;③“十字形”地周长为12.2018年湖南省长沙市中考数学试卷参考答案与试题解析一、选择题(在下列各题地四个选项中,只有一项是符合要求地,请在答题卡中填涂符合题意地选项,本大题共12个小题,每小题3分,共36分)702E 1.(3.00分)(2018•长沙)﹣2地相反数是()A.﹣2 B.﹣C.2 D.【考点】14:相反数.【分析】根据只有符号不同地两个数互为相反数,可得答案.【解答】解:﹣2地相反数是2,故选:C.【点评】本题考查了相反数,在一个数地前面加上负号就是这个数地相反数.2.(3.00分)(2018•长沙)据统计,2017年长沙市地区生产总值约为10200亿元,经济总量迈入“万亿俱乐部”,数据10200用科学记数法表示为()1A.0.102×105B.10.2×103C.1.02×104D.1.02×103【考点】1I:科学记数法—表示较大地数.【专题】1 :常规题型.【分析】科学记数法地表示形式为a×10n地形式,其中1≤<10,n为整数.确定n地值时,要看把原数变成a时,小数点移动了多少位,n地绝对值与小数点移动地位数相同.当原数绝对值>10时,n是正数;当原数地绝对值<1时,n是负数.3v1【解答】解:10200=1.02×104,故选:C.【点评】此题考查科学记数法地表示方法.科学记数法地表示形式为a×10n地形式,其中1≤<10,n为整数,表示时关键要正确确定a地值以与n地值.143.(3.00分)(2018•长沙)下列计算正确地是()A.a235B.3 C.(x2)35D.m5÷m32【考点】35:合并同类项;47:幂地乘方与积地乘方;48:同底数幂地除法;78:二次根式地加减法.【专题】1 :常规题型.【分析】直接利用合并同类项法则以与幂地乘方运算法则、同底数幂地乘除运算法则分别计算得出答案.【解答】解:A、a23,无法计算,故此选项错误;B、3﹣2=,故此选项错误;C、(x2)36,故此选项错误;D、m5÷m32,正确.故选:D.【点评】此题主要考查了合并同类项以与幂地乘方运算、同底数幂地乘除运算,正确掌握相关运算法则是解题关键.54.(3.00分)(2018•长沙)下列长度地三条线段,能组成三角形地是()A.4,5,9 B.8,8,15 C.5,5,10 D.6,7,146e5【考点】K6:三角形三边关系.【专题】1 :常规题型.【分析】结合“三角形中较短地两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.【点评】本题考查了三角形地三边关系,解题地关键是:用较短地两边长相交与第三边作比较.本题属于基础题,难度不大,解决该题型题目时,结合三角形三边关系,代入数据来验证即可.7775.(3.00分)(2018•长沙)下列四个图形中,既是轴对称图形又是中心对称图形地是()A.B.C.D.【考点】P3:轴对称图形;R5:中心对称图形.【专题】1 :常规题型.【分析】根据轴对称图形与中心对称图形地概念求解.【解答】解:A、是轴对称图形,是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.【点评】此题主要考查了中心对称图形与轴对称图形地概念.轴对称图形地关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.V7l486.(3.00分)(2018•长沙)不等式组地解集在数轴上表示正确地是()8359W9A.B.C.D.【考点】C4:在数轴上表示不等式地解集;:解一元一次不等式组.【专题】11 :计算题;524:一元一次不等式(组)与应用.【分析】先求出各不等式地解集,再求出其公共解集即可.【解答】解:解不等式2>0,得:x>﹣2,解不等式2x﹣4≤0,得:x≤2,则不等式组地解集为﹣2<x≤2,将解集表示在数轴上如下:故选:C.【点评】本题主要考查解一元一次不等式组,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.(3.00分)(2018•长沙)将下列如图地平面图形绕轴l旋转一周,可以得到地立体图形是()A.B.C.D.【考点】I2:点、线、面、体.【专题】55:几何图形.【分析】根据面动成体以与圆台地特点进行逐一分析,能求出结果.【解答】解:绕直线l旋转一周,可以得到圆台,故选:D.【点评】本题考查立体图形地判断,关键是根据面动成体以与圆台地特点解答.8.(3.00分)(2018•长沙)下列说法正确地是()A.任意掷一枚质地均匀地硬币10次,一定有5次正面向上B.天气预报说“明天地降水概率为40%”,表示明天有40%地时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,≥0”是不可能事件【考点】X1:随机事件;X3:概率地意义.【专题】1 :常规题型.【分析】直接利用概率地意义以与随机事件地定义分别分析得出答案.【解答】解:A、任意掷一枚质地均匀地硬币10次,一定有5次正面向上,错误;B、天气预报说“明天地降水概率为40%”,表示明天有40%地时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,≥0”是必然事件,故此选项错误.故选:C.【点评】此题主要考查了概率地意义以与随机事件地定义,正确把握相关定义是解题关键.9.(3.00分)(2018•长沙)估计+1地值是()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间【考点】2B:估算无理数地大小.【分析】应先找到所求地无理数在哪两个和它接近地整数之间,然后判断出所求地无理数地范围.【解答】解:∵32=9,42=16,∴,∴+1在4到5之间.故选:C.【点评】此题主要考查了估算无理数地能力,要求学生正确理解无理数地性质,进行估算,“夹逼法”是估算地一般方法,也是常用方法.4310.(3.00分)(2018•长沙)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家地距离y与时间x之间地对应关系.根据图象,下列说法正确地是()A.小明吃早餐用了25B.小明读报用了30C.食堂到图书馆地距离为0.8D.小明从图书馆回家地速度为0.8【考点】E6:函数地图象.【专题】17 :推理填空题.【分析】根据函数图象判断即可.【解答】解:小明吃早餐用了(25﹣8)=17,A错误;小明读报用了(58﹣28)=30,B正确;食堂到图书馆地距离为(0.8﹣0.6)=0.2,C错误;小明从图书馆回家地速度为0.8÷10=0.08,D错误;故选:B.【点评】本题考查地是函数图象地读图能力.要能根据函数图象地性质和图象上地数据分析得出函数地类型和所需要地条件,结合题意正确计算是解题地关键.2011.(3.00分)(2018•长沙)我国南宋著名数学家秦九韶地著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲地是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田地面积为()7A A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米【考点】1O:数学常识;:勾股定理地应用.【专题】1 :常规题型.【分析】直接利用勾股定理地逆定理进而结合直角三角形面积求法得出答案.【解答】解:∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形,∴这块沙田面积为:×5×500×12×500=7500000(平方米)=7.5(平方千米).故选:A.【点评】此题主要考查了勾股定理地应用,正确得出三角形地形状是解题关键.12.(3.00分)(2018•长沙)若对于任意非零实数a,抛物线2﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件地点P()0U1A.有且只有1个B.有且只有2个C.有且只有3个D.有无穷多个【考点】H5:二次函数图象上点地坐标特征.【专题】2B :探究型.【分析】根据题意可以得到相应地不等式,然后根据对于任意非零实数a,抛物线2﹣2a总不经过点P(x0﹣3,x02﹣16),即可求得点P地坐标,从而可以解答本题.9【解答】解:∵对于任意非零实数a,抛物线2﹣2a总不经过点P(x0﹣3,x02﹣16),∴x02﹣16≠a(x0﹣3)2(x0﹣3)﹣2a∴(x0﹣4)(x0+4)≠a(x0﹣1)(x0﹣4)∴(x0+4)≠a(x0﹣1)∴x0=﹣4或x0=1,∴点P地坐标为(﹣7,0)或(﹣2,﹣15)故选:B.【点评】本题考查二次函数图象上点地坐标特征,解答本题地关键是明确题意,利用二次函数地性质解答.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3.00分)(2018•长沙)化简:=1.【考点】6B:分式地加减法.【专题】11 :计算题.【分析】根据分式地加减法法则:同分母分式加减法法则:同分母地分式想加减,分母不变,把分子相加减计算即可.4k【解答】解:原式1.故答案为:1.【点评】本题考查了分式地加减法法则,解题时牢记定义是关键.14.(3.00分)(2018•长沙)某校九年级准备开展春季研学活动,对全年级学生各自最想去地活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形地圆心角为90度.1【考点】:扇形统计图.【专题】542:统计地应用.【分析】根据圆心角=360°×百分比计算即可;【解答】解:“世界之窗”对应扇形地圆心角=360°×(1﹣10%﹣30%﹣20%﹣15%)=90°,故答案为90.【点评】本题考查地是扇形统计图地综合运用,读懂统计图是解决问题地关键,扇形统计图直接反映部分占总体地百分比大小.15.(3.00分)(2018•长沙)在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应地点A′地坐标是(1,1).0【考点】Q3:坐标与图形变化﹣平移.【专题】1 :常规题型.【分析】直接利用平移地性质分别得出平移后点地坐标得出答案.【解答】解:∵将点A′(﹣2,3)向右平移3个单位长度,∴得到(1,3),∵再向下平移2个单位长度,∴平移后对应地点A′地坐标是:(1,1).故答案为:(1,1).【点评】此题主要考查了平移,正确掌握平移规律是解题关键.16.(3.00分)(2018•长沙)掷一枚质地均匀地正方体骰子,骰子地六个面上分别刻有1到6地点数,掷得面朝上地点数为偶数地概率是.315【考点】X4:概率公式.【专题】1 :常规题型;543:概率与其应用.【分析】先统计出偶数点地个数,再根据概率公式解答.【解答】解:正方体骰子共六个面,点数为1,2,3,4,5,6,偶数为2,4,6,故点数为偶数地概率为=,故答案为:.【点评】此题考查了概率地求法:如果一个事件有n种可能,而且这些事件地可能性相同,其中事件A出现m种结果,那么事件A地概率P(A)=.h8c5217.(3.00分)(2018•长沙)已知关于x方程x2﹣30有一个根为1,则方程地另一个根为2.v4【考点】:根与系数地关系.【专题】17 :推理填空题.【分析】设方程地另一个根为m,根据两根之和等于﹣,即可得出关于m地一元一次方程,解之即可得出结论.J049【解答】解:设方程地另一个根为m,根据题意得:13,解得:2.故答案为:2.【点评】本题考查了根与系数地关系,牢记两根之和等于﹣是解题地关键.18.(3.00分)(2018•长沙)如图,点A,B,D在⊙O上,∠20°,是⊙O地切线,B为切点,地延长线交于点C,则∠50度.9【考点】M5:圆周角定理;:切线地性质.【专题】1 :常规题型.【分析】由圆周角定理易求∠地度数,再根据切线地性质定理可得∠90°,进而可求出求出∠地度°°9C6【解答】解:∵∠20°,∴∠40°,∵是⊙O地切线,B为切点,∴∠90°,∴∠90°﹣40°=50°,故答案为:50.【点评】本题考查了圆周角定理、切线地性质定理地运用,熟记和圆有关地各种性质和定理是解题地关键.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第22、23题每小题6分,第25、26题每小题6分,共66分.解答时写出必要地文字说明、证明过程或演算步骤)919.(6.00分)(2018•长沙)计算:(﹣1)2018﹣+(π﹣3)0+445°【考点】2C:实数地运算;6E:零指数幂;T5:特殊角地三角函数值.【专题】1 :常规题型.【分析】本题涉与零指数幂、乘方、二次根式化简和特殊角地三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数地运算法则求得计算结果.8T7【解答】解:原式=1﹣2+1+4×=1﹣2+1+2=2.【点评】本题主要考查了实数地综合运算能力,是各地中考题中常见地计算题型.解决此类题目地关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点地运算.81D720.(6.00分)(2018•长沙)先化简,再求值:()2(a﹣b)﹣4,其中2,﹣.4B7a99h【考点】4J:整式地混合运算—化简求值.【专题】1 :常规题型.【分析】首先计算完全平方,计算单项式乘以多项式,然后再合并同类项,化简后,再代入a、b地值,进而可得答案.68【解答】解:原式2+22﹣b2﹣42﹣,当2,﹣时,原式=4+1=5.【点评】此题主要考查了整式地混合运算﹣﹣化简求值,关键是先按运算顺序把整式化简,再把对应字母地值代入求整式地值.621.(8.00分)(2018•长沙)为了了解居民地环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”地环保知识有奖问答活动,并用得到地数据绘制了如图条形统计图(得分为整数,满分为10分,最低分为6分)546请根据图中信息,解答下列问题:(1)本次调查一共抽取了50名居民;(2)求本次调查获取地样本数据地平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品?461【考点】V5:用样本估计总体;:条形统计图;W2:加权平均数;W4:中位数;W5:众数.【专题】542:统计地应用.【分析】(1)根据总数=个体数量之和计算即可;(2)根据平均数、总数、中位数地定义计算即可;(3)利用样本估计总体地思想解决问题即可;【解答】解:(1)共抽取:4+10+15+11+10=50(人),故答案为50;(2)平均数=(4×6+10×7+15×8=11×9+10×10)=8.26;众数:得到8分地人最多,故众数为8.中位数:由小到大排列,知第25,26平均分为8分,故中位数为8分;(3)得到10分占10÷50=20%,故500人时,需要一等奖奖品500×20100(份).【点评】本题考查地是条形统计图和扇形统计图地综合运用,读懂统计图,从不同地统计图中得到必要地信息是解决问题地关键.条形统计图能清楚地表示出每个项目地数据;扇形统计图直接反映部分占总体地百分比大小.4422.(8.00分)(2018•长沙)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间地公路进行改建.如图,A、B两地之间有一座山.汽车原来从A地到B地需途径C地沿折线行驶,现开通隧道后,汽车可直接沿直线行驶.已知80千米,∠45°,∠30°.3(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈141,≈1.73)E836L115【考点】:勾股定理地应用;T8:解直角三角形地应用.【专题】55:几何图形.【分析】(1)过点C作地垂线,垂足为D,在直角△中,解直角三角形求出,进而解答即可;S423M(2)在直角△中,解直角三角形求出,再求出,进而求出汽车从A地到B 地比原来少走多少路程.501【解答】解:(1)过点C作地垂线,垂足为D,∵⊥,30°=,80千米,∴•30°=80×(千米),(千米),80+40≈40×1.41+80=136.4(千米),答:开通隧道前,汽车从A地到B地大约要走136.4千米;(2)∵30°=,80(千米),∴•30°=80×(千米),∵45°=,40(千米),∴(千米),∴40+40≈40+40×1.73=109.2(千米),∴汽车从A地到B地比原来少走多少路程为:﹣136.4﹣109.2=27.2(千米).答:汽车从A地到B地比原来少走地路程为27.2千米.【点评】本题考查了勾股定理地运用以与解一般三角形,求三角形地边或高地问题一般可以转化为解直角三角形地问题,解决地方法就是作高线.1923.(9.00分)(2018•长沙)随着中国传统节日“端午节”地临近,东方红商场决定开展“欢度端午,回馈顾客”地让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.0(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?0w【考点】9A:二元一次方程组地应用.【专题】34 :方程思想;521:一次方程(组)与应用.【分析】(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据“打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出关于x、y 地二元一次方程组,解之即可得出结论;(2)根据节省钱数=原价购买所需钱数﹣打折后购买所需钱数,即可求出节省地钱数.【解答】解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据题意得:,解得:.答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)80×40+100×120﹣80×0.8×40﹣100×0.75×120=3640(元).答:打折后购买这批粽子比不打折节省了3640元.【点评】本题考查了二元一次方程组地应用,解题地关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.224.(9.00分)(2018•长沙)如图,在△中,是边上地中线,∠∠,∥,交地延长线于点E,8,3.(1)求地长;(2)求证:△为等腰三角形.(3)求△地外接圆圆心P与内切圆圆心Q之间地距离.【考点】:平行线地性质;:等腰三角形地判定与性质;:三角形地外接圆与外心;:三角形地内切圆与内心.【专题】11 :计算题.【分析】(1)证明为△地中位线得到26;(2)通过证明△≌△得到;(3)如图,连接、、,先利用勾股定理计算出5,设⊙P地半径为R,⊙Q地半径为r,在△中利用勾股定理得到(R﹣3)2+422,解得,则,再利用面积法求出,即,然后计算即可.【解答】(1)解:∵是边上地中线,∴,∵∥,∴为△地中位线,∴26;(2)证明:∵,∠∠,,∴△≌△,∴,∴△为等腰三角形.(3)如图,连接、、,在△中,5,设⊙P地半径为R,⊙Q地半径为r,在△中,(R﹣3)2+422,解得,∴﹣﹣3=,∵S△△△△,∴•r•5+•r•8+•r•5=•3•8,解得,即,∴.答:△地外接圆圆心P与内切圆圆心Q之间地距离为.【点评】本题考查了三角形内切圆与内心:三角形地内心到三角形三边地距离相等;三角形地内心与三角形顶点地连线平分这个内角.也考查了等腰三角形地判定与性质和三角形地外接圆.7925.(10.00分)(2018•长沙)如图,在平面直角坐标系中,函数(m 为常数,m>1,x>0)地图象经过点P(m,1)和Q(1,m),直线与x轴,y轴分别交于C,D两点,点M(x,y)是该函数图象上地一个动点,过点M分别作x轴和y轴地垂线,垂足分别为A,B.(1)求∠地度数;(2)当3,1<x<3时,存在点M使得△∽△,求此时点M地坐标;(3)当5时,矩形与△地重叠部分地面积能否等于4.1?请说明你地理由.【考点】:反比例函数综合题.【专题】153:代数几何综合题.【分析】(1)想办法证明即可解决问题;(2)设M(a,),由△∽△,推出,由此构建方程求出a,再分类求解即可解决问题;1(3)不存在分三种情形说明:①当1<x<5时,如图1中;②当x≤1时,如图2中;③当x≥5时,如图3中;8I【解答】解:(1)设直线地解析式为,则有,解得,∴﹣!,令0,得到1,∴D(0,1),令0,得到1,∴C(1,0),∴,∵∠90°,∴∠45°.。

2018年长沙市初中毕业学业水平考试模拟试卷数学6

2018年长沙市初中毕业学业水平考试模拟试卷数学6

9. 已知关于 x 的一元二次方程 mx 2 2 x 1 0 有两个不相等的实数根,则 m 的取值范围是 ( ) B. m 1 D. m 1 且 m 0
A. m 1 C. m 1 且 m 0
10. 元代朱世杰所著的《算学启蒙》里有这样一道题:“良马日行二百四十里,驽马日行一 百五十里,驽马先行一十二日,问良马几何追及之?”设良马 x 天可以追上驽马,则可列方 程为( ) B. 240 x 150 x 12 150 D. 240 x 150 12 x
2018 年长沙市初中毕业学业水平考试模拟试卷 数学(六)
注意事项: 1. 答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准 考证号、考室和座位号; 2. 必须在答题卡上答题,在草稿纸、试题卷上答题无效; 3. 答题时,请考生注意各大题题号后面的答题提示; 4. 请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁; 5. 答题卡上不得使用涂改液、涂改胶和贴纸; 6. 本学科试卷共 26 个小题,考试时量 120 分钟,满分 120 分。 一、选择题(在下列各题的四个选项中,只有一项是符合题意的。请在答题卡中填涂符合 题意的选项。本大题共 12 个小题,每小题 3 分,共 36 分) 1. 在-1,0, A. -1
请根据所给信息,解答以下问题: (1)样本中最喜欢 B 项目的人数在扇形统计图中所占圆心角的度数是________; (2)请将两幅不完整的统计图补充完整; (3)已知该校共有 1200 人,请根据样本估计全校最喜欢乒乓球项目的人数是多少? (4)小明要从中选择两项作为自己的锻炼项目,他将写有 A 、 B 、 C 、 D 四个字母的完全 相同的卡片放入箱中,从中一次随机抽出两张卡片,求恰好抽到 A 、 B 两项的概率。

2018年湖南长沙市中考数学试卷(word版及答案)

2018年湖南长沙市中考数学试卷(word版及答案)

BO ACOAC B第8题图2018年长沙市初中毕业学业水平考试试卷数学一、选择题(在下列各题的四个选项中,只有一项是符合题意的。

请在答题卡中填涂符合题意的选项。

本题共8个小题,每小题3分,共24分)1.4的平方根是A .2B .2C .±2D .2±2.函数11y x =+的自变量x 的取值范围是A .x >-1 B .x <-1 C .x ≠-1D .x ≠1 3.一个几何体的主视图、左视图、俯视图的图形完全相同,它可能是A .三棱锥B .长方体C .球体D .三棱柱4.下列事件是必然事件的是A .通常加热到100℃,水沸腾;B .抛一枚硬币,正面朝上;C .明天会下雨;D.经过城市中某一有交通信号灯的路口,恰好遇到红灯. 5.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是A .3、4、5 B .6、8、10 C .3、2、5D .5、12、136.已知⊙O 1、⊙O 2的半径分别是12r =、24r =,若两圆相交,则圆心距O 1O 2可能取的值是A .2 B .4C .6D .87.下列计算正确的是A .2242a a a +=B .2(2)4a a =C .333´=D .1232¸=8.如图,在⊙O 中,OA =AB ,OC ⊥AB ,则下列结论错误的是A .弦AB 的长等于圆内接正六边形的边长B .弦AC 的长等于圆内接正十二边形的边长C .AC BC=D .∠BAC =30°二、填空题(本题共8个小题,每小题3分,共24分)9.-3的相反数是.10.截止到2018年5月31日,上海世博园共接待8 000 000人,用科学记数法表示是人.11.如图,O 为直线AB 上一点,∠COB =26°30′,则∠1= 度.12.实数a 、b 在数轴上位置如图所示,则| a |、| b |的大小关系是.a o bCBAOOA BC 1 yx-O 第13题图第12题图第11题图.··.13.已知反比例函数1my x-=的图象如图,则m 的取值范围是 . 14.已知扇形的面积为12p ,半径等于6,则它的圆心角等于 度.15.等腰梯形的上底是4cm ,下底是10 cm,一个底角是60°,则等腰梯形的腰长 是 cm . 16.2018年4月14日青海省玉树县发生7.1级大地震后,湘江中学九年级(1)班的60名同学踊跃捐款.有15人每人捐30元、14人每人捐100元、10人每人 捐70元、21人每人捐50元.在这次每人捐款的数值中,中位数是 .三、解答题(本题共6个小题,每小题6分,共36分) 17.计算:1023tan30(2010)p -°+--18.先化简,再求值:2291()333x x x x x---+其中13x =.19.为了缓解长沙市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图).已知立杆AB 高度是3m ,从侧面D点测得显示牌顶端C 点和底端B 点的仰角分别是60°和45°.求路况显示牌BC 的高度.20.有四张完全一样的空白纸片,在每张纸片的一个面上分别写上1、2、3、4.某同学把这四张纸片写有字的一面朝下,先洗匀随机抽出一张,放回洗匀后,再随机抽出一张.求抽出的两张纸片上的数字之积小于6的概率.(用树状图或列表法求解)21.△ABC 在平面直角坐标系中的位置如图所示.A 、B 、C 三点在格点上. (1)作出△ABC 关于y 轴对称的△A 1B 1C 1,并写出点C 1的坐标;(2)作出△ABC 关于原点O 对称的△A 2B 2C 2,并写出点C 2的坐标.EBDACFAF DE BC第19题图题图第21题图题图yx22.在正方形ABCD 中,AC 为对角线,E 为AC 上一点,连接EB 、ED . (1)求证:△BEC ≌△DEC ;(2)延长BE 交AD 于F ,当∠BED =120°时,求∠EFD 的度数.四、解答题(本题共2个小题,每小题8分,共16分)23.长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费.物业管理费是每平方米每月1.5元.请问哪种方案更优惠?24.已知:AB 是O 的弦,D 是AB 的中点,过B 作AB 的垂线交AD 的延长线于C .(1)求证:AD =DC ; (2)过D 作⊙O 的切线交BC 于E ,若DE =EC ,求sin C .五、解答题(本题共2个小题,每小题10分,共20分)25.已知:二次函数22y ax bx =+-的图象经过点(1,0),一次函数图象经过原点和点(1,-b ),其中0a b >>且a 、b 为实数.(1)求一次函数的表达式(用含b 的式子表示); (2)试说明:这两个函数的图象交于不同的两点;(3)设(2)中的两个交点的横坐标分别为x 1、x 2,求| x 1-x 2 |的范围.26.如图,在平面直角坐标系中,矩形OABC 的两边分别在x 轴和y 轴上,82OA = cm , OC=8cm ,现有两动点P 、Q 分别从O 、C 同时出发,P 在线段OA 上沿OA 方向以每秒2 cm 的速度匀速运动,Q 在线段CO 上沿CO 方向以每秒1 cm 的速度匀速运动.设运动时间为t 秒. (1)用t 的式子表示△OPQ 的面积S ;(2)求证:四边形OPBQ 的面积是一个定值,并求出这个定值; (3)当△OPQ 与△PAB 和△QPB 相似时,抛物线214y x bx c =++经过B 、P 两点,过线段BP 上一动点M 作y 轴的平行线交抛物线于N ,当线段MN 的长取最大值时,求直线MN 把四边形OPBQ 分成两部分的面积之比.2018年长沙市初中毕业学业水平考试试卷第22题图题图B ECDA OOADB E C第24题图题图BAPxCQ Oy 第26题图题图数学参考答案及评分标准一、选择题(本题共8个小题,每小题3分,共24分)请将你认为正确的选项的代号填在答题卡上.题号 1 2 3 4 5 6 7 8 答案C C C A C B C D 二、填空题(本题共8个小题,每小题3分,共24分)9.3 10.8×106 11.153.5 12.|a |>|b | 13.m <1 14.120 15.6 16.50 三、解答题(本题共6个小题,每小题6分,共36分)17.原式=133123+´- …………………………………………………3分 =12……………………………………………………………6分 18.原式=(3)(3)13(3)x x x x x +--+ ……………………………………………2分=1x ……………………………………………………………4分当13x =时,原式=3 …………………………………………………6分19.解:∵在Rt △ADB 中,∠BDA =45°,AB =3 ∴DA =3 …………2分在Rt △ADC 中,∠CDA =60°∴tan60°=CA AD∴CA =33 …………4分∴BC=CA -BA =(33-3)米答:路况显示牌BC 的高度是(33-3)米 ………………………6分 20.解:(1)或用列表法 …………3分(2)P (小于6)=816=12………………………………………………………6分21.解:(1)如图C 1(-3,2)…………………3分(2)如图C 2(-3,-2) …………………6分22.(1)证明:∵四边形ABCD 是正方形 ∴BC =CD ,∠ECB =∠ECD =45°又EC =EC …………………………2分 ∴△ABE ≌△ADE ……………………3分 (2)∵△ABE ≌△ADE开1 2 3 4 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 4 2 4 6 8 3 6 9 124 8 12 ∴∠BEC =∠DEC =12∠BED …………4分∵∠BED =120°∴∠BEC =60°=∠AEF ……………5分 ∴∠EFD =60°+45°=105° …………………………6分四、解答题(本题共2个小题,每小题8分,共16分)23.解:(1)设平均每次降价的百分率是x ,依题意得 ………………………1分5000(1-x )2= 4050 ………………………………………3分 解得:x 1=10% x 2=1910(不合题意,舍去) …………………………4分 答:平均每次降价的百分率为10%. …………………………………5分 (2)方案①的房款是:4050×100×0.98=396900(元) ……………………6分方案②的房款是:4050×100-1.5×100×12×2=401400(元) ……7分 ∵396900<401400∴选方案①更优惠. ……………………………………………8分24.证明:连BD ∵BD AD =∴∠A =∠ABD ∴AD =BD …………………2分 ∵∠A +∠C =90°,∠DBA +∠DBC =90°∴∠C =∠DBC ∴BD =DC∴AD =DC ………………………………………………………4分 (2)连接OD ∵DE 为⊙O 切线 ∴OD ⊥DE …………………………5分 ∵BD AD =,OD 过圆心 ∴OD ⊥AB又∵AB ⊥BC ∴四边形FBED 为矩形∴DE ⊥BC ……………………6分 ∵BD 为Rt △ABC 斜边上的中线∴BD =DC ∴BE =EC =DE∴∠C =45° …………………………………………………7分 ∴sin ∠C =22………………………………………………………………8分五、解答题(本题共2个小题,每小题10分,共20分)25.解:(1)∵一次函数过原点∴设一次函数的解析式为y =kx∵一次函数过(1,-b ) ∴y =-bx ……………………………3分(2)∵y =ax 2+bx -2过(1,0)即a +b =2 …………………………4分由2(2)2y bx y b x bx =-ìí=-+-î得 ……………………………………5分 22(2)20ax a x +--=① ∵△=224(2)84(1)120a a a -+=-+>∴方程①有两个不相等的实数根∴方程组有两组不同的解∴两函数有两个不同的交点. ………………………………………6分 (3)∵两交点的横坐标x 1、x 2分别是方程①的解∴122(2)24a a x x a a--+== 122x x a -=∴2121212()4x x x x x x -=+-=22248164(1)3a a a a -+=-+或由求根公式得出 ………………………………………………………8分 ∵a >b >0,a +b =2 ∴2>a >1令函数24(1)3y a=-+ ∵在1<a <2时y 随a 增大而减小.∴244(1)312a<-+< ……………………………………………9分∴242(1)323a<-+< ∴12223x x <-< ………………10分26.解:(1) ∵CQ =t ,OP =2t ,CO =8 ∴OQ =8-t ∴S△OPQ=212(8)24222t t t t -=-+(0<t <8) …………………3分(2) ∵S 四边形OPBQ =S 矩形ABCD -S △PAB -S △CBQ=11882828(822)22t t ´-´-´´-=322 ………… 5分 ∴四边形O PBQ 的面积为一个定值,且等于322 …………6分(3)当△OPQ 与△PAB 和△QPB 相似时, △QPB 必须是一个直角三角形,依题意只能是∠QPB=90°又∵BQ 与AO 不平行 ∴∠QPO 不可能等于∠PQB ,∠APB 不可能等于∠PBQ∴根据相似三角形的对应关系只能是△OPQ ∽△PBQ ∽△ABP ………………7分 ∴828822t t t-=-解得:t =4 经检验:t =4是方程的解且符合题意(从边长关系和速度) 此时P (42,0) ∵B (82,8)且抛物线214y x bx c =++经过B 、P 两点,∴抛物线是212284y x x =-+,直线BP 是:28y x =- …………………8分设M (m , 28m -)、N (m ,212284m m -+)∵M 在BP 上运动 ∴4282m ££∵2112284y x x =-+与228y x =-交于P 、B 两点且抛物线的顶点是P∴当4282m ££时,12y y > ………………………………9分∴12MN y y =-=21(62)24m --+ ∴当62m =时,MN 有最大值是2∴设MN 与BQ 交于H 点则(62,4)M 、(62,7)H ∴S △BHM =13222´´=32 ∴S △BHM:S五边形QOPMH=32:(32232)-=3:29 ∴当MN 取最大值时两部分面积之比是3:29. …………………10分。

2018年长沙市初中毕业学业水平考试模拟试卷数学六(word版 无答案)-学习文档

2018年长沙市初中毕业学业水平考试模拟试卷数学六(word版 无答案)-学习文档

2019 年长沙市初中毕业学业水平考试模拟试卷数学(六)注意事项:1. 答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2. 必须在答题卡上答题,在草稿纸、试题卷上答题无效;3. 答题时,请考生注意各大题题号后面的答题提示;4. 请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5. 答题卡上不得使用涂改液、涂改胶和贴纸;6. 本学科试卷共26 个小题,考试时量120 分钟,满分120 分。

一、选择题(在下列各题的四个选项中,只有一项是符合题意的。

请在答题卡中填涂符合题意的选项。

本大题共12 个小题,每小题3 分,共36 分)1. 在-1,0,12四个数中,最小的数是()A. -1B. 0C. 12 D.2. 下列运算中,正确的是()A. x2 ⋅x3 =x6B. (a-b)2 =a2 -b2C.D.23. 2019 年12 月26 日,长株潭城际铁路正式开通运营,据统计,该线路年输送能力可达12019 万人,数据12019 用数学记数法表示为()A. 1.2⨯103B. 1.2⨯104C. 1.2⨯105D. 12⨯1034. 下图所示几何体的主视图是()A.B. C. D.5. 下列说法正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 矩形的对角线互相垂直C. 菱形的对角线相等D. 对角线互相垂直的矩形是正方形6. 不等式组1102260xx⎧+⎪⎨⎪-≤⎩f的解集在数轴上表示为()则该班同学捐款金额的众数和中位数分别是()A. 30,35B. 50,35C. 50,50D. 15,508. 如图,点A 、B 、C 是O 上的点,若∠ACB = 35︒,则∠AOB 的度数为()A. 35︒B. 70︒C. 105︒D. 150︒9. 已知关于 x 的一元二次方程 mx 2 + 2x - 1 = 0 有两个不相等的实数根,则 m 的取值范围是A. m ≥ -1B. m > 1C. m ≥ -1 且 m ≠ 0D. m > -1 且 m ≠ 010. 元代朱世杰所著的《算学启蒙》里有这样一道题:“良马日行二百四十里,驽马日行一 百五十里,驽马先行一十二日,问良马几何追及之?”设良马 x 天可以追上驽马,则可列方 程为( )A. 240 x = 12 + 150 xB. 240 x = 150 x - 12 ⨯150C. 240 x = 12 ⨯150 - 150 xD. 240 x = 150 (12 + x )11. 若抛物线 y = x 2 + bx + c 经过两点 M ( -1, 2019 ) 、 N (5, 2019 ) ,则该抛物线的对称轴为( )A. 直线 x = 0B. 直线 x = 1C. 直线 x = 2D. 直线 x = 312. 如图,在四边形 ABCD 中, AB = BC , ∠ABC = ∠CDA = 90︒, BE ⊥ AD 于点E ,且四边 形 ABCD 的面积为 8,则 BE 的长为( )A. 2B. 3C.D. 二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)13. 分解因式: a 2b + ab 2 = 。

2018年湖南省长沙市教科所中考数学模拟试卷(一)附答案解析

 2018年湖南省长沙市教科所中考数学模拟试卷(一)附答案解析

2018年湖南省长沙市教科所中考数学模拟试卷(一)一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共12个小题,每小题3分,共36分)1.下列各组数中,互为相反数的是()A.﹣2 与2B.2与2C.3与D.3与32.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为()A.6.7×106B.6.7×10﹣6C.6.7×105D.0.67×1073.如图,与∠1是内错角的是()A.∠2B.∠3C.∠4D.∠54.下列运算正确的是()A.B.C.a2•a3=a5D.(2a)3=2a35.如图是小强用八块相同的小正方体积木搭建的几何体,这个几何体的左视图是()A.B.C.D.6.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于()A.2cm B.3cm C.6cm D.7cm7.下列命题中,错误的是()A.三角形的两边之和大于第三边B.三角形的外角和等于360°C.等边三角形既是轴对称图形,又是中心对称图形D.三角形的一条中线能将三角形分成面积相等的两部分8.有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的()A.平均数B.中位数C.众数D.方差9.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能>60°,否则就有危险,那么梯子的长至少为()A.8米B.米C.米D.米10.如图,要使平行四边形ABCD成为矩形,需添加的条件是()A.AB=BC B.AC⊥BD C.∠ABC=90°D.∠1=∠211.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1B.a>1且a≠5C.a≥1且a≠5D.a≠512.如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如=48cm2;③14图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE <t<22时,y=110﹣5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.5.其中正确结论的序号是()A.①④⑤B.①②④C.①③④D.①③⑤二、填空题(本大题共6个小题,每小题3分,共18分)13.若二次根式有意义,则x的取值范围为.14.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于.15.若反比例函数y=的图象位于第一、三象限,则正整数k的值是.16.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则蔬菜大棚的高度CD=m.17.如图,在△ABC中,BE平分∠ABC,DE∥BC,如果DE=2AD,AE=3,那么EC=.18.如图,在菱形ABCD中,DE⊥AB于点E,cosA=,BE=4,则tan∠DBE的值是.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:(π﹣3.14)0﹣2﹣|﹣3|=.20.(6分)解不等式组,并写出其所有的整数解.21.(8分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)求扇形统计图中C所对圆心角的度数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.22.(8分)如图,AB为圆O的直径,点C为圆O上一点,若∠BAC=∠CAM,过点C作直线l 垂直于射线AM,垂足为点D.(1)试判断CD与圆O的位置关系,并说明理由;(2)若直线l与AB的延长线相交于点E,圆O的半径为3,并且∠CAB=30°,求AD的长.23.(9分)由甲、乙两个工程队承包某校校园的绿化工程,甲、乙两队单独完成这项工作所需的时间比是3:2,两队共同施工6天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队共同施工6天完成任务后,学校付给他们4000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各应得到多少元?24.(9分)如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G.(1)求四边形OEBF的面积;(2)求证:OG•BD=EF2;(3)在旋转过程中,当△BEF与△COF的面积之和最大时,求AE的长.25.(10分)在数学上,我们把符合一定条件的动点所形成的图形叫做满足该条件的点的轨迹.例如:动点P的坐标满足(m,m﹣1),所有符合该条件的点组成的图象在平面直角坐标系xOy中就是一次函数y=x﹣1的图象.即点P的轨迹就是直线y=x﹣1.(1)若m、n满足等式mn﹣m=6,则(m,n﹣1)在平面直角坐标系xOy中的轨迹是;(2)若点P(x,y)到点A(0,1)的距离与到直线y=﹣1的距离相等,求点P的轨迹;(3)若抛物线y=上有两动点M、N满足MN=a(a为常数,且a≥4),设线段MN的中点为Q,求点Q到x轴的最短距离.26.(10分)如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.参考答案与试题解析一、选择题1.下列各组数中,互为相反数的是()A.﹣2 与2B.2与2C.3与D.3与3【分析】根据相反数的概念作出判断.【解答】解:A.﹣2与2互为相反数,正确;B.2=2,不是相反数,故错误;C.3×=1,互为倒数,故错误;D.3=3,不是相反数,故错误;故选:A.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义.2.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为()A.6.7×106B.6.7×10﹣6C.6.7×105D.0.67×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6 700 000=6.7×106,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,与∠1是内错角的是()A.∠2B.∠3C.∠4D.∠5【分析】根据内错角的定义找出即可.【解答】解:根据内错角的定义,∠1的内错角是∠3.故选:B.【点评】本题考查了“三线八角”问题,确定三线八角的关键是从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.4.下列运算正确的是()A.B.C.a2•a3=a5D.(2a)3=2a3【分析】根据算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则逐一计算即可判断.【解答】解:A、=2,此选项错误;B、2+不能进一步计算,此选项错误;C、a2•a3=a5,此选项正确;D、(2a)3=8a3,此选项计算错误;故选:C.【点评】本题主要考查二次根式的加减和幂的运算,解题的关键是掌握算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则.5.如图是小强用八块相同的小正方体积木搭建的几何体,这个几何体的左视图是()A.B.C.D.【分析】左视图有2列,从左到右分别是2,1个正方形.【解答】解:这个几何体的左视图是,故选:D.【点评】此题主要考查了简单组合体的三视图,关键是掌握左视图所看的位置.6.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于()A.2cm B.3cm C.6cm D.7cm【分析】先根据线段的和差关系求出AC,再根据中点的定义求得CD的长,再根据BD=CD+BC即可解答.【解答】解:∵AB=10,BC=4,∴AC=AB﹣BC=6,∵点D是AC的中点,∴AD=CD=AC=3.∴BD=BC+CD=4+3=7cm,故选:D.【点评】此题考查了两点间的距离,根据是熟练掌握线段的和差计算,以及中点的定义.7.下列命题中,错误的是()A.三角形的两边之和大于第三边B.三角形的外角和等于360°C.等边三角形既是轴对称图形,又是中心对称图形D.三角形的一条中线能将三角形分成面积相等的两部分【分析】根据三角形的性质即可作出判断.【解答】解:A、正确,符合三角形三边关系;B、正确;三角形外角和定理;C、错误,等边三角形既是轴对称图形,不是中心对称图形;D、三角形的一条中线能将三角形分成面积相等的两部分,正确.故选:C.【点评】本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.8.有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的()A.平均数B.中位数C.众数D.方差【分析】由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.故选:B.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.9.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能>60°,否则就有危险,那么梯子的长至少为()A.8米B.米C.米D.米【分析】倾斜角取最大,利用最大角的正弦值即可求解.【解答】解:如图:AC=4,AC⊥BC.∵梯子的倾斜角(梯子与地面的夹角)不能>60°.∴∠ABC≤60°,最大角为60°.∴AB====4×===.即梯子的长至少为米.故选:C.【点评】此题主要考查学生对直角三角形的坡度问题的掌握,做此题关键是明白当梯子的倾斜角越大时梯子的长度要求的越短,所以坡角取最大值.10.如图,要使平行四边形ABCD成为矩形,需添加的条件是()A.AB=BC B.AC⊥BD C.∠ABC=90°D.∠1=∠2【分析】根据一个角是90度的平行四边形是矩形进行选择即可.【解答】解:A、是邻边相等,可判定平行四边形ABCD是菱形;B、是对角线互相垂直,可判定平行四边形ABCD是菱形;C、是一内角等于90°,可判断平行四边形ABCD成为矩形;D、是对角线平分对角,可判定平行四边形ABCD是菱形.故选:C.【点评】本题主要应用的知识点为:矩形的判定.①对角线相等且相互平分的四边形为矩形.②一个角是90度的平行四边形是矩形.11.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1B.a>1且a≠5C.a≥1且a≠5D.a≠5【分析】由于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,那么分两种情况:(1)当a﹣5=0时,方程一定有实数根;(2)当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a 的取值范围.【解答】解:分类讨论:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;②当a﹣5≠0即a≠5时,∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根∴16+4(a﹣5)≥0,∴a≥1.∴a的取值范围为a≥1.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;切记不要忽略一元二次方程二次项系数不为零这一隐含条件.12.如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如=48cm2;③14图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE <t<22时,y=110﹣5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.5.其中正确结论的序号是()A.①④⑤B.①②④C.①③④D.①③⑤【分析】根据题意,得到P、Q分别同时到达D、C可判断①②,分段讨论PQ位置后可以判断③,再由等腰三角形的分类讨论方法确定④,根据两个点的相对位置判断点P在DC上时,存在△BPQ与△BEA相似的可能性,分类讨论计算即可.【解答】解:由图象可知,点Q到达C时,点P到E则BE=BC=10,ED=4故①正确则AE=10﹣4=6t=10时,△BPQ的面积等于∴AB=DC=8=故S△ABE故②错误当14<t<22时,y=故③正确;分别以A、B为圆心,AB为半径画圆,将两圆交点连接即为AB垂直平分线则⊙A、⊙B及AB垂直平分线与点P运行路径的交点是P,满足△ABP是等腰三角形此时,满足条件的点有4个,故④错误.∵△BEA为直角三角形∴只有点P在DC边上时,有△BPQ与△BEA相似由已知,PQ=22﹣t∴当或时,△BPQ与△BEA相似分别将数值代入或解得t=(舍去)或t=14.5故⑤正确故选:D.【点评】本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角形判定,应用了分类讨论和数形结合的数学思想.二、填空题(本大题共6个小题,每小题3分,共18分)13.若二次根式有意义,则x的取值范围为x≥.【分析】函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.【解答】解:根据题意得:1+2x≥0,解得x≥﹣.故答案为:x≥﹣.【点评】本题主要考查自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.14.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于1.【分析】设袋中有a个黄球,再根据概率公式求出a的值即可.【解答】解:设袋中有a个黄球,∵袋中有红球2个,白球3个,从中任意摸出一个球是红球的概率为,∴=,解得:a=1.故答案为:1.【点评】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.15.若反比例函数y=的图象位于第一、三象限,则正整数k的值是1.【分析】由反比例函数的性质列出不等式,解出k的范围,在这个范围写出k的整数解则可.【解答】解:∵反比例函数的图象在一、三象限,∴2﹣k>0,即k<2.又∵k是正整数,∴k的值是:1.故答案为:1.【点评】本题考查了反比例函数的性质:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.16.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则蔬菜大棚的高度CD=4m.【分析】由垂径定理,可得AD=AB,然后由勾股定理求得OD的长,继而求得中间柱CD的高度.【解答】解:∵CD是中间柱,即=,∴OC⊥AB,∴AD=BD=AB=×16=8(m),∵半径OA=10m,在Rt△AOD中,OD==6(m),∴CD=OC﹣OD=10﹣6=4(m).故答案为:4【点评】此题考查了垂径定理的应用与勾股定理.此题比较简单,注意数形结合思想的应用.17.如图,在△ABC中,BE平分∠ABC,DE∥BC,如果DE=2AD,AE=3,那么EC=6.【分析】由BE平分∠ABC,DE∥BC,易得△BDE是等腰三角形,即可得BD=2AD,又由平行线分线段成比例定理,即可求得答案.【解答】解:∵DE∥BC,∴∠DEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠DEB,∴BD=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴AD:DB=AE:EC,∴EC=2AE=2×3=6.故答案为:6.【点评】此题考查了平行线分线段成比例定理以及等腰三角形的判定与性质.注意掌握线段的对应关系是解此题的关键.18.如图,在菱形ABCD中,DE⊥AB于点E,cosA=,BE=4,则tan∠DBE的值是2.【分析】求出AD=AB,设AD=AB=5x,AE=3x,则5x﹣3x=4,求出x,得出AD=10,AE=6,在Rt△ADE中,由勾股定理求出DE=8,在Rt△BDE中得出tan∠DBE=,代入求出即可,【解答】解:∵四边形ABCD是菱形,∴AD=AB,∵cosA=,BE=4,DE⊥AB,∴设AD=AB=5x,AE=3x,则5x﹣3x=4,x=2,即AD=10,AE=6,在Rt△ADE中,由勾股定理得:DE==8,在Rt△BDE中,tan∠DBE===2,故答案为:2.【点评】本题考查了菱形的性质,勾股定理,解直角三角形的应用,关键是求出DE的长.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:(π﹣3.14)0﹣2﹣|﹣3|=﹣1.【分析】本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣2×+4﹣3,=1﹣3+4﹣3,=﹣1.故答案为:﹣1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(6分)解不等式组,并写出其所有的整数解.【分析】先求出不等式组的解集,即可求得该不等式组的整数解.【解答】解:由①得,x≥1,由②得,x<4.所以不等式组的解集为1≤x<4,该不等式组的整数解为1,2,3.【点评】本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.21.(8分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)求扇形统计图中C所对圆心角的度数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.【分析】(1)根据B类有60人,所占的百分比是10%即可求解;(2)利用总人数减去其他类型的人数即可求得C类型的人数,然后根据百分比的意义求解;(3)利用360°乘以对应的百分比即可求解;(4)利用列举法即可求解.【解答】解:(1)本次参加抽样调查的居民人数是:60÷10%=600(人);(2)C类的人数是:600﹣180﹣60﹣240=120(人),C类所占的百分比是:×100%=20%,A类所占的百分比是:×100%=30%.;(3)扇形统计图中C所对圆心角的度数是:360°×20%=72°;(4)画树状图如下:则他第二个吃到的恰好是C粽的概率是:=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)如图,AB为圆O的直径,点C为圆O上一点,若∠BAC=∠CAM,过点C作直线l 垂直于射线AM,垂足为点D.(1)试判断CD与圆O的位置关系,并说明理由;(2)若直线l与AB的延长线相交于点E,圆O的半径为3,并且∠CAB=30°,求AD的长.【分析】(1)连接OC,求出OC和AD平行,求出OC⊥CD,根据切线的判定得出即可;(2)连接BC,解直角三角形求出BC和AC,求出△BCA∽△CDA,得出比例式,代入求出即可.【解答】解:(1)CD与圆O的位置关系是相切,理由是:连接OC,∵OA=OC,∴∠OCA=∠CAB,∵∠CAB=∠CAD,∴∠OCA=∠CAD,∴OC∥AD,∵CD⊥AD,∴OC⊥CD,∵OC为半径,∴CD与圆O的位置关系是相切;(2)连接BC,∵AB是⊙O的直径,∴∠BCA=90°,∵圆O的半径为3,∴AB=6,∵∠CAB=30°,∴BC=AB=3,AC=BC=3,∵∠BCA=∠CDA=90°,∠CAB=∠CAD,∴△CAB∽△DAC,∴=,∴=,∴AD=.【点评】本题考查了切线的性质和判定,圆周角定理,相似三角形的性质和判定,解直角三角形等知识点,能综合运用知识点进行推理是解此题的关键.23.(9分)由甲、乙两个工程队承包某校校园的绿化工程,甲、乙两队单独完成这项工作所需的时间比是3:2,两队共同施工6天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队共同施工6天完成任务后,学校付给他们4000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各应得到多少元?【分析】(1)设甲队单独完成此项工程需要3x天,则乙队单独完成此项工程需要2x天,根据两队共同施工6天可以完成该工程,即可得出关于x的分式方程,解之经检验即可得出结论;(2)根据甲、乙两队单独完成这项工作所需的时间比可得出两队每日完成的工作量之比,再结合总报酬为4000元即可求出结论.【解答】解:(1)设甲队单独完成此项工程需要3x天,则乙队单独完成此项工程需要2x天,根据题意得: +=1,解得:x=5,经检验,x=5是所列分式方程的解且符合题意.∴3x=15,2x=10.答:甲队单独完成此项工程需要15天,乙队单独完成此项工程需要10天.(2)∵甲、乙两队单独完成这项工作所需的时间比是3:2,∴甲、乙两队每日完成的工作量之比是2:3,∴甲队应得的报酬为4000×=1600(元),乙队应得的报酬为4000﹣1600=2400(元).答:甲队应得的报酬为1600元,乙队应得的报酬为2400元.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.(9分)如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G.(1)求四边形OEBF的面积;(2)求证:OG•BD=EF2;(3)在旋转过程中,当△BEF与△COF的面积之和最大时,求AE的长.【分析】(1)由四边形ABCD是正方形,直角∠MPN,易证得△BOE≌△COF(ASA),则可证=S△BOC=S正方形ABCD;得S四边形OEBF(2)易证得△OEG∽△OBE,然后由相似三角形的对应边成比例,证得OG•OB=OE2,再利用OB与BD的关系,OE与EF的关系,即可证得结论;(3)首先设AE=x,则BE=CF=1﹣x,BF=x,继而表示出△BEF与△COF的面积之和,然后利用二次函数的最值问题,求得AE的长.【解答】解:(1)∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE=∠COF,在△BOE和△COF中,,∴△BOE≌△COF(ASA),∴S四边形OEBF =S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD=×1×1=;(2)证明:∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG•OB=OE2,∵OB=BD,OE=EF,∴OG•BD=EF2;(3)如图,过点O作OH⊥BC,∵BC=1,∴OH=BC=,设AE=x,则BE=CF=1﹣x,BF=x,∴S△BEF +S△COF=BE•BF+CF•OH=x(1﹣x)+(1﹣x)×=﹣(x﹣)2+,∵a=﹣<0,∴当x=时,S△BEF +S△COF最大;即在旋转过程中,当△BEF与△COF的面积之和最大时,AE=.【点评】本题属于四边形的综合题,主要考查了正方形的性质,旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理以及二次函数的最值问题.注意掌握转化思想的应用是解此题的关键.25.(10分)在数学上,我们把符合一定条件的动点所形成的图形叫做满足该条件的点的轨迹.例如:动点P的坐标满足(m,m﹣1),所有符合该条件的点组成的图象在平面直角坐标系xOy中就是一次函数y=x﹣1的图象.即点P的轨迹就是直线y=x﹣1.(1)若m、n满足等式mn﹣m=6,则(m,n﹣1)在平面直角坐标系xOy中的轨迹是y=;(2)若点P(x,y)到点A(0,1)的距离与到直线y=﹣1的距离相等,求点P的轨迹;(3)若抛物线y=上有两动点M、N满足MN=a(a为常数,且a≥4),设线段MN的中点为Q,求点Q到x轴的最短距离.【分析】(1)先判断出m(n﹣1)=6,进而得出结论;(2)先求出点P到点A的距离和点P到直线y=﹣1的距离建立方程即可得出结论;(3)设出点M,N的坐标,进而得出点Q的坐标,利用MN=a,得出16(k2+1)(k2+b)≥16,即可得出结论.【解答】解:(1)设m=x,n﹣1=y,∵mn﹣m=6,∴m(n﹣1)=6,∴xy=6,∴y=,∴(m,n﹣1)在平面直角坐标系xOy中的轨迹是y=,故答案为:y=;(2)∴点P(x,y)到点A(0,1),∴点P(x,y)到点A(0,1)的距离的平方为x2+(y﹣1)2,∵点P(x,y)到直线y=﹣1的距离的平方为(y+1)2,∵点P(x,y)到点A(0,1)的距离与到直线y=﹣1的距离相等,∴x2+(y﹣1)2=(y+1)2,∴y=x2;(3)设直线MN的解析式为y=kx+b,M(x1,y1),N(x2,y2),∴线段MN的中点为Q的纵坐标为,∴x2=kx+b,∴x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,∴=(kx1+b+kx2+b)= [k(x1+x2)+2b]=2k2+b∴MN2=(x1﹣x2)2+(y1﹣y2)2=(k2+1)(x1﹣x2)2=(k2+1)[(x1+x2)2﹣4x1x2]=16(k2+1)(k2+b)≥16,∴k2+b≥,∴=k2+k2+b≥k2+=(k2+1+)﹣1≥2﹣1=1,∴点Q到x轴的最短距离为1.【点评】此题是二次函数综合题,主要考查了点的轨迹的定义,两点间的距离公式,中点坐标公式公式,根与系数的关系,确定出16(k2+1)(k2+b)≥16是解本题的关键.26.(10分)如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.。

科教所:2018年长沙市中考模拟数学试卷(4)

科教所:2018年长沙市中考模拟数学试卷(4)

B. 8a
C. 0.1x
4.不等式组
1 2
x
2
3
的解集在数轴上表示为
2 x 3
D. a5
A.
B.
C.
D.
5.下列因式分解正确的是( )
A. x y x y x2 y 2
B. x2 6x 9 x 32
C. x2 y xy x xy y
1
D. x2 2x 3 x 12 2
6.如图,点 C、D 在线段 AB 的同侧,且 CAB DBA ,则下列条件中不能判定 ABD ≌ BAC 的是( )
A. D C
B. BD AC
C. CAD DBC
D. AD BC
7.下列图形中,对角线一定相等的是( )
A.菱形
B.矩形
C.平行四边形
D.正六边形
8.如图,⊙ O 是 ABC 的外接圆,已知 ABO 35 则 ACB 的度数为( )
5.答题卡上不得使用涂改液、涂改胶和贴纸;
6.本学科试卷共 26 个小题,考试时量 120 分钟,满分 120 分。
一、选择题(在下列各题的四个选项中,只有一项是符合题意的。请在答题卡中填涂符合
题意的选项。本大题共 12 个小题,每小题 3 分,共 36 分)
1.下列有理数中,绝对值最小的数是( )
组别 成绩 x(分) 频数(人数) 频率
一 50 x 60
2
0.04
二 60 x 70
10
0.2
三 70 x 80
14
b
四 80 x 90
a
0.32
90 x 100

8
0.16
请根据所给信息,解答以下问题:
(1)本次决赛共有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11. 若抛物线 y x2 bx c 经过两点 M 1, 2017 、 N 5, 2017 ,则该抛物线的对称轴为
() A. 直线 x 0
B. 直线 x 1
C. 直线 x 2
D. 直线 x 3
2
12. 如图,在四边形 ABCD 中, AB BC,ABC CDA 90,BE AD 于点 E ,且四边 形 ABCD 的面积为 8,则 BE 的长为( ) A. 2 B. 3
2018 年长沙市初中毕业学业水平考试模拟试卷
数学(六)
注意事项:
1. 答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准
考证号、考室和座位号;
2. 必须在答题卡上答题,在草稿纸、试题卷上答题无效;
3. 答题时,请考生注意各大题题号后面的答题提示;
4. 请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;
C. 2 2
D. 2 3
二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分) 13. 分解因式: a2b ab2 =________。
14. 在函数 y x 2 中,自变量 x 的取值范围是________。
15. 晓芳抛掷一枚硬币,抛了 10 次,有 7 次正面朝上,当她抛第 11 次时,正面朝上的概率
A. 1.2 103
B. 1.2 104
C. 1.2 105
D. 12 103
4. 下图所示几何体的主视图是( )
A.
B.
C.
D.
5. 下列说法正确的是( )
A. 一组对边平行,另一组对边相等的四边形是平行四边形
B. 矩形的对角线互相垂直
1
C. 菱形的对角线相等
D. 对角线互相垂直的矩形是正方形
6.
4
22. 某工厂研发了 A 、B 两种新型产品,已知生产一种 A 产品需要甲种材料 4 千克、乙种材 料 1 千克;生产一种 B 产品需要甲、乙两种材料各 3 千克。经测算,购买甲、乙两种材料各 1 千克共需资金 600 元;购买甲种材料 2 千克和乙种材料 3 千克共需资金 1600 元。 (1)甲、乙两种材料每千克分别是多少元? (2)现该工厂用 12000 元资金购买甲、乙两种材料用于生产 A 、 B 两种产品,且材料和资 金都恰好用完,符合生产条件的生产方案有哪几种?
5 三、解答题(本大题共 8 个小题,第 19、20 题每小题 6 分,第 21、22 题每小题 8 分,第
23、24 题每小题 9 分,第 25、26 题每小题 10 分,共 66 分,解答应写出必要的文字说明、
证明过程或演算步骤)
19. 计算: 2 2017 0 9 2 cos 45
20. 先化简,再求值: x y 2 x y x y 2y 2 ,其中 x 2, y 1 。
x 的坐标;
(2)当曲线 G 为直线 y kx 2k 0 时,若曲线 G 与 O 的“友好距离”为 0,试求出 k 取
值范围; (3)当曲线 G 为抛物线 y x2 m 时,若曲线 G 与 O 的“友好距离”为 1,试求出 m 的 值和“友好点”的坐标。
7
26. 如图,已知抛物线 y k x 2x 4 ( k 为常数,且 k 0 )与 x 轴从左至右依次相交
不等式组
1 2
x

0
的解集在数轴上表示为(

2x 6 0
A
B
C
D
7. 在一次献爱心的捐赠活动中,某班 45 名同学的捐款金额统计如下:
金额(元)
20
30
35
50
100
学生数(人)
5
10
5
15
10
则该班同学捐款金额的众数和中位数分别是( )
A. 30,35
B. 50,35
C. 50,50
D. 15,50
10. 元代朱世杰所著的《算学启蒙》里有这样一道题:“良马日行二百四十里,驽马日行一
百五十里,驽马先行一十二日,问良马几何追及之?”设良马 x 天可以追上驽马,则可列方
程为( )
A. 240x 12 150x
B. 240x 150x 12 150
C. 240x 12 150 150x
D. 240x 150 12 x
8
2
3
21. 某市积极开展“阳光体育进校园”活动,各校学生坚持每天锻炼一小时,某校根据实际, 决定主要开设乒乓球、篮球、跑步、跳绳四种运动项目(分别用 A 、 B 、 C 、 D 表示), 为了了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下 两幅不完整的统计图:
请根据所给信息,解答以下问题: (1)样本中最喜欢 B 项目的人数在扇形统计图中所占圆心角的度数是________; (2)请将两幅不完整的统计图补充完整; (3)已知该校共有 1200 人,请根据样本估计全校最喜欢乒乓球项目的人数是多少? (4)小明要从中选择两项作为自己的锻炼项目,他将写有 A 、 B 、C 、 D 四个字母的完全 相同的卡片放入箱中,从中一次随机抽出两张卡片,求恰好抽到 A 、 B 两项的概率。
A. -1
B. 0
C. 1 2
D. 2
2. 下列运算中,正确的是( )
A. x2 x3 x6
B. a b2 a2 b2
C. 2 3 5
D. 8 2 2
3. 2016 年 12 月 26 日,长株潭城际铁路正式开通运营,据统计,该线路年输送能力可达 12000
万人,数据 12000 用数学记数法表示为( )
为________。
16.
若关于 x 的分式方程
x x 1
a 1 x
无实数根,则 a 的值为________。
17. 已知一个扇形的圆心角是 90 ,面积为 ,则这个扇形的周长为
________(结果保留 )
18. 如 图 , 在 RtABC 中 , ACB 90,CD AB 于 点 D , CD 3cm,cos A 4 ,则 AB 的长度为________cm。
8. 如图,点 A 、 B 、 C 是 O 上的点,若 ACB 35 ,则 AOB 的
度数为( )
A. 35
B. 70
C. 105
D. 150
9. 已知关于 x 的一元二次方程 mx2 2x 1 0 有两个不相等的实数根,则 m 的取值范围是
()
A. m 1
B. m 1
C. m 1 且 m 0 D. m 1且 m 0
5. 答题卡上不得使用涂改液、涂改胶和贴纸;
6. 本学科试卷共 26 个小题,考试时量 120 分钟,满分 120 分。
一、选择题(在下列各题的四个选项中,只有一项是符合题意的。请在答题卡中填涂符合
题意的选项。本大题共 12 个小题,每小题 3 分,共 36 分)
1. 在-1,0, 1 , 2 四个数中,最小的数是( ) 2
5
23. 如图,ADE 为直角三角形,点 B 为 AD 上一点,以 AB 为直径的 O 交 AE 于点 C ,且 DC DE 。 (1)求证: DC 是 O 的切线 ; (2)若 tan CAB 1 ,AB 3 ,求 BD 的长。
2
24. 如图,点 P 是菱形 ABCD 的对角线 BD 上的一点,连接 CP 并延长,交 AD 于点 E ,交 BA 的延长线于点 F 。 (1)求证: PA PC ; (2)求证: APE ∽ FPA ; (3)若 PC 6,EF 5 ,求线段 PE 的长。
6
25. 在平面直角坐标系中,以坐标原点 O 为圆心,1 为半径作 O ,点 P 为曲线 G 上任意一 点,点 Q 为 O 的圆周上任意一点,当 PQ 的长度最小时,我们称这个最小值为曲线 G 与 O 的“友好距离”,此时的点 P 、 Q 称为一对“友好点”。 (1)当曲线 G 为双曲线 y 2 时,试写出曲线 G 与 O 的“友好距离”和所有“友好点”
8 于 A 、B 两点,与 y 轴相交于点 C ,经过点 B 的直线 y 3 x b 与抛物线的另一交点为 D 。
3 (1)若点 D 的横坐标为-5,求该抛物线的函数解析式; (2)若第一象限内的抛物线上有一点 P ,使得以点 A 、 B 、 P 为顶点的三角形与 ABC 相 似,求 k 的值; (3)在(1)的条件下,设点 F 为线段 BD 上的一点(不含端点),连接 AF ,一动点 M 从 点 A 出发,沿线段 AF 以每秒 1 个单位的速度运动到点 F ,再沿线段 FD 以每秒 2 个单位的 速度运动到点 D 停止,求当点 F 的坐标是多少时,点 M 在整个运动过程中用时最少?
相关文档
最新文档