人教版七年级数学上册课件:第一章 《有理数》单元检测题(共38张PPT)
人教版七年级数学上册第一章《有理数》单元同步检测试题(含答案)
第一章《有理数》单元检测题题号一二三总分21 22 23 24 25 26 27 28分数一、选择题(每小题3分,共30分)1.2018的相反数是()A.﹣2018 B.2018 C.﹣ D.2.如图,点A所表示的数的绝对值是()A.3 B.﹣3 C.D.3.如图,a、b两个数在数轴上的位置如图所示,则下列各式正确的是()A.a+b<0 B.ab<0 C.b﹣a<0 D.4.大于﹣2.2的最小整数是( )A.﹣2 B.﹣3 C.﹣1 D.05.(2020·湖北宜昌中考)陆地上最高处是珠穆朗玛峰的峰顶,高出海平面约8 844 m,记为+8 844 m;陆地上最低处是地处亚洲西部的死海,低于海平面约415 m,记为()A.415 mB.-415 mC.±415 mD.-8 844 m6.(2020·北京中考)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )A.a>-2B.a<-3 第6题图C.a>-bD.a<-b7.下列说法正确的个数是( )①一个有理数不是整数就是分数;②一个有理数不是正数就是负数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1B.2C.3D.48.下列结论成立的是()A.若|a|=a,则a>0 B.若|a|=|b|,则a=±bC .若|a |>a ,则a ≤0D .若|a |>|b |,则a >b .9.如图,点A 表示的有理数是a ,则a ,﹣a ,1的大小顺序为( )A .a <﹣a <1B .﹣a <a <1C .a <1<﹣aD .1<﹣a <a10.设[a ]是有理数,用[a ]表示不超过a 的最大整数,如[1.7]=1,[﹣1]=﹣1,[0]=0,[﹣1.2]=﹣2,则在以下四个结论中,正确的是( ) A .[a ]+[﹣a ]=0 B .[a ]+[﹣a ]等于0或﹣1C .[a ]+[﹣a ]≠0D .[a ]+[﹣a ]等于0或1二、填空题(每小题3分,共24分)11.31的倒数是____;321的相反数是____. 12.在数轴上,点所表示的数为2,那么到点的距离等于3个单位长度的点所表示的数是 .13.若0<<1,则a ,2a ,1a的大小关系是 .14.+5.7的相反数与-7.1的绝对值的和是 .15.已知每辆汽车要装4个轮胎,则51只轮胎至多能装配 辆汽车. 16.-9、6、-3这三个数的和比它们绝对值的和小 .17. 一家电脑公司仓库原有电脑100台,一个星期调入、调出的电脑记录是:调入38台,调出42台,调入27台,调出33台,调出40台,则这个仓库现有电脑 台. 18. 规定﹡,则(-4)﹡6的值为 . 三、解答题(共66分)19.计算﹣+×(23﹣1)×(﹣5)×(﹣)20.已知3m+7与﹣10互为相反数,求m 的值. 21.计算(1)11﹣18﹣12+19(2)(﹣5)×(﹣7)+20÷(﹣4) (3)(+﹣)×(﹣36) (4)2×(﹣)﹣12÷ (5)3+12÷22×(﹣3)﹣5(6)﹣12+2014×(﹣)3×0﹣(﹣3)22.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元): 星期 一 二 三 四 五 每股涨+0.3 +0.1 ﹣﹣+0.2跌0.2 0.5(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5‰的手续费,卖出股票时需付卖出成交额1.5‰的手续费和卖出成交额1‰的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?23.定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.24.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.25.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=6,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(__________)2=__________.根据以上规律填空:(1)13+23+33+…+n3=(__________)2=[__________]2.(2)猜想:113+123+133+143+153=__________.参考答案与解析一、选择题1.A 2.A 3.B 4.A 5.B 6.D 7.B8.B 9.A 10.B二、填空题11.解析:根据倒数和相反数的定义可知的倒数为的相反数是.12.解析:点所表示的数为2,到点的距离等于3个单位长度的点所表示的数有两个,分别位于点的两侧,分别是13解析:当0<<1时,14.1.4 解析:的相反数为,的绝对值为7.1,所以+5.7的相反数与-7.1的绝对值的和是15.12 解析:51÷4=12 3.所以51只轮胎至多能装配12辆汽车.16.24 解析:,,所以.17.50 解析:将调入记为“+”,调出记为“-”,则根据题意有所以这个仓库现有电脑50台.18.-9 解析:根据﹡,得(-4)﹡6.三、解答题19.计算﹣+×(23﹣1)×(﹣5)×(﹣)【考点】有理数的混合运算.【专题】计算题.【分析】根据运算顺序先算括号中的乘方运算,23表示三个2的乘积,计算后再根据负因式的个数为2个,得到积为正数,约分后,最后利用异号两数相加的法则即可得到最后结果.【解答】解:原式=﹣+×(8﹣1)×(﹣5)×(﹣)=﹣+×7×(﹣5)×(﹣)=﹣+4=.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序:先乘方,再乘除,最后算加减,有括号先算括号中的,同级运算从左到右依次进行,然后按照运算法则运算,有时可以利用运算律来简化运算.20.已知3m+7与﹣10互为相反数,求m的值.【考点】相反数.【分析】根据互为相反数的和为零,可得关于m的方程,根据解方程,可得答案.【解答】解:由3m+7与﹣10互为相反数,得3m+7+(﹣10)=0.解得m=1,m的值为1.【点评】本题考查了相反数,利用互为相反数的和为零得出关于m的方程是解题关键.21.计算(1)11﹣18﹣12+19(2)(﹣5)×(﹣7)+20÷(﹣4)(3)(+﹣)×(﹣36)(4)2×(﹣)﹣12÷(5)3+12÷22×(﹣3)﹣5(6)﹣12+2014×(﹣)3×0﹣(﹣3)【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘除运算,再计算加减运算即可得到结果;(5)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(6)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=11+19﹣18﹣12=30﹣30=0;(2)原式=35﹣80=﹣45;(3)原式=﹣4﹣6+9=﹣1;(4)原式=﹣×﹣12×=﹣﹣18=﹣19;(5)原式=3+12××(﹣3)﹣5=3﹣9﹣5=﹣11;(6)原式=﹣1+0+3=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题22.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元):星期一二三四五每股涨跌+0.3 +0.1 ﹣0.2﹣0.5+0.2(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5‰的手续费,卖出股票时需付卖出成交额1.5‰的手续费和卖出成交额1‰的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据卖出股票金额减去买入股票金额,减去成交额费用,减去手续费,可得收益情况.【解答】解:(1)10+0.3+0.1﹣0.2﹣0.5+0.2=9.9(元).答:本周星期五收盘时,每股是9.9元,(2)1000×9.9﹣1000×10﹣1000×10×1.5‰﹣1000×9.9×1.5‰﹣1000×9.9×1‰=9900﹣15﹣14.85﹣9.9﹣10000=﹣139.75(元).答:该股民的收益情况是亏了139.75元.【点评】本题考查了正数和负数,利用了炒股知识:卖出股票金额减去买入股票金额,减去成交额费用,减去手续费.23.定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【专题】新定义.【分析】首先根据运算的定义,根据3⊕x的值小于13,即可列出关于x的不等式,解方程即可求解.【解答】解:∵3⊕x<13,∴3(3﹣x)+1<13,9﹣3x+1<13,解得:x>﹣1..【点评】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.24.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.【考点】整式的混合运算.【专题】换元法.【分析】(1)将1+3+32+33+34+35+36乘3,减去1+3+32+33+34+35+36,把它们的结果除以3﹣1=2即可求解;(2)将1+a+a2+a3+…+a2013乘a,减去1+a+a2+a3+…+a2013,把它们的结果除以a﹣1即可求解.【解答】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2187÷2=1093.5;(2)1+a+a2+a3+…+a2013(a≠0且a≠1)═[(1+a+a2+a3+…+a2013)×a﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=[(a+a2+a3+…+a2013+a2014)﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=(a2014﹣1)÷(a﹣1)=.【点评】本题考查了整式的混合运算,有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.25.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=6,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(1+2+3+4+5)2=225.根据以上规律填空:(1)13+23+33+…+n3=(1+2+…+n)2=[]2.(2)猜想:113+123+133+143+153=11375.【考点】整式的混合运算.【专题】规律型.【分析】观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空,(1)根据上述规律填空,然后把1+2+…+n变为个(n+1)相乘,即可化简;(2)对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.【解答】解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)∵1+2+…+n=(1+n)+[2+(n﹣1)]+…+[+(n﹣+1)]=,∴13+23+33+…+n3=(1+2+…+n)2=[]2;(2)113+123+133+143+153=13+23+33+...+153﹣(13+23+33+ (103)=(1+2+…+15)2﹣(1+2+…+10)2=1202﹣552=11375.故答案为:1+2+3+4+5;225;1+2+…+n;;11375.【点评】此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.。
第1章 有理数 人教版七年级数学上册单元复习课件(共38张PPT)
知识点四:有理数的混合运算 有理数的运算有加法、减法、乘法、除法和乘方.进行混合 运算时,运算顺序是: (1)先乘方,再乘除,最后加减; (2)同级运算,按从左到右的顺序进行; (3)如有括号,先做括号内的运算,按小括号、中括号、大 括号依次进行.
13.【例1】下面的说法正确的是( D ) A.有理数的绝对值一定比0大 B.有理数的相反数一定比0小 C.若两个数的绝对值相等,则这两个数相等 D.互为相反数的两个数的绝对值相等
20.【例8】(创新题)观察下列所给的式子,解答下列问题: 1+3=22; 1+3+5=32; 1+3+5+7=42; 1+3+5+7+9=52;…. (1)1+3+5+7+…+29= 225 ; (2)1+3+5+…+(2n-1)= n2 ;(n为正整数) (3)21+23+25+…+57+59= 800 .
16.【例4】(创新题)若x为有理数,式子2 023-|x+2|存在最
大值,则这个最大值是( B )
A.2 022
B.2 023
C.2 024
D.2 025
小结:直接利用绝对值的性质得出|x+2|的最小值为0.
小结:明确有理数混合运算的计算方法,并合理运用运算律.
18.【例6】(全国视野)(2022泸州改编)若(a-2)2+|b+3|=0, 求ab的值. 解:由题意得a-2=0,b+3=0, 可得a=2,b=-3, 所以ab=2×(-3)=-6.
(3)相反数:只有符号不同的两个数叫做互为相反数,0的相 反数是0. 互为相反数的两个数到原点的距离相等.
(4)绝对值:一个数在数轴上对应的点到原点的距离叫做这 个数的绝对值. 一个正数的绝对值是它本身;一个负数的绝对值是它的相反 数;0的绝对值是0. (5)倒数:乘积是1的两个数互为倒数.
人教版七年级数学上册第一章有理数复习课件(37张PPT)
第一章 有理数
类型四
非负数性质的应用
a2≥0 , | a| ≥0 , 即一个数的平方或一个数的绝对值都不会
是负数,这一点在解题中用处很大,特别是若几个非负数的 和是 0,则这几个数都为 0.
若|a+1|+(b-2)2=0,试求(a+b)9+a6.
[解析] 若要求(a+b)9+a6 的值,需求 a,b 的值,但题中只有 一个等式,似乎无从下手,但从题目的特点来考虑,|a+1|与 (b-2) 为非负数,和又为 0,故问题得解.
> > < ; a+b____0; a-b____0; b+c____0
b > < > b-c____0; ab____0; ____0. c
第一章 有理数
[解析] 互为相反数的两个数表示的点关于原点对称,比较两 个数的绝对值的大小可直接观察其与原点距离的大小,有理 数运算结果的符号可根据法则来确定.在数轴上表示数-a,
第一章 有理数
1 1 3 2 1 1 3 7 2 7 (2) - - -2 + 2 + - - 3 =- + 2 + 2 - - 3 = 3 4 8 3 2 3 4 8 3 2 1 3 7 2 3 1 1 1 -2+24-8+23-33=18-13=24. 1 1 1 3 1 1 2 1 2 (3) ÷-2 + 11 +2 -13 ×24 - × - 3= 4 2 4 3 4 (- 0.2 ) 16 5 45 7 55 1 1 45 7 55 + + - ×24- =- + ×24+ ×24- ×24+ 4 3 4 40 4 3 4 1 3 -5
[点析] (1)利用数轴把问题中“数”和数轴上的“点”结合起 来,就是数形结合,这样可以直观地解决问题.(2)本题所用
人教版七年级数学上册第1章第2节有理数(共38张PPT)
• A.整数包括正数和负数 • B.有理数包括正有理数和负有理数 • C.负整数是整数也是有理数 • D.有理数就是分数
例 1 下列说法正确的是( ) A.一个有理数不是整数就是分数 B.正整数和负整数统称整数 C.正整数、负整数、正分数、负分数统称有理 数 D.0不是有理数
净重在795克和805克之间
在生活、生产和科研中,经常遇到数的表示和运 算等问题. 例如:
(1)北京冬季里某一天的气温为―3℃~3℃. “―3”的含义是什么?这一天北京的温差是多少?
冬季里的北京天安门
(2)某年,我国花生产量比上一年增长1.8%,油 菜籽产量比上一年增长―2.7%.“增长―2.7%”表示什 么意思?
× 7、带有“+”的数是正数,带有“-”的数是负数。( )
我能选
• 1.下面说法中,正确的个数是( B )
• (1)一个有理数,不是整数就是分数;(2)一 个有理数,不是正数就是负数;(3)一个整数, 不是正的就是负的;(4)一个分数不是正的就是 负的.
• A . 1 B. 2 C. 3 D. 4
美国减少6.4%, 德国增长1.3%, 法国减少2.4%, 英国减少3.5%, 意大利增长0.2%, 中国增长7.5%. 写出这些国家这一年商品进出口总额的增长率.
解:(1)这个月小明体重增长 2 kg,小华体重增 长―1 kg,小强体重增长 0 kg.
(2)六个国家这一年商品进出口总额的增长率是: 美国 ―6.4%, 德国 1.3%, 法国 ―2.4%, 英国 ―3.5%, 意大利 0.2%, 中国 7.5%.
1、正负数可以用现实生活中具有相反意义的量来解释。
1、如果将+8元计为收入8元,则-6元表示 __支__出__6_元 。 2、高出海平面789米计为+789米,则-789米表示_低_于海平__面__7_8_9米。 3、减少60千克计为-60千克,则+80千克表示 增__加__8_0_千克 。 4、把公元2008年记作+2008年,那么-20年表示 公元_前__2_0_年__。
人教版七年级数学上册第一章《有理数》单元同步检测试题(含答案)
第一章《有理数》单元检测题题号一二三总分21 22 23 24 25 26 27 28分数一、选择题(每小题3分,共30分)1.若|a|=﹣a,a一定是( )A.正数B.负数C.非正数D.非负数2.近似数2.7×103是精确到( )A.十分位B.个位C.百位D.千位3.把数轴上表示数2的点移动3个单位后,表示的数为( ) A.5 B.1 C.5或1 D.5或﹣14.大于﹣2.2的最小整数是( )A.﹣2 B.﹣3 C.﹣1 D.05.若|x|=4,且x+y=0,那么y的值是( )A.4 B.﹣4 C.±4 D.无法确定6.有理数(-1)2,(-1)3,-12,|-1|,-(-1),-1-1中,化简结果等于1的个数是()A.3个B.4个C.5个D.6个7.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“8cm”分别对应数轴上的-3.6和x,则x的值为()A.4.2 B.4.3 C.4.4 D.4.58.有理数a,b在数轴上的位置如图所示,下列各式成立的是()A.b>0 B.|a|>-b C.a+b>0 D.ab<09.若|a|=5,b=-3,则a-b的值为()A.2或8 B.-2或8 C.2或-8 D.-2或-810.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…用你所发现的规律得出22016的末位数字是()A.2 B.4 C.6 D.8二、填空题(每小题3分,共30分)11.计算:4﹣5=,|﹣10|﹣|﹣8|=.12.对于两个非零整数x,y,如果满足这两个数的积等于它们的和的6倍,称这样的x,y为友好整数组,记作<x,y>,<x,y>与<y,x>视为相同的友好整数组.请写出一个友好整数组,这样的友好整数组一共有组.13.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则3☆(﹣2)=.14.若|5﹣x|=x﹣5,则x的取值范围是.15.一个比例中,两个内项都是6,而且两个比的比值都是5,其中一个外项为x,则x的值为.16.-9、6、-3这三个数的和比它们绝对值的和小 .17. 一家电脑公司仓库原有电脑100台,一个星期调入、调出的电脑记录是:调入38台,调出42台,调入27台,调出33台,调出40台,则这个仓库现有电脑台.18. 规定﹡,则(-4)﹡6的值为.19.对于有理数a,b,定义一种新运算:a☆b=a2﹣b,则4☆(﹣3)=.20.直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O′点,点O′对应的数是.三、解答题(共60分)21.(6分)计算:(1)(﹣2.4)﹣(+1.6)﹣(﹣7.6)﹣(﹣9.4);(2)﹣14﹣×|2﹣(﹣3)2|+(﹣+﹣)÷(﹣).22.(5分)已知a,b互为相反数,m,n互为倒数,c的绝对值为2,求代数式a+b+mn﹣c的值.23.(6分)若有a,b两个数,满足关系式a+b=ab﹣1,则称a.b为“共生数对“,记作(a,b).例如:当2,3满足2+3=2×3﹣1时,则(2,3)是“共生数对“.(I)若(x,﹣3)是“共生数对“,求x的值:(2)若(m,n)是“共生数对“,判断(n,m)是否也是“共生数对“,请通过计算说明:(3)请再写出两个不同的“共生数对”.24.(7分)“冬桃”是我区某镇的一大特产,现有20箱冬桃,以每箱25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如表:﹣0.3 ﹣0.2 ﹣0.15 0 0.1 0.25 与标准质量的差值(单位:千克)箱数 1 4 2 3 2 8 (1)20箱冬桃中,与标准质量差值为﹣0.2千克的有箱,最重的一箱重千克.(2)与标准重量比较,20箱冬桃总计超过多少千克?(3)若冬桃每千克售价3元,则出售这20箱冬桃可卖多少元?25.(8分)某校七(1)班学生的平均身高是160厘米,下表给出了该班6名学生的身高情况(单位:厘米).(1)列式计算表中的数据a 和b ;(2)这6名学生中谁最高?谁最矮?最高与最矮学生的身高相差多少? (3)这6名学生的平均身高与全班学生的平均身高相比,在数值上有什么关系?(通过计算回答)26.(8分)下面是按规律排列的一列数:第1个数:1-⎝⎛⎭⎪⎫1+-12;第2个数:2-⎝ ⎛⎭⎪⎫1+-12⎣⎢⎡⎦⎥⎤1+(-1)23⎣⎢⎡⎦⎥⎤1+(-1)34; 第3个数:3-⎝ ⎛⎭⎪⎫1+-12⎣⎢⎡⎦⎥⎤1+(-1)23⎣⎢⎡⎦⎥⎤1+(-1)34⎣⎢⎡⎦⎥⎤1+(-1)45⎣⎢⎡⎦⎥⎤1+(-1)56.(1)分别计算这三个数的结果(直接写答案);(2)写出第2017个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果27.(10分)已知a 是平方等于本身的正数,b 是立方等于本身的负数,c 是相反数等于本身的数,d 是绝对值等于本身的数.求(a ÷b )2020﹣3ab +2(cd )2121的值.28.(10分)先计算,再阅读材料,解决问题:(1)计算:.(2)认真阅读材料,解决问题:计算:÷().分析:利用通分计算的结果很麻烦,可以采用以下方法进行计算:解:原式的倒数是:()÷=()×30=×30﹣×30+×30﹣×30=20﹣3+5﹣12=10.故原式=.请你根据对所提供材料的理解,选择合适的方法计算:(﹣)÷.参考答案与解析一、选择题1.A 2.C 3.B 4.A 5.C 6.B7.C8.D9.B10.C二、填空题11.解:4﹣5=﹣1,|﹣10|﹣|﹣8|=10﹣8=2.故答案为:﹣1,2.12.解:由已知可得若为为友好整数组,则xy≠0,且xy=6(x+y)∴(x﹣6)y=6x,显然当x=6时该等式不成立,∴x≠6∴y===6+∵y是整数∴是整数∴当x﹣6=1,即x=7时,y=42,故<7,42>是一个友好整数组.∵x,y是整数∴是整数,且x﹣6是整数∵xy≠0,且<x,y>与<y,x>视为相同的友好整数组.∴x﹣6=±1或±2或±3或±4或﹣6,∴这样的友好整数组一共有2+2+2+2+1=9(组).故答案为:<7,42>;9.13.解:3☆(﹣2)=32﹣|﹣2|=9﹣2=7,故答案为:7.14.解:∵|5﹣x|=x﹣5,∴5﹣x≤0,∴x≥5,故答案为:x≥5.15.1.2或30.16.2417.5018.-919.19.20.π.三、解答题21.解:(1)(﹣2.4)﹣(+1.6)﹣(﹣7.6)﹣(﹣9.4)=(﹣2.4)+(﹣1.6)+7.6+9.4=13;(2)﹣14﹣×|2﹣(﹣3)2|+(﹣+﹣)÷(﹣)=﹣1﹣×|2﹣9|+(﹣+﹣)×(﹣24)=﹣1﹣×7+8+(﹣18)+2=﹣1﹣1+8+(﹣18)+2=﹣10.22.解:∵a,b互为相反数,m,n互为倒数,c的绝对值为2,∴a+b=0,mn=1,c=±2,当c=2时,a+b+mn﹣c=0+1﹣2=﹣1;当c=﹣2时,a+b+mn﹣c=0+1﹣(﹣2)=0+1+2=3;由上可得,代数式a+b+mn﹣c的值是﹣1或3.23.解:(1)∵(x,﹣3)是“共生数对”,∴x﹣3=﹣3x﹣1,解得:x=;(2)(n,m)也是“共生数对”,理由:∵(m,n)是“共生数对”,∴m+n=m﹣1,∴n+m=m+n=mn﹣1=nm﹣1,∴(n,m)也是“共生数对”;(3)由a+b=ab﹣1,得b=,若a=3时,b=2;若a=﹣1时,b=0,∴(3,2)和(﹣1,0)是“共生数对”24.解:(1)25+0.25=25.25,20箱冬桃中,与标准质量差值为﹣0.2千克的有4箱,最重的一箱重25.25千克;故答案为:4,25.25,;(2)1×(﹣0.3)+4×(﹣0.2)+2×(﹣0.15)+3×0+0.1×2+8×0.25 =0.8(千克).故20箱冬桃总计超过0.8千克;(3)3×(25×20+0.8), =3×500.8, =1502.4(元).故出售这20箱冬桃可卖1502.4元.25.解:(1)a =154-160=-6,b =165-160=+5.(4分)(2)学生F 最高,学生D 最矮,最高与最矮学生的身高相差11厘米.(8分) (3)-3+2+(-1)+(-6)+3+5=0,所以这6名学生的平均身高与全班学生的平均身高相同,都是160厘米.(12分)26.解:(1)第1个数:12;第2个数:32;第3个数:52.(6分)(2)第2017个数:2017-⎝ ⎛⎭⎪⎫1+-12⎣⎢⎡⎦⎥⎤1+(-1)23⎣⎢⎡⎦⎥⎤1+(-1)34 …⎣⎢⎡⎦⎥⎤1+(-1)40324033⎣⎢⎡⎦⎥⎤1+(-1)40334034=2017-12×43×34×…×40344033×40334034=2017-12=201612.(12分)27.解:∵a 是平方等于本身的正数,b 是立方等于本身的负数,c 是相反数等于本身的数,d 是绝对值等于本身的数, ∴a =1,b =﹣1,c =0,d ≥0, ∴(a ÷b )2020﹣3ab +2(cd )2121=[1÷(﹣1)]2020﹣3×1×(﹣1)+2(0×d )2121 =(﹣1)2020+3+0 =1+3+0 =4.28.解:(1)原式=×12﹣×12+×12 =4﹣2+6 =8;(2)原式的倒数是:(﹣+﹣)×(﹣52)=×(﹣52)﹣×(﹣52)+×(﹣52)﹣×(﹣52)=﹣39+10﹣26+8=﹣47,故原式=﹣.。
人教版初中数学七年级上册第一章《有理数》单元检测题(含答案)
《有理数》检测题一、单选题1.实数在数轴上的对应点的位置如图所示,则正确的结论是()A. B. C. D.2.实数在数轴上的对应点位置如图所示,把,按照从小到大的顺序排列,正确的是( ).A. B.C. D.3.的计算结果为()A. B. C. D.4.在﹣,0,﹣π,﹣1这四个数中,最小的数是()A. ﹣B. 0C. ﹣πD. ﹣15.在“有理数的加法与减法运算”的学习过程中,我们做过如下数学实验.“把笔尖放在数轴的原点处,先向左移动3个单位长度,再向右移动1个单位长度,这时笔尖的位置表示什么数?”用算式表示以上过程和结果的是()A. (﹣3)﹣(+1)=﹣4 B. (﹣3)+(+1)=﹣2 C. (+3)+(﹣1)=+2 D. (+3)+(+1)=+46.在 0.5, 0 ,-1,-2 这四个数中,绝对值最大的数是( ) A. 0.5 B. 0 C. -1 D. -27.一个数的绝对值等于5,这个数是().A. 5B. ±5C. -5D.8.的倒数的相反数是()A. ﹣5B.C.D. 59.计算的结果等于( ).A. -2B. 0C. 1D. 210.气温由﹣1℃上升2℃后是()A. 3℃B. 2℃C. 1℃D. ﹣1℃11.武汉地区冬季某一天最高气温7℃,最低-3℃,则这一天最高气温比最低气温高()A. 10℃B. 4℃C. 8℃D. 7℃二、填空题12.(2017四川省宜宾市)规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是________.(写出所有正确说法的序号)①当x=1.7时,[x]+(x)+[x)=6;②当x=﹣2.1时,[x]+(x)+[x)=﹣7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.13.常用成语中有“半斤八两”,旧制一斤为十六两,若一两为十六钱,则48钱为_____斤.14.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1200亿吨油当量.将1200亿用科学记数法表示为a×10n的形式,则a的值为_____.15.2017年襄阳全市实现地区生产总值4064.9亿元,数据4064.9亿用科学计数法表示为_______.16.扬州市梅岭中学图书馆藏书12000本,数据“12000”用科学记数法可表示为_________.17.计算_______________.三、解答题18.已知:b是最小的正整数,且a、b、c满足(c﹣5)2+|a+b|=0,试回答下列问题:(1)求a,b,c的值(2)a、b、c所对应的点分别为A、B、C,若点A以每秒1个单位长度的速度向左运动,点C以每秒5个单位长度的速度向右运动,试求几秒后点A 与点C距离为12个单位长度?参考答案1.C【解析】分析:根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案.详解:由数轴上点的位置,得:a<−4<b<0<c<1<d.A.a<−4,故A不符合题意;B.bd<0,故B不符合题意;C.|a|>|b|,故C符合题意;D.b+c<0,故D不符合题意;故选:C.点睛:本题考查了实数与数轴、绝对值的性质.2.C【解析】分析:根据数轴得出a<0<b,求出﹣a>﹣b,﹣b<0,﹣a>0,即可得出答案.详解:∵从数轴可知:a<0<b,∴﹣a>﹣b,﹣b<0,﹣a>0,∴﹣b<0<﹣a.故选C.点睛:本题考查了数轴,有理数的大小比较的应用,能根据数轴得出﹣b<0<﹣a,是解答此题的关键.3.B【解析】分析:原式利用绝对值的代数意义计算即可.详解:原式==﹣.故选B.点睛:本题考查了有理数的减法以及绝对值,熟练掌握运算法则是解答本题的关键.4.C【解析】分析:正数大于一切负数;零大于一切负数;零小于一切正数;两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小.本题只要根据有理数大小比较方法即可得出答案.详解:根据有理数的大小比较方法可得:-π<-<-1<0,故选C.点睛:本题主要考查的是有理数的大小比较方法,属于基础题型.明白有理数的大小比较方法即可得出答案.5.B【解析】分析:根据向左为负,向右为正得出算式(-3)+(+1),求出即可.详解:∵把笔尖放在数轴的原点处,先向左移动3个单位长度,再向右移动1个单位长度,∴根据向左为负,向右为正得出(-3)+(+1)=-2,∴此时笔尖的位置所表示的数是-2.故选:B.点睛:本题考查了有关数轴问题,解此题的关键是理解两次运动的表示方法和知道一般情况下规定:向左用负数表示,向右用正数表示.6.D【解析】分析:根据绝对值的意义,数轴上一个数所对应的点与原点(点零处)的距离叫做该数绝对值,由距离的多少比较即可.详解:0.5的绝对值为0.5;0的绝对值为0;-1的绝对值为1;-2的绝对值为2.因为2最大,所以绝对值最大的是-2.故选:D.点睛:此题主要考查了绝对值的意义,熟记绝对值的意义和绝对值的性质是解题关键,比较简单.7.B【解析】分析:根据绝对值的定义解答.详解:绝对值是5的数,原点左边是-5,原点右边是5,∴这个数是±5.故选B.点睛:本题主要考查了绝对值的定义,要注意从原点左右两边考虑求解.8.D【解析】分析:先根据倒数的定义得到的倒数为-5,再根据相反数的定义得到-5的相反数为5.详解:∵的倒数为-5,-5的相反数为5,∴的倒数的相反数是5.故选D.点睛:本题考查了倒数的定义,也考查了相反数的定义.9.A【解析】分析:根据有理数的减法运算法则进行计算即可得解.详解:﹣1﹣1=﹣2.故选A.点睛:本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.10.C【解析】分析:根据上升2℃即是比原来的温度高了2℃,就是把原来的温度加上2℃即可.详解:∵气温由﹣1℃上升2℃,∴﹣1℃+2℃=1℃.故选C.点睛:本题考查了有理数的加法,要先判断正负号的意义:上升为正,下降为负,再根据有理数加法运算法则进行计算.11.A【解析】分析:根据题意列出式子按有理数减法法则计算即可.详解:由题意可得:(℃).故选A.点睛:本题考查的是有理数减法的实际应用,解题的关键是根据题意列出正确的算式.12.②③【解析】试题解析:①当x=1.7时,[x]+(x)+[x)=[1.7]+(1.7)+[1.7)=1+2+2=5,故①错误;②当x=﹣2.1时,[x]+(x)+[x)=[﹣2.1]+(﹣2.1)+[﹣2.1)=(﹣3)+(﹣2)+(﹣2)=﹣7,故②正确;③当1<x<1.5时,4[x]+3(x)+[x)=4×1+3×2+1=4+6+1=11,故③正确;④∵﹣1<x<1时,∴当﹣1<x<﹣0.5时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当﹣0.5<x<0时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当x=0时,y=[x]+(x)+x=0+0+0=0,当0<x<0.5时,y=[x]+(x)+x=0+1+x=x+1,当0.5<x<1时,y=[x]+(x)+x=0+1+x=x+1,∵y=4x,则x﹣1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,∴当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有三个交点,故④错误,故答案为:②③.考点:1.两条直线相交或平行问题;2.有理数大小比较;3.解一元一次不等式组.13.256【解析】【分析】根据题意列出算式,计算即可得.【详解】根据题意得:48÷16=48÷42=46(两),46÷16=46÷42=44=256(斤),故答案为:256.【点睛】本题考查了有理数的乘方、同底数幂的除法,掌握相应的运算法则是解题的关键.14.1.2.【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1200亿有12位,所以可以确定n=12-1=11.详解:1200亿=1.2×1011,故a=1.2.故答案为:1.2.点睛:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.15.4.0649×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】4064.9亿=406490000000,406490000000小数点向左移动11位得到4.0649,所以4064.9亿用科学计数法表示为4.0649×1011,故答案为:4.0649×1011.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.详解:12000=1.2×104.故答案为:1.2×104.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.【解析】分析:根据绝对值的定义可知,负指数幂的运算法则可知,再由实数的运算法则计算即可.详解:原式=.点睛:本题考察了去绝对值符号、负指数幂.18.(1) a=﹣1,b=1,c=5;(2) 1秒后点A与点C距离为12个单位长度.【解析】分析:(1)根据非负数的性质列出算式,求出a、b、c的值;(2)根据题意列出方程,解方程即可.详解:(1)由题意得,b=1,c-5=0,a+b=0,则a=-1,b=1,c=5;(2)设x秒后点A与点C距离为12个单位长度,则x+5x=12-6,解得,x=1,答:1秒后点A与点C距离为12个单位长度.点睛:本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.。
人教版初中数学七年级上全册课件-第一章有理数
归纳:在同一个问题中,分别用正数 和负数表示的量具有相反的意义.
例2 某年,下列国家的商品进出口总额比上年的变
化情况是:美国减少6.4%,德国增长1.3%,法国
减少2.4%,英国减少3.5%,意大利增长0.2%,中国
回答:不是。虽然他们意义相反,但缺少数量。
(2)与一个量成相反意义的量不止一个,如 与上升2m成相反意义的量就很多,如:下降 1m,下降0.2m,……
怎样理解具有相反意义的量
说明
在同一问题中,用正、负数表示具有相反意 义的量。收入300元和支出200元,零上6℃和零 下4℃,向东30米和向西50米等等,如果正数表 示某种意义,那么负数表示它的相反的意义,反 之亦然。
1.62 65.5 46 50 25 0 0.5
整数:
小数:
这些数是如何产生的?
数的产生和发展离不开生活和生产的需要. 由记数、排序,产生数1,2,3,?
由表示?没有敁 空位?,产生数0
由分物、测量,产生分数 1 ,1 ,? 23
以前学过的数,实际上主要 有两大类,分别是整数和分数 (包括小数).
示,氢原子中的电子所带电荷可以用-1表 示. 7.-1℃. 8.中国、意大利的服务出口额增长了,美国、 德国、英国、日本的服务出口额减少了.意 大利的增长率最高,日本的增长率最低.
练习:教科书第3页 1. 2010年我国全年平均降水量比上年增加108.7 mm,2009年比上年减少81.5 mm,2008年比上年 增加53.5 mm,用正数和负数表示这三年我国全年 平均降水量比上年的增长量.
3. 0既不是正数也不是负数. 0一般情况下只是一个基准.
【全面版】七年级数学上册 第一章 有理数单元检测试题课件 新人教版PPT文档
谢谢观看
12 -81
5,0 5,-2,0
0
|-2.5|
有理数单元检测试题(A) 二、有的放矢,圆满填空 有理数单元检测试题(A) 有理数单元检测试题(A) 有理数单元检测试题(A) 有理数单元检测试题(A) 二、有的放矢,圆满填空 一、正本清源,做出选择 二、有的放矢,圆满填空 二、有的放矢,圆满填空 有理数单元检测试题(A) 三、细心解答,运用自如 三、细心解答,运用自如 有理数单元检测试题(A) 二、有的放矢,圆满填空 有理数单元检测试题(A)
有理数单元检测试题(A)
一、正本清源,做出选择 二、有的放矢,圆满填空 三、细心解答,运用自如
D B
D C
A B
B A
浪费4吨水
6
Hale Waihona Puke 65-7或1
有理数单元检测试题(A) 一、正本清源,做出选择 一、正本清源,做出选择 二、有的放矢,圆满填空 有理数单元检测试题(A) 二、有的放矢,圆满填空 二、有的放矢,圆满填空 二、有的放矢,圆满填空 有理数单元检测试题(A) 有理数单元检测试题(A) 有理数单元检测试题(A) 一、正本清源,做出选择 二、有的放矢,圆满填空 二、有的放矢,圆满填空 二、有的放矢,圆满填空 有理数单元检测试题(A) 有理数单元检测试题(A) 有理数单元检测试题(A)