专题讲练:高中数学双曲线的概念及几何性质
双曲线专题复习讲义及练习学生
双曲线专题复习讲义考点1双曲线的定义及标准方程 题型1:运用双曲线的定义题型1求离心率或离心率的范围 2 2[例3]已知双曲线X y 每 1,(a 0,b 0)的左,右焦a b点分别为F 1,F 2,点P 在双曲线的右支上,且端点,若该椭圆的长轴长为 4,则△ AF 1F 2面积的最大值 为 ___ .4.过点(-6 , 3)且和双曲线x 2-2y 2=2有相同的渐近线 的双曲线方程为 _________________ 。
| PF 1 | 4|PF 2 |,则此双曲线的离心率 e 的最大值为_.【新题导练】双曲线x264 y236=1上一点P 到双曲线右焦点的距离是4,那么点P 到左准线的距离是 题型2与渐近线有关的问题在双曲线的几何性质中,应充分利用双曲线的渐近线方程,简化 解题过程.同时要熟练掌握以下三方面内容: (1)已知双曲线方程,求它的渐近线;(2)求已知渐近线的双曲线的方程; (3)渐近线的b 、f c2 — a2 /c2. ----------斜率与离心率的关系,如k =a —a2—1= . e2—1. 【新题导练】 21. 设P 为双曲线X 2- 1上的一点F 1、F 2是该双曲 12 线的两个焦点,若|PF 1|: |PF 2|=3 : 2,则厶PF 1F 2的面 积为 ( ) A. 6、3 B. 12 C. 12 .3 D. 24 2 2 2. 如图2所示,F 为双曲线C : — — 1的左焦点, 9 16 双曲线C 上的点P 与P 7 i i 1,2,3关于y 轴对称, [例4]若双曲线2X ~2a2莒 1(a 0,b 0)的焦点到渐b 2 近线的距离等于实轴长,则双曲线的离心率为7. 【新题导练】2双曲线— 42y_ 9 1的渐近线方程是A.2 x B. 3C.D.2则 RF P 2F P 3F F 4F F ^F P 6F 的值是() 8.焦点为(0, 6),且与双曲线1有相同的渐近线A . 9 B. 16 C. 18 D. 27 题型2求双曲线的标准方程 2 [例2 ]已知双曲线C 与双曲线— 16 2—=1有公共焦点, 4的双曲线方程是2A .—122y 2421B .—122x24 )2C . 乂242 x12 2 D .— 24 2乂 112双曲线专题练习且过点(3 ...2,2).求双曲线C 的方程. 【新题导练】3.已知双曲线的渐近线方程是 y 2,焦点在坐标轴上 且焦距是10,则此双曲线的方程为 __________________ ; 4•以抛物线y 2 8 -. 3x 的焦点F 为右焦点,且两条渐近线 是x J3y 0的双曲线方程为 _________________________ .考点2双曲线的几何性质一、填空题21 .椭圆工9k= 。
高中双曲线知识点总结
高中双曲线知识点总结引言在高中数学中,双曲线是一个非常重要的概念。
它作为解析几何的一个分支,在许多问题中都有着广泛的应用。
本文将总结高中双曲线的基本概念、性质以及相关的解题方法,帮助读者更加深入地理解和掌握这一知识点。
一、双曲线的定义双曲线是一种平面上的曲线,其定义可以通过以下方法得到:1.定义一条直线(称为准线)和一个点(称为焦点);2.焦点至准线距离与焦点至双曲线上任意点距离之差的绝对值等于一个常数。
二、双曲线的方程在解析几何中,双曲线通常用点到焦点和焦准距离的关系方程表示。
根据焦准距离的不同符号,双曲线可分为以下两种情况:1.椭圆型双曲线:焦准距离之差的绝对值为正数。
其方程通常为:x^2/ a^2 - y^2 / b^2 = 1,其中a和b为正实数。
2.双曲线型双曲线:焦准距离之差的绝对值为负数。
其方程通常为:x^2 / a^2 - y^2 / b^2 = -1,其中a和b为正实数。
三、双曲线的基本性质双曲线具有以下几个基本性质:1.焦距公式:对于椭圆型双曲线,焦距c满足c²=a²+b²。
对于双曲线型双曲线,焦距c满足c²=a²+b²。
2.离心率:对于椭圆型双曲线,离心率ε满足ε=c/a。
对于双曲线型双曲线,离心率ε满足ε=c/a。
3.对称轴:对于椭圆型双曲线,对称轴是与准线垂直且通过双曲线的中心。
对于双曲线型双曲线,对称轴是与准线垂直且通过双曲线的中心。
4.渐近线:对于椭圆型双曲线,有两条渐近线,其方程分别为y=±b/a* x。
对于双曲线型双曲线,有两条渐近线,其方程分别为y=±b/a * x。
5.顶点:对于椭圆型双曲线,顶点为与对称轴的交点。
对于双曲线型双曲线,顶点为与对称轴的交点。
四、双曲线的画法与性质绘制双曲线的一种常见方法是使用焦点和准线进行绘制。
根据准线的不同位置可以得到不同形状的双曲线,如下所示:1.当准线与焦点重合时,得到的是一条垂直于x轴的对称双曲线。
双曲线简单几何性质知识点总结
四、双曲线一、双曲线及其简单几何性质(一)双曲线的定义:平面内到两个定点F 1,F 2的距离差的绝对值等于常数2a (0<2a <|F 1F 2|)的点的轨迹叫做双曲线。
定点叫做双曲线的焦点;|F 1F 2|=2c ,叫做焦距。
● 备注:① 当|PF 1|-|PF 2|=2a 时,曲线仅表示右焦点F 2所对应的双曲线的一支(即右支);当|PF 2|-|PF 1|=2a 时,曲线仅表示左焦点F 1所对应的双曲线的一支(即左支);② 当2a=|F 1F 2|时,轨迹为以F 1,F 2为端点的2条射线; ③ 当2a >|F 1F 2|时,动点轨迹不存在。
双曲线12222=-b y a x 与12222=-bx a y (a>0,b>0)的区别和联系(二)双曲线的简单性质1.范围: 由标准方程12222=-by a x (a >0,b >0),从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大。
x 的取值范围________ ,y 的取值范围______2. 对称性: 对称轴________ 对称中心________ 3.顶点:(如图) 顶点:____________特殊点:____________实轴:21A A 长为2a, a 叫做半实轴长虚轴:21B B 长为2b ,b 叫做半虚轴长双曲线只有两个顶点,而椭圆则有四个顶点4.离心率:双曲线的焦距与实轴长的比a ca c e ==22,叫做双曲线的离心率 范围:___________________双曲线形状与e 的关系:1122222-=-=-==e a c a a c a b k ,e 越大,即渐近线的斜率的绝对值就越大,这时双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔5.双曲线的第二定义:到定点F 的距离与到定直线l 的距离之比为常数)0(>>=a c a ce 的点的轨迹是双曲线 其中,定点叫做双曲线的焦点,定直线叫做双曲线的准线 常数e 是双曲线的离心率. 准线方程:对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 21:-=, 相对于右焦点)0,(2c F 对应着右准线c a x l 22:=; 6.渐近线过双曲线12222=-b y a x 的两顶点21,A A ,作x 轴的垂线a x ±=,经过21,B B 作y 轴的垂线b y ±=,四条直线围成一个矩形 矩形的两条对角线所在直线方程是____________或(0=±b ya x ),这两条直线就是双曲线的渐近线双曲线无限接近渐近线,但永不相交。
新高考数学复习考点知识讲解与专题训练31---双曲线的方程及几何性质(解析版)
新高考数学复习考点知识讲解与专题训练专题31、 双曲线的方程及几何性质一、 双曲线的定义平面内与两个定点F 1,F 2的距离之差的绝对值等于非零常数(小于||F 1F 2)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P ={M ⎪⎪⎪⎪| ||MF 1-||MF 2=2a },||F 1F 2=2c ,其中a ,c 为常数,且a >0,c >0.(1)当a <c 时,点P 的轨迹是双曲线; (2)当a =c 时,点P 的轨迹是两条射线; (3)当a >c 时,点P 不存在. 二 、双曲线的标准方程和几何性质一、常用结论1、过双曲线的一个焦点且与实轴垂直的弦的长为2b 2a,也叫通径.2、与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b2=t (t ≠0).3、双曲线的焦点到其渐近线的距离为b .4、若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .题型一、双曲线的方程与渐近线的方程例1、【2020年高考天津】设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为A .22144x y -=B .2214y x -= C .2214x y -=D .221x y -=【答案】D【解析】由题可知,抛物线的焦点为()1,0,所以直线l 的方程为1yx b+=,即直线的斜率为b -,又双曲线的渐近线的方程为b y x a=±,所以b b a-=-,1b b a-⨯=-,因为0,0a b >>,解得1,1a b ==.故选:D .变式、【2018年高考天津卷理数】已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为A .221412x y -=B .221124x y -=C .22139x y -=D .22193x y -=【答案】C【解析】设双曲线的右焦点坐标为(),0F c (c >0),则A B x x c ==,由22221c y a b -=可得:2b y a=±, 不妨设:22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为:0bx ay -=,据此可得:21bc b d c -==,22bc b d c +==, 则12226bcd d b c+===,则23,9b b ==,双曲线的离心率:2c e a ====,据此可得:23a =,则双曲线的方程为22139x y -=.本题选择C 选项.例2、【2018年高考全国Ⅱ理数】双曲线22221(0,0)x y a b a b-=>>的离心率A.y =B.y =C.2y x =±D.2y x =±【答案】A【解析】因为c e a ==,所以2222221312b c a e a a-==-=-=,所以b a =因为渐近线方程为by x a=±,所以渐近线方程为y =,故选A . 变式、(2020届山东省济宁市高三上期末)已知12,F F 是双曲线22221(0,0)x y a b a b -=>>的左、右焦点,若点2F 关于双曲线渐近线的对称点A 满足11F AO AOF ∠=∠(O 为坐标原点),则双曲线的渐近线方程为( )A .2y x =±B .y =C .y =D .y x =±【答案】B【解析】如图所示:由对称性可得:M 为2AF 的中点,且2AF OM ⊥, 所以12F A AF ⊥,因为11F AO AOF ∠=∠,所以11AF FO c ==, 故而由几何性质可得160AFO ∠=,即260MOF ∠=,故渐近线方程为y =, 故选B.题型二、双曲线的离心率例3、【2018年高考全国III 理数】设1F ,2F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1|||PF OP =,则C 的离心率为AB .2CD 【答案】C【解析】由题可知2PF b =,2OF c =,PO a ∴=,在2Rt POF △中,222cos PF b PF O OF c∠==, 在12Rt PF F △中,22221212212cos 2PF F F PF b PF O PF F F c∠+-==,b c=,即223c a =,e ∴=C .变式1、(2020届山东省潍坊市高三上期末)已知点P 为双曲线()2222:10,0x y C a b a b -=>>右支上一点,12,F F 分别为C 的左,右焦点,直线1PF 与C 的一条渐近线垂直,垂足为H ,若114PF HF =,则该双曲线的离心率为( )A B C .53D .73【答案】C【解析】取1PF 的中点M ,连接2MF ,由条件可知1111142HF PF MF ==, O 是12F F 的中点,2//OH MF ∴又1OH PF ⊥,21MF PF ∴⊥1222F F PF c ∴==,根据双曲线的定义可知122PF a c =+,12a cHF +∴=, 直线1PF 的方程是:()a y x c b=+ ,即0ax by ac -+= ,原点到直线的距离OH a ==,1OHF ∴∆中,2222a c a c +⎛⎫+= ⎪⎝⎭,整理为:223250c ac a --= , 即23250e e --= ,解得:53e = ,或1e =-(舍)故选:C变式2、【2020年高考全国I 卷理数】已知F 为双曲线2222:1(0,0)x y C a b a b -=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为 .【答案】2【解析】联立22222221x cx y a b a b c=⎧⎪⎪-=⎨⎪⎪=+⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2bBF a =.依题可得,3BF AF =,AF c a =-,即()2223b c a a c a a c a -==--,变形得3c a a +=,2c a =,因此,双曲线C 的离心率为2. 故答案为:2.变式3、【2019年高考全国Ⅰ卷理数】已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120FB F B ⋅=,则C 的离心率为____________.【答案】2 【解析】如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22,2.BF OA BF OA =∥由120FB F B ⋅=,得121,,F B F B OA F A ⊥∴⊥∴1OB OF =,1AOB AOF ∠=∠, 又OA 与OB 都是渐近线,∴21,BOF AOF ∠=∠又21πBOF AOB AOF ∠+∠+∠=,∴2160,BOF AOF BOA ∠=∠=∠=又渐近线OB 的斜率为tan 60ba=︒=,∴该双曲线的离心率为2c e a ====. 题型三、双曲线的综合问题例4、【2020年高考全国Ⅱ卷理数】设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为 A .4B .8C .16D .32【答案】B 【解析】2222:1(0,0)x y C a b a b-=>>, ∴双曲线的渐近线方程是by x a=±, 直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于D ,E两点不妨设D 为在第一象限,E 在第四象限,联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩,故(,)D a b ,联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩,故(,)E a b -,∴||2ED b =,∴ODE 面积为:1282ODE S a b ab =⨯==△,双曲线2222:1(0,0)x y C a b a b -=>>,∴其焦距为28c ===,当且仅当a b ==∴C 的焦距的最小值:8.故选:B .变式1、(2020届山东省临沂市高三上期末)已知P 为双曲线C :2214y x -=右支上一点,1F ,2F 分别为C 的左、右焦点,且线段12A A ,12B B 分别为C 的实轴与虚轴.若12A A ,12B B ,1PF 成等比数列,则2PF =______.【答案】6【解析】2214y x -=1222A A a ∴==,1224B B b ==,12A A ,12B B ,1PF 成等比数列212112A A PFB B ∴⋅=,解得18PF =,2826PF a ∴=-=故答案为:6变式2、【2020年高考全国Ⅲ卷理数】.设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F1,F 2,P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =A . 1B . 2C . 4D . 8【答案】A【解析】5ca=,c ∴=,根据双曲线的定义可得122PF PF a -=, 12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=, 12F P F P ⊥,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A .1、【2019年高考浙江卷】渐近线方程为x ±y =0的双曲线的离心率是A .2B .1C D .2【答案】C【解析】因为双曲线的渐近线方程为0x y ±=,所以a b =,则c =,所以双曲线的离心率ce a==故选C. 2、【2018年高考浙江卷】双曲线2213x y -=的焦点坐标是A .(0),0) B .(−2,0),(2,0) C .(0,,(0 D .(0,−2),(0,2) 【答案】B【解析】设2213x y -=的焦点坐标为(,0)c ±,因为222314c a b =+=+=,2c =, 所以焦点坐标为(2,0)±,故选B .3、(2020届山东省烟台市高三上期末)若双曲线()222210,0x y a b a b-=>>的,则其渐近线方程为( )A .230x y ±=B .320x y ±=C .20x y ±=D .230x y ±=【答案】C【解析】由题,离心率c e a ===,解得12b a =,因为焦点在x 轴上,则渐近线方程为12y x =±,即20x y ±=故选:C4、【2019年高考全国Ⅲ卷理数】双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A .4B .2C .D .【答案】A【解析】由2,,a b c ====,2P PO PF x =∴=, 又P 在C 的一条渐近线上,不妨设为在by x a=上,则P P b y x a =⋅==1122PFO P S OF y ∴=⋅==△,故选A . 5、【2018年高考全国I 理数】已知双曲线22:13x C y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则||MN =A .32B .3C .D .4【答案】B【解析】由题可知双曲线C 的渐近线的斜率为3±,且右焦点为(2,0)F ,从而可得30FON ∠=︒,所以直线MN 的倾斜角为60︒或120︒,根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN 的方程为2)y x =-,分别与两条渐近线y x =和y x =联立,求得M ,3(,2N ,所以||3MN ==,故选B .6、(2020届山东省德州市高三上期末)双曲线22221x y a b-=(0a >,0b >)的右焦点为()1F ,点A 的坐标为()0,1,点P 为双曲线左支上的动点,且1APF ∆周长的最小值为8,则双曲线的离心率为( )AB C .2 D .【答案】D【解析】如下图所示:设该双曲线的左焦点为点F ,由双曲线的定义可得12PF PF a =+,所以,1APF ∆的周长为11123262AP AF PF AF AP PF a AF a a ++=+++≥++=+,当且仅当A 、P 、F 三点共线时,1APF ∆的周长取得最小值,即628a +=,解得1a =.因此,该双曲线的离心率为e == 故选:D.7、【2020年高考北京】已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.【答案】()3,0【解析】在双曲线C 中,a =b =3c ==,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为2y x =±,即0x =,所以,双曲线C=.故答案为:()3,08、【2019年高考江苏卷】在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .【答案】y =【解析】由已知得222431b-=,解得b =b =,因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =.9、【2020年高考江苏】在平面直角坐标系xOy 中,若双曲线222105()x y a a -=>的一条渐近线方程为y =,则该双曲线的离心率是 ▲ . 【答案】32【解析】双曲线22215x y a -=,故b =由于双曲线的一条渐近线方程为2y x =,即22b a a =⇒=,所以3c ==,所以双曲线的离心率为32c a =.故答案为:3221/ 21。
(完整版)双曲线标准方程及几何性质知识点及习题
双曲线标准方程及几何性质知识点及习题1. 双曲线第一定义:平面内与两个定点F 1、F 2的距离差的绝对值是常数(小于|F 1F 2|)的点的轨迹叫双曲线。
这两个定点叫双曲线的焦点,两焦点间的距离|F 1F 2|叫焦距。
2. 双曲线的第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数e (e>1)的点的轨迹叫双曲线。
定点叫双曲线的焦点,定直线叫双曲线的准线,常数e 叫双曲线的离心率。
当曲线上一点沿曲线无限远离原点时,如果到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。
无限接近,但不可以相交。
例1. 方程11122=-++ky k x 表示双曲线,则k 的取值范围是( ) A .11<<-k B .0>k C .0≥k D .1>k 或1-<k3. 双曲线的标准方程:(1)焦点在x 轴上的:x a y b a b 2222100-=>>(),(2)焦点在y 轴上的:y a x ba b 2222100-=>>(),(3)当a =b 时,x 2-y 2=a 2或y 2-x 2=a 2叫等轴双曲线。
注:c 2=a 2+b 2【例2】求虚轴长为12,离心率为54双曲线标准方程。
【例3】求焦距为26,且经过点M (0,12)双曲线标准方程。
练习。
焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是( )A .1241222=-y xB .1241222=-x yC .1122422=-x yD .1122422=-y x【例4】与双曲线221916x y -=有公共渐进线,且经过点(3,A -练习。
求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线的离心率.解决双曲线的性质问题,关键是找好等量关系,特别是e 、a 、b 、c 四者的关系,构造出ce a=和222c a b =+的关系式。
高三数学第一轮复习:双曲线的定义、性质及标准方程 知识精讲
高三数学第一轮复习:双曲线的定义、性质及标准方程【本讲主要内容】双曲线的定义、性质及标准方程双曲线的定义及相关概念、双曲线的标准方程、双曲线的几何性质【知识掌握】【知识点精析】1. 双曲线的定义:(1)第一定义:平面内与两定点F1、F2的距离之差的绝对值是常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做焦距。
(2)第二定义:平面内到一个定点F的距离与到一条定直线l的距离的比等于常数(e>1)的点的轨迹叫做双曲线,定点F为焦点,定直线l称为准线,常数e称为离心率。
说明:(1)若2a等于2c,则动点的轨迹是射线(即F1F2、F2F1的延长线);(2)若2a大于2c,则动点轨迹不存在。
2. 双曲线的标准方程、图形及几何性质:标准方程)0b,0a(1byax2222>>=-中心在原点,焦点在x轴上yaxba b2222100-=>>(,)中心在原点,焦点在y轴上图形几何性质X围x a≤-或x a≥y a≤-或y a≥对称性关于x轴、y轴、原点对称(原点为中心)顶点()()1200A a A a-,、,()()1200A a A a-,、,轴实轴长122A A a=,虚轴长122B B b=离心率ecae=>()1准线2212:,:a al x l xc c=-=2212:,:a al y l yc c=-=实轴、虚轴长相等的双曲线称为等轴双曲线,焦点在x 轴上,标准方程为()2220x y a a -=≠;焦点在y 轴上,标准方程为()2220y x a a -=≠。
其渐近线方程为y=±x 。
等轴双曲线的离心率为e =4. 基础三角形:如图所示,△AOB 中,,,,tan b OA a AB b OB c AOB a===∠=。
5. 共渐近线的双曲线系方程:与双曲线x a y b22221-=(a>0,b>0)有相同渐近线的双曲线系可设为()22220x y a b λλ-=≠,若λ>0,则双曲线的焦点在x 轴上;若λ<0,则双曲线的焦点在y 轴上。
高中抛物线知识点双曲线
高中抛物线知识点:双曲线双曲线是高中数学中的一个重要知识点,它在几何图形和函数的研究中起着重要的作用。
在本文中,我们将逐步介绍双曲线的定义、性质和应用。
一、双曲线的定义双曲线是平面上一条特殊的曲线,它的定义是到两个固定点的距离差的绝对值等于一个常数的点的集合。
这两个固定点称为焦点,常数称为离心率。
双曲线的数学表示形式为:(x-h)²/a² - (y-k)²/b² = 1 (焦点在 x 轴上时) (y-k)²/a² - (x-h)²/b² = 1 (焦点在 y 轴上时)其中,(h, k)是双曲线的中心点,a和b分别是 x 轴和 y 轴的半轴长度。
二、双曲线的性质 1. 双曲线的形状:双曲线在中心点附近呈现出两条分离的曲线,形状类似于两个对称的开口。
这两个开口的形状由离心率决定,离心率越大,开口越窄。
2.对称性:双曲线关于中心点对称。
3.渐近线:双曲线有两条渐近线,分别接近于曲线的两个分支。
渐近线的方程为 y = k ± (b/a)(x-h)。
4.焦点和直纹的关系:对于双曲线上的任意一点P,其到两个焦点的距离差的绝对值等于双曲线的离心率。
三、双曲线的应用双曲线不仅仅是一种数学图形,它在物理学、工程学和经济学等领域都有着广泛的应用。
1.物理学中的光学系统:双曲线可以用来描述光线在光学系统中的传播路径。
例如,抛物面镜和椭圆面镜都是双曲线的特殊情况。
2.工程学中的电子设备:双曲线可以用来描述天线的辐射模式和电磁波的传播。
在雷达和卫星通信等领域,双曲线经常被用来分析和设计天线系统。
3.经济学中的成本函数:在经济学中,双曲线可以用来描述成本函数和供应曲线。
这对于研究企业的生产和供应决策非常重要。
双曲线作为一种重要的几何图形和函数形式,在高中数学中占据着重要的地位。
通过了解双曲线的定义、性质和应用,我们可以更好地理解和应用这一知识点,进一步拓宽数学的视野。
高中数学双曲线知识点总结
高中数学双曲线知识点总结一、双曲线的定义双曲线是由平面上距离不变的所有点的轨迹组成的曲线。
具体地说,双曲线是平面上的一条曲线,其上的每一点到两个给定的不同点F1和F2的距离之差是一个常数。
在平面直角坐标系中,双曲线的定义可以表示为:一个点到两个不同点F1和F2的距离之差是一个常数e,即PF1-PF2=e。
二、双曲线的性质1. 双曲线包括两条分支,它们分别靠近两个焦点。
对于双曲线的每个分支来说,离焦点越远,离另一个分支越近。
2. 双曲线的两个焦点之间的距离称为焦距,是双曲线的重要参量,通常用2c表示。
3. 双曲线的渐近线是双曲线的一条特殊的直线,与双曲线有两个不同的交点。
双曲线的两条分支在渐近线上无限趋近。
4. 双曲线具有对称性,关于两个坐标轴都具有对称性,即当双曲线与一个坐标轴相交时,在另一个坐标轴上也有交点。
5. 双曲线有一个中心,它是两个焦点的中点,也是双曲线的对称中心。
6. 双曲线的方程通常可以表示为x^2/a^2-y^2/b^2=1或者y^2/b^2-x^2/a^2=1,其中a 和b分别是椭圆的轴长。
三、双曲线的方程在平面直角坐标系中,双曲线的一般方程可以表示为:1. 若横轴为实轴,纵轴为虚轴,则双曲线的方程为x^2/a^2-y^2/b^2=1;2. 若横轴为虚轴,纵轴为实轴,则双曲线的方程为y^2/b^2-x^2/a^2=1。
在双曲线的方程中,a和b分别代表横轴和纵轴方向的轴长,e为离心率。
四、双曲线的图像1. 当a>b时,双曲线的中心在x轴上,两分支朝向y轴;2. 当a<b时,双曲线的中心在y轴上,两分支朝向x轴。
双曲线的图像可以通过手工绘图或者计算机绘图软件来绘制,使学生更好地理解双曲线的性质和特点。
双曲线的图像在实际生活中也有许多应用,比如在光学中的抛物面镜和双曲面镜、在通信中的双曲线天线和成像原理等。
五、双曲线的相关定理和定律1. 双曲线的面积定理:双曲线的面积等于焦距的一半与两个辅助椭圆的面积之和。
双曲线的基本概念与性质
双曲线的基本概念与性质双曲线是数学中的一种常见曲线类型,具有独特的性质和应用。
本文将介绍双曲线的基本概念以及它所具有的一些重要性质。
1. 基本概念双曲线是由与两个固定点F1和F2的距离之差恒定的点P所构成的轨迹所形成的曲线。
这两个固定点称为焦点,用F1和F2表示;而距离之差的常数值称为双曲线的离心率,用e表示。
双曲线还包括一条称为主轴的线段,它是与离心率的方向相垂直且通过双曲线的两个焦点的连线。
2. 方程表示双曲线的一般方程可表示为(x^2/a^2) - (y^2/b^2) = 1或(y^2/b^2) -(x^2/a^2) = 1,其中a和b分别表示双曲线在x轴和y轴上的半轴长度。
3. 图形特征双曲线具有以下几个重要的性质和特征:- 对称性:双曲线关于x轴和y轴均对称。
- 渐近线:双曲线有两条渐近线,分别对应于双曲线的两个分支。
渐近线是曲线逐渐趋近但永远不会到达的直线。
- 弦长公式:对于双曲线上的一条弦,其长度可以通过双曲线焦点之间的距离和与双曲线焦点的连线的夹角来计算。
- 曲率:双曲线上不同点的曲率不同,与点到双曲线焦点连线的方向有关。
4. 应用领域双曲线在数学和其他学科中具有广泛的应用。
以下是其中一些典型的应用领域:- 物理学:双曲线可用于描述光和声波的传播、电磁场的分布等现象。
- 工程学:双曲线的性质可用于设计天线、抛物面反射器等。
- 经济学:双曲线可用于描述成本和收益关系、货币供给和需求等经济现象。
- 统计学:双曲线可用于建模统计分布如正态分布、泊松分布等。
- 计算机图形学:双曲线可用于绘制和渲染曲线和物体的形状。
通过了解双曲线的基本概念和性质,我们可以更好地理解和应用这个有趣而重要的数学曲线类型。
无论是在纯数学研究还是实际应用中,双曲线都具有广泛而深远的影响。
高中数学复习-双曲线的定义、方程及性质
)
解析:设| PF 2|= m ,| PF 1|=3 m ,则| F 1 F 2|=
2 + 92 − 2 × 3 × × cos60° = 7 m ,所以 C 的离心率 e
|1 2 |
2
7
7
= = =
=
= .
2
2
2
|1 |−|2 |
目录
高中总复习·数学
BE |=1,| CD |=| CF |,所以|
CA |-| CB |=5-1=4.根据双曲线定
义,所求轨迹是以 A , B 为焦点,实轴长为4
的双曲线的右支(右顶点除外),即 c =3,
a =2,又 c 2= a 2+ b 2,所以 b 2=5,所以顶
2
2
点 C 的轨迹方程为 - =1( x >2).
9 + 28 = 1,
经过点 P (3,2 7 ), Q (-6 2 ,7),所以ቊ
72 + 49 = 1,
解得 ൞
= −
1
= .
25
1
,
75
2
2
故所求双曲线标准方程为 - =1.
25
75
目录
高中总复习·数学
双曲线的几何性质
考向1 双曲线的渐近线
【例3】
2
2
(1)已知双曲线 C : 2 - 2 =1( a >0, b >0)的焦距为
PF 2|=4 a ,∴| PF 1|=3 a ,| PF 2|= a .在△ PF 1 F 2中,由余弦定
|1 |2 +|2 |2 −|1 2 |2
1
理的推论可得 cos 60°=
,即 =
高中数学双曲线知识点与性质大全
双曲线与方程【知识梳理】 1、双曲线的定义(1)平面内,到两定点1F 、2F 的距离之差的绝对值等于定长()1222,0a F F a a >>的点的轨迹称为双曲线,其中两定点1F 、2F 称为双曲线的焦点,定长2a 称为双曲线的实轴长,线段12F F 的长称为双曲线的焦距.此定义为双曲线的第一定义.【注】12122PF PF a F F -==,此时P 点轨迹为两条射线.(2)平面内,到定点的距离与到定直线的距离比为定值()1e e >的点的轨迹称为双曲线,其中定点称为双曲线的焦点,定直线称为双曲线的准线,定值e 称为双曲线的离心率.此定义为双曲线的第二定义.3、渐近线双曲线()22221,0x y a b a b -=>的渐近线为22220x y a b -=,即0x y a b ±=,或by x a=±.【注】①与双曲线22221x y a b -=具有相同渐近线的双曲线方程可以设为()22220x y a bλλ-=≠;②渐近线为by x a=±的双曲线方程可以设为()22220x y a b λλ-=≠;③共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线.共轭双曲线具有相同的渐近线.④等轴双曲线:实轴与虚轴相等的双曲线称为等轴双曲线. 4、焦半径双曲线上任意一点P 到双曲线焦点F 的距离称为焦半径.若00(,)P x y 为双曲线()22221,0x y a b a b -=>上的任意一点,1(,0)F c -,2(,0)F c 为双曲线的左、右焦点,则10||PF ex a =+,20||PF ex a =-,其中ce a=. 5、通径过双曲线()22221,0x y a b a b-=>焦点F 作垂直于虚轴的直线,交双曲线于A 、B 两点,称线段AB 为双曲线的通径,且22b AB a=.6、焦点三角形P 为双曲线()22221,0x y a b a b-=>上的任意一点,1(,0)F c -,2(,0)F c 为双曲线的左右焦点,称12PF F ∆为双曲线的焦点三角形.若12F PF θ∠=,则焦点三角形的面积为:122cot 2F PF S b θ∆=.7、双曲线的焦点到渐近线的距离为b (虚半轴长).8、双曲线()22221,0x y a b a b-=>的焦点三角形的内心的轨迹为()0x a y =±≠9、直线与双曲线的位置关系直线:0l Ax By C ++=,双曲线Γ:()22221,0x y a b a b-=>,则l 与Γ相交22222a A b B C ⇔->; l 与Γ相切22222a A b B C ⇔-=; l 与Γ相离22222a A b B C ⇔-<.10、平行于(不重合)渐近线的直线与双曲线只有一个交点.【注】过平面内一定点作直线与双曲线只有一个交点,这样的直线可以为4条、3条、2条,或者0条. 11、焦点三角形角平分线的性质点(,)P x y 是双曲线()22221,0x y a b a b-=>上的动点,12,F F 是双曲线的焦点,M 是12F PF ∠的角平分线上一点,且20F M MP ⋅=,则OM a =,即动点M 的点的轨迹为()222x y a x a +=≠±.【推广2】设直线()110l y k x m m =+≠:交双曲线()22221,0x y a b a b -=>于C D 、两点,交直线22l y k x =:于点E .若E为CD 的中点,则2122b k k a=.13、中点弦的斜率直线l 过()()000,0M x y y ≠与双曲线()22221,0x y a b a b -=>交于,A B 两点,且AM BM =,则直线l 的斜率2020AB b x k a y =.14、点(,)(0,0)P x y x y >>是双曲线()22221,0x y a b a b-=>上的动点,过P 作实轴的平行线,交渐近线于,M N 两点,则PM PN =定值2a .15、点(,)(0,0)P x y x y >>是双曲线()22221,0x y a b a b-=>上的动点,过P 作渐近线的平行线,交渐近线于,M N 两点,则OMPNS =定值2ab .【典型例题】例1、双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_________.【变式1】若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是_________.【变式2】双曲线22148x y -=的两条渐近线的夹角为_________.【变式3】已知椭圆2222135x y m n +=和双曲线2222123x y m n-=有公共的焦点,那么双曲线的渐近线方程为_________.【变式4】若椭圆221(0)x y m n m n +=>>和双曲线221(0,0)x y a b a b-=>>有相同焦点1F 、2F ,P 为两曲线的一个交点,则12PF PF ⋅=_________.【变式5】如果函数2y x =-的图像与曲线22:4C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围是( )A .[1,1)-B . {}1,0-C . (,1][0,1)-∞-D . [1,0](1,)-+∞【变式6】直线2=x 与双曲线14:22=-y x C 的渐近线交于B A ,两点,设P 为双曲线C 上的任意一点,若b a +=(O R b a ,,∈为坐标原点),则下列不等式恒成立的是( )A .222a b +≥B .2122≥+b a C .222a b +≤ D .2212a b +≤【变式7】设连接双曲线22221x y a b -=与22221y x b a-=的四个顶点为四边形面积为1S ,连接其四个焦点的四边形面积为2S ,则12S S 的最大值为_________.例2、设12F F 、分别是双曲线2219y x -=的左右焦点,若点P 在双曲线上,且12=0PF PF ,则12PF PF +=_________.【变式1】过双曲线221109x y -=的左焦点1F 的弦6AB =,则2ABF ∆(2F 为右焦点)的周长为_________.【变式2】双曲线2211620x y -=的左、右焦点1F 、2F ,P 是双曲线上的动点,且19PF =,则2PF =_________.例3、设12F F 、是双曲线2214x y -=的两个焦点,点P 是双曲线的任意一点,且123F PF π∠=,求12PF F ∆的面积.例4、已知直线1y kx =+与双曲线2231x y -=有A B 、两个不同的交点,如果以AB 为直径的圆恰好过原点O ,试求k 的值.例5、已知直线1y kx =+与双曲线2231x y -=相交于A B 、两点,那么是否存在实数k 使得A B 、两点关于直线20x y -=对称?若存在,求出k 的值;若不存在,说明理由.例6、已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,求此直线的斜率的取值范围为_________.【变式1】已知曲线C :21(4)x y y x -=≤; (1)画出曲线C 的图像;(2)若直线l :1y kx =-与曲线C 有两个公共点,求k 的取值范围; (3)若()0P p ,()0p >,Q 为曲线C 上的点,求PQ 的最小值.【变式2】直线l :10ax y --=与曲线C :2221x y -=. (1)若直线l 与曲线C 有且仅有一个交点,求实数a 的取值范围;(2)若直线l 被曲线C 截得的弦长PQ =,求实数a 的取值范围;(3)是否存在实数a ,使得以PQ 为直径的圆经过原点,若存在,求出a 的值;若不存在,请说明理由.例7、已知F 是双曲线221412x y -=的左焦点,(14)A ,,P 是双曲线右支上的动点,求PF PA +的最小值.【变式】P 是双曲线221916x y -=的右支上一点,,M N 分别是圆()2254x y ++=和()2251x y -+=上的点,则PM PN -的最大值等于_________.例8、已知动圆P 与两个定圆()2251x y -+=和()22549x y ++=都外切,求动圆圆心P 的轨迹方程.【变式1】ABC ∆的顶点为()50A -,,()5,0B ,ABC ∆的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是_________.【变式2】已知双曲线的中心在原点,且一个焦点为)F,直线1y x =-与其相交于M N 、两点,线段MN的中点的横坐标为23-,求此双曲线的方程.例9、已知双曲线221916x y -=,若点M 为双曲线上任一点,则它到两渐近线距离的乘积为_________.例10、焦点在x 轴上的双曲线C 的两条渐近线经过原点,且两条渐近线均与以点P 为圆心,以1为半径的圆相切,又知双曲线C 的一个焦点与P 关于直线y x =对称 (1)求双曲线的方程;(2)设直线1y mx =+与双曲线C 的左支交于,A B 两点,另一直线l 经过点(2,0)M -及AB 的中点,求直线l 在轴上的截距n 的取值范围.【变式】设直线l 的方程为1y kx =-,等轴双曲线C :222x y a -=右焦点为).(1)求双曲线的方程;(2)设直线l 与双曲线的右支交于不同的两点A B 、,记AB 中点为M ,求实数k 的取值范围,并用k 表示点M 的坐标;(3)设点()1,0Q -,求直线QM 在y 轴上的截距的取值范围.例11、已知双曲线C 方程为:2212y x -=. (1)已知直线0x y m -+=与双曲线C 交于不同的两点A B 、,且线段AB 的中点在圆225x y +=上,求m 的值; (2)设直线l 是圆O :222x y +=上动点00(,)P x y (000x y ≠)处的切线,l 与双曲线C 交于不同的两点A B 、,证明AOB ∠的大小为定值.例12、已知中心在原点,顶点12A A 、在x 轴上,其渐近线方程是3y x =±,双曲线过点()6,6P . (1)求双曲线的方程;(2)动直线l 经过12A PA ∆的重心G ,与双曲线交于不同的两点M N 、,问:是否存在直线l ,使G 平分线段MN ,证明你的结论.例13、已知点1F 、2F 为双曲线C :()01222>=-b by x 的左、右焦点,过2F 作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且︒=∠3021F MF .圆O 的方程是222b y x =+. (1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求21PP PP ⋅的值; (3)过圆O 上任意一点()00y ,x Q 作圆O 的切线l 交双曲线C 于A 、B 两点,AB 中点为M ,例14、已知双曲线C :()222210,0x y a b a b-=>>的一个焦点是()22,0F ,且a b 3=.(1)求双曲线C 的方程;(2)设经过焦点2F 的直线的一个法向量为)1,(m ,当直线l 与双曲线C 的右支相交于B A ,不同的两点时,求实数m 的取值范围;并证明AB 中点M 在曲线3)1(322=--y x 上.(3)设(2)中直线l 与双曲线C 的右支相交于B A ,两点,问是否存在实数m ,使得AOB ∠为锐角?若存在,请求出m 的范围;若不存在,请说明理由.仰望天空时,什么都比你高,你会自卑; 俯视大地时,什么都比你低,你会自负; 只有放宽视野,把天空和大地尽收眼底, 才能在苍穹泛土之间找准你真正的位置。
【高中数学】双曲线
则|PF1|·|PF2|等于( )
A.2
B.4
C.6
D.8
[解析] 由双曲线的方程得 a=1,c= 2,
由双曲线的定义得||PF1|-|PF2||=2. 在△PF1F2 中,由余弦定理得 |F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|cos 60°, 即(2 2)2=|PF1|2+|PF2|2-|PF1|·|PF2| =(|PF1|-|PF2|)2+|PF1|·|PF2| =22+|PF1|·|PF2|, 解得|PF1|·|PF2|=4. [答案] B
5,+∞ D. 3
[解析] 由双曲线的定义可知|PF1|-|PF2|=2a,又|PF1|=4|PF2|,所以|PF2|=2a,由双曲 3
线上的点到焦点的最短距离为 c-a,可得2a≥c-a,解得c≤5, 即 e≤5,又双曲线的离心
3
a3
3
1,5 率 e>1,故该双曲线离心率的取值范围为 3 ,故选 B.
[答案] B
[解题技法]
1.求双曲线的离心率或其范围的方法
高中数学学科
(1)求 a,b,c 的值,由ac22=a2+a2 b2=1+ba22直接求 e. (2)列出含有 a,b,c 的齐次方程(或不等式),借助于 b2=c2-a2 消去 b,然后转化成关 于 e 的方程(或不等式)求解. 2.求离心率的口诀归纳 离心率,不用愁,寻找等式消 b 求; 几何图形寻迹踪,等式藏在图形中.
=0,则轨迹是线段 F1F2 的垂直平分线.
2.双曲线的标准方程
(1)中心在坐标原点,焦点在 x 轴上的双曲线的 标准方程为ax22-by22=1(a>0,b>0).
(2)中心在坐标原点,焦点在 y 轴上的双曲线的 标准方程为ay22-bx22=1(a>0,b>0).
认识双曲线与其性质
认识双曲线与其性质双曲线是二次曲线的一种常见形式,它在数学和几何学中占据着重要的地位。
本文将介绍双曲线的基本定义,性质和一些常见的应用场景。
一、双曲线的定义和基本性质双曲线是平面上一个动点到两个定点的距离差为常数的轨迹。
双曲线的定义可以通过以下方程表示:(x^2/a^2) - (y^2/b^2) = 1在数学中,双曲线具有以下基本性质:1. 定义域和值域:双曲线是定义在实数域上的。
它的定义域为所有使方程成立的x值,而值域为所有满足方程的y值。
2. 对称性:双曲线是x轴和y轴的对称图形。
这意味着如果(x, y)在双曲线上,那么(-x, y)、(x, -y)和(-x, -y)也在双曲线上。
3. 渐近线:双曲线拥有两条渐近线,分别是x轴和y轴。
当x或y 趋于正无穷时,双曲线趋于渐近线,但永远不会触及它们。
4. 焦点和直径:双曲线有两个焦点,分别称为F1和F2。
它们与双曲线上的每个点的距离之差等于常数2a。
双曲线还有两个直径,分别称为长轴和短轴。
5. 双曲率:双曲线具有不同的双曲率。
在焦点处,双曲线的双曲率为负;在其它点,双曲线的双曲率为正。
二、双曲线的分类双曲线可以进一步分为以下三种类型:1. 椭圆型双曲线:当椭圆的长轴与短轴分别与x轴和y轴平行时,双曲线为椭圆型双曲线。
它的方程形式为:(x^2/a^2) - (y^2/b^2) = 12. 双叶双曲线:当双曲线的长轴与短轴分别与x轴和y轴垂直时,双曲线为双叶双曲线。
它的方程形式为:(x^2/a^2) - (y^2/b^2) = -13. 异形双曲线:当双曲线的长轴和短轴的方向不同时,双曲线为异形双曲线。
三、双曲线的应用双曲线由于其独特的性质,在许多学科和应用领域中都有广泛的应用。
以下是双曲线的一些常见应用场景:1. 物理学:双曲线在物理学中的应用非常广泛。
例如,在电磁学中,双曲线用于描述场线的形状和传播特性。
在热力学中,双曲线可以用于描述热传导的过程。
高中数学双曲线知识点归纳
高中数学双曲线知识点归纳双曲线是我们高中数学学习中的重要内容之一,它在几何和代数中都有广泛的应用。
本文将对高中数学双曲线的知识点进行归纳和总结,以帮助同学们更好地理解和掌握这一部分内容。
1. 双曲线的定义双曲线是平面上一组点,其到两个定点的距离之差的绝对值等于常数的轨迹。
其中,定点称为焦点,常数称为离心率。
双曲线具有两支,分别对称于坐标轴。
2. 双曲线的标准方程双曲线的标准方程可以表示为 x^2/a^2 - y^2/b^2 = 1 或y^2/b^2 - x^2/a^2 = 1,其中 a 和 b 分别为椭圆的长轴和短轴的长度,决定了双曲线的形状和大小。
3. 双曲线的性质- 双曲线的对称轴是 x 轴或 y 轴,取决于标准方程的形式。
- 双曲线存在两个渐近线,与双曲线趋于无穷远处的曲线趋势相似。
- 双曲线具有镜像对称性,即曲线关于 x 轴和 y 轴对称。
- 双曲线的离心率决定了离焦点的距离和双曲线的形状,离心率越大,曲线越尖。
4. 双曲线的焦点和直径对于双曲线,有两个焦点,分别位于离心率所决定的距离之内,与中心轴相距相等。
直径则是双焦点之间的距离。
5. 双曲线与其他数学概念的联系双曲线在数学中与许多其他概念有密切的联系,例如:- 双曲线与椭圆是一对共轴的曲线,它们在几何性质上有一定的相似性。
- 双曲线与指数函数和对数函数有关,其图像表现出指数增长或指数衰减的特点。
6. 双曲线的应用双曲线在数学中被广泛应用于各个领域,包括物理学、工程学和计算机科学等。
在物理学中,双曲线可以描述粒子的运动轨迹;在工程学中,双曲线可以用于描述电路的性质;在计算机科学中,双曲线可以用于图像处理和数据压缩等领域。
本文对高中数学双曲线的定义、标准方程、性质、焦点和直径以及与其他数学概念的联系和应用进行了归纳和总结。
希望通过对这些知识点的了解,同学们能够更好地理解和应用双曲线,为日后的学习和研究打下坚实的基础。
高三第一轮复习双曲线的定义、方程及几何性质
双曲线的定义、方程及几何性质【提纲挈领】(请阅读下面文字,并在关键词下面记着重号)主干知识归纳 1.双曲线的定义平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a 、c 为常数且a >0,c >0. (1) 当2a <|F 1F 2|时,P 点的轨迹是双曲线; (2) 当2a =|F 1F 2|时,P 点的轨迹是两条射线; (3) 当2a >|F 1F 2|时,P 点不存在. 2.标准方程(1)中心在坐标原点,焦点在x 轴上的双曲线的标准方程为2222-b y a x =1(a >0,b >0); (2)中心在坐标原点,焦点在y 轴上的双曲线的标准方程为2222-bx ay =1(a >0,b >0). 3(1)若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=. (2)若000(,)P x y 在双曲线22221x y ab-=(a >0,b >0)外,则过0P 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b-=.(3)双曲线22221x y a b-=(a >0,b >0)的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t 2F PF S b co γ∆=.(4)A 、B 是双曲线22221(0,0)x y a b a b-=>>的两个顶点,M ),(00y x 为双曲线上任意一点,则22MA MB b k k a ⋅=.方法规律总结1.双曲线标准方程的求法(1)当已知双曲线的焦点不明确而又无法确定时,其标准方程可设为x 2m -y 2n=1(mn >0),这样可避免讨论和复杂的计算;也可设为Ax 2+By 2=1(AB <0),这种形式在解题时更简便;(2)当已知双曲线的渐近线方程bx ±ay =0,求双曲线方程时,可设双曲线方程为b 2x 2-a 2y 2=λ(λ≠0),据其他条件确定λ的值;(3)与双曲线x 2a 2-y 2b 2=1有相同的渐近线的双曲线方程可设为x 2a 2-y 2b2=λ(λ≠0),据其他条件确定λ的值.2.已知双曲线的标准方程求双曲线的渐近线方程时,只要令双曲线的标准方程中“1”为“0”就得到两渐近线方程,即方程x 2a 2-y 2b 2=0就是双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线方程.3.双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直(位置关系).4.过双曲线的一个焦点且与实轴垂直的弦的长为2b2a. 5.过双曲线焦点F 1的弦AB 与双曲线交在同支上,则AB 与另一个焦点F 2构成的△ABF 2的周长为4a +2|AB |.【指点迷津】【类型一】双曲线的定义及应用【例1】已知圆C :(x -3)2+y 2=4,定点A (-3,0),则过定点A 且和圆C 外切的动圆圆心M 的轨迹方程为________.【解析】:设动圆M 的半径为R ,则|MC |=2+R ,|MA |=R ,∴|MC |-|MA |=2,由双曲线的定义知,M 点的轨迹是以A ,C 为焦点的双曲线的左支,且a =1,c =3,∴b 2=8,则动圆圆心M 的轨迹方程为x 2-y 28=1(x <-1).答案:x 2-y 28=1(x <-1).【例2】已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=________.【解析】:∵由双曲线的定义有|PF 1|-|PF 2|=|PF 2|=2a =22,∴|PF 1|=2|PF 2|=42,则cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=22+22-422×42×22=34. 答案:34.【例3】已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小时,该三角形的面积为________.【解析】:由双曲线方程x 2-y 28=1可知,a =1,c =3,故F (3,0),F 1(-3,0).当点P 在双曲线左支上运动时,由双曲线定义知|PF |-|PF 1|=2,所以|PF |=|PF 1|+2,从而△APF 的周长=|AP |+|PF |+|AF |=|AP |+|PF 1|+2+|AF |.因为|AF |=32+62=15为定值,所以当(|AP |+|PF 1|)最小时,△APF 的周长最小,由图象可知,此时点P 在线段AF 1与双曲线的交点处(如图所示).由题意可知直线AF 1的方程为y =26x +66,由⎩⎪⎨⎪⎧y =26x +66,x 2-y28=1,得y 2+66y -96=0,解得y =26或y =-86(舍去),所以S △APF =S △AF 1F -S △PF 1F =12×6×66-12×6×26=12 6.答案:(1)x 2-y 28=1(x <-1); (2) 34; (3)12 6.【类型二】双曲线的标准方程【例1】 已知双曲线C :x 2a 2-y 2b 2=1的离心率e =54,且其右焦点为F 2(5,0),则双曲线C 的方程为( )A.x 24-y 23=1B.x 29-y 216=1C.x 216-y 29=1D.x 23-y 24=1 【解析】:∵e =c a =54,F 2(5,0),∴c =5,a =4,b 2=c 2-a 2=9,∴双曲线C 的标准方程为x 216-y 29=1.答案C.答案:C.【例2】已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________.【解析】:法一:∵双曲线的渐近线方程为y =±12x ,∴可设双曲线的方程为x 2-4y 2=λ(λ≠0).∵双曲线过点(4,3),∴λ=16-4×(3)2=4,∴双曲线的标准方程为x 24-y 2=1.法二:∵渐近线y =12x 过点(4,2),而3<2,∴点(4,3)在渐近线y =12x 的下方,在y =-12x 的上方(如图).∴双曲线的焦点在x 轴上,故可设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).由已知条件可得⎩⎨⎧b a =12,16a 2-3b 2=1,解得⎩⎨⎧a 2=4,b 2=1,∴双曲线的标准方程为x 24-y 2=1.答案:双曲线的标准方程为x 24-y 2=1.【例3】设F 1,F 2分别为双曲线-=1(a>0,b>0)的左、右焦点.若在双曲线右支上存在点P,满足|PF 2|=|F 1F 2|,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲线的离心率为 ( ) A.B.C.D.【解析】:易知|PF 2|=|F 1F 2|=2c,所以由双曲线的定义知|PF 1|=2a+2c, 因为F 2到直线PF 1的距离等于双曲线的实轴长,所以(a+c)2+(2a)2=(2c)2, 即3c 2-2ac-5a 2=0,两边同除以a 2,得3e 2-2e-5=0,解得e=或e=-1(舍去). 选B. 答案:B.类型三:双曲线的几何性质【例1】过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为________.【解析】:如图所示,不妨设与渐近线平行的直线l 的斜率为ba ,又直线l 过右焦点F (c,0),则直线l 的方程为y =b a (x -c ).因为点P 的横坐标为2a ,代入双曲线方程得4a 2a 2-y2b2=1,化简得y =-3b 或y =3b (点P 在x 轴下方,故舍去),故点P 的坐标为(2a ,-3b ),代入直线方程得-3b =ba(2a -c ),化简可得离心率e =ca=2+ 3.答案:2+ 3.【例2】 设双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点是F ,左、右顶点分别是A 1,A 2,过F 作A 1A 2的垂线与双曲线交于B, C 两点.若A 1B ⊥A 2C ,则该双曲线的渐近线的斜率为( )A .±12B .±22C .±1D .± 2【解析】:由题设易知A 1(-a,0),A 2(a,0),B ⎝⎛⎭⎫c ,b 2a , C ⎝⎛⎭⎫c ,-b2a .∵A 1B ⊥A 2C ,∴b 2ac +a ·-b 2a c -a =-1,整理得a =b .∵渐近线方程为y =±bax ,即y =±x ,∴渐近线的斜率为±1.答案:C.【例3】 已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点.若<0,则y 0的取值范围是( )A.⎝⎛⎭⎫-33,33 B.⎝⎛⎭⎫-36,36 C.⎝⎛⎭⎫-223,223 D.⎝⎛⎭⎫-233,233 【解析】:由题意知a =2,b =1,c =3,∴F 1(-3,0),F 2(3,0),∴(-3-x 0)(3-x 0)+y 20<0,即x 20-3+y 20<0.∵点M (x 0,y 0)在双曲线上, ∴x 202-y 20=1,即x 20=2+2y 20, ∴2+2y 20-3+y 20<0,∴-33<y 0<33. 答案:A.【同步训练】【一级目标】 基础巩固组一、选择题1.若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( )A .离心率相等B .虚半轴长相等C .实半轴长相等D .焦距相等【解析】:由0<k <9,易知两曲线均为双曲线且焦点都在x 轴上,由25+9-k =25-k +9,得两双曲线的焦距相等. 答案:D.2.已知双曲线C 的渐近线方程为y =±2x ,且经过点(2,2),则C 的方程为( )A.x 23-y 212=1B.x 212-y 23=1C.y 23-x 212=1 D.y 212-x 23=1 【解析】:由题意,设双曲线C 的方程为y 24-x 2=λ(λ≠0),因为双曲线C 过点(2,2),则224-22=λ,解得λ=-3,所以双曲线C 的方程为y 24-x 2=-3,即x 23-y 212=1. 选A. 答案:A.3.已知F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,以F 1F 2为直径的圆与双曲线的一个交点是P ,且△F 1PF 2的三条边长成等差数列,则此双曲线的离心率是( )A. 2B. 3 C .2 D .5【解析】: 不妨设点P 位于第一象限,F 1为左焦点,|PF 2|=m -d ,|PF 1|=m ,|F 1F 2|=m +d ,其中m >d >0,则有(m -d )2+m 2=(m +d )2,解得m =4d ,故双曲线的离心率 e =|F 1F 2||PF 1|-|PF 2|=5. 选D.答案:D.4.若双曲线x 2+y 2m =1的一条渐近线的倾斜角α∈⎝⎛⎭⎫0,π3,则m 的取值范围是( )A .(-3,0)B .(-3,0)C .(0,3) D.⎝⎛⎭⎫-33,0【解析】:由题意可知m <0,双曲线的标准方程为x 2-y2-m=1,经过第一、三象限的渐近线方程为y =-mx ,因为其倾斜角α∈⎝⎛⎭⎫0,π3,所以-m =tan α∈(0,3),故m ∈(-3,0).选A.答案: A.5.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,过F 作斜率为-1的直线交双曲线的渐近线于点P ,点P 在第一象限,O 为坐标原点,若△OFP 的面积为a 2+b 28,则该双曲线的离心率为( )A.53 B.73 C.103 D.153【解析】:如图所示,由 k PF =-1得∠PFO =π4,由 k OP =tan ∠POF =b a 得sin ∠POF =b a 2+b 2=bc ,cos ∠POF=aa 2+b 2=ac ,所以sin ∠OPF =sin ⎝⎛⎭⎫∠POF +π4=b c ×22+a c ×22=a +b 2c .又因为S △OPF =12c ·|PF |·22=a 2+b 28=c 28,得|PF |=c 22,由正弦定理得a +b 2c c =bc c 22,整理得a =3b ,又a 2+b 2=c 2,故e =103. 答案:选C. 二、填空题6.若双曲线x 216-y 2m =1的离心率为174,则m =________.【解析】:由a 2=16,b 2=m ,得c 2=16+m ,所以e =16+m 4=174,即m =1. 答案:1.7.(2016·商丘模拟)双曲线tx 2-y 2-1=0的一条渐近线与直线2x +y +1=0垂直,则双曲线的离心率为________.【解析】:由题意知渐近线的斜率为12,∴e =ca =c 2a 2=a 2+b 2a 2=1+⎝⎛⎭⎫b a 2=1+14=52. 答案:52. 8.已知双曲线y 2a 2-x 2b2=1(a >0,b >0)的两个焦点分别为F 1,F 2,以线段F 1F 2为直径的圆与双曲线渐近线的一个交点是(4,3).则此双曲线的方程为________.【解析】:由题意,c =42+32=5,∴a 2+b 2=c 2=25.①又双曲线的渐近线为y =±a b x ,∴a b =34.②则由①②解得a =3,b =4,∴双曲线方程为y 29-x 216=1.答案:y 29-x 216=1三、解答题9.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10). (1)求双曲线方程;(2)若点M (3,m )在双曲线上,求证:点M 在以F 1F 2为直径的圆上; (3)在(2)的条件下求△F 1MF 2的面积. 【解析】: (1)∵离心率e =2,∴双曲线为等轴双曲线,可设其方程为x 2-y 2=λ(λ≠0),则由点(4,-10)在双曲线上,可得λ=42-(-10)2=6,∴双曲线方程为x 2-y 2=6.(2)证明:∵点M (3,m )在双曲线上,∴32-m 2=6,∴m 2=3,又双曲线x 2-y 2=6的焦点为F 1(-23,0),F 2(23,0),∴=(-23-3,-m )·(23-3,-m )=(-3)2-(23)2+m 2=9-12+3=0, ∴MF 1⊥MF 2,∴点M 在以F 1F 2为直径的圆上,(3)S △F 1MF 2=12×43×|m |=6.答案:(1) 双曲线方程为x 2-y 2=6; (2)证明:略; (3) 6.10.设A ,B 分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右顶点,双曲线的实轴长为43,焦点到渐近线的距离为 3.(1)求双曲线的方程;(2)已知直线y =33x -2与双曲线的右支交于M 、N两点,且在双曲线的右支上存在点D ,使求t 的值及点D 的坐标.【解析】: (1)由题意知a =23,∴一条渐近线为y =b23x ,即bx -23y =0,∴|bc |b 2+12= 3.∴b 2=3,∴双曲线的方程为x 212-y 23=1.(2)设M (x 1,y 1),N (x 2,y 2),D (x 0,y 0),则x 1+x 2=tx 0,y 1+y 2=ty 0.将直线方程代入双曲线方程得x 2-163x +84=0, 则x 1+x 2=163,y 1+y 2=12. ∴⎩⎨⎧x 0y 0=433,x 2012-y203=1,∴⎩⎨⎧x 0=43,y 0=3.由得(163,12)=(43t,3t ),∴t =4,点D 的坐标为(43,3). 答案:(1) 双曲线的方程为x 212-y 23=1.(2) t =4,点D 的坐标为(43,3).【二级目标】能力提升组1.已知点F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右两焦点,若双曲线左支上存在点P 与点F 2关于直线y =bax 对称,则双曲线的离心率为( )A. 2B.52C .2 D. 5 【解析】:过焦点F 2且垂直于渐近线的直线方程为:y -0=-a b(x -c ),联立⎪⎩⎪⎨⎧--=-=cx b ay x a b y 0解得x =a 2c ,y =ab c ,故对称中心的坐标为⎝⎛⎭⎫a 2c ,ab c ,由中点坐标公式可得对称点的坐标为⎝⎛⎭⎫2a 2c -c ,2abc ,将其代入双曲线的方程可得14)2(222222222=--cb b a ca c a ,结合a 2+b 2=c 2,化简可得c 2=5a 2,故可得e =c a= 5.选D. 答案:D.2.若点P 在曲线C 1:x 216-y 29=1上,点Q 在曲线C 2:(x -5)2+y 2=1上,点R 在曲线C 3:(x +5)2+y2=1上,则|PQ |-|PR |的最大值是________.【解析】:依题意得,点F 1(-5,0),F 2(5,0)分别为双曲线C 1的左、右焦点,因此有|PQ |-|PR |≤|(|PF 2|+1)-(|PF 1|-1)|≤||PF 2|-|PF 1||+2=2×4+2=10,故|PQ |-|PR |的最大值是10. 答案:10.3.已知双曲线C :x 2-y 2=1及直线l :y =kx -1.(1)若l 与C 有两个不同的交点,求实数k 的取值范围;(2)若l 与C 交于A ,B 两点,O 是坐标原点,且△AOB 的面积为2,求实数k 的值. 【解析】: (1)双曲线C 与直线l 有两个不同的交点,则方程组⎩⎨⎧x 2-y 2=1,y =kx -1有两个不同的实数根,整理得(1-k 2)x 2+2kx -2=0.∴⎩⎨⎧1-k 2≠0,Δ=4k 2+-k2,解得-2<k <2且k ≠±1.双曲线C 与直线l 有两个不同的交点时,k 的取值范围是(-2,-1)∪(-1,1)∪(1,2). (2)设交点A (x 1,y 1),B (x 2,y 2),直线l 与y 轴交于点D (0,-1),由(1)知,C 与l 联立的方程为(1-k 2)x 2+2kx -2=0.∴⎩⎨⎧x 1+x 2=-2k1-k2,x 1x 2=-21-k 2.当A ,B 在双曲线的一支上且|x 1|>|x 2|时,S △OAB =S △OAD -S △OBD =12(|x 1|-|x 2|)=12|x 1-x 2|;当A ,B 在双曲线的两支上且x 1>x 2时,S △OAB =S △ODA +S △OBD =12(|x 1|+|x 2|)=12|x 1-x 2|.∴S △OAB =12|x 1-x 2|=2,∴(x 1-x 2)2=(22)2,即⎝⎛⎭⎫-2k 1-k 22+81-k2=8,解得k =0或k =±62. 又∵-2<k <2,且k ≠±1, ∴当k =0或k =±62时,△AOB 的面积为 2. 答案:(1) k 的取值范围是(-2,-1)∪(-1,1)∪(1,2).(2) 当k =0或k =±62时,△AOB 的面积为 2.【高考连接】1. 【2012全国,理8】已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos∠F 1PF 2=( ) A .14 B .35 C .34 D .45答案:C.2. 【2015高考新课标2,理11】已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A .2 C【解析】:设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,AB BM=,0120ABM∠=,过点M 作MN x ⊥轴,垂足为N ,在Rt BMN ∆中,BN a =,MN =,故点M 的坐标为(2)M a ,代入双曲线方程得2222a b a c ==-,即222c a =,所以e =D .答案:D.。
双曲线的基本概念与性质
双曲线的基本概念与性质双曲线是高等数学中的一个重要概念,广泛应用于物理、工程、计算机科学等领域。
它具有独特的性质和特点,本文将详细介绍双曲线的基本概念与性质。
一、双曲线的定义与表示双曲线是平面上一组点的集合,这组点的到两个固定点的距离之差的绝对值等于常数。
数学上,双曲线可以用以下方程表示: x^2/a^2 - y^2/b^2 = 1 (1)或者y^2/b^2 - x^2/a^2 = 1 (2)其中,a和b都是正实数,决定了双曲线的形状和尺寸。
二、双曲线的基本性质1. 中心与焦点:双曲线的中心是坐标原点O(0,0);双曲线的焦点是坐标轴上的两个点F1(-c,0)和F2(c,0);2. 弦与渐近线:双曲线上的任意两点A(x1, y1)和B(x2, y2),都满足OA - OB = 2a;双曲线还有两条渐近线,与双曲线无交点但无限趋近于双曲线;3. 对称性:双曲线关于x轴和y轴均对称;4. 弧长与面积:双曲线的弧长计算公式为s = ∫sqrt(1 + (dy/dx)^2) dx;双曲线的面积计算公式为A = ∫(y * dx);5. 双曲率:双曲线的曲率计算公式为k = |-2a^2 * y / (a^2 - x^2)^(3/2)|;三、不同双曲线的特点对于方程(1)和(2),当参数a和b取不同的值时,双曲线呈现出不同的形状和特点。
1. a > b时:双曲线的轴线平行于x轴,焦点在x轴上方或下方,称为水平双曲线。
2. a < b时:双曲线的轴线平行于y轴,焦点在y轴的左侧或右侧,称为垂直双曲线。
3. a = b时:双曲线的轴线与对角线重合,形状接近于两个无限远的平行直线。
四、应用领域与示例双曲线在物理、工程和计算机科学等领域有着广泛的应用。
1. 物理学中,双曲线常用于描述电磁场、光学、天体物理等领域的运动和效应。
2. 工程学中,双曲线常用于建筑设计、交通规划等领域的结构和曲线优化。
3. 计算机科学中,双曲线广泛用于曲线拟合、数据可视化等领域的数学计算和图形绘制。
高中数学解析几何专题之双曲线(汇总解析版)
圆锥曲线第2讲 双曲线【知识要点】 一、双曲线的定义 1. 双曲线的第一定义:平面内到两个定点1F 、2F 的距离之差的绝对值等于定长a 2(2120F F a <<)的点的轨迹叫双曲线,这两个定点叫做双曲线的焦点,两个焦点之间的距离叫做焦距。
注1:在双曲线的定义中,必须强调:到两个定点的距离之差的绝对值(记作a 2),不但要小于这两个定点之间的距离21F F (记作c 2),而且还要大于零,否则点的轨迹就不是一个双曲线。
具体情形如下:(ⅰ)当02=a 时,点的轨迹是线段21F F的垂直平分线; (ⅱ)当c a 22=时,点的轨迹是两条射线; (ⅲ)当c a 22>时,点的轨迹不存在; (ⅳ)当c a 220<<时,点的轨迹是双曲线。
特别地,若去掉定义中的“绝对值”,则点的轨迹仅表示双曲线的一支。
注2:若用M 表示动点,则双曲线轨迹的几何描述法为aMF MF 221=-(c a 220<<,cF F 221=),即2121F F MF MF <-。
2. 双曲线的第二定义:平面内到某一定点的距离与它到定直线的距离之比等于常数e (1>e )的点的轨迹叫做双曲线。
二、双曲线的标准方程 1. 双曲线的标准方程(1)焦点在x 轴、中心在坐标原点的双曲线的标准方程是12222=-b y a x (0>a ,0>b );(2)焦点在y 轴、中心在坐标原点的双曲线的标准方程是12222=-b x a y (0>a ,0>b ).注:若题目已给出双曲线的标准方程,那其焦点究竟是在x 轴还是在y 轴,主要看实半轴跟谁走。
若实半轴跟x 走,则双曲线的焦点在x 轴;若实半轴跟y 走,则双曲线的焦点在y 轴。
2. 等轴双曲线当双曲线的实轴与虚轴等长时(即b a 22=),我们把这样的双曲线称为等轴双曲线,其标准方程为λ=-22y x (0≠λ) 注:若题目已明确指出所要求的双曲线为等轴双曲线,则我们可设该等轴双曲线的方程为λ=-22y x (0≠λ),再结合其它条件,求出λ的值,即可求出该等轴双曲线的方程。
高三数学知识点双曲线
高三数学知识点双曲线双曲线是高中数学中重要的数学知识点之一,它在数学中有广泛的应用和重要的作用。
在本文中,将详细介绍双曲线的定义、性质和相关的数学知识。
一、双曲线的定义双曲线是平面解析几何中的曲线之一,它的定义可以通过平面上一动点与两个不相交固定点的距离之差的绝对值等于常数来描述。
以坐标平面为例,双曲线的定义可表示为:在平面直角坐标系中,两个不相交的点F1(c, 0)和F2(-c, 0)为焦点,直线L:x = -a为准线,且常数e(e>1)为离心率时,平面上动点P(x, y)到F1和F2的距离之差的绝对值等于常数e(e>1)与动点到直线L的距离的积,即|PF1 - PF2| = e|PL|。
二、双曲线的性质1. 双曲线的离心率双曲线的离心率e定义为焦点到准线的距离与焦点到准线的垂线段的比值,即e = PF1 / PL,其中PF1为焦点到动点的距离,PL为动点到准线的垂线段。
双曲线的离心率大于1,离心率越大,双曲线的形状越扁平。
2. 双曲线的对称轴以焦点连线为轴,双曲线与对称轴关于对称轴对称。
3. 双曲线的渐近线双曲线的渐近线是与双曲线趋于无穷远处(焦点以外)的直线。
双曲线有两条渐近线,分别与双曲线的两支无限延伸,且互相对称。
4. 双曲线的焦点双曲线的焦点F1和F2是双曲线的两个特殊点,焦点到双曲线上任意一点的距离之差的绝对值等于常数e与该点到准线的距离的积。
焦点与双曲线的形状和位置密切相关。
三、双曲线的方程双曲线的一般方程可以表示为x^2/a^2 - y^2/b^2 = 1(双曲线的主轴平行于x轴)或y^2/a^2 - x^2/b^2 = 1(双曲线的主轴平行于y 轴)。
其中,a为椭圆的轴长,b为双曲线的离心距离。
四、双曲线的应用双曲线广泛应用于数学和物理等领域。
在数学中,双曲线是对数函数、双曲函数和双曲积分等的基础;在物理中,双曲线是电磁场、光学和天体力学等的重要工具。
在高中数学中,我们需要熟练掌握双曲线的定义、性质和方程,能够准确地绘制双曲线图形,并能运用双曲线解决相关的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题讲练:双曲线的概念及几何性质※知识要点
1.双曲线的概念
平面内动点P与两个定点F1、F2(|F1F2|=2c>0)的距离之差的绝对值为常数2a(2a<2c),则点P的轨迹叫________.这两个定点叫双曲线的________,两焦点间的距离叫________.
集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a、c为常数且a>0,c>0;
(1)当________时,P点的轨迹是________;
(2)当________时,P点的轨迹是________;
(3)当________时,P点不存在.
2.双曲线的标准方程和几何性质
标准
方程() ()
图形
性质
x、y
范围
对称性
对称轴:对称中心:
顶点
渐近线
离心率
实虚轴实轴:= ;虚轴:= ;
a、b、c
的关系
3.实轴长和虚轴长相等的双曲线为________________,其渐近线方程为________,离心率为________.
※题型讲练
【例1】已知定点A(0,7),B(0,-7),C(12,2),以C为一个焦点作过点A、B的椭圆,求椭圆另一焦点F的轨迹方程.
变式训练1:
已知动圆M与圆C1:(x+4)2+y2=2外切,与圆C2:(x-4)2+y2=2内切,求动圆圆心M的轨迹方程.【例2】求双曲线22
916144
y x
-=的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.
变式训练2:
求分别满足下列条件的双曲线标准方程:
(1)已知双曲线的一条渐近线方程是x-2y=0,且过点P(4,3);
(2)已知双曲线的离心率等于2,且经过点M(-2,3).
【例3】求与双曲线有共同的渐近线,且过点(-3,23)的双曲线标准方程.
变式训练3:
求分别满足下列条件的双曲线标准方程:
(1)以椭圆的焦点为顶点、顶点为焦点;
(2)与双曲线有公共焦点,且过点(32,2).
【例4】已知曲线C:.
(1)若曲线C为椭圆,求k的取值范围;
(2)若曲线C为双曲线,求k的取值范围;
1
16
9
2
2
=
-
y
x
22
1
85
x y
+=
1
4
16
2
2
=
-
y
x
1
3
3
2
2
=
-
-
+k
y
k
x
变式训练4:
已知曲线C : .
(1)若曲线C 为椭圆,求k 的取值范围;
(2)若曲线C 为实轴在y 轴上的双曲线,求k 的取值范围;
【例5】已知F 1和F 2是双曲线16x 2-9y 2=144的左、右焦点,点P 在双曲线上,且|PF 1|·|PF 2|=32,
(1)求此双曲线的焦点坐标、离心率和渐近线方程; (2)求∠F 1PF 2的大小; (3)求△F 1PF 2的面积.
【例6】已知直线l 与双曲线 交于A 、B 两点. (1)直线l 与y 轴的截距为-1,求直线l 的斜率k 的范围; (2)若A 、B 中点为P (1,-1),求直线l 的方程; (3)若直线l 的的斜率为2,且 ,求直线l 的方程.
【例7】已知F 1、F 2是双曲线 的左、右焦点,过双曲线右焦点的直线交双曲线于A 、B 两点,且直线倾斜角为30°. (1)求|AB|的长; (2)求△AF 1B 的周长; (3)求△AF 1B 的面积.
【例8】已知双曲线C :x 22
-y 2
=1.
(1)求双曲线C 的渐近线方程;
(2)已知M 点坐标为(0,1),设P 是双曲线C 上的点,Q 是点P 关于原点的对称点.记λ=MP →·MQ →
,求λ 的取值范围.
变式训练5:
1.已知P 点是以F 1、F 2为焦点的双曲线C :x 2a 2-y 2
b 2=1上的一
点,若PF 1·PF 2=0,且|PF 1|=2|PF 2|.求双曲线的离心率e .
11
42
2=-++k y
k x 2
2
13
2
x
y -=4AB =。