初二(下)数学第十五十六十七章测试题

合集下载

人教新版八年级下册数学《第17章 勾股定理》单元测试卷和答案详解(PDF可打印)

人教新版八年级下册数学《第17章 勾股定理》单元测试卷和答案详解(PDF可打印)

人教新版八年级下册《第17章勾股定理》单元测试卷(1)一、选择题(本题共计7小题,每题3分,共计21分,)1.(3分)已知直角三角形的两条直角边的长分别为3和5,则斜边的长为()A.3B.4C.5D.2.(3分)下列定理中,有逆定理的个数是()①有两边相等的三角形是等腰三角形;②若两个数互为相反数,他们的奇次幂也互为相反数;③面积相等的长方形周长也一定相等;④若a=b,则a2=b2.A.1个B.2个C.3个D.4个3.(3分)如图,在Rt△ABC中,∠ACB=90°,正方形AEDC,BCFG的面积分别为25和144,则AB的长度为()A.13B.169C.12D.54.(3分)下列给出的三条线段的长,其中能组成直角三角形的是()A.62、82、102B.6、8、9C.2、、D.、、5.(3分)下列命题的逆命题不成立的是()A.如果a>b,那么a﹣b>0B.如果a+b=0,那么a2=b2C.等边对等角D.如果△ABC是直角三角形(两直角边为a,b,斜边为c),那么a2+b2=c26.(3分)下列各组数分别为一个三角形三边的长,其中不能构成直角三角形的一组是()A.8,10,12B.3,4,5C.5,12,13D.7,24,25 7.(3分)在下列各组数中能组成直角三角形的有();(1)9、80、81(2)10、24、25(3)15、20、25(4)8、15、17.A.1组B.2组C.3组D.4组二、填空题(本题共计7小题,每题3分,共计21分,)8.(3分)如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是cm.9.(3分)如图所示,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=5,S3=15,则S2=.10.(3分)如图,一根旗杆于离地面3m处断裂,倒向地面,旗杆顶落于离旗杆底部4m处,旗杆断裂之前高米.11.(3分)如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了米.12.(3分)如图是单位长度为1的网格图,A、B、C、D是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成个直角三角形.13.(3分)如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7米,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3米,木板顶端向下滑动了0.9米,则小猫在木板上爬动了米.14.(3分)如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积,S2=2π,则S3是.三、解答题(本题共计7小题,共计78分,)15.如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯足向外移0.8米,那么梯子的顶端沿墙下滑多少米?16.我校有两个课外小组的同学到校外去采集植物标本,已知第一组的速度为30米/分钟,第二组的速度为40米/分钟,且两组行走的路线为直线,半小时后,两组同学同时停下来,这时两组同学正好相距1500米.(1)请你判断一下两组同学行走的夹角是否为直角?并说明理由.(2)如果接下来两组同学以原来的速度相向而行,那么经过多长时间后才能相遇?17.已知图中的每个方格都是边长为1的小正方形,每个小正方形的顶点称为格点,△ABC的顶点在格点上,称为格点三角形,请按要求完成下列各题(1)填空:AB=,BC=,AC=;(2)试判断△ABC的形状,并说明理由.18.如图,台风过后,一颗白杨树在高地某处断裂,白杨树的顶部落在离白杨树根部8米处,已知白杨树高16米,你能求出白杨树在离根部多少米的位置断裂吗?19.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.20.如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有学校,点A到公路MN 的距离为80m,现有一拖拉机在公路MN上以18km/h的速度沿PN方向行驶,拖拉机行驶时周围100m以内都会受到噪音声的影响,试问该校受影响的时间为多少秒?21.为了加强农村“疫情防控”知识,某镇政府采用了移动宣传的形式进行宣传:如图,笔直公路l的一侧有一村庄P,P到公路l的距离为1200米,宣传车M匀速在l上行驶,在车周围1300米以内能听到广播宣传,若至少连续宣传5分钟才有效果,宣传车最高时速是多少?人教新版八年级下册《第17章勾股定理》单元测试卷(1)参考答案与试题解析一、选择题(本题共计7小题,每题3分,共计21分,)1.(3分)已知直角三角形的两条直角边的长分别为3和5,则斜边的长为()A.3B.4C.5D.【考点】勾股定理.【分析】直接利用勾股定理计算得出答案.【解答】解:∵直角三角形的两条直角边的长分别为3和5,∴斜边的长为:=.故选:D.2.(3分)下列定理中,有逆定理的个数是()①有两边相等的三角形是等腰三角形;②若两个数互为相反数,他们的奇次幂也互为相反数;③面积相等的长方形周长也一定相等;④若a=b,则a2=b2.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】分别写出各个命题的逆命题,逐项判断即可.【解答】解:①有两边相等的三角形是等腰三角形的逆命题是等腰三角形的两边相等,正确,有逆定理;②有两边相等的三角形是等腰三角形的逆命题是若两个数的奇次幂互为相反数,这两个数互为相反数,正确,有逆定理;③面积相等的长方形周长也一定相等的逆命题是周长相等的长方形面积也相等,为假命题,无逆定理;④若a=b,则a2=b2的逆命题是若a2=b2,则a=b,为假命题,无逆定理;故有逆定理的个数是2个,故选:B.3.(3分)如图,在Rt△ABC中,∠ACB=90°,正方形AEDC,BCFG的面积分别为25和144,则AB的长度为()A.13B.169C.12D.5【考点】勾股定理.【分析】根据勾股定理即可得到结论.【解答】解:AB==13,故选:A.4.(3分)下列给出的三条线段的长,其中能组成直角三角形的是()A.62、82、102B.6、8、9C.2、、D.、、【考点】勾股定理的逆定理.【分析】先找出两小边,求出两小边的平方和,求出大边的平方,再根据勾股定理的逆定理判断即可.【解答】解:A、(62)2+(82)2≠(102)2,即组成的三角形不是直角三角形,故本选项错误;B、62+82≠92,即组成的三角形不是直角三角形,故本选项错误;C、22+()2≠()2,即组成的三角形不是直角三角形,故本选项错误;D、()2+()2=()2,即组成的三角形是直角三角形,故本选项正确;故选:D.5.(3分)下列命题的逆命题不成立的是()A.如果a>b,那么a﹣b>0B.如果a+b=0,那么a2=b2C.等边对等角D.如果△ABC是直角三角形(两直角边为a,b,斜边为c),那么a2+b2=c2【考点】命题与定理.【分析】写出各个命题的逆命题,然后判断正误即可.【解答】解:A、逆命题为:如果a﹣b>0,那么a>b,逆命题成立;B、逆命题为:如果a2=b2,那么a+b=0,逆命题不成立;C、逆命题为:等角对等边,逆命题成立;D、逆命题为:如果三角形三边满足a2+b2=c2,那么该三角形是直角三角形,逆命题成立;故选:B.6.(3分)下列各组数分别为一个三角形三边的长,其中不能构成直角三角形的一组是()A.8,10,12B.3,4,5C.5,12,13D.7,24,25【考点】勾股定理的逆定理.【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【解答】解:A、∵82+102≠122,∴三条线段不能组成直角三角形,故A选项符合题意;B、∵32+42=52,∴三条线段能组成直角三角形,故B选项不符合题意;C、∵52+122=132,∴三条线段能组成直角三角形,故A选项不符合题意;D、∵72+242=252,∴三条线段能组成直角三角形,故D选项不符合题意;故选:A.7.(3分)在下列各组数中能组成直角三角形的有();(1)9、80、81(2)10、24、25(3)15、20、25(4)8、15、17.A.1组B.2组C.3组D.4组【考点】勾股数.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:(1)92+802≠812,根据勾股定理的逆定理,故不是直角三角形;(2)102+242≠252,根据勾股定理的逆定理,故不是直角三角形;(3)152+202=252,根据勾股定理的逆定理,故是直角三角形;(4)82+152=172,根据勾股定理的逆定理,故是直角三角形.故选:B.二、填空题(本题共计7小题,每题3分,共计21分,)8.(3分)如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是5cm.【考点】勾股定理的应用.【分析】由题意可知长方体对角线是最长的,当木条在盒子里对角放置的时候露在外面的长度最小,利用勾股定理求解即可.【解答】解:由题意知:盒子底面对角长为=10cm,盒子的对角线长:=20cm,细木棒长25cm,故细木棒露在盒外面的最短长度是:25﹣20=5cm.故答案为:5.9.(3分)如图所示,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=5,S3=15,则S2=10.【考点】勾股定理.【分析】由勾股定理得AB2=BC2+AC2,再结合正方形面积公式得到S3=S1+S2,即可求出S2的值.【解答】解:∵△ABC为直角三角形,∠ACB=90°,∴AB2=BC2+AC2,∵以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S3=15,S1=5,∴BC2=5,AB2=15,S3=S1+S2,则S2=S3﹣S1=15﹣5=10,故答案为:10.10.(3分)如图,一根旗杆于离地面3m处断裂,倒向地面,旗杆顶落于离旗杆底部4m处,旗杆断裂之前高8米.【考点】勾股定理的应用.【分析】如图,由题意,AC⊥BC,AC=3米,BC=4米,旗杆折断之前的高度高度就是AC+AB,根据勾股定理求出AB即可解决问题.【解答】解:如图,由题意,AC⊥BC,AC=3米,BC=4米,旗杆折断之前的高度高度就是AC+AB.在Rt△ACB中,∠C=90°,AC=3米,BC=4米,AB===5(米),∴旗杆折断之前的高度高度=AC+AB=3+5=8(米),故答案为:8.11.(3分)如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了9米.【考点】勾股定理的应用.【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB﹣AD可得BD长.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵CD=10(米),∴AD==6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸边移动了9米,故答案为:9.12.(3分)如图是单位长度为1的网格图,A、B、C、D是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成2个直角三角形.【考点】勾股定理的逆定理;勾股定理.【分析】由勾股定理求出线段AD、AC、AB、BC、BD、CD的平方,由勾股定理的逆定理即可得出结果.【解答】解:由勾股定理得:AD2=BD2=12+32=10,AC2=12+22=5,AB2=22+42=20,BC2=CD2=25,∵AD2+BD2=AB2,AC2+AB2=BC2,∴能够组成2个直角三角形.故答案为:2.13.(3分)如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7米,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3米,木板顶端向下滑动了0.9米,则小猫在木板上爬动了 2.5米.【考点】勾股定理的应用.【分析】要求小猫在木板上爬动的距离,即求木板长,可以设CD=x,AB=DE=y,则根据木板长不会变这个等量关系列出方程组,即可求BC的长度,在直角△ABC中,根据BC,AC即可求AB.【解答】解:已知AE=1.3米,AC=0.7米,BD=0.9米,设CD=x,AB=DE=y,则BC=0.9+x则在直角△ABC中,y2=(0.9+x)2+0.72,在直角△CDE中,y2=x2+(1.3+0.7)2,解方程组得:x=1.5米,y=2.5米,故答案为 2.5.14.(3分)如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积,S2=2π,则S3是.【考点】勾股定理.【分析】在直角三角形中,利用勾股定理得到a2+b2=c2,在等式两边同时乘以,变形后得到S2+S3=S1,将已知的S1与S2代入,即可求出S3的值.【解答】解:在直角三角形中,利用勾股定理得:a2+b2=c2,∴a2+b2=c2,变形为:()2π+()2π=()2π,即S2+S3=S1,又S1=,S2=2π,则S3=S1﹣S2=﹣2π=.故答案为:三、解答题(本题共计7小题,共计78分,)15.如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯足向外移0.8米,那么梯子的顶端沿墙下滑多少米?【考点】勾股定理的应用.【分析】在直角三角形ABC中,已知AB,BC根据勾股定理即可求AC的长度,根据EC =EB+BC即可求得EC的长度,在直角三角形DEC中,已知DE,EC即可求得DC的长度,根据AD=AC﹣DC即可求得AD的长度.【解答】解:在直角△ABC中,AC==2.4(m),∴EC=BC+BE=1.5m在直角△DEC中,DC===2(m),∴AD=AC﹣DC=0.4(m),答:梯子的顶端沿墙下滑0.4m.16.我校有两个课外小组的同学到校外去采集植物标本,已知第一组的速度为30米/分钟,第二组的速度为40米/分钟,且两组行走的路线为直线,半小时后,两组同学同时停下来,这时两组同学正好相距1500米.(1)请你判断一下两组同学行走的夹角是否为直角?并说明理由.(2)如果接下来两组同学以原来的速度相向而行,那么经过多长时间后才能相遇?【考点】勾股定理的逆定理.【分析】(1)先分别求出两个小组走的路程,再根据勾股定理的逆定理即可作出判断;(2)根据路程和÷速度和=相遇的时间,列式计算即可求解.【解答】解:(1)第一组的路程:30×30=900(米),第二组的路程:40×30=1200(米),∵9002+12002=15002,∴两组同学行走的夹角是直角;(2)1500÷(30+40)=1500÷70=21(分钟).答:经过21分钟后才能相遇.17.已知图中的每个方格都是边长为1的小正方形,每个小正方形的顶点称为格点,△ABC 的顶点在格点上,称为格点三角形,请按要求完成下列各题(1)填空:AB=3,BC=2,AC=;(2)试判断△ABC的形状,并说明理由.【考点】勾股定理的逆定理;勾股定理.【分析】(1)根据勾股定理即可求得△ABC的三边的长;(2)由勾股定理的逆定理即可作出判断.【解答】解:(1)根据勾股定理即可得到:AB2=62+32=45,BC2=42+22=20,AC2=72+42=65,则AB=3,BC=2,AC=.故答案为3,2,;(2)△ABC是直角三角形,理由如下:∵AB2=45,BC2=20,AC2=65,AB2+BC2=45+20=65,∴AB2+BC2=AC2,∴△ABC是直角三角形.18.如图,台风过后,一颗白杨树在高地某处断裂,白杨树的顶部落在离白杨树根部8米处,已知白杨树高16米,你能求出白杨树在离根部多少米的位置断裂吗?【考点】勾股定理的应用.【分析】根据题意结合勾股定理求出答案.【解答】解:设白杨树在离根部x米的位置断裂,根据题意可得:x2+82=(16﹣x)2,解得:x=6.答:白杨树在离根部6米的位置断裂.19.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.【考点】勾股定理的逆定理;勾股定理.【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出△ACD是直角三角形,分别求出△ABC和△ACD的面积,即可得出答案.【解答】解:连接AC,在△ABC中,∵∠B=90°,AB=3,BC=4,∴AC==5,S△ABC=AB•BC=×3×4=6,在△ACD中,∵AD=13,AC=5,CD=12,∴CD2+AC2=AD2,∴△ACD是直角三角形,=AC•CD=×5×12=30.∴S△ACD+S△ACD=6+30=36.∴四边形ABCD的面积=S△ABC20.如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有学校,点A到公路MN 的距离为80m,现有一拖拉机在公路MN上以18km/h的速度沿PN方向行驶,拖拉机行驶时周围100m以内都会受到噪音声的影响,试问该校受影响的时间为多少秒?【考点】勾股定理的应用.【分析】设拖拉机开到C处刚好开始受到影响,行驶到D处时结束,在Rt△ACB中求出CB,继而得出CD,再由拖拉机的速度可得出所需时间.【解答】解:设拖拉机开到C处刚好开始受到影响,行驶到D处时结束了噪声的影响.则有CA=DA=100m,在Rt△ABC中,,∴CD=2CB=120m,∵18km/h=18000m/3600s=5m/s,∴该校受影响的时间为:120÷5=24(s).答:该校受影响拖拉机产生的噪声的影响时间为24秒.21.为了加强农村“疫情防控”知识,某镇政府采用了移动宣传的形式进行宣传:如图,笔直公路l的一侧有一村庄P,P到公路l的距离为1200米,宣传车M匀速在l上行驶,在车周围1300米以内能听到广播宣传,若至少连续宣传5分钟才有效果,宣传车最高时速是多少?【考点】勾股定理;一元一次不等式的应用.【分析】作PH⊥l,垂足为H,由勾股定理求出MH=500,则MM'=1000,由题意可得5x≤1000,解不等式可得出答案.【解答】解:作PH⊥l,垂足为H,∵PM=1300米,PH=1200米,∠PHM=90°,∴MH===500(米),根据对称性可知,M'H=MH,∴MM'=1000米,即宣传车能够让P点有效听到的距离为1000米,设宣传车时速是x米/分钟,由题意可得5x≤1000,∴x≤200,200米/分钟=12km/h.答:宣传车最高时速是12km/h.。

人教版2019-2020学年初二数学下册第17章勾股定理单元测试卷(含答案)

人教版2019-2020学年初二数学下册第17章勾股定理单元测试卷(含答案)

人教版八下数学勾股定理测试题、选择题(共10小题;共30分)1 .三角形的三边长 a, b, c 满足(a + b )2- c2 = 2ab,则此三角形是 ()A.直角三角形 B.锐角三角形 C.钝角三角形D.等腰三角形2 .若直角三角形的三边长分别为 2 , 4 , x ,则x 的可能值有()4 .五根小木棒,其长度分别为 7,15,20,24,25 ,现将他们摆成两个直角三角形,其中正确的是()5 .三角形的三边长分别为 2n 2 + 2n,2n + 1,2n 2+ 2n + 1 (n 是自然数),这样的三角形是 ()A.锐角三角形B.直角三角形D.锐角三角形或直角三角形6 .如图,在矩形 ABCD 中,AB = 2 , BC = 4 ,对角线 AC 的垂直平分线分别交 AD, AC 于点E, O, 连接CE,则CE 的长为A. 1个B. 2个C. 3个D. 4个3.如图,若/A=60,AC = 20m ,则BC 大约是(结果精确到0.1m )A. 34.64 mB. 34.6 mC. 28.3 mD. 17.3 mC.钝角三角形B. 3.5C. 2.5D. 2.87.如图所示,有一块直角三角形纸片, /c = 90 °, AC = 4cm , BC = 3cm ,将斜边AB 翻折使点B 落在直角边AC 的延长线上的点 E 处,折痕为AD,则CE 的长为A. 1 cmB. 1.5 cmC. 2 cm8.如图,将 △ AB 或在正方形网格图中B, C 恰好在网格图中的格点上,那么 4ABC 中BC 边上的高是儿当当 C* D. V5*T"wA. 3 (图中每个小正方形的边长均为15 .如图,以Rt △ ABC 的三边为边向外作正方形,其面积分别为S1 , 0, S3,且% = 4, S2 = 8,则AB 的长为.16 .已知 & - 5 + I - 12 I + (z - 13 )2= 0 ,则由x, y, z 为三边组成的三角形是 三、解答题(共6小题;共52分)17 .正方形网格中的每个小正方形边长都1 ,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)使三角形的三边长分别为 3,2 W 后. (2)使三角形为钝角三角形且面积为4△ CBO2 4ABO?则四边形 AO?BO 的面积为A. 10B. 16C. 40D. 80二、填空题(共6小题;共18分)11 .勾股定理的逆定理是 12 .在△ ABC43,13 .已知 la - 6 I +/C = 90 , c = 10 , a :b = 3:4,则 a =b - 8 I + (c - 10 )2= 0 ,则以a, b, c 为边长的三角形是 2 cm,高为3 cm 的圆柱体侧面上,用一条无弹性的丝带从A 至C 按如图所示的圈数缠绕,则丝带的最短长度为cm .(结果保留兀) 9.如图,将一个等腰直角三角形按图示方式依次翻折, 若DE = a,则下列说 法正确的个 数有 ________①DC?平分 /BDE ②BC 长为(女+ 2户③ △ BC?D1等腰三角形;④ △ CEM 周长等于BC 的长.为△ ABC 外一点,且 茎U10.如图,等腰 Rt △ AB 中,/ABO 90 °, O 是△ ABC 内一点,OA = 6 ,18 .已知△ ABC 勺三边a 、b 、c 满足ga -4 । + 2b -12)2+ 10 - c = 0 ,求最长边上的高19 .如图,在正方形网格中,每个小正方形的边长都是 是否为直角三角形?为什么?20 .在数轴上画出表示 -•河 及V13的点.21 .在△ ABC 中,/ACB = 90 , AC = 4, BC = 3,在△ ABD 中,BD = 12 , AD = 13 , 求△ ABD 的面积.1 , AABC 的顶点均在格点上,试判断△ ABC22.阅读:如图1,在△ ABC中,3ZA + ZB = 180, BC = 4 , AC = 5 ,求AB 的长.小明的思路:如图2,作BE ± A什点巳在AC的延长线上取点D,使得DE = AE ,连接BD,易得/A = Z D △ ABD 为等腰三角形. 由3/A + /ABC = 18 市口/A + /ABC + / BAC = 180,易得/ BCA = 2 ZAA BC的等腰三角形.依据已知条件可得AE和AB的长.解决下列问题:(1)图2 中,AE =, AB =;(2)在△ ABO^, /A / B、/ C勺对边分别为a、b、c.①如图3,当3/A + 2 ZB = 180°时,用含a、c的式子表示b;(要求写解答过程)②当3/A + 4/B = 180 °, b = 2 , c = 3 时,可得a =.第一部分1. A2. B3. B4. C5. B6. C7. A8. A9. C10. C第二部分11 .如果三角形的三边长 a, b, c,满足a 2+ b 2 = c 2,那么这个三角形是直角三角形 12 . 6; 8 13 .直角三角形 14 .弋9 兀2+ 9 15 . 2 3 16 .直角三角形第三部分18.由题意,得:|1a - 4 = 0 , 2b - 12 2)= 0,10 - c = 0 a = 3 b = 6 , c = 10 .2a+ b 2 = c 2.・ .△ ABC Rt △ ABC 且 Z C = 90 . 1 1 .•_ab = _ch .22・.・ h = 4.8.19.由勾股定理可得 AC = v'22+1 2 =、怎;BC =、/42+ 2 2= %;20; AB = %3 2 + 4 2 =画,答案17.(1) (2)图2AC+ BC2 = AB2,ABC直角三角形.20.21.••• Z ACB = 90 AC = 4 , BC = 3, AB = AC2 + CB2, AB = 5••• BD = 12 AD = 13 , AD = BD2 + AB 2,/ ABD = 90 1、••S ABD= 2 X AB X BD = 30 答:△ ABD的面积为30.22.(1) AE = 9., AB = 6 ; 2(2)①作BE ± AC^ AC延长线于点巳在AE延长线上取点D,使得DE = AE ,连接BD. B的AD的中垂线.AB = BD = c./A = . ZD/A + / D + / ABD = 180/ DBC + 2 / A + / 1 = 1803 / A + 2 / 1 =180/ DBC = / A + Z1/ 3 = /A + Z1/ 3 = Z DBCCD = BD = c・•. AE =bL CE =巴 2 2在△ BEC中,/BEC = 90 ,BE2 = BC2 - CE2.在△ BEA中,/BEA = 90 , BE2 = AB2 - AE2.AB- AE2 = BC2 - CE2.b =—— c3。

人教版八年级数学下册 第17章勾股定理 单元测试题(有答案)

人教版八年级数学下册 第17章勾股定理 单元测试题(有答案)

人教版八年级数学下册第17章勾股定理单元测试题一.选择题(共10小题)1.如图,线段AB=、CD=,那么,线段EF的长度为()A.B.C.D.2.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A.8B.4C.6D.无法计算3.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4B.6C.8D.104.下列长度的三条线段不能组成直角三角形的是()A.3,4,5B.1,,2C.6,8,10D.1.5,2.5,35.如图,在△ABC中,AB=13,BC=10,BC边上的中线AD=12,试判定△ABC的形状()A.直角三角形B.等边三角形C.等腰三角形D.以上都不对6.下列各组数中,不是直角三角形的三条边的长的是()A.3,4,5B.6,8,10C.5,12,13D.4,5,67.下列各组数中,是勾股数的是()A.1,2,3B.0.3,0.4,0.5C.,,D.7,24,258.已知一直角三角形的木板,三边的平方和为12800cm2,则斜边长为()A.80cm B.30cm C.90cm D.120cm9.从电线杆离地面6米处向地面拉一条钢缆,钢缆与地面的夹角是60°,则这根钢缆的地面固定点到电线杆底部的距离是()A.2B.2C.3D.610.小明想知道学校旗杆(垂直地面)的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子拉直后,发现绳子下端拉开5m,且下端刚好接触地面,则旗杆的高是()A.6m B.8m C.10m D.12m二.填空题(共8小题)11.如图,将一根长为15cm的筷子置于底面直径为5cm的装满水的圆柱形水杯中,已知水深为12cm,设筷子露出水面的长为hcm,则h的取值范围是.12.三角形的三边长分别为3,4,5,则这个三角形的面积是.13.如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于.14.直角三角形的两直角边是3和4,则斜边是15.已知小明和小王从同一地点出发,小明向正东方向走了2km,小王向正南方向走了3km,此时两人之间相距km.16.如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯的长度至少是.17.小明向东走6m后,沿另一方向又走了8m,再沿第三个方向走了10m回到原地,小明向东走6m 后是向方向走的(填方位).18.在平面直角坐标系中,已知点P的坐标为(1,﹣3),那么点P到原点O的距离OP的长度为.三.解答题(共8小题)19.已知,如图,在△ABC中,D为边BC上的一点,AB=13,AD=12,AC=15,BD=5,求BC 的长.20.如图,在△ABC中,AB=20,AC=15,BC=25,AD⊥BC,垂足为D.求AD,BD的长.21.已知:如图,四边形ABCD中,∠B=90°.AB=2.BC=4,CD=,AD=10,求(1)AC的长;(2)四边形ABCD的面积.22.如图,已知在△ABC中,AB=AC=13,D是AB上一点,且CD=12,BD=8.(1)求△ADC的面积.(2)求BC的长.23.如图,东西方向的河道宽2000米,水流自西向东水速为3米/秒,一船从港口A以5米/秒的速度驶向对岸,港口A的正对岸是港口B(1)若船头正对对岸,则船最终停在对岸何处?(2)若要使船正好到达港口B,请画出船头方向,并计算此时到对岸要多长时间?24.如图,一架长5米的梯子AB,顶端B靠在墙上,梯子底端A到墙的距离AC=3米.(1)求BC的长;(2)梯子滑动后停在DE的位置,当AE为多少时,AE与BD相等?25.如图,四边形ABCD中,∠B=90°,∠ACB=30°,AB=2,CD=3,AD=5.(1)求证:AC⊥CD;(2)求四边形ABCD的面积.26.如图,在平面直角坐标系中,点A(0,12),点B(m,12),且B到原点O的距离OB=20,动点P从原点O出发,沿路线O→A→B运动到点B停止,速度为每秒5个单位长度,同时,点Q从点B出发沿路线B→A→O运动到原点O停止,速度为每秒2个单位长度.设运动时间为t.(1)求出P、Q相遇时点P的坐标.(2)当P运动到AB边上时,连接OP、OQ,若△OPQ的面积为6,求t的值.参考答案与试题解析一.选择题(共10小题)1.解:∵AB==,CD==,∴图形中的网格是由边长为1的小正方形构成的,则EF==.故选:C.2.解:∵Rt△ABC中,BC为斜边,∴AB2+AC2=BC2,∴AB2+AC2+BC2=2BC2=2×22=8.故选:A.3.解:由题意得:大正方形的面积是9,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,即a2+b2=9,a﹣b=1,所以ab=[(a2+b2)﹣(a﹣b)2]=(9﹣1)=4,即ab=4.解法2,4个三角形的面积和为9﹣1=8;每个三角形的面积为2;则ab=2;所以ab=4故选:A.4.解:A、∵32+42=52,∴此三角形是直角三角形,不符合题意;B、∵12+()2=(2)2,∴此三角形是直角三角形,不符合题意;C、∵62+82=102,∴此三角形是直角三角形,不符合题意;D、∵1.52+2.52≠32,∴此三角形不是直角三角形,符合题意;故选:D.5.解:∵AD是中线,AB=13,BC=10,∴BD=BC=5.∵52+122=132,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,又∵BD=CD,∴AC=AB=13,∴△ABC的形状是等腰三角形,故选:C.6.解:∵42+52=41,62=36,41≠36,∴4,5,6不能作为直角三角形的三边长.故选:D.7.解:A、∵12+22≠32,∴这组数不是勾股数;B、∵0.32+0.42=0.52,但不是整数,∴这组数不是勾股数;C、∵+≠,∴这组数不是勾股数;D、∵72+242=252,∴这组数是勾股数.故选:D.8.解:设直角三角形的斜边长为x,∵三边的平方和为12800cm2,∴x2=6400cm2,解得x=80cm.故选:A.9.解:如图,已知∠C=60°,AB=6,在Rt△ABC中,设BC=x米,则AC=2x米,由勾股定理得:x2+62=(2x)2,解得:x=2,故选:B.10.解:设旗杆的高AB为xm,则绳子AC的长为(x+1)m在Rt△ABC中,AB2+BC2=AC2∴x2+52=(x+1)2解得x=12∴AB=12∴旗杆的高12m.故选:D.二.填空题(共8小题)11.解:∵将一根长为15cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,∴在杯子中筷子最短是等于杯子的高,最长是等于杯子斜边长度,∴当杯子中筷子最短是等于杯子的高时,h=12,最长时等于杯子斜边长度,即:h==13,∴h的取值范围是:(15﹣13)≤h≤(15﹣12),即2≤h≤3.故答案为:2≤h≤3.12.解:∵三角形的三边长分别为3,4,5,∴52=32+42,∴此三角形为直角三角形,∴这个三角形的面积=×3×4=6.故答案为:6.13.解:设设三角形的两直角边分别为x,y,则,由②得x2+y2﹣2xy=4…③,①﹣③得2xy=48则(x+y)2=x2+y2+2xy=52+48=100,x+y==10.故答案是:10.14.解:在直角三角形中,三边边长符合勾股定理,已知两直角边为3、4,则斜边边长==5,故答案为5.15.解:如图所示,∠ACB=90°,∴AB===(km).故答案为:.16.解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是12+5=17米.故答案为:17m.17.解:如图,AB=6m,BC=BD=8m,AC=AD=10m,∵602+802=1002,∴∠ABC=∠ABD=90°,故小明向东走6m后是向北或向南走的.故答案为:北或南.18.解:∵点P的坐标为(1,﹣3),点O为坐标原点,∴OP==.答:点P到原点O的距离OP的长度为.故答案为:.三.解答题(共8小题)19.解:∵AD2+BD2=144+25=169,AB2=169,∴AD2+BD2=AB2,∴AD⊥BC,即∠ADC=90°,∴CD===9,∴BC=CD+BD=5+9=14.20.解:∵AB2+AC2=202+152=625=252=BC2,∴△ABC是直角三角形,∵S=×AB×AC=×BC×AD,△ACB∴15×20=25×AD,∴AD=12,由勾股定理得:BD==16.21.解:(1)如图,连接AC,∵∠B=90°,∴△ABC为直角三角形,又∵AB=2,BC=4,∴根据勾股定理得:AC=;(2)又∵CD=,AD=10,∴AD 2=102=100,CD 2+AC 2==80+20=100,∴CD 2+AC 2=AD 2,∴△ACD 为直角三角形,∠ACD =90°,则S 四边形ABCD =S △ABC +S △ACD =AB •BC +AC •CD =×2×4+×× =4+20=24.故四边形ABCD 的面积为24.22.解:(1)∵AB =13,BD =8,∴AD =AB ﹣BD =5,∴AC =13,CD =12,∴AD 2+CD 2=AC 2,∴∠ADC =90°,即△ADC 是直角三角形,∴△ADC 的面积=×AD ×CD =×5×12=30;(2)在Rt △BDC 中,∠BDC =180°﹣90°=90°,由勾股定理得:BC ===4,即BC 的长是4. 23.解:(1)2000÷5=400(秒),3×400=1200(米).答:船最终停在港口B 东边的1200米处.(2)在Rt △ACD 中,AC =5米/秒,CD =3米/秒,∴AD ==4(米/秒).2000÷4=500(秒).答:此时到对岸要500秒钟.24.解:(1)∵一架长5米的梯子AB,顶端B靠在墙上,梯子底端A到墙的距离AC=3米,∴BC==4(m),答:BC的长为4m;(2)当BD=AE,则设AE=x,故(4﹣x)2+(3+x)2=25解得:x1=1,x2=0(舍去),故AE=1m.25.(1)证明:在Rt△ABC中,∠B=90°,∠ACB=30°,AB=2,∴AC=2AB=4,在△ACD中,AC=4,CD=3,AD=5,∵42+32=52,即AC2+CD2=AD2,∴∠ACD=90°,∴AC⊥CD;(2)解:在Rt△ABC中,∠B=90°,AB=2,AC=4,∴BC==2,∴Rt△ABC的面积为AB•BC=×2×2=2,又∵Rt△ACD的面积为AC•CD=×4×3=6,∴四边形ABCD的面积为:2+6.26.解:(1)设t秒后P,Q相遇.在Rt△AOB中,∵∠BAO=90°,OA=12,OB=20,∴AB===16,由题意:5t+2t=12+16,解得t=4,此时BQ=8.AQ=AB﹣BQ=16﹣8=8,∴P(8,12).(2)当P,Q都在AB边上时,•|16﹣(5t﹣12)﹣2t|×12=6,解得t=或当点Q在OA上时,•16•(28﹣2t)=6,解得t=,综上所述,满足条件的值为或或.。

人教新版八年级下册数学《第17章 勾股定理》单元测试卷及答案详解(PDF可打印)

人教新版八年级下册数学《第17章 勾股定理》单元测试卷及答案详解(PDF可打印)

人教新版八年级下册《第17章勾股定理》单元测试卷(2)一、选择题(本题共计8小题,每题3分,共计24分,)1.(3分)若直角三角形的两直角边长分别为12、5,则这个直角三角形的斜边长是()A.13B.C.169D.2.(3分)我国数学家华罗庚曾建议,用一副反应勾股定理的数形关系图来作为和外星人交谈的语言,就勾股定理本身而言,它揭示了直角三角形的三边之间的关系,它体现的数学思想方法是()A.分类思想B.方程思想C.转化D.数形结合3.(3分)一根高9m的旗杆在离地4m高处折断,折断处仍相连,此时在3.9m远处玩耍的身高为1m的小明()A.没有危险B.有危险C.可能有危险D.无法判断4.(3分)下列命题:①直角三角形两锐角互余;②全等三角形的对应角相等;③两直线平行,同位角相等:④对角线互相平分的四边形是平行四边形.其中逆命题是真命题的个数是()A.1B.2C.3D.45.(3分)下列命题中,其逆命题不成立的是()A.若两个数的差为正数,则这两个数都为正数B.等腰三角形的两个底角相等C.若ab=1,则a与b互为倒数D.如果|a|=|b|,那么a2=b26.(3分)下列线段不能组成直角三角形的是()A.a=3,b=4,c=5B.a=1,b=,c=C.a=2,b=3,c=4D.a=7,b=24,c=257.(3分)已知二条线段的长分别为cm,cm,那么能与它们组成直角三角形的第三条线段的长是()A.1cm B.cm C.5cm D.1cm与cm 8.(3分)如图,某校攀岩墙的顶部安装了一根安全绳,让它垂到地面时比墙高多出了2米,教练把绳子的下端拉开8米后,发现其下端刚好接触地面(如图),则此攀岩墙的高度是()A.10米B.15米C.16米D.17米二、填空题(本题共计7小题,每题3分,共计21分,)9.(3分)已知一个直角三角形的两边长分别为3和4,则这个三角形的周长是.10.(3分)以下列各组数为边长:①3、4、5;②5,12,13;③3,5,7;④9,40,41;⑤10,12,13;其中能构成直角三角形的有.11.(3分)如图,把长、宽、对角线的长分别是a、b、c的矩形沿对角线剪开,与一个直角边长为c的等腰直角三角形拼接成右边的图形,用面积割补法能够得到的一个等式是.12.(3分)在四边形ABCD中,∠C=90°,DC=3,BC=4,AD=12,AB=13,则四边形ABCD的面积是.13.(3分)已知Rt△ABC的其中两边的长为3与4,则这个三角形的周长是.14.(3分)如图,在△ABC中,∠ACB=90°,D是斜边AB上一点,且BC=BD.若BC =2AC=2,则AD的长为.15.(3分)如图,已知所有的四边形都是正方形,所有的三角形都是直角三角形,其中A,B,C,D四个小正方形的面积之和等于8,则最大正方形的边长为.三、解答题(本题共计7小题,共计75分,)16.(10分)在我区“五水绕城”生态环境提升项目中,有一块三角形空地将进行绿化,如图,△ABC中,AB=AC,E是AC上的一点,CE=50,BC=130,BE=120.(1)判断△ABE的形状,并说明理由.(2)求△ABC的周长.17.(10分)利用下面的图形分别给出勾股定理的两种证明.18.(10分)在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别是a、b、c.(1)填表:边a、b、c三角形的面积与周长的比值3455121381517(2)若a+b﹣c=m,则猜想=(用含m的代数式表示,不必证明).19.(11分)如图,已知AD平分∠BAC,BE∥AD,F是BE的中点,求证:AF⊥BE.20.(10分)如图,25米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C 的距离为7米,如果梯子的顶端沿墙下滑4米,那么梯足将向外移多少米?21.(12分)如图,王大爷准备建一个蔬菜大棚,棚宽8m,高6m,长20m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积.22.(12分)问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上.思维拓展:(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为a、2a、a(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.人教新版八年级下册《第17章勾股定理》单元测试卷(2)参考答案与试题解析一、选择题(本题共计8小题,每题3分,共计24分,)1.(3分)若直角三角形的两直角边长分别为12、5,则这个直角三角形的斜边长是()A.13B.C.169D.【考点】勾股定理.【分析】根据勾股定理即可求出答案.【解答】解:直角三角形的两直角边长分别为12、5,∴直角三角形的斜边长为=13,故选:A.2.(3分)我国数学家华罗庚曾建议,用一副反应勾股定理的数形关系图来作为和外星人交谈的语言,就勾股定理本身而言,它揭示了直角三角形的三边之间的关系,它体现的数学思想方法是()A.分类思想B.方程思想C.转化D.数形结合【考点】勾股定理;数学常识.【分析】由于是用一副反应勾股定理的数形关系图来揭示直角三角形的三边之间的关系,所以它体现的数学思想方法是数形结合思想.【解答】解:由题意可得,它体现的数学思想方法是数形结合思想.故选:D.3.(3分)一根高9m的旗杆在离地4m高处折断,折断处仍相连,此时在3.9m远处玩耍的身高为1m的小明()A.没有危险B.有危险C.可能有危险D.无法判断【考点】勾股定理的应用.【分析】由勾股定理求出BC=4>3.9,即可得出结论.【解答】解:如图所示:AB=9﹣4=5,AC=4﹣1=3,由勾股定理得:BC==4>3.9,∴此时在3.9m远处耍的身高为1m的小明有危险,故选:B.4.(3分)下列命题:①直角三角形两锐角互余;②全等三角形的对应角相等;③两直线平行,同位角相等:④对角线互相平分的四边形是平行四边形.其中逆命题是真命题的个数是()A.1B.2C.3D.4【考点】命题与定理.【分析】首先写出各个命题的逆命题,然后进行判断即可.【解答】解:①直角三角形两锐角互余逆命题是如果两个角互余那么这个三角形是直角三角形是真命题;②全等三角形的对应角相等逆命题是对应角相等的两个三角形全等是假命题;③两直线平行,同位角相等逆命题是同位角相等,两直线平行是真命题:④对角线互相平分的四边形是平行四边形逆命题是如果平行四边形,那么它的对角线互相平分是真命题;故选:C.5.(3分)下列命题中,其逆命题不成立的是()A.若两个数的差为正数,则这两个数都为正数B.等腰三角形的两个底角相等C.若ab=1,则a与b互为倒数D.如果|a|=|b|,那么a2=b2【考点】命题与定理.【分析】写出原命题的逆命题后判断正误即可.【解答】解:A、逆命题为若两个数都是正数,则这两个数的差为正数,不成立,符合题意;B、逆命题为两个角相等的三角形是等腰三角形,成立,不符合题意;C、逆命题为若a与b互为倒数,则ab=1,成立,不符合题意;D、逆命题为若a2=b2,那么|a|=|b|,成立,不符合题意.故选A.6.(3分)下列线段不能组成直角三角形的是()A.a=3,b=4,c=5B.a=1,b=,c=C.a=2,b=3,c=4D.a=7,b=24,c=25【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理对四个选项进行逐一分析即可.【解答】解:A、∵32+42=52,∴能组成直角三角形,故本选项错误;B、∵12+()2=()2,∴能组成直角三角形,故本选项错误;C、∵22+32≠42,∴不能组成直角三角形,故本选项正确;D、∵72+242=252,∴能组成直角三角形,故本选项错误.故选:C.7.(3分)已知二条线段的长分别为cm,cm,那么能与它们组成直角三角形的第三条线段的长是()A.1cm B.cm C.5cm D.1cm与cm 【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理列出方程解即可,有第三边是斜边或者是直角边两种情况.【解答】解:根据勾股定理的逆定理列出方程解即可,有第三边是斜边或者是直角边两种情况.当第三边是斜边时,第三边==(cm),当第三边是直角边时,第三边==1(cm).故选:D.8.(3分)如图,某校攀岩墙的顶部安装了一根安全绳,让它垂到地面时比墙高多出了2米,教练把绳子的下端拉开8米后,发现其下端刚好接触地面(如图),则此攀岩墙的高度是()A.10米B.15米C.16米D.17米【考点】勾股定理的应用.【分析】根据题意设攀岩墙的高AB为x米,则绳子AC的长为(x+2)米,再利用勾股定理即可求得AB的长,即攀岩墙的高.【解答】解:如图:设攀岩墙的高AB为x米,则绳子AC的长为(x+2)米,在Rt△ABC中,BC=8米,AB2+BC2=AC2,∴x2+82=(x+2)2,解得x=15,∴AB=15.∴攀岩墙的高15米.故选:B.二、填空题(本题共计7小题,每题3分,共计21分,)9.(3分)已知一个直角三角形的两边长分别为3和4,则这个三角形的周长是12或7+.【考点】勾股定理.【分析】分为两种情况:①斜边是4有一条直角边是3,②3和4都是直角边,根据勾股定理求出即可.【解答】解:分为两种情况:①斜边是4有一条直角边是3,由勾股定理得:第三边长是=,此时周长=3+4+=7+;②3和4都是直角边,由勾股定理得:第三边长是=5,此时周长=3+4+5=12;综上所述,第三边的长为12或7+.故答案为:12或7+.10.(3分)以下列各组数为边长:①3、4、5;②5,12,13;③3,5,7;④9,40,41;⑤10,12,13;其中能构成直角三角形的有①②④.【考点】勾股数.【分析】根据勾股定理的逆定理,对四个选项中的各组数据分别进行计算,如果三角形的三条边符合a2+b2=c2,则可判断是直角三角形,否则就不是直角三角形.【解答】解:①32+42=52,②52+122=132,③32+52≠72,④92+402=412,⑤102+122≠132;所以①②④组数为边长的能构成直角三角形,故答案为:①②④.11.(3分)如图,把长、宽、对角线的长分别是a、b、c的矩形沿对角线剪开,与一个直角边长为c的等腰直角三角形拼接成右边的图形,用面积割补法能够得到的一个等式是a2+b2=c2.【考点】勾股定理的证明.【分析】用三角形的面积和、梯形的面积来表示这个图形的面积,从而列出等式,发现边与边之间的关系.【解答】解:此图可以这样理解,有三个Rt△其面积分别为ab,ab和c2.还有一个直角梯形,其面积为(a+b)(a+b).由图形可知:(a+b)(a+b)=ab+ab+c2,整理得(a+b)2=2ab+c2,a2+b2+2ab=2ab+c2,∴a2+b2=c2.故答案为:a2+b2=c2.12.(3分)在四边形ABCD中,∠C=90°,DC=3,BC=4,AD=12,AB=13,则四边形ABCD的面积是36.【考点】勾股定理;勾股定理的逆定理.【分析】根据勾股定理求出BD,根据勾股定理的逆定理求出∠ADB=90°,根据三角形的面积公式求出△BCD和△ABD的面积即可.【解答】解:如图,连接BD,∵∠C=90°,DC=3,BC=4,∴由勾股定理得:BD==5,∵AB=13,AD=12,∴AD2+BD2=AB2,∴∠ADB=90°,+S△ABD=×3×4+×5×12=36.∴四边形ABCD的面积S=S△BCD故答案为:36.13.(3分)已知Rt△ABC的其中两边的长为3与4,则这个三角形的周长是12或7+.【考点】勾股定理的应用.【分析】先设Rt△ABC的第三边长为x,由于4是直角边还是斜边不能确定,故应分4是斜边或x为斜边两种情况讨论.【解答】解:设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,x==5,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,x==,此时这个三角形的周长=3+4+=7+.故答案为:12或7+.14.(3分)如图,在△ABC中,∠ACB=90°,D是斜边AB上一点,且BC=BD.若BC =2AC=2,则AD的长为﹣2.【考点】勾股定理.【分析】先根据勾股定理计算AB的长,由线段的差可得结论.【解答】解:∵BC=2AC=2,∴AC=1,∵∠ACB=90°,∴AB==,∵BC=BD=2,∴AD=﹣2.故答案为:﹣2.15.(3分)如图,已知所有的四边形都是正方形,所有的三角形都是直角三角形,其中A,B,C,D四个小正方形的面积之和等于8,则最大正方形的边长为2.【考点】勾股定理.【分析】根据勾股定理可知正方形A和C的面积和就是大正方形的面积.同理正方形B 和D的面积和等于大正方形的面积,所以四个正方形的面积和就等于两个大正方形的面积由此即可得出结论.【解答】解:∵所有的三角形都是直角三角形,∴正方形A和C的面积和就是大正方形的面积,同理,正方形B和D的面积和等于大正方形的面积,设最大正方形的边长为x,可得:四个小正方形的面积=2×x×x=8.解得:x=2,故答案为:2.三、解答题(本题共计7小题,共计75分,)16.(10分)在我区“五水绕城”生态环境提升项目中,有一块三角形空地将进行绿化,如图,△ABC中,AB=AC,E是AC上的一点,CE=50,BC=130,BE=120.(1)判断△ABE的形状,并说明理由.(2)求△ABC的周长.【考点】勾股定理;等腰三角形的性质.【分析】(1)直接利用勾股定理逆定理进而分析得出答案.(2)设AB=AC=x,则AE=x﹣50,利用勾股定理得出AB的长,则可求出答案.【解答】解:(1)△ABE是直角三角形,理由:∵BC2=1302=16900,BE2=1202=14400,CE2=502=2500,∴BE2+CE2=BC2=16900,∴∠BEC=90°,∴BE⊥AC,∴△ABE是直角三角形.(2)设AB=AC=x,则AE=x﹣50,由(1)可知△ABE是直角三角形,∴BE2+AE2=AB2,∴1202+(x﹣50)2=x2,解得x=169.∴△ABC的周长为AB+AC+BC=169+169+130=468.17.(10分)利用下面的图形分别给出勾股定理的两种证明.【考点】勾股定理的证明.【分析】直接利用正方形面积以及三角形面积公式进而得出等式即可.【解答】证明:∵四边形HEFM的面积为:c2,四边形HEFM的面积还可以表示为:4×ab+(b﹣a)2=a2+b2,∴a2+b2=c2;∵四边形ABCD的面积为:(a+b)2,四边形ABCD的面积还可以表示为:4×ab+c2=c2+2ab,∴a2+b2=c2.18.(10分)在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别是a、b、c.(1)填表:边a、b、c三角形的面积与周长的比值3455121381517(2)若a+b﹣c=m,则猜想=(用含m的代数式表示,不必证明).【考点】勾股数.【分析】(1)分别求出每个直角三角形的面积和周长,计算面积与周长的比即可;(2)根据求得的a+b﹣c与的值,总结其规律,写出即可;用m、c的式子表示出a、b,分别表示出其周长及面积,用面积除以周长即可完成证明.【解答】(1)解:∵S=×3×4=6,L=3+4+5=12,∴==,∴同理可得其他两空分别为2,;(2)=;证明:∵a+b﹣c=m,∴a+b=m+c,∴a2+2ab+b2=m2+2mc+c2,又∵a2+b2=c2,∴2ab=m2+2mc,∴s==m(m+2c),∴===.19.(11分)如图,已知AD平分∠BAC,BE∥AD,F是BE的中点,求证:AF⊥BE.【考点】勾股定理的逆定理.【分析】先由角平分线定义得出∠BAD=∠CAD,再根据平行线的性质得出∠EBA=∠BAD,∠E=∠CAD,那么∠EBA=∠E,由等角对等边得出AE=AB,又F是BE的中点,根据等腰三角形三线合一的性质即可证明AF⊥BE.【解答】证明:∵AD平分∠BAC,∴∠BAD=∠CAD,∵BE∥AD,∴∠EBA=∠BAD,∠E=∠CAD,∴∠EBA=∠E,∴AE=AB,又∵F是BE的中点,∴AF⊥BE.20.(10分)如图,25米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C 的距离为7米,如果梯子的顶端沿墙下滑4米,那么梯足将向外移多少米?【考点】勾股定理的应用.【分析】在直角三角形ABC中,已知AB,BC根据勾股定理即可求AC的长度,根据AC =AA1+CA1即可求得CA1的长度,在直角三角形A1B1C中,已知AB=A1B1,CA1即可求得CB1的长度,根据BB1=CB1﹣CB,即可求得BB2的长度.【解答】解;在直角△ABC中,已知AB=25米,BC=7米,则由勾股定理得:AC==24(米);∵AC=AA1+CA1∴CA1=24米﹣4米=20米,∵在直角△A1B1C中,AB=A1B1,且A1B1为斜边,∴由勾股定理得:CB1==15米,∴BB1=CB1﹣CB=15米﹣7米=8米;答:梯足将向外移8米.21.(12分)如图,王大爷准备建一个蔬菜大棚,棚宽8m,高6m,长20m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积.【考点】勾股定理的应用.【分析】此题只需根据勾股定理计算直角三角形的斜边,即矩形的宽.再根据矩形的面积公式计算.【解答】解:根据勾股定理得,蔬菜大棚的斜面的宽度即直角三角形的斜边长为:m,所以蔬菜大棚的斜面面积为:10×20=200m2.答:阳光透过的最大面积为200平方米.22.(12分)问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上.思维拓展:(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为a、2a、a(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.【考点】勾股定理.【分析】(1)利用△ABC所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解;(2)先作出以a、2a为直角边的三角形的斜边,再根据勾股定理和网格结构作出2a、a的长度,然后顺次连接即可;再根据三角形所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.=3×3﹣×1×2﹣×1×3﹣×2×3【解答】解:(1)S△ABC=9﹣1﹣﹣3=9﹣5.5=3.5;故答案为:3.5;(2)△ABC如图所示,S△ABC=2a•4a﹣×2a•a﹣×2a•2a﹣×4a•a =8a2﹣a2﹣2a2﹣2a2=3a2.。

人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)
1a60peadap2aeaepeaffqaepeefpqfeabcdbccp12pe310aqfcpeaffq3436第十九章达标检测卷120120分钟一选择题每小题1在圆的周长c2r中常量与变量分别是a2是常量是变量b2是常量是变量cc是变量d2是常量是变量备用图c1d23一次函数y3x2的图象不经过第四象限4201710日上午小华同学接到通知她的作文通过了我的中国梦征文选拔需尽快上交该作文的电子文稿接到通知后小华立即在电脑上打字录入这篇文稿录入一段时间后因事暂停过了一小会小华继续录入并加快了录入速度直至录入完成设从录入文稿开始所经过的时间为x录入字数为y下面能反映的一次函数ykxk1的图象可能正确的是7将直线y2x向右平移ay2x2by2xdy2x28一条直线ykxb其中kb5kb6那么该直线经过第二三四象限9把直线yx3向上平移m个单位后与直线y2x4的交点在第一象限则m的取值范围是a1m7b3cm1dm410如图直线ykxb轴分别相交于点a30b02则不等式kxb0a地同时出发匀速行驶各自到达终点后停止设甲乙两人间距离为s单位
20.当 a<0,b<0 时,-a+2 ab -b 可变形为………………………………………( ) (A) ( a b)2 (B)- ( a b)2 (C) ( a b)2 (D) ( a b)2
四、计算题:(每小题 6 分,共 24 分) 21.( 5 3 2 )( 5 3 2 );
8.a- a2 1 的有理化因式是____________.
9.当 1<x<4 时,|x-4|+ x2 2x 1 =________________.
10.方程 2 (x-1)=x+1 的解是____________.
11.已知 a、b、c 为正数,d 为负数,化简 ab c2d 2 =______. ab c2d 2

人教版八年级数学下册全册单元测试题【含答案】

人教版八年级数学下册全册单元测试题【含答案】

人教版八年级数学下册全册单元测试题第十六章检测题时间:120分钟满分:120分一、选择题(每小题3分,共30分)1. (2016 •巴中)下列二次根式中,与 3可以合并的二次根式是(B )A. 18 B . 3 U 24 D ∙ 032•下列计算正确的是(C )A . 4 3- 3 3= 1B . 2+ 3= 5C . 2 2D . 3+ 2 2= 5 24. 式子•彳有意义的X 的取值范围是(A )x —12x + 1 3•计算 18÷8× 2等于(A )人教版八年级数学下册全册单元测试题2 __ 12.(2°16.青岛)计算:茫尹=/13.(3+ 1)( 3— 1)+ ' (— 3) 2— ( 2— 1)2的结果是 __2+ 2 2. 14. (2016 •南京)比较大小:{5— 3 V.傾“ > ”“ V ”或“=”)15. 已知 X , y 为实数,且 y =寸x 2— 9 —yj 9 — X 2+ 4,贝U X — y = — 1 或一7__. 16. _______ 1右 y]a — 3a + 1 + b + 2b + 1 = 0,贝V a + ~ —|b| = __________________________________________ 617 .若 2 017—( X - 2 017) 2 = X ,贝U X 的取值范围是 ,X ≤ 2_017_ .一Q a + b18 .对于任意不相等的两个实数a, b ,定义运算※如下:b =,女口彳※2a — b3+ 2 3— 2•. 5•则 8探 12=8.实数a , b 在数轴上对应的点的位置如图所示,且Ial > Ibl ,则化简∙'a 2- |a+b|的结果为(C )I JI-HO bA . 2a + bB . — 2a + bC . bD . 2a — b9. 已知 m = 1 + ,,2, n = 1— ,;2,则代数式.m 2+ n 2 — 3mn 的值为(C )A . 9B . ± 3C . 3D . 510. 若实数 X 满足'2^017+ X + ;5+ X = 1 006,则.,'2"θ17+ X — '5+ X 的值为(D )A . — 1B . 1C .— 2D . 2、填空题(每小题3分,共24分)11. (2016 •乐山)在数轴上表示实数a 的点如图所示,化简;(a- 5) 2+ |a — 2|的结 果为 3.人教版八年级数学下册全册单元测试题三、解答题洪66分)解:原式=5+ (1 — 3)—∖j12 =5— 2— 2 3=3— 2 3.解:原式=6 3×(1 —£ =—9 2.⑶-200— 2 0.08- 4 0.5+ 5「72;(4)( 3+ 2— 1)( 3— 2+ 1).解:原式=2- J-2 疋 2=2.解:原式=[3+ (2— 1)][ 3— ( 2— 1)] =(,3)2— ( 2— 1)2=3— (2 — 2 2+ 1) =2 . 2.19. (12分)计算:人教版八年级数学下册全册单元测试题a1 2—b22ab- b2厂厂20. (6分)先化简,再求值:÷ (a—-),其中a= 2+∙3, b = 2—3.解:原式=◎ “匕也)=(a÷ b)(a—b)a -Ta= 2+叮3, b = 2—寸3,二a+ b = 4, a—b= 2运;3二原式=解:T X + X = 5,二x≠ 0.2 1 I2∙∙ X + ""2= (x+一)一2= 3.X X1 1 12 1 = 3+ 1 = 4.a a+b (a—b)2 a—b.1 21. (7 分)已知x+X25,求F⅛的值.4 = 2√32 3= 3.∙原式=人教版八年级数学下册全册单元测试题22. (7分)已知X i= 3+ 2, X2= 3- 2, 求X i + X2的值.解:∙χι=r...:3+“J2, χ2 = ^- 2, x1+ X2= (x1+ x2)2- 2x1x2,∙∙∙ X2+ x2= ( 3+ 2+ 3- 2)2-2( 3+ 2)( 3—2)= 12-2= 10.23. (8分)已知a, b为实数,且满足a= b-3+ 3- b+ 2,求.ab •ab+ 1 J a+b 的值.b —3 ≥ 0,解:由二次根式有意义的条件可得∙b= 3.∙∙∙ a= 2.3-b ≥ 0,••当a= 2, b = 3时,原2+ 3(1) 求长方形的周长;(2) 求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.× 2 = 8.因为6 2>8,所以长方形的周长比正方形的周长大.25. (8分)全球气候变暖导致一些冰川融化并消失,在冰川消失 12年后,一种低等植物苔藓就开始在岩石上生长. 每一个苔藓都会长成近似圆形, 苔藓的直径和冰川消失 的时间近似地满足如下的关系式: d = 7× t - 12(t ≥ 12).其中d 代表苔藓的直径,单位 是cm ; t 代表冰川消失的时间,单位是年.(1) 计算冰川消失16年后苔藓的直径;(2) 如果测得一些苔藓的直径是 35 cm ,问冰川约是多少年前消失的?解:⑴当 t = 16 时,d = 7× t - 12= 7× 16- 12= 14(Cm ). •••冰川消失16年后苔藓的直径为14 Cm解: 2× (2 2+ 2)= 6 2•故长方形的周长为(2)与长方形等面积的正方形的周长为24. (8分)已知长方形的长(1)2(a+ b)=24 ab = =4 2 2× .2 = 4(2)当d = 7× I t- 12= 35 时,则I t- 12= 5,∙t= 37.•••苔藓的直径是35 Cm 时,冰川约是37年前消失的.第十七章检测题时间:120分钟 满分:120分证24n(n 为自然数, 且它成立4215n2(1)按照上述两个等式及其验证过程的基本思路,猜2 2+3 (2)针对上述各式反映的规律,写出用 验证:2解:(1)42 (2— 1)+ 2nn 2—15的变形结果并进行验22—4+1;15 =3nn 2— 12:nn +n 2— 14+ 15 .验证 4315 =n n + n 2— 1.证明23n (n 2— 1)+ nn 2— 14 (42—1)+ 442 — 1 (2)nn2— I=26. (10分)观察下列式子及其验证过程:一、选择题(每小题3分,共30分)人教版八年级数学下册全册单元测试题1等腰三角形的底边长为 6,底边上的中线长为4,它的腰长为(C )A . 7B . 6C . 5D . 42•将直角三角形的三条边长同时扩大同一倍数,得到的三角形是(C )A .钝角三角形B .锐角三角形C .直角三角形D .等腰三角形3•如图,点E 在正方形 ABCD 内,满足∠ AEB = 90°, AE = 6, BE = 8,则阴影部分的面积是(C )A . 48B . 60C . 76D . 80第5题图)ABC 中,AB = 17, AC = 10, BC 边上的高 AD = 8,则边BC 的长ABCD 的对角线AC = 10, BC = 8,则图中五个小矩形的周长之和为A . 14B . 16C . 20D . 286 .如果三角形满足一个角是另一个角的 3倍,那么我们称这个三角形为"智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是(D )A . 1, 2, 3B . 1, 1, 2C . 1, 1, 3D . 1, 2, 37.如图,在 Rt AABC 中,∠ ACB = 60°, DE 是斜边AC 的中垂线,分别交 AB , AC 于D , E 两点.若BD = 2,贝U AC 的长是(B )A . 4B . 4 3C . 8D . 8 3错误!,第4题图) 错误!4.如图,已知△ A . 21 B . 15 C . 6 D .以上答案都不对5 .如图,矩形人教版八年级数学下册全册单元测试题8.如图,将边长为8 Cm 的正方形ABCD 沿MN 折叠,使点D 落在BC 边的中点E处,点A 落在点F 处,贝IJ 线段CN 的长是(A )9•如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5, —只蚂蚁 如果要沿着长方体的表面从点 A 爬到点B ,需要爬行的最短距离是(B )A . 5 29 B. 25 C . 10 5+ 5 D . 3510.如图,正方形 ABCD 和正方形 CEFG 中,点D 在CG 上,BC = 1, CE = 3, H是AF 的中点,那么CH 的长是(B )A . 2.5B . 5C . 2 2D . 2二、填空题(每小题3分,共24分)11 .把一根长为10 Cm 的铁丝弯成一个直角三角形的两条直角边,如果要使三角形的面积是9 cm 2,那么还要准备一根长为 __8__Cm 的铁丝才能把三角形做好.12 .定理“ 30°所对的直角边等于斜边的一半”的逆命题是一如果30°所对的边等于另一边的一半,那么这个三角形是直角三角形13 .如图,在 Rt ^ ABC 中,∠ B = 90°, AB = 3, BC = 4,将厶 ABC 折叠,使点 B恰好落在边AC 上,与点B '重合,AE 为折痕,则EBA . 3 CmB . 4 Cm C. 5 Cm D . 6 Cm第9题图)1.5,第8题第10题,第14题)14.如图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的•若AC = 6, BC = 5,将四个直角三角形中边长为6的直角边分别向外延长倍,得到如图②所示的“数学风车”,则这个“风车”的外围周长是__76__.15.如图,一架长5 m的梯子靠在一面墙上,梯子的底部离建筑物 2 m,若梯子底部滑开1 m,则梯子顶部下滑的距离是-√21- 4__m.16.如图,已知△ ABC中,∠ ABC = 90°, AB= BC,三角形的顶点在相互平行的三条直线∣1,∣2,∣3上,且∣1,∣2之间的距离为2,∣2,∣3之间的距离为3,则AC的长是_ ―2, 17 1817如图,在正方形ABCD中,E是AB上一点,BE = 2, AE = 3BE, P是AC上一动点,则PB+ PE的最小值是_10_ .18如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF , 再以对角线AE为边作第三个正方形AEGH ,如此下去,第n个正方形的边长为-1人教版八年级数学下册全册单元测试题三、解答题洪66分)19.(6分)如图,在数轴上作出帀所对应的点•ft I 2 345fi解:点拨:42+ 12= ( 17)2•图略20. (8分)如图,在△ ABC中,AC = 8, BC= 6,在厶ABE中,DE为AB边上的高,DE = 12,A ABE的面积为60,A ABC是否为直角三角形?为什么?•••△ ABC是直角三角形.∙'S A ABE1=2AB• DE = 60,而DE = 12, ∙∙∙ AB = 10而AC2+ BC2= 64+ 36= 100= AB2,21. (10分)如图,已知在Rt AABC 中,∠ C= 90°, AD 平分∠ CAB, DE 丄AB 于E, 若AC = 6, BC= 8, CD = 3.⑴求DE的长;(2)求厶ADB的面积.解:(I):易证△ ACD AED( AAS), A DE = CD = 3.(2)在Rt AABC 中,AB = AC2+ BC2= 62+ 8 = 10,1 1A S A ADB = §AB ∙ DE = 2 × 10× 3= 15.22. (10分)如图,在一条公路 CD 的同一侧有A , B 两个村庄,A , B 到公路的距离 AC , BD 分别为50 m ,70 m ,且C ,D 两地相距50 m ,若要在公路旁(在CD 上)建一个集贸市场(看作一个点),求A ,B 两村庄到集贸市场的距离之和的最小值.贸市场的距离之和的最小值,过 A '作BD 的垂线A ' H 交BD 的延长线于点H ,在Rt △ BHA '中,BH = 50+ 70= 120 (m ),A ' H = 50 m ,「. A ' B = ∕l202+ 502= 130(m ),故A ,B 两村庄到集贸市场的距离之和的最小值为 130 m .23. (10分)如图,已知矩形 ABCD 中,AB = 3, BC = 4,将矩形折叠,使点 C 与点B ,则A ' B 即为A ,B 两村到集解:A重合,求折痕EF的长.人教版八年级数学下册全册单元测试题解:如图,连接 AC ,作AC 的中垂线交AD , BC 于点E , F ,设EF 与AC 交于O 占 八、、’易证△ AOECOF ,得AE = CF ,而AD = BC ,故DE = BF •由此可得EF 为折痕.连接 CE , AE = CE ,可得 CE = CF.设 CE = CF = X ,贝U BF = 4— x. 3, DE = BF = 4— X , CE = X ,过点E 作EG 丄BC 于点G ,9在 Rt A EGF 中,EG = 3, FG = 4— 2BF =:,41824. (10分)有一圆柱形食品盒,它的高等于 8 cm,底面直径为cm,蚂蚁爬行的π速度为2 cm / s .如果在盒外下底面的 A 处有一只蚂蚁,它想吃到盒内对面中部点 B 处的食物,那么它至少需要多长时间? (盒的厚度和蚂蚁的大小忽略不计 )解:如图,作B 关于EF 的对称点D ,连接AD ,则PD = PB.蚂蚁走的最短路程是由 CD 2+ DE 2 = CE 2知,9+ (4 — X)2,故 X =258在 RQ CED 中,CD=∙∙∙ EF = .''EG 2+ FG 2=15 4人教版八年级数学下册全册单元测试题AP + PB= AD ,由图可知,AC = 9 cm, CD = 8 + 4= 12(cm),则蚂蚁走过的最短路程为AD = ι92+ 122= 15(cm).∙∙∙蚂蚁从A 到B 所用时间至少为15÷2= 7.5(s)∙25.(12分)已知:△ ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角作等腰三角形PCQ,其中∠ PCQ= 90° ,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC = 1+ ,:3, PA = :2,贝V:①线段PB=_込__, PC= __2__;②猜想:PA2, PB2, PQ2三者之间的数量关系为__PA2+ PB2= PQ2__;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程.解:(2)过点C作CD丄AB ,垂足为点D. ACB为等腰直角三角形,CD丄AB , ∙CD = AD = DB. V PA2= (AD + PD)2= (DC + PD)2= DC2 + 2DC ∙ PD + PD2, PB2= (PD —BD)2= (PD —DC)2= DC2—2DC -PD + PD2., ∙PA2+ PB2= 2DC2+ 2PD2.V在Rt APCD 中, 由勾股定理,得PC2= DC2+ PD2,∙∙∙ PA2+ PB2= 2PC2.VA CPQ为等腰直角三角形,人教版八年级数学下册全册单元测试题2PC 2= PQ 2.Λ PA 2+ PB 2= PQ 2.第十八章检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1 •已知四边形 ABCD 是平行四边形,下列结论中,错误的是 (B )A • AB = CD B ∙ AC = BD C .当AC 丄BD 时,它是菱形D .当∠ ABC = 90°时,它是矩形2∙ (2017 •十堰)下列命题错误的是(C )A .对角线互相平分的四边形是平行四边形 B. 对角线相等的平行四边形是矩形C. 一条对角线平分一组对角的四边形是菱形 D .对角线互相垂直的矩形是正方形3. (2017 •山西)如图,将矩形纸片 ABCD 沿BD 折叠,得到△ BC ' D , C ' D 与AB交于点E.若∠ 1= 35° ,则∠ 2的度数为(A )A . 20°B . 30° C. 35° D . 55°E,第3题)a4. 如图,在平行四边形 ABCD 中,AB = 3 cm , BC = 5 cm,对角线AC , BD 相交于 点O ,则OA 的取值范围是(C )A . 2 Cm V OA V5 CmB . 2 Cm VOA V8 CmC . 1 Cm VOA V4 CmD . 3 Cm V OA V 8 Cm 5. 如图,在平行四边形 ABCD 中,AB = 4,∠ BAD 的平分线与 BC 的延长线交于 点E ,与DC 交于点F ,且点F 为边DC 的中点,DG 丄AE ,垂足为点 G ,若DG = 1, 则AE 的长为(B )A . 2 :'3B . 4 ι.,3C . 4D . 86•平行四边形 ABCD 的对角线交于点 O ,有五个条件:①AC = BD ,②∠ ABC =90°,③AB = AC ,④AB = BC ,⑤AC 丄BD ,则下列哪个组合可判定这个四边形是正方 形(C )A •①②B .①③C .①④D .④⑤7. (2017 •赤峰)如图,将边长为4的菱形ABCD 纸片折叠,使点 A 恰好落在对角线的交点O 处,若折痕EF = 2,3 ,则∠ A = ( A )分,将①展开后得到的平面图形是 (C )A . 120° 8.将一张矩形纸片对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部B .,第7题),第8题A •三角形B.矩形C.菱形D •梯形9.如图,矩形ABCD中,点E在AD上,点F在AB上,且EF丄EC, EF = EC,DE = 2,矩形ABCD的周长为16,则AE的长为(A )A. 3B. 4C. 5D. 6,第12题图)10.(2017 •宁波)如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE =4,过点E作EF// BC,分别交BD , CD于G, F两点,若M , N分别是DG , CE的中点,贝IJ MN的长为(C )A. 3B. 2 :'3C. 13D. 4二、填空题(每小题3分,共24分)11.如果四边形ABCD是一个平行四边形,那么再加上条件__有一个角是直角或对角线相等__就可以变成矩形.(只需填一个条件)12.(2017 •乌鲁木齐)如图,在菱形ABCD中,∠ DAB = 60°, AB = 2,则菱形ABCD 的面积为_^/3_.13.如图,在平行四边形ABCD中,∠ A = 130°,在AD上取DE = DC,则∠ ECB 的度数第9题)第10题是_65° _.14.矩形的两邻边长分别为3 Cm和6 cm,则顺次连接各边中点,所得四边形的面积是_9_cm2_.15.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB = 5, AD=12,则四边形ABOM的周长为_20_.16•如图所示,其中阴影部分的面积是__1_400__.17. (2017 •兰州)在平行四边形ABCD中,对角线AC与DB相交于点O•要使四边形ABCD是正方形,还需添加一组条件•下面给出了四组条件:①AB丄AD ,且AB = AD :② AB = BD ,且AB 丄BD ; @ OB = OC ,且OB 丄0C;④ AB = AD ,且AC = BD. 其中正确的序号是:—①③④一18.依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去,已知第1个矩形的面积为1,则第n个矩形的面1 I 积为_(4匸__.三、解答题洪66分)19.(6分)如图所示,在? ABCD中,AC, BD交于点O,点E, F分别是OA , OC请判断线段BE , DF的大小关系,并证明你的结论.T四边形ABCD是平行四边形,的中点,解: BE = DF.理由如下:连接DE , BF.,第16题)∙°∙ OA = OC, OB = 0D.V E , F分别是OA , OC的中点,∙OE = OF.∙四边形BFDE是平行四边形.∙BE = DF.20. (10分)如图,四边形ABCD是正方形,BE⊥ BF, BE = BF, EF与BC交于点G.(1)求证:AE = CF;(2)若∠ ABE = 55°,求∠ EGC 的大小.解:(1)证明:V四边形ABCD是正方形,∙AB = BC ,∠ ABC = 90° .V BE丄BF, ∙∠EBF = 90° . ∙∠ABE = ∠ CBF .又BE = BF,∙^ ABE CBF. ∙AE = CF.(2)V BE = BF,∠ EBF = 90°,∙∠ BEF = 45° .V∠ ABC = 90°,∠ ABE = 55°,∠ GBE = 35° .∙∠ EGC = 80° .21. (10分)已知:如图,E为? ABCD中DC边的延长线上一点,且CE= DC ,连接AE ,分别交BC , BD 于点F , G ,连接AC 交BD 于点O ,连接OF ,判断AB 与OF的位置关系和大小关系,并证明你的结论.1解:OF Il AB , OF = 2AB.理由: AB H CD ,∙∙∙∠ ABF = ∠ ECF. V CE = DC , DC = AB ,二 AB = CE.又V ∠ AFB =∠ EFC ,1•••△ ABFECF ,∙ BF = FC ,∙ OF 是厶 ABC 的中位线.∙ OF H AB , OF = qAB.22. (10分)如图,四边形 ABCD 中,AB H CD , AC 平分∠ BAD , CE H AD 交AB 于点E.(1)求证:四边形 AECD 是菱形;⑵若点E 是AB 的中点,试判断厶ABC 的形状,并说明理由.解:(1)证明:V AB H CD , CEI AD ,•四边形 AECD 是平行边形.V AE 平分∠ BAD ,∙∠ CAE =∠ CAD.V ? ABCD 中 AC , BD 相交于点 O ,二 OA = OC,人教版八年级数学下册全册单元测试题又T AD Il CE ,∙∙∙∠ ACE = ∠ CAD.∙∙∙∠ ACE = ∠ CAE ,∙∙∙ AE = CE ,∙四边形AECD 是菱形.(2止ABC 是直角三角形•理由:T E 是 AB 的中点,∙∙∙ AE = BE.又T AE = CE,∙∙∙ BE = CE ,∙∙∙∠ B =∠ BCE.T ∠ B +∠ BCA +∠ BAC = 180°,∙∙∙ 2∠ BCE + 2∠ACE = 180°,∙∠ BCE +∠ ACE = 90°,即∠ ACB = 90° .•••△ ABC 是直角三角形.23. (10分)(2017 •滨州)如图,在? ABCD 中,以点A 为圆心,AB 长为半径画弧交1AD 于点F ;再分别以点B , F 为圆心,大于QBF 的相同长为半径画弧,两弧交于点P ;(1)根据以上尺规作图的过程,求证:四边形 ABEF 是菱形;(2)若菱形ABEF 的周长为16, AE = 4 ,3,求∠ C 的大小.连接AP 并延长交BC 于点 E ,连接EF ,则所得四边形 ABEF 是菱形.人教版八年级数学下册全册单元测试题解:⑴证明:由作图知,AB = AF ,AE 平分∠ BAD. ∕∙∠ BAE = ∠ EAF. V 四边形ABCD为平行四边形,∙∙∙ BC Il AD. ∙∙∙∠ AEB = ∠ EAF. ∕∙∠ BAE = ∠ AEB.二 AB = BE.二 BE = AF.•••四边形ABEF 为菱形.(2)连接BF 交AE 于点O,V 四边形 ABEF 为菱形,∙ BF 与AE 互相垂直平分,∠BAE =∠ FAE. V 菱形 ABEF 的周长为 16,∙ AF = 4.V AE = 4:3,二 AO = 2,;3.二 OF = 2. ∙ BF = 4.∙∙∙ A ABF 是等边三角形.∙∠ BAF = 60° .V 四边形 ABCD 为平行四边形,∙∠C =∠ BAD = 60° .24. (10分)如图,P 是正方形ABCD 对角线BD 上一点,PE 丄DC , PF ⊥ BC ,点E ,F 分别是垂足.(1)求证:AP = EF ;解:(1)证明:连接PC. V 四边形ABCD 是正方形,BD 为对角线,∙∠ C = 90°,∠ ABP = ∠ CBP.V PE ⊥ CD , PF ⊥BC ,∙∙∙四边形 PFCE 是矩形.∙ EF = PC.AB = BC,⑵若∠ BAP = 60 PD = ■2,求EF 的长.在厶ABP 和厶CBP 中,∠ ABP = ∠ CBP, •△ ABPCBP(SAS,BP=BP,人教版八年级数学下册全册单元测试题∙∙∙ AP = CP.V EF= CP,∙∙∙ AP = EF.(2)由⑴知厶ABP^△ CBP,∙∙∙∠ BAP = ∠ BCP= 60°,∙∠ PCE= 30° .V四边形ABCD是正方形,BD是对角线,∙∠PDE = 45° .V PE⊥ CD ,∙∙∙ DE = PE. V PD = ι'2,∙PE = 1,∙PC= 2PE= 2•由(1)知EF = PC, EF = 2.25. (10分)(2017•庆阳)如图,矩形ABCD中,AB = 6, BC = 4,过对角线BD中点O的直线分别交AB, CD边于点E, F.(1)求证:四边形BEDF是平行四边形;解:⑴证明:V四边形ABCD是矩形,O是BD的中点,∙AB Il DC, OB = OD.∙∠OBE =∠ ODF.又V∠ BOE =∠DOF ,•••△ BOE DOF. ∙EO = FO. ∙四边形BEDF是平行四边形.(2)当四边形BEDF是菱形时,设BE = X,贝U DE = X, AE = 6-X,在Rt AADE 中,DE2= AD2+ AE2,∙∙∙ X2= 42+ (6- x)2.∙13 13 52 1• X= "3^∙∙ S菱形BEDF = BE ∙AD = —× 4 = —= ∑BD ∙EF.又BD = AB2+ AD2= 62+ 42= 2 13,∙2× 2 13 ∙EF = 52.∙EF =2 3 3(2)当四边形BEDF是菱形时,人教版八年级数学下册全册单元测试题第十九章检测题时间:120分钟满分:120分一、选择题(每小题3分,共30分)11.函数y= 中,自变量X的取值范围是(C)X—2A . x>2 B. X V 2 C. x≠ 2 D . X≠ — 22.(2017 •广安)当kv 0时,一次函数y= kx —k的图象不经过(C )A .第一象限 B.第二象限C.第三象限D.第四象限3.(2016 •百色)直线y= kx + 3经过点A(2, 1),则不等式kx + 3≥0的解集是(A )A. x≤3B. X≥3 C・ x≥ —3 D . X≤ 0K + 2 (x≤ 2),4.若函数y= 则当函数值y= 8时,自变量X的值是(D )2x (x>2),A. ± :6B. 4C.±6或4D. 4 或—:65.直线y= —2x+ m与直线y= 2x—1的交点在第四象限,则m的取值范围是(C )A. m>— 1B. m V 1C.— 1 v m V 1D.—1≤ m≤ 16. (2017 •泰安)已知一次函数y= kx—m —2x的图象与y轴的负半轴相交,且函数值y随自变量X的增大而减小,贝IJ下列结论正确的是(A )A. kv2, m>0 B . kV2, m V 0 C . k>2, m>0 D . kV0, mv 07.若等腰三角形的周长是100 cm,则能反映这个等腰三角形的腰长y(cm)与底边长X (Cm )之间的函数关系的图象是 50 Λ u∣mA(D )57人教版八年级数学下册全册单元测试题8•如图,在平面直角坐标系中,线段AB 的端点坐标为A ( — 2, 4), B (4, 2),直线y = kx — 2与线段AB 有交点,则k 的值不可能是(B )的取值范围为(D )A . b>2B . b>— 2C . bv2D . bv — 210. 如图,点B , C 分别在直线y = 2x 和直线y = kx 上,A , D 是X 轴上的两点,若四边形ABCD 是矩形,且 AB : AD = 1 : 2,则k 的值是(B )二、填空题(每小题3分,共24分)11. 将直线y =— 2x + 3向下平移2个单位长度得到的直线为 _y = — 2x + 1__. 12.从地面到高空11 km 之间,气温随高度的升高而下降,高度每升高1 km ,气温下降6 C .已知某处地面气温为 23 C,设该处离地面 X km (0v XV 11)处的气温为y C, 则y 与X 的函数解析式为 _y = 23— 6x .13. 已知点P (a, b )在一次函数y = 4x + 3的图象上,则代数式 4a — b — 2的值等于—5_ .14. 直线y = kx + b 与直线y = — 2x + 1平行,且经过点(一2, 3),贝U kb = _2_ . 15. (2017 •西宁)若点 A (m , n )在直线 y = kx (k ≠0)上,当一1≤ m ≤ 1 时,一1≤ n ≤ 1, 则这条直线的函数解析式为 __y = X 或y =— x__.9. (2017 •苏州)若点A (m , n )在一次函数 y = 3x + b 的图象上,且 3m — n > 2,贝U b2 A -3 2 2 2 B -5 C -7 D 9,第10题16.将直线y = 2x —1沿y 轴平移3个单位长度后得到的直线与y 轴的交点坐标为_(0, 2)或(0,— 4)_.17.如图,OB , AB 分别表示甲、乙两名同学运动的一次函数图象,图中S 与t 分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB 表示甲的路程与时间的函数关系;②甲的速度比乙快 1.5 m /s;③甲让乙先跑12 m ;④8 S 后,甲超过了 乙•其中正确的有__②③④__.(填写你认为所有正确的答案序号 )18. (2017 •通辽)如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线l 将图形分成面积相等的两部分,则将直线 I 向右平移3个单位长度后所得直线1'的函数解析式为 _y =10X -詈一.三、解答题洪66分)(2)若该直线上有一点 C(— 3, n),求△ OAC 的面积.解:(1)由y = 0,得X = 2;由X = 0,得y = 4,故函数图象与X 轴的交点A 的坐标为 (2, 0),与y 轴的交点B 的坐标为(0, 4).19. (8分)如图,已知直线 (1)求该直线与X 轴的交点 A 及与y 轴的交点B 的坐标; y =1(2)把 x =— 3 代入 y =— 2x + 4,得 y = 6+ 4= 10,二 C(— 3, 10),∙°∙ S ^OAC =寸 2×10 =10.20. (9分)已知一次函数y = (2a + 4)x — (3— b),当a, b 为何值时:(1)y 随X 的增大而增大;(2)图象经过第二、三、四象限;(3)图象与y 轴的交点在X 轴上方.解:⑴由题意知2a + 4>0,∙∙∙a >— 2.(2) 由题意知 2a + 4v0,— (3 — b)v 0,∙ a < — 2, bv3. (3) 由题意知一(3— b)>0,∙ b >3.21.(8分)某市出租车计费方法如图所示,x(km )表示行驶里程,y(元)表示车费,请 根据图象回答下面的问题:(1)出租车的起步价是多少元?当 x > 3时,求y 与X 的函数关系式; (2)若某乘客有一次乘出租车的车费为 32元,求这位乘客乘车的里程.解:(1)8 元,y = 2x +2.⑵当y= 32时,2x+ 2= 32, X= 15,∙这位乘客乘车的里程为15 km.22. (9分)一列长120 m 的火车匀速行驶,经过一条长为 160 m 的隧道,从车头驶入14 S ,设车头在驶入隧道入口 X S 时,火车在隧道内的长度为y m .(1)求火车行驶的速度;⑵当0≤ x ≤ 14时,求y 关于X 的函数解析式;(3)在给出的平面直角坐标系中画出 y 关于X 的函数图象.解:⑴设火车行驶的速度为 V m /s ,依题意得14v = 120+ 160,解得V = 20.(2)①当 0≤ x ≤ 6 时,y = 20x ;②当 6v x ≤ 8 时,y = 120;③当 8v x ≤ 14 时,y = 120—20(x - 8)=- 20x + 280.⑶图略.23. (10分)(2017 •衢州)五一期间,小明一家乘坐高铁前往某市旅游,计划第二天租 用新能源汽车自驾出游.根据以上信息,解答下列问题:隧道入口到车尾离开隧道出口共用nv. illGO120 100 爭屋旬:按B 收車匱 ⅛⅛⅛so 元.畀外再 按租车时何计霽; 乙公可:无固定粗金, 直⅛l ⅛⅛≠⅛问计IK 誓小时的楓痔是30元.方方港97641≠-1⅛i>M甲乙合⅛ y.(1) 设租车时间为X h ,租用甲公司的车所需费用为 y ι元,租用乙公司的车所需费用为y 2元,分别求出y ι, y 2关于X 的函数解析式;(2) 请你帮助小明计算并选择哪个出游方案合算.解:⑴设 y ι= k ιx + 80,把点(1, 95)代入,可得 95= k ι+ 80,解得 k ι = 15,二 y ι= 15x + 80(x ≥ 0);设 y 2= k 2X ,把(1, 30)代入,可得 30= k ?,即卩 k 2= 30,二 y 2= 30x(x ≥ 0).16 16(2)当 y 1 = y 2 时,15x + 80= 30x ,解得 X =—;当屮> y 时,15x + 80> 30x ,解得 x <^3 ;16 16当y 1 Vy 2时,15x + 80v 30x ,解得x >亍二当租车时间为 ㊁h 时,选择方案一和方案二16 16一样合算;当租车时间小于 亍h 时,选择方案二合算;当租车时间大于 y h 时,选择方案一合算.24. (10分)(2017∙台州)如图,直线11: y = 2x + 1与直线I 2: y = mx + 4相交于点P(1, b).(1) 求b , m 的值;(2) 垂直于X 轴的直线X = a 与直线∣1, I 2分别交于点C , D ,若线段CD 长为2,求a 的值.y = mx + 4 上,二 3= m + 4,∙°∙ m = — 1.解:(1)∙∙∙点 P(1, b)在=3∙τ点P(1, 3)在直线b:(2)当X= a 时,y c= 2a+ 1 当X= a 时,W= 4—a.v CD = 2,二∣2a + 1-(4—a)| = 2,1 5解得a= 3或a= 3.∙∙∙ a的值为3或3.25. (12分)(2017 •宁夏)某商店分两次购进A, B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:,购进所需费用/元第一次,30,40,3 800第二次,40,30,3 200(1求A, B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售•为满足市场需求,需购进A, B两种商品共1 000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.人教版八年级数学下册全册单元测试题解:(1)设A种商品每件的进价为X元,B种商品每件的进价为y元,30x+ 40y= 3 800, X= 20,根据题意得解得40x+ 30y= 3 200, y= 80.••• A种商品每件的进价为20元,B种商品每件的进价为80元.(2)设购进B种商品m件,获得的利润为W元,则购进A种商品(1 000— m)件,根据题意得W= (30— 20)(1 000-m) + (100— 80)m= 10m+ 10 000.VA种商品的数量不少于B种商品数量的4倍,• 1 000— m≥ 4m,解得m ≤ 200.V在W= 10m+ 10 000中,k = 10> 0,二W的值随m的增大而增大,•当m = 200时,W取最大值,最大值为10× 200+ 10 000= 12 000,•当购进A种商品800件,B种商品200件时,销售利润最大,最大利润为12 000元.第二十章检测题时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.我省某市五月份第二周连续七天的空气质量指数为:111, 96, 47, 68, 70, 77,105,则这七天空气质量指数的平均数是(C )A. 71.8B. 77C. 82D. 95.72.(2017 •柳州)如果有一组数据为1, 2, 3, 4, 5,则这组数据的方差为(B )A. 1B. 2C. 3D. 43•中南商场对上周女装的销售情况进行了统计,销售情况如表所示:经理决定本周进女装时要多进一些红色的,可用来解释这一现象的统计知识是(C)A •平均数B.中位数C.众数D •方差4.(2017 •德阳)下列说法中,正确的有(C )①一组数据的方差越大,这组数据的波动反而越小;②一组数据的中位数只有一个;③在一组数据中,出现次数最多的数据称为这组数据的众数.A .①② B.①③ C.②③ D.①②③5.(2017 •聊城)为了满足顾客的需求,某商场将5 kg奶糖,3 kg酥心糖和2 kg 水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克(C )A . 25 元B. 28.5元C. 29 元D . 34.5元6.(2017 •南通)一组数据:1, 2, 2, 3,若添加一个数据2,则发生变化的统计量是(D )A .平均数B.中位数C.众数D .方差7.(2017 •衢州)据调查,某班20位女同学所穿鞋子的尺码如下表所示,则鞋子的尺码的众数和中位数分别是(D )A.35码,35码B. 35 码,36码C. 36码,35 码D. 36码,36码8.为了了解一路段车辆行驶速度的情况,交警统计了该路段上午7: 00至9: 00来往车辆的车速(单位:km/h),并绘制成如图所示的条形统计图.这些车速的众数、中人教版八年级数学下册全册单元测试题位数分别是(D)A.众数是80 km/h,中位数是60 km/hB.众数是70 km/h,中位数是70 km/ hC.众数是60 km/h,中位数是60 km/hD .众数是70 km/h,中位数是60 km/h9.(2017 •六盘水)已知A组四人的成绩分别为90, 60, 90, 60, B组四人的成绩分别为70, 80, 80, 70,用下列哪个统计知识分析区别两组成绩更恰当(D )A •平均数 B.中位数C.众数D •方差10.(2017•舟山)已知一组数据a, b, C的平均数为5,方差为4,那么数据a—2, b—2, c—2的平均数和方差分别是(B )A. 3, 2B. 3, 4C. 5, 2D. 5, 4二、填空题(每小题3分,共24分)11.(2017 •郴州)为从甲乙两名射击运动员中选出一人参加竞赛,特统计了他们最近10次射击训练的成绩,其中,他们射击的平均成绩均为8.9环,方差分别是S甲=0.8, S L= 13,从稳定性的角度来看,_甲_的成绩更稳定.(填“甲”或“乙”)12.(2017 •河池)在校园歌手大赛中,参赛歌手的成绩为5位评委所给分数的平均分.各位评委给某位歌手的分数分别是92, 93, 88, 87, 90,则这位歌手的成绩是90 分.13.(2017 •大连)下表是某校女子排球队队员的年龄分布:年龄/岁13 14 15 16 人数1452则该校女子排球队队员年龄的众数是 __15__岁.14.在射击比赛中,某运动员的 6次射击成绩(单位:环)为:乙8,10,8,9, 6.5计算这组数据的方差为_3_.15.在一次测验中,某学习小组的 5名学生的成绩如下(单位:分):68, 75, 67,66, 99这组成绩的平均分X = _75_,中位数M 是「68_,去掉一个最高分后的平均分 X ,= _69_,那么所求的x ', M , X 这三个数据中,你认为能描述该小组学生这次测 验成绩的一般水平的数据是 __M 或x '.16. 如图是小强同学根据乐山城区某天上午和下午四个整点时的气温绘制成的折线图•请你回答:该天上午和下午的气温 —下午—更稳定,理由是__上午温度的方差大于 下午温度的方差.17. (2017 •咸宁)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某 个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:2.21O 9101112 M 151617 时间/小时在每天所走的步数这组数据中,众数和中位数分别是__1.4, 1.35__,18.(2017 •鄂州)一个样本为1,3,2,2,a,b, c.已知这个样本的众数为3,平均数为2,则这组数据的中位数为__2__.三、解答题洪66分)19.(12分)某工厂有220名员工,财务科要了解员工收入情况•现在抽查了10名员工的本月收入,结果如下:(单位:元)1 660 1 540 1 510 1 670 1 620 1 580 1 600 1 620 1 620 1 580(1)全厂员工的月平均收入是多少?(2)财务科本月应准备多少钱发工资?(3)一名本月收入为1 570元的员工收入水平如何?解:(1)x= 1 600元,二全厂员工的月平均收入为 1 600元.(2)由(1)得,1 600× 220= 352 000元,二财务科本月应准备352 000元发工资.(3)中位数是1 610元,•••全厂员工本月收入的中位数是 1 610元.V 1 570<1 610,二收入可能是中下水平.20.(12分)在一次校园网页设计比赛中,8位评委对甲、乙两选手的评分情况如下表:确定选手的最后得分有两种方案:一是将评委评分的平均数作为最后得分, 二是将评委评分中一个最高分与一个最低分去掉后的平均数作为最后得分. 哪一种方案更为可取?解:按方案一计算得分为:X 甲≈ 9.21 分),X 乙≈9.16份),这时甲的成绩比乙高•按 方案二计算得分为:y 甲≈ 9.18分), Y 乙≈ 9.28分),这时乙的成绩比甲高•将上面的得分 与表中的数据相比较,我们发现有5位评委对甲的评分不高于乙,这表明多数人认为乙的成绩好,因此按方案二评定选手的最后得分较为可取.21 • (14分)某校240名学生参加植树活动,要求每人植树 4〜7棵,活动结束后抽查 T 20名学生每人的植树量,并分为四类: A 类4棵、B 类5棵、C 类6棵、D 类7棵, 将各类的人数绘制成如图所示不完整的条形统计图,回答下列问题:(1) 补全条形图;(2) 写出这20名学生每人植树量的众数和中位数;A Ii C D 炎型人。

人教版八年级数学下册全册单元测试卷及答案

人教版八年级数学下册全册单元测试卷及答案

《第十六章 二次根式》测试卷(A 卷)(测试时间:90分钟 满分:120分)一.选择题(共10小题,每题3分,共30分) 1.二次根式1x -中,x 的取值范围是( ) A. x >1 B. x≥1 C. x>﹣1 D. x≥﹣1 2.化简的结果是( )A. ﹣2B. 2C. ±2D. 43.下列根式中,属于最简二次根式的是( )A. 9B. 23a C. 3a D.3a 4..计算的结果是( ) A. 6 B.C. 2D.5.下列计算正确的是( ) A. 2×3=6B.+=C. 5﹣2=3D.÷=6.下列二次根式,不能与合并的是( )A. B. C. D.7.化简的结果是( ).A. B. C. D.8.计算25)-(的结果是( ) A. -5 B. 5 C. -25 D. 25 982 ) 16410a b+(a >0,b >0),分别作了如下变形:甲:()()()()==a b a ba ba b a ba ba b----++-乙:()()==a ba ba ba b a ba b-+--++关于这两种变形过程的说法正确的是( )A. 甲、乙都正确B. 甲、乙都不正确C. 只有甲正确D. 只有乙正确 二.填空题(共10小题,每题3分,共30分) 11.把下列非负数写成一个数的平方的形式: (1)2019=_________;(2)2x =_________. 12.=____=.13.13.13.已知32,32x y =+=-,则33_________x y xy +=.14.若最简二次根式125a a ++与34b a +是同类二次根式,则a=_____,b=_____.15.化简:(1)______;(2)______;(3)______.16.计算: ()3327+=________.17.实数a ,b ,c 在数轴上的位置如图所示,化简--|a -2b|的结果为____.18.计算()2252-的结果是________.19.若实数x ,y ,m 满足等式()23532322x y m x y m x y x y +--++-=+---- ,则m+4的算术平方根为 _______.20.对于任意不相等的两个数a ,b ,定义一种运算※如下:a※b=a b a b +-,如3※2=3232+-=5.那么12※4=____. 三、解答题(共60分) 21.(15分).计算与化简(1)5(251)- (2)123127+-(3)7216(31)(31)8-++- 22.(6分)当x 是多少时,1132+++x x 在实数范围内有意义? 23.(6分)若2440x y y y -+-+=,求yx 11+的值. 24.(8分)已知y=522+-+-x x ,求y x +的算术平方根.25.(8分)一个三角形的三边长分别为1545,20,5245x x xx .(1)求它的周长(要求结果化简);(2)请你给出一个适当的x 的值,使它的周长为整数,并求出此时三角形周长的值. 26.(8分)若最简二次根式31025311x x y x y +--+和是同类二次根式. (1)求x y 、的值; (2)求22y x +的值. 27.(9分)观察下列等式: ①12)12)(12(12121-=-+-=+;②23)23)(23(23231-=-+-=+;③34)34)(34(34341-=-+-=+;……回答下列问题:(1)仿照上列等式,写出第n 个等式: ; (2)利用你观察到的规律,化简:11321+;(3)计算:1031 (2)31321211++++++++(测试时间:90分钟 满分:120分)一.选择题(共10小题,每题3分,共30分) 1.二次根式1x -中,x 的取值范围是( ) A. x >1 B. x≥1 C. x>﹣1 D. x≥﹣1 【答案】B【解析】∵二次根式1x -有意义,∴x ﹣1≥0,解得:x ≥1.故选B . 2.化简的结果是( )A. ﹣2B. 2C. ±2D. 4 【答案】B 【解析】=.故选B.3.下列根式中,属于最简二次根式的是( )A. 9B. 23a C. 3a D.3a 【答案】C4..计算的结果是()A. 6B.C. 2D.【答案】D【解析】.故选D.5.下列计算正确的是()A. 2×3=6B. +=C. 5﹣2=3D. ÷=【答案】D【解析】根据二次根式的性质和运算,可知×3=18,故不正确;根据最简二次根式和同类二次根式,可知+不能计算,故不正确;根据最简二次根式和同类二次根式,可知5﹣2不能计算,故不正确;根据二次根式的除法和化简,可知÷=,故正确.故选:D. 学6.下列二次根式,不能与合并的是( )A. B. C. D.【答案】B7.化简的结果是( ).A. B. C. D.【答案】A【解析】原式=,故选A.825)-(的结果是( ) A. -5 B. 5 C. -25 D. 25 【答案】B ()22555-==.故答案为:5.982 ) 164【答案】C82164==. 故选C.10a b+(a >0,b >0),分别作了如下变形:甲:()()()=a b a ba b a ba ba b-++-乙:=a ba ba b a ba b++关于这两种变形过程的说法正确的是( )A. 甲、乙都正确B. 甲、乙都不正确C. 只有甲正确D. 只有乙正确 【答案】D二.填空题(共10小题,每题3分,共30分) 11.把下列非负数写成一个数的平方的形式: (1)2019=_________;(2)2x =_________. 【答案】【解析】根据=a ,可知a , 故2019=;2x =. 故答案为:;12.=____=.【答案】|a|【解析】由二次根式的性质得=|a|=.故答案为:|a| 学 13.13.13.已知32,32x y ==33_________x y xy +=.【答案】1014.若最简二次根式125a a ++与34b a +是同类二次根式,则a=_____,b=_____. 【答案】 1 1【解析】最简二次根式125a a ++与34b a +是同类二次根式, ∴12{2534a a b a +=+=+,解得1{1.a b == 故答案为:1,1. 15.化简:(1)______;(2) ______;(3)______.【答案】 42 0.45【解析】原式原式原式故答案为:(1). 42 (2). 0.45 (3).16.计算: ()3327+=________.【答案】12 【解析】原式()33333433412.=+=⨯=⨯=故答案为:12.17.实数a ,b ,c 在数轴上的位置如图所示,化简--|a -2b|的结果为____.【答案】-3b【解析】由数轴知:c<a<0<b , ∴a+c<0,c-b<0,a-2b<0,∴原式=|a+c|-|c -b|-|a -2b|=(-a-c )-(b-c )-(2b-a )=-a-c-b+c-2b+a=-3b , 故答案为:-3b. 18.计算()2252-的结果是________.【答案】22﹣410 【解析】原式()()22252252220410222410.=-⨯⨯+=-+=-故答案为: 22410.-19.若实数x ,y ,m 满足等式()23532322x y m x y m x y x y +--++-=+---- ,则m+4的算术平方根为 _______. 【答案】3所以m =5.49 3.m +== 故答案为:3.20.对于任意不相等的两个数a ,b ,定义一种运算※如下:a b +,如32+5那么12※4=____. 【答案】12【解析】根据题意可得: 1241641124.124882+====-※故答案为: 1.2三、解答题(共60分) 21.(15分).计算与化简 (1)5(251)- (2)123127+-(3)7216(31)(31)8-++- 【答案】(1)10-5(2)3314(3)5-2【解析】22.(6分)当x 是多少时,1132+++x x 在实数范围内有意义? 【答案】当x ≥-23且x ≠-1时,1132+++x x 在实数范围内有意义.【解析】考点:1、二次根式有意义的条件;2、分式有意义的条件. 23.(6分)若2440x y y y -+-+=,求yx 11+的值. 【答案】1. 【解析】试题分析:先把原式y 2-4y+4写成(y-2)2的形式,x y -(y-2)2=00x y -=,(y-2)2=0,从而求出x 、y 的值,再求yx 11+的值就容易了. 2440x y y y --+= x y -(y-2)2=00x y -=,(y-2)2=0, ∴x=2,y=2 ∴1111122x y +=+=. 考点:1.偶次方;2.算术平方根;3.二次根式. 24.(8分)已知y=522+-+-x x ,求y x +的算术平方根.【答案】7【解析】考点:1、二次根式有意义的条件;2、算术平方根. 25.(8分)一个三角形的三边长分别为1545,20,5245x x xx .(1)求它的周长(要求结果化简);(2)请你给出一个适当的x 的值,使它的周长为整数,并求出此时三角形周长的值. 【答案】(1)255x(2)x=20,周长25 【解析】试题分析:(1)将三边相加即可;(2)去x=20,答案不唯一,符合题意即可. 试题解析:(1)周长1545205245x x x=2552555xx x x =++.(2)当x=20时,周长=22055⨯=25.(答案不唯一,符合题意即可) 学考点:二次根式的加减.26.(8分)若最简二次根式31025311x x y x y +--+和是同类二次根式. (1)求x y 、的值; (2)求22y x +的值. 【答案】(1)x=4,y=3;(2)5 【解析】试题分析:(1)根据同类二次根式的定义:化为最简二次根式后被开方数相同的二次根式叫做同类二次根式,即可列出关于x 、y 的方程组,再解出即可;考点:1.同类二次根式;2.二次根式的计算 27.(9分)观察下列等式: ①12)12)(12(12121-=-+-=+;②23)23)(23(23231-=-+-=+;③34)34)(34(34341-=-+-=+;……回答下列问题:(1)仿照上列等式,写出第n 个等式: ; (2)利用你观察到的规律,化简:11321+;(3)计算:1031 (2)31321211++++++++【答案】(111n n n n=+++;(2)2311;(3101.【解析】试题分析:根据观察,可得规律,根据规律,可得答案. 试题解析:(1)写出第n 11n n n n=+++(2)原式121123111211==+(3)原式213243109101⋅⋅⋅+考点:1.探索规律题(数字的变化类);2.分母有理化.第十七章一、选择题(每小题4分,共28分)1.一个直角三角形的斜边长比一条直角边长大2,另一直角边长为6,则斜边长为( )A.4B.8C.10D.122.已知三角形的三边长之比为1∶1∶,则此三角形一定是( )A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形3.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为( )A.4B.8C.16D.644.如图,一个高1.5m,宽3.6m的大门,需要在相对的顶点间用一条木板加固,则这条木板的长度是( )A.3.8 mB.3.9 mC.4 mD.4.4 m5.(德宏州中考)设a,b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是( )A.1.5B.2C.2.5D.36.如图所示,要在离地面5m处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2m,L2=6.2m,L3=7.8m,L4=10m四种备用拉线材料中,拉线AC最好选用( )A.L1B.L2C.L3D.L47.(柳州中考)在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC 于D,则BD的长为( )A. B.C. D.二、填空题(每小题5分,共25分)8.定理“全等三角形的对应边相等”的逆命题是,它是命题(填“真”或“假”).9.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE= .10.如图,教室的墙面ADEF与地面ABCD垂直,点P在墙面上.若PA=AB=5,点P到AD的距离是3,有一只蚂蚁要从点P爬到点B,它的最短行程的平方应该是.11.如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P 从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC 边向点C以每秒2cm的速度移动,如果同时出发,则过3s时,△BPQ的面积为cm2.12.(哈尔滨中考)在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.三、解答题(共47分)13.(10分)已知△ABC的三边分别为a,b,c,且a+b=4,ab=1,c=,试判定△ABC的形状,并说明理由.14.(12分)(湘西州中考)如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长.(2)求△ADB的面积.15.(12分)《中华人民共和国道路交通管理条例》规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)16.(13分)(贵阳中考)在△ABC中,BC=a,AC=b,AB=c,设c为最长边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边长分别为6,8,9时,△ABC为三角形;当△ABC三边长分别为6,8,11时,△ABC为三角形.(2)猜想:当a2+b2c2时,△ABC为锐角三角形;当a2+b2 c2时,△ABC为钝角三角形.(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.答案解析1.【解析】选C.设斜边长为x,则一直角边为x-2,由勾股定理得,x2=(x-2)2+62,解得x=10.2.【解析】选D.由题意设三边长分别为x,x,x,∵x2+x2=(x)2,∴三角形一定为直角三角形,并且是等腰三角形.3.【解析】选D.由题意得,直角三角形的斜边为17,一条直角边为15,所以正方形A的面积为172-152=64.4.【解析】选B.设木板的长为xm,由题意知,x2=1.52+3.62,解得x=3.9(m).5.【解析】选D.∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5①,∵a,b是直角三角形的两条直角边,∴a2+b2=2.52②,由①②可得ab=3.6.【解析】选B.在Rt△ACD中,AC=2AD,设AD=x,由AD2+CD2=AC2,即x2+52=(2x)2,得x=≈2.8868,2x=5.7736,所以最好选用L2.7.【解析】选A.∵∠BAC=90°,AB=3,AC=4,∴BC===5,∴BC边上的高=3×4÷5=,∵AD平分∠BAC,∴点D到AB,AC上的距离相等,设为h,则S△ABC=×3h+×4h=×5×,解得h=,S△ABD=×3×=BD·,解得BD=.8.【解析】“全等三角形的对应边相等”的逆命题是三边分别对应相等的两个三角形全等,它是真命题.答案:三边分别对应相等的两个三角形全等真9.【解析】AE=====2.答案:210.【解析】如图,则AG=3.在Rt△APG中,PG2=PA2-AG2=52-32=16.在Rt△PGB中,PB2=PG2+GB2=16+(3+5)2=80.答案:8011.【解析】设AB为3xcm,BC为4xcm,AC为5xcm,因为周长为36 cm,AB+BC+AC=36,所以3x+4x+5x=36,得x=3,所以AB=9,BC=12,AC=15,因为AB2+BC2=AC2,所以△ABC是直角三角形,过3s时,BP=9-3×1=6,BQ=2×3=6,所以S△PBQ=BP·BQ=×6×6=18(cm2).答案:1812.【解析】当点D与C在AB同侧,BD=AB=2,作CE⊥BD于E,CE=BE=,ED=,由勾股定理得CD=(如图1);当点D与C在AB异侧,BD=AB=2,∠DBC=135°,作DE⊥BC于E,BE=ED=2,EC=3,由勾股定理得CD=(如图2).答案:或13.【解析】△ABC是直角三角形,理由:∵(a+b)2=16,a2+2ab+b2=16,ab=1,∴a2+b2=14.又∵c2=14,∴a2+b2=c2.∴△ABC是直角三角形.14.【解析】(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3.(2)在Rt△ABC中,由勾股定理得,AB===10, ∴S△ADB=AB·DE=×10×3=15.15.【解析】在Rt△ABC中,AC=30m,AB=50m,根据勾股定理可得: BC ===40(m).∴小汽车的速度为v==20m/s=20×3.6km/h=72km/h.∵72km/h>70km/h,∴这辆小汽车超速行驶.16.【解析】(1)锐角钝角.(2)> <.(3)∵a=2,b=4,∴2<c<6,且由题意,c为最长边, ∴4<c<6,当a2+b2=c2,即c=2时,△ABC是直角三角形, ∴当4<c<2时,△ABC是锐角三角形,当2<c<6时,△ABC是钝角三角形.新人教版八年级下册第18章 平行四边形单元测试试卷(A 卷)(时间90分钟 满分100分)班级 学号 姓名 得分一、填空题(共14小题,每题2分,共28分)1.四边形的内角和等于 º,外角和等于 º .2.正方形的面积为4,则它的边长为 ,一条对角线长为 . 3.一个多边形,若它的内角和等于外角和的3倍,则它是 边形.4.如果四边形ABCD 满足 条件,那么这个四边形的对角线AC 和BD 互相垂直(只需填写一组你认为适当的条件).5.如果边长分别为4cm 和5cm 的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm .6.已知菱形两条对角线的长分别为5cm 和8cm ,则这个菱形的面积是______cm . 7.平行四边形ABCD ,加一个条件__________________,它就是菱形.8.等腰梯形的上底是10cm ,下底是14cm ,高是2cm ,则等腰梯形的周长为______cm . 9.已知菱形的一条对角线长为12,面积为30,则这个菱形的另一条对角线的长为 .10.如图,ABCD 中,AE ⊥BC 于E ,AF ⊥DC 于F ,BC=5,AB=4,AE=3,则AF 的长为 .11.如图,梯形ABCD 中,AD ∥BC ,已知AD=4,BC=8,则EF= ,EF 分梯形所得的两个梯形的面积比S 1 :S 2为 .12.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形_______(请填图形下面的代号).1S 2S 第10题 第11题13.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米.14.如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去,若第一个正方形的边长为1,则第n 个正方形的面积是 .二、填空题(共4小题,每题3分,共12分) 15.如图,ABCD 中,AE 平分∠DAB ,∠B=100°,则∠DAE等于( )A .100°B .80°C .60°D .40°16.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,•从学生中征集到设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种图案,你认为符合条件的是( ) A .等腰三角形 B .正三角形 C .等腰梯形 D .菱形17.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是( )A .6条B .7条C .8条D .9条 18.如图,图中的△BDC′是将矩形ABCD 沿对角线BD 折叠得到的,图中(包括实线、虚线在内)共有全等三角形( )对. A .1 B .2 C .3 D .430°30°30°A第13题第15题第18题三、解答题(共60分)19.(5分)如图,在□ABCD中,DB=CD,∠C=70°,AE⊥BD于点E.试求∠DAE的度数.20.(5分)已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.21.(5分)在一个平行四边形中若一个角的平分线把一条边分成长是2cm和3cm•的两条线段,求该平行四边形的周长是多少?22.(6分)已知:如图,ABCD中,延长AB到E,延长CD到F,使BE=DF 求证:AC与EF互相平分23.(6分)如图,一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是多少?24.(6分)顺次连结等腰梯形四边中点所得的四边形是什么特殊的四边形?画出图形,写出已知,求证并证明.已知:求证:证明:25.(6分)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN•∥BC,•设MN•交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由?(2)当点O运动何处时,四边形AECF是矩形?并说出你的理由.26.(6分)如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=12 BC.•根据上面的结论:(1)你能否说出顺次连结任意四边形各边中点,可得到一个什么特殊四边形?•并说明理由.(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.27.(7分)如图,△ABD、△BCE、△ACF均为等边三角形,请回答下列问题(不要求证明)(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?28.(8分)如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,•即△ABD•、•△BCE、△ACF,请回答下列问题,并说明理由.(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在.参考答案一、填空题1.360 ,3602.2,223.84.四边形ABCD是菱形或四条边都相等或四边形ABCD是正方形等5.56.207.一组邻边相等或对角线互相垂直8.24+4 29.510.41511.6,7512.②13.120 14.1 12n-⎛⎫⎪⎝⎭二、选择题15.•D •16.D 17.A 18.D三、解答题19.∠DAE=20°20.略21.14cm或16cm22.略23.2601块24.略25.(1)OE=OF;(2)当点O运动到AC的中点时,四边形AECF•是矩形26.(1)平行四边形;(2)平行四边形,矩形,菱形,正方形27.(1)平行四边形;(2)满足∠BAC=150º时,四边形ADEF是矩形;(3)当△ABC为等边三角形时,以A、D、E、F为顶点的四边形不存在28.(1)平行四边形;(2)当∠BAC=150°时是矩形;(3)∠BAC=60°第十九章达标测试卷一、选择题(每题3分,共30分)1.函数y=1x-3+x-1的自变量x的取值范围是()A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤3 2.下列图象中,表示y是x的函数的是()3.已知一次函数y=(a+1)x+b的图象如图所示,那么a,b的取值范围分别是()A.a>-1,b>0B.a>-1,b<0C.a<-1,b>0D.a<-1,b<0(第3题)4.把直线y=x向上平移3个单位长度,下列在该平移后的直线上的点是() A.(2,2) B.(2,3) C.(2,4) D.(2,5) 5.一个正比例函数的图象经过点(2,-1),则它的解析式为()A.y=-2x B.y=2x C.y=-12x D.y=12x6.正比例函数y=kx(k≠0)的图象经过第二、四象限,则一次函数y=x+k的图象大致是()7.某学习小组做了一个实验:从100 m高的楼顶随手放下一个苹果,测得有关数据如下:下落时间t/s123 4下落高度h/m5204580则下列说法错误的是()A.苹果每秒下落的路程越来越长B.苹果每秒下落的路程不变C.苹果下落的速度越来越快D.可以推测,苹果落到地面的时间不超过5 s8.若直线y=-2x+m与直线y=2x-1的交点在第四象限,则m的取值范围是()A.m>-1 B.m<1 C.-1<m<1 D.-1≤m≤1 9.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是() A.乙前4 s行驶的路程为48 mB.在0到8 s内甲的速度每秒增加4 mC.两车到第3 s时行驶的路程相等D.在4至8 s内甲的速度都大于乙的速度(第9题)10.如图,点P是菱形ABCD边上的一动点,它从点A出发沿着A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x 的函数图象大致为()(第10题)二、填空题(每题3分,共24分)11.直线y=2x+1经过点(a,0),则a=________.12.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.13.图中直线是由直线l向上平移1个单位长度、向左平移2个单位长度得到的,则直线l对应的函数解析式为__________.(第13题)14.直线y=2x+b经过点(3,5),则关于x的不等式2x+b≥0的解集是__________.15.若一次函数y=-x+a与一次函数y=x+b的图象的交点坐标为(m,8),则a+b=________.16.一次越野跑中,当小明跑了1 600 m时,小刚跑了1 400 m,小明、小刚在此后所跑的路程y(m)与时间t(s)之间的函数关系如图所示,则这次越野跑的全程为________m.(第16题)17.已知一次函数y=(m+2)x+(1-m),若y随x的增大而减小,且该函数的图象与x轴的交点在原点的右侧,则m的取值范围是__________.18.如图,在平面直角坐标系中,A(2,3),B(-2,1),在x轴上存在点P,使点P到A,B两点的距离之和最小,则点P的坐标为__________.(第18题)三、解答题(19~21题10分,其余每题12分,共66分)19.小红帮弟弟荡秋千(如图①),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图②所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7 s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?(第19题)20.在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当-2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m-n=4,求点P的坐标.21.如图,在直角坐标系中,已知点A(6,0),又点B(x,y)在第一象限内,且x +y=8,设△AOB的面积是S.(1)写出S与x之间的函数解析式,并求出x的取值范围;(2)画出(1)中所求函数的图象.(第21题)22.某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:(1)该地出租车的起步价是________元;(2)当x>2时,求y与x之间的函数解析式;(3)若某乘客有一次乘出租车的里程为18 km,则这位乘客需付出租车车费多少元?(第22题)23.“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A,B两个果园运送有机化肥,甲,乙两个仓库分别可运出80 t和100 t有机化肥;A,B两个果园分别需要110 t和70 t有机化肥,两个仓库到A,B两个果园的路程如下表:路程/ km甲仓库乙仓库A果园15 25B果园2020设甲仓库运往A果园x t有机化肥,若汽车每吨每千米的运费为2元.(1)根据题意,填写下表:运量/t 运费/元甲仓库乙仓库甲仓库乙仓库A果园x 110-x 2×15x 2×25(110-x)B果园(2)设总运费为y元,求y关于x的函数解析式,并求当甲仓库运往A果园多少吨有机化肥时,总运费最省.最省的总运费是多少元?24.新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/m2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120 m2.若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/m2)与楼层x(1≤x≤23,x取整数)之间的函数解析式;(2)老王要购买第十六层的一套楼房,若他一次性付清所有房款,请帮他计算哪种优惠方案更合算.答案一、1.B 2.D 3.A 4.D 5.C 6.B7.B8.C 点拨:由题意得⎩⎨⎧y =-2x +m ,y =2x -1,解得⎩⎪⎨⎪⎧x =m +14,y =m -12. ∵交点在第四象限,∴⎩⎪⎨⎪⎧m +14>0,m -12<0.解不等式组,得-1<m <1.9.C 10.B二、11.-12 12.-2 13.y =x -2 14.x ≥12 15.1616.2 200 点拨:设小明的速度为a m/s ,小刚的速度为b m/s ,由题意得⎩⎨⎧1 600+100a =1 400+100b ,1 600+300a =1 400+200b ,解得⎩⎨⎧a =2,b =4.故这次越野跑的全程为1 600+300×2=2 200(m).17.m <-2 点拨:∵y 随x 的增大而减小,∴m +2<0,解得m <-2.又∵该函数的图象与x 轴的交点在原点的右侧,∴图象过第一、二、四象限.∴图象与y 轴的交点在正半轴上,故1-m >0,解得m <1.∴m 的取值范围是m <-2.18.(-1,0) 点拨:如图,∵B (-2,1),∴点B 关于x 轴的对称点B ′的坐标为(-2,-1).作直线AB ′,与x 轴交于点P ,此时点P 即为所求.(第18题)设直线AB ′对应的函数解析式为y =kx +b ,∵A (2,3),B ′(-2,-1),∴⎩⎨⎧2k +b =3,-2k +b =-1,解得⎩⎨⎧k =1,b =1.∴直线AB ′对应的函数解析式为y =x +1.当y =0时,x =-1,∴点P 的坐标为(-1,0).三、19.解:(1)由图象可知,对于每一个摆动时间t ,h 都有唯一确定的值与其对应,∴变量h 是关于t 的函数.(2)①由函数图象可知,当t =0.7 s 时,h =0.5 m ,它的实际意义是秋千摆动0.7 s 时,离地面的高度是0.5 m.②由图象可知,秋千摆动第一个来回需2.8 s.20.解:将点(1,0),(0,2)的坐标分别代入y =kx +b ,得⎩⎨⎧k +b =0,b =2, 解得⎩⎨⎧k =-2,b =2.∴这个函数的解析式为y =-2x +2.(1)把x =-2代入y =-2x +2,得y =6;把x =3代入y =-2x +2,得y =-4.∴y 的取值范围是-4≤y <6.(2)∵点P (m ,n )在该函数的图象上,∴n =-2m +2.∵m -n =4,∴m -(-2m +2)=4,解得m =2.∴n =-2.∴点P 的坐标为(2,-2).21.解:(1)过点B 作BC ⊥OA 于点C .∵点A 和B 的坐标分别是(6,0),(x ,y ),且点B 在第一象限内,∴S =12OA ·BC =12×6y =3y .∵x +y =8,∴y =8-x.∴S =3(8-x )=24-3x .即所求函数解析式为S =-3x +24.由⎩⎨⎧x >0,-3x +24>0,解得0<x <8.(2)S =-3x +24(0<x <8)的图象如图所示.(第21题)22.解:(1)7(2)设当x >2时,y 与x 之间的函数解析式为y =kx +b ,分别代入点(2,7),(4,10)的坐标,得⎩⎨⎧2k +b =7,4k +b =10,解得⎩⎪⎨⎪⎧k =32,b =4.∴y 与x 之间的函数解析式为y =32x +4(x >2).(3)∵18>2,∴把x =18代入y =32x +4,得y =32×18+4=31.答:这位乘客需付出租车车费31元.23.解:(1)80-x ;x -10;2×20(80-x );2×20(x -10)(2)y =2×15x +2×25(110-x )+2×20(80-x )+2×20(x -10),即y =-20x +8 300.在一次函数y =-20x +8 300中,∵-20<0,且10≤x ≤80,∴当x =80时,y 最小=6 700.答:当甲仓库运往A 果园80 t 有机化肥时,总运费最省,最省的总运费是6 700元.24.解:(1)当1≤x ≤8,x 取整数时,每平方米的售价应为y =4 000-(8-x )×30=30x +3 760;当9≤x ≤23,x 取整数时,每平方米的售价应为y =4 000+(x -8)×50=50x +3 600.∴y =⎩⎨⎧30x +3 760(1≤x≤8,x 取整数),50x +3 600(9≤x≤23,x 取整数). (2)第十六层楼房的售价为50×16+3 600=4 400(元/m 2).按照方案一所交房款为:W 1=4 400×120×(1-8%)-a =485 760-a (元),按照方案二所交房款为:W 2=4 400×120×(1-10%)=475 200(元).当W 1>W 2时,即485 760-a >475 200,解得a <10 560;当W 1<W 2时,即485 760-a <475 200,解得a >10 560.∴当0<a <10 560时,方案二更合算;当a =10 560时,两种方案一样合算;当a >10 560时,方案一更合算.第二十章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.在某校八(2)班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( C)A.220 B.218 C.216 D.2092.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表,你认为商家更应该关注鞋子尺码的( C)尺码(cm)2222.52323.52424.525销售量(双)4661021 1A.平均数 B.中位数 C.众数 D.方差3.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为s甲2=0.56,s乙2=0.60,s丙2=0.50,s丁2=0.45,则成绩最稳定的是( D) A.甲 B.乙 C.丙 D.丁4.(2016·孝感)在2016年体育中考中,某班一学习小组6名学生的体育成绩如下表,则这组学生的体育成绩的众数、中位数、方差依次为( A)成绩(分)272830人数23 1A.28,28,1 B.28,27.5,1 C.3,2.5,5 D.3,2,55.(2017·清远模拟)已知a,b,c,d,e的平均数是x,则a+5,b+12,c+22,d +9,e+2的平均数是( C)A.x-1 B.x+3 C.x+10 D.x+126.去年我市6月1日到10日的每一天最高气温变化如折线图所示,则这10天最高气温的中位数和众数分别是( A)A.33 ℃,33 ℃ B.33 ℃,32 ℃C.34 ℃,33 ℃ D.35 ℃,33 ℃7.(2016·永州)在“爱我中华”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8,7,9,8,8 ;乙:7,9,6,9,9,则下列说法中错误的是( C) A.甲、乙得分的平均数都是8 B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6 D.甲得分的方差比乙得分的方差小8.下列说法中:①样本中的方差越小,波动越小,说明样本稳定性越好;②一组数据的众数只有一个;③一组数据的中位数一定是这组数据中的某一个数据;④数据3,3,3,3,2,5中的众数为4;⑤一组数据的方差一定是正数.其中正确的个数为( B) A.0 B.1 C.2 D.49.下列说法正确的是( C)A.中位数就是一组数据中最中间的一个数B.8,9,9,10,10,11这组数据的众数是9C.如果x1,x2,x3,…,x n的平均数是x,那么(x1-x)+(x2-x)+…+(x n-x)=0 D.一组数据的方差是这组数据的平均数的平方10.对某校八年级学生随机抽取若干名进行体能测试,成绩记为1分、2分、3分、4分共4个等级,将调查结果绘制成如下条形统计图和扇形统计图,根据图中信息,这些学生的平均分数是( C)A.2.25 B.2.5 C.2.95 D.3,第10题图),第15题图)二、填空题(每小题3分,共24分)11.某招聘考试分笔试和面试两种,其中笔试按60%,面试按40%计算加权平均数作为总成绩,小王笔试成绩90分,面试成绩85分,那么小王的总成绩是__88__分. 12.已知一组数据0,2,x ,4,5的众数是4,那么这组数据中位数是__4__.13.有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额,某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是__中位数__.(填“众数”“方差”“中位数”或“平均数”)14.一组数据3,5,a ,4,3的平均数是4,这组数据的方差为__0.8__.15.小华和小苗练习射击,两人的成绩如图所示,小华和小苗两人成绩的方差分别为s 12,s 22,根据图中的信息判断两人方差的大小关系为__s 12<s 22__.16.甲、乙两人各射击5次,成绩统计表如下:环数(甲) 6 7 8 9 10次数 1 1 1 1 1环数(乙) 6 7 8 9 10次数 0 2 2 0 1那么射击成绩比较稳定的是__乙__.(填“甲”或“乙”)17.当五个整数从小到大排列后,其中位数是4,如果这组数据的唯一众数是6,那么这组数据可能的最大的和是__21__.18.一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组⎩⎪⎨⎪⎧x -3≥0,5-x >0的整数,则这组数据的平均数是__5__.三、解答题(共66分)19.(8分)为了估计西瓜、苹果和香蕉三种水果一个月的销售量,某水果店对三种水果7天的销售量进行了统计,统计结果如图所示:(1)若西瓜、苹果和香蕉的售价分别为6元/千克、8元/千克和3元/千克,则这7天销售额最大的水果品种是__A __.A .西瓜B .苹果C .香蕉(2)估计一个月(按30天计算)该水果店可销售苹果多少千克?解:1407×30=600(千克)20.(8分)(2016·呼和浩特)在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140 146 143 175 125 164 134 155 152 168 162 148(1)计算该样本数据的中位数和平均数;(2)如果一名选手的成绩是147分钟,请你依据样本数据的中位数,推断他的成绩如何?解:(1)中位数为150分钟,平均数为151分钟 (2)由(1)可得,中位数为150,可以估计在这次马拉松比赛中,大约有一半选手的成绩快于150分钟,有一半选手的成绩慢于150分钟,这名选手的成绩为147分钟,快于中位数150分钟,可以推断他的成绩估计比一半以上选手的成绩好21.(9分)为了全面了解学生的学习、生活及家庭的基本情况,加强学校、家庭的联系,某中学积极组织全体教师开展“课外访万家活动”,王老师对所在班级的全体学生进行实地家访,了解到每名学生家庭的相关信息,现从中随机抽取15名学生家庭的收入情年收入(万元) 2 2.5 3 4 5 9 13 家庭个数 1 3 5 2 2 1 1(1)(2)你认为用(1)中的哪个数据来代表这15名学生家庭年收入的一般水平较为合适?请简要说明理由.解:(1)平均数为4.3万元,中位数为3万元,众数为3万元 (2)中位数或众数,理由:虽然平均数为4.3万元,但年收入达到4.3万元的家庭只有4个,大部分家庭的年收入未达到这一水平,而中位数或众数3万元是大部分家庭可以达到的水平,因此用中位数或众数较为合适22.(9分)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如下表:甲 1 1 0 2 1 3 2 1 1 0 乙 0 2 2 0 3 1 0 1 3 1(1)(2)从计算的结果来看,在10天中,哪台机床出次品的平均数较小?哪台机床出次品的波动较小?解:(1)x 甲=1.2(个),x 乙=1.3(个);s 甲2=0.76,s 乙2=1.21 (2)由(1)知x 甲<x 乙,。

初中八年级数学下册16-20章综合测试卷共5套02答案

初中八年级数学下册16-20章综合测试卷共5套02答案

是( ) A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等边三角形
二、填空题(每小题 3 分,共 18 分) 11.当 a __________时, 3a 2 无意义。
12.计算:当 2 8 18 __________.
13.等腰三角形两边长为 3 2 和 4 5 ,则此等腰三角形的周长为__________. 14.若 | a | 3, b 2 , a b<0 则 a b __________.
回答下列问题:
(1)观察上面的解题过程,请直接写出结果:
1
__________;
n n 1
(2)利用上面提供的信息化简:
1 1 1 1
2 1 3 2 4 3
10 9
24.(8 分)一天,蚊子落在狮子的身上对它说:“狮子,别看你高大威猛,而实际上我们俩的体重相同!” 狮子不屑一顾地对蚊子说:“别瞎说了,那怎么可能!”蚊子不慌不忙地说:“不信,我给你证明一下……” 说着,蚊子便在地上写出了证明过程: 证明:设蚊子重 m 克,狮子重 n 克。又设 m n 2a ,则有 m a a n . 两边平方,(m a)2 (a n)2 . ∵ (a n)2 (n a)2
C.8
D.10
3.下列说法正确的是( )
A.真命题的逆命题是真命题
B.原命题是假命题,则它的逆命题也是假命题
C.定理一定有逆定理
D.命题一定有逆命题
4. Rt△ABC 的两直角边长分别是 3 和 4,若一个正方形的边长是 △ABC 的第三边,则这个正方形的面积是
()
A.25
B.7
C.12
D.25 或 7
15.已知 | 2x y 3 | (x 3y 5) 2 0 ,则 x y __________.

人教版初中数学八年级下册全册16-20章检测题测试卷及期中期末附答案

人教版初中数学八年级下册全册16-20章检测题测试卷及期中期末附答案

第十六章综合素质评价一、选择题(每题3分,共30分) 1.下列各式是二次根式的是( )A .-7B .mC .a 2+1D .332.若式子x +1+x -2在实数范围内有意义,则x 的取值范围是( )A .x >-1B .x ≥-1C .x ≥-1且x ≠0D .x ≤-13.下列二次根式中,是最简二次根式的是( )A . 2B .12C .12D .94.若两个最简二次根式5b 与3+2b 能够合并,则b 的值为( )A .-1B .13C .0D .15.下列计算正确的是( )A .32=6B .⎝ ⎛⎭⎪⎫-253=-85 C .(-2a 2)2=2a 4 D .3+23=336.若75n 是整数,则正整数n 的最小值是( )A .2B .3C .4D .57.已知x <2,化简x 2-10x +25的结果是( )A .x -5B .x +5C .-x -5D .5-x8.已知一等腰三角形的周长为125,其中一边长为25,则这个等腰三角形的腰长为( ) A .2 5B .5 5C .25或5 5D .无法确定9.已知a =3+22,b =3-22,则a 2b -ab 2的值为( )A .1B .17C .4 2D .-4210.如图,长方形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为( )A . 2B .2C .2 2D .6二、填空题(每题3分,共24分)11.比较大小:35________27(填“>”“<”或“=”). 12.计算:24-323=________.13.若y =2x -3+3-2x +1,则x -y =________. 14.计算(5-2)2 024(5+2)2 025的结果是__________.15.在△ABC 中,a ,b ,c 为三角形的三边长,化简(a -b +c )2-2|c -a -b |=____________.16.实数a ,b 在数轴上对应点的位置如图所示,化简a 2-b 2+(a -b )2的结果是______.17.若xy >0,则式子x-yx 2化简的结果为__________.18.某动物园利用杠杆原理称象:如图,在点P 处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A ,B 处,当钢梁保持水平时,弹簧秤读数为k (N).若铁笼固定不动,移动弹簧秤使BP 扩大到原来的n (n >1)倍,且钢梁保持水平,则弹簧秤读数为________(N)(用含n ,k 的代数式表示). 三、解答题(19题16分,其余每题10分,共66分) 19.计算:(1)(6+8)×3÷32; (2)⎝ ⎛⎭⎪⎫-12-1-12+(1-2)0-|3-2|;(3)(6-412+38)÷22; (4)(1+3)(2-6)-(22-1)2.20.先化简,再求值:23x 9x +y 2x y 3-⎝ ⎛⎭⎪⎫x21x -5xy x ,其中x =12,y =4.21.已知等式|a -2 023|+a -2 024=a 成立,求a -2 0232的值.22.【阅读理解题】阅读材料:∵对于任意正实数a ,b ,(a -b )2≥0, ∴a -2ab +b ≥0.∴a+b≥2ab.∴当a=b时,a+b有最小值2ab.根据上述内容,回答下列问题(1)若m>0,只有当m=________时,m+1m有最小值________;若m>0,只有当m=______时,2m+8m有最小值________;(2)疫情期间为了解决临时隔离问题,高速公路检测站入口处,检测人员利用一面墙(墙的长度不限)和63米长的钢丝网围成了9间相同的长方形隔离房,如图.设每间隔离房的面积为S(米2).问:当每间隔离房的长、宽各为多少时,使每间隔离房的面积S最大?最大面积是多少?23.拦河坝的横断面是梯形,如图,其上底是8 m,下底是32 m,高是 3 m.(1)求横断面的面积;(2)若用300 m3的土,可修多长的拦河坝?24.【规律探索题】阅读下列材料,解答后面的问题:在二次根式的学习中,我们不仅要关注二次根式本身的性质、运算,还要关注与分式、不等式相结合的一些运算.如:①要使二次根式a-2有意义,则需满足a-2≥0,解得a≥2.②化简1+1n2+1(n+1)2(n>0),则需计算1+1n2+1(n+1)2.∵1+1n2+1(n+1)2=n2(n+1)2+(n+1)2+n2n2(n+1)2=n2(n+1)2+n2+2n+1+n2n2(n+1)2=n2(n+1)2+2n2+2n+1n2(n+1)2=n2(n+1)2+2n(n+1)+1n2(n+1)2=[n(n+1)+1]2 n2(n+1)2,∴1+1n2+1(n+1)2=[n(n+1)+1]2n2(n+1)2=n(n+1)+1n(n+1)=1+1n(n+1)=1+1n-1n+1.(1)根据二次根式的性质,要使a+23-a=a+23-a成立,求a的取值范围.(2)利用①中的提示,请解答:已知b=a-2+2-a+1,求a+b的值.(3)利用②中的结论,计算:1+112+122+1+122+132+1+132+142+…+1+12 0242+12 0252.答案一、1.C 2.C 3.A 4.D 5.D 6.B 7.D8.B 点拨:当腰长为25时,底边长为125-25-25=85,此时25+25<85,无法构成三角形;当底边长为25时,腰长为(125-25)÷2=55,此时55+55>25,55-55<25,能构成三角形.故选B . 9.C 10.B二、11.> 12.6 13.23 14.5+215.-a -3b +3c 点拨:∵a ,b ,c 为三角形的三边长,∴a +c >b ,a +b >c , 即a -b +c >0,c -a -b <0.∴(a -b +c )2-2|c -a -b |=(a -b +c )+2(c -a -b )=-a -3b +3c . 16.-2a 点拨:由题中数轴可以看出,a <0,b >0,∴a -b <0.∴a 2-b 2+(a -b )2=-a -b +[-(a -b )]=-a -b -a +b =-2a . 17.--y 点拨:由题意知x <0,y <0,∴x-yx 2=--y .解此类题要注意二次根式的隐含条件:被开方数是非负数. 18.k n三、19.解:(1)原式=(32+26)÷32=1+233;(2)原式=-2-23+1-(2-3)=-2-23+1-2+3=-3-3;(3)原式=⎝ ⎛⎭⎪⎫6-412+38×24=32-1+3=32+2; (4)原式=2×(1+3)×(1-3)-(8-42+1)=2×(1-3)-8+42-1=-22-8+42-1=22-9. 20.解:原式=2x x +xy -x x +5xy=x x +6xy .当x =12,y =4时,原式=1212+612×4=24+62=2524. 21.解:由题意得a -2 024≥0,∴a ≥2 024.原等式变形为a -2 023+a -2 024=a . 整理,得a -2 024=2 023. 两边平方,得a -2 024=2 0232, ∴a -2 0232=2 024. 22.解:(1)1;2;2;8(2)设每间隔离房与墙平行的边长为x 米,与墙垂直的边长为y 米, 依题意,得9x +12y =63, 即3x +4y =21, ∴3x +4y ≥23x ·4y , 即21≥23x ·4y , ∴xy ≤14716,即S ≤14716.∴当3x =4y 时,S max =14716,此时,x =72,y =218,即当每间隔离房长为72米,宽为218米时,使每间隔离房的面积S 最大,最大面积为14716米2.23.解:(1)S =12(8+32)×3=12(22+42)×3=12×62×3=36(m 2).答:横断面的面积为3 6 m 2.(2)3003 6=1006=100 66×6=100 66=50 63(m). 答:可修5063 m 长的拦河坝. 24.解:(1)由题意,得⎩⎨⎧a +2≥0,3-a >0,∴-2≤a <3.(2)由题意,得⎩⎨⎧a -2≥0,2-a ≥0,∴a =2,∴b =2-2+2-2+1=0+0+1=1, ∴a +b =2+1=3.(3)原式=⎝ ⎛⎭⎪⎫1+11-12+⎝ ⎛⎭⎪⎫1+12-13+⎝ ⎛⎭⎪⎫1+13-14+…+⎝ ⎛⎭⎪⎫1+12 024-12 025=1×2 024+1-12 025=2 0242 0242 025.第十七章综合素质评价一、选择题(每题3分,共30分) 1.下列各组数中,是勾股数的是( )A .1.5,2,2.5B .1,2,5C .2,3, 5D .5,12,132.在平面直角坐标系中,点P(3,4)到原点的距离是()A.3 B.4 C.5 D.±53.如图,数轴上点A表示的数是0,点B表示的数是1,BC⊥AB,垂足为B,且BC=1.以点A为圆心,AC的长为半径画弧,与数轴交于点D,则点D表示的数为()A.1.4 B. 2 C. 3 D.24.在△ABC中,a,b,c分别是∠A,∠B,∠C所对的边.下列条件中,不能得出△ABC是直角三角形的是()A.b2=a2-c2B.∠A:∠B:∠C=3:4:5C.∠C=∠A-∠B D.a:b:c=1:3:25.如图,在Rt△ABC中,∠A=30°,DE垂直平分AC,交AB于点D,E是垂足,连接CD.若BD=1,则AC的长是()A.2 3 B.2 C.4 3 D.46.如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,-2).下列各地点中,离原点最近的是()A.超市B.医院C.体育场D.学校7.若△ABC的三边长a,b,c满足(a-b)2+|a2+b2-c2|=0,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.无法确定8.如图,点O是等边三角形ABC内一点,OA=2,OB=1,OC=3,则△AOB 与△BOC的面积之和为()A.34B.32C.334D.39.如图,长方体的底面邻边长分别是5 cm和7 cm,高为20 cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B(点B为棱的中点),那么所用细线最短为()A.20 cm B.24 cm C.26 cm D.28 cm 10.【探究题】活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等,如已知△ABC中,∠A=30°,AC=3,∠A所对的边为3,满足已知条件的三角形有两个(我们发现其中如图的△ABC是一个直角三角形),则满足已知条件的三角形的第三边长为()A.2 3 B.23-3 C.23或 3 D.23或23-3二、填空题(每题3分,共24分)11.请写出命题“如果a>b,那么b-a<0”的逆命题:________________.12.如图,已知正方形ABCD的面积为8,则对角线BD的长为________.13.如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA的距离为________.14.已知直角三角形的两边长分别为3和4,则此三角形的周长为______________.15.如图,在平面直角坐标系中,将长方形AOCD沿直线AE折叠(点E在边DC 上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为__________.16.习总书记提出的“绿水青山就是金山银山”这一科学论断,成为树立生态文明观,引领中国走向绿色发展之路的理论之基.小张在数学活动课上用正方形纸片制作成图①的“七巧板”,设计拼成了图②的水杉树树冠,如果已知图①中正方形纸片的边长为2 cm,则图②中水杉树树冠的高(即点A到线段BC的距离)是________cm.17.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆形,面积分别记为S1,S2,则S1+S2的值等于________.18.如图,在正方形ABCD中,AB边上有一点E,AE=3,EB=1.在AC上有一动点P,则EP+BP的最短长度为________.三、解答题(19~22题每题10分,23题12分,24题14分,共66分)19.如图,在△ABC中,CD⊥AB,垂足为D,AB=AC=13,BD=1.(1)求CD的长;(2)求BC的长.20.【教材P39复习题T9变式】如图,在边长为1的小正方形组成的网格图中,△ABC 的三个顶点均在格点上,请按要求完成下列问题:(1)求△ABC的周长;(2)试判断△ABC的形状.21.【教材P33例2变式】如图,某港口A有甲、乙两艘船,若甲船沿北偏东60°方向以每小时8 n mile的速度前进,乙船沿南偏东某个角度以每小时15 n mile 的速度前进,2 h后,甲船到达M岛,乙船到达P岛,两岛相距34 n mile,你知道乙船是沿哪个方向航行的吗?22.【社会热点】海绵城市是新一代城市雨洪管理概念,下雨时通过植被、下沉式绿地等设施吸水、蓄水、渗水、净水,需要时将蓄存的水释放并加以利用.某市是全国首批16个海绵城市建设试点城市之一,其中位于梦溪路与滨水路交界处的海绵主题公园,既是周边汇水区雨洪管理的一个有机模块,也是立体化展示海绵技术的科普公园,园区内有一块下沉式绿地(四边形ABCD,如图),经测量,AB∥CD,AB=BC=20米,∠B=60°,∠D=45°,求该绿地边界的周长(结果保留根号).23.【探究题】在△ABC中,BC=a,AC=b,AB=c,如图①,若∠C=90°,则有a2+b2=c2;若△ABC为锐角三角形,小明猜想:a2+b2>c2.理由如下:如图②,过点A作AD⊥CB于点D,设CD=x.在Rt△ADC中,AD2=b2-x2;在Rt△ADB中,AD2=c2-(a-x)2,∴b2-x2=c2-(a-x)2,即a2+b2=c2+2ax.∵a>0,x>0,∴2ax>0.∴a2+b2>c2.∴当△ABC为锐角三角形时,a2+b2>c2.故小明的猜想是正确的.请你猜想,当△ABC为钝角三角形时,如图③,a2+b2与c2的大小关系,并证明你猜想的结论.24.在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图①,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图②,若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.答案一、1.D2.C3.B4.B5.A6.A7.C8.C9.C10.C二、11.如果b-a<0,那么a>b12.413.314.12或7+715.(10,3)16.2+117.2π18.5三、19.解:(1)∵AB=13,BD=1,∴AD=13-1=12.在Rt△ACD中,CD=AC2-AD2=132-122=5.(2)在Rt△BCD中,BC=BD2+CD2=12+52=26.20.解:(1)∵AB=22+12=5,AC=22+42=25,BC=32+42=5,∴AB+AC+BC=5+25+5=35+5,即△ABC的周长为35+5.(2)∵AB2+AC2=(5)2+(25)2=25,BC2=52=25,∴AB2+AC2=BC2.∴△ABC是直角三角形.21.解:由题意知,AM=8×2=16(n mile),AP=15×2=30(n mile).∵两岛相距34 n mile,∴MP=34 n mile.∵162+302=342,∴AM2+AP2=MP2.∴∠MAP=90°.又∵∠NAM=60°,∴∠PAS=30°.∴乙船是沿南偏东30°方向航行的.22.解:连接AC,过点A作AE⊥CD,垂足为E,如图.∵AB=BC=20米,∠B=60°,∴△ABC是等边三角形,∴AC=AB=20米,∠BAC=60°.∵AB∥CD,∴∠ACE=∠BAC=60°.∴∠CAE=30°.∴CE=12AC=10米.∴AE=AC2-CE2=103米.∵∠AED=90°,∠D=45°,∴∠EAD=45°.∴DE=AE=103米.由勾股定理得AD=AE2+DE2=106米.∴该绿地边界的周长=AB+BC+CD+DA=20+20+10+103+106=50+103+106(米).23.解:当△ABC为钝角三角形时,a2+b2与c2的大小关系为a2+b2<c2.证明如下:如图,过点A作AD⊥BC,交BC的延长线于点D.设CD=y.在Rt△ADC中,由勾股定理得AD2=AC2-DC2=b2-y2;在Rt △ADB 中,由勾股定理得AD 2=AB 2-BD 2=c 2-(a +y )2. ∴b 2-y 2=c 2-(a +y )2, 整理,得a 2+b 2=c 2-2ay . ∵a >0,y >0, ∴2ay >0.∴a 2+b 2=c 2-2ay <c 2.∴当△ABC 为钝角三角形时,a 2+b 2<c 2. 24.(1)证明:在△BCD 和△FCE 中,⎩⎨⎧BC =CF ,∠BCD =∠FCE ,CD =CE ,∴△BCD ≌△FCE (SAS). ∴∠DBC =∠EFC . ∴BD ∥EF . ∵AF ⊥EF , ∴BD ⊥AF .(2)解:由题意补全图形如图: CD =CH .证明:延长BC 到F ,使CF =BC ,连接AF ,EF , ∵∠ACB =90°,∴AC ⊥BF . 又∵BC =CF ,∴AB =AF .由(1)可知BD ∥EF ,△BCD ≌△FCE ,则BD =EF , ∵AB 2=AE 2+BD 2, ∴AF 2=AE 2+EF 2. ∴∠AEF =90°. ∴AE ⊥EF . ∴BD ⊥AE . ∴∠DHE =90°. 又∵CD =CE , ∴CH =CD .第十八章综合素质评价一、选择题(每题3分,共30分)1.下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360° B.对角线互相平分C.对角线相等D.对角线互相垂直2.如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()A.14B.12C.1 D.23.如图,在▱ABCD中,AE平分∠BAD,若CE=3 cm,AB=4 cm,则BC的长是() A.6 cm B.6.5 cm C.7 cm D.7.5 cm 4.如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=36°,则∠DCB的度数为()A.54° B.64° C.72° D.75°5.某班同学在“做环保护航者”的主题班会课上制作象征“健康快乐”的绿丝带(丝带的对边平行且宽度相同),如图,丝带重叠的部分一定是()A.正方形B.矩形C.菱形D.都有可能6.在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列不能作为平行四边形顶点坐标的是()A.(3, 1) B.(-4,1) C.(1,-1) D.(-3,1) 7.将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形ABCD内,其中矩形纸片和正方形纸片的周长相等,若知道图中阴影部分的面积,则一定能求出()A.正方形纸片的面积B.四边形EFGH的面积C.△BEF的面积D.△AEH的面积8.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是()A.67.5° B.22.5° C.30° D.45°9.如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC =60°,则对角线交点E的坐标为()A.(2,3) B.(3,2) C.(3,3) D.(3,3) 10.如图,在四边形ABCD中,∠A=∠B=90°,AD=10 cm,BC=8 cm,点P从点D出发,以1 cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是()A.当t=4时,四边形ABMP为矩形B.当t=5时,四边形CDPM为平行四边形C.当CD=PM时,t=4D.当CD=PM时,t=4或6二、填空题(每题3分,共24分)11.如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为________.12.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若DE=5,则AB的长为________.13.【开放性题】如图,点E,F分别在▱ABCD的边AB、CD的延长线上,连接EF,分别交AD,BC于G,H.添加一个条件使△AEG≌△CFH,这个条件可以是__________.(只需写一种情况)14.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E,若∠CBF =20°,则∠AED等于________.15.如图,在矩形ABCD中,对角线AC,BD相交于点O,DE⊥AC于点E,∠EDC:∠EDA=1:2,且AC=10,则EC的长度是________.16.如图,将矩形纸片ABCD沿EF折叠,使D点与BC边的中点D′重合.若BC =8,CD=6,则CF=________.17.如果一个平行四边形的一个内角的平分线分它的一边为1:2两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当协调边为6时,这个平行四边形的周长为________.18.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是________.三、解答题(19题8分,20题10分,其余每题12分,共66分)19.已知:如图,四边形ABCD为平行四边形,点E,A,C,F在同一直线上,AE=CF.求证:(1)△ADE≌△CBF;(2)ED∥BF.20.如图①,在一平面内,从左到右,点A,D,O,C,B均在同一直线上,线段AB=4,线段CD=2,O分别是AB,CD的中点,如图②,固定点O以及线段AB,让线段CD绕点O顺时针旋转α(0°<α<180°).连接AC,AD,BC,BD.(1)求证:四边形ADBC为平行四边形;(2)当α=90°时,求四边形ADBC的周长;21.如图,在Rt△ABC中,∠ACB=90°,D,E分别是AB,AC的中点,连接CD,过点E作EF∥DC交BC的延长线于点F.(1)求证:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25 cm,AC的长为5 cm,求线段AB的长度.22.如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD,AC,BC于点E,O,F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=4, BC=8,求菱形AECF的周长.23.如图,在正方形ABCD中,动点E在AC上,AF⊥AC,垂足为A,AF=AE.(1)BF与DE有怎样的数量关系?请证明你的结论.(2)在其他条件都保持不变的情况下,当点E运动到AC的中点时,四边形AFBE是什么特殊四边形?请证明你的结论.24.【探究题】已知AC是菱形ABCD的对角线,∠BAC=60°,点E是直线BC上的一个动点,连接AE,以AE为边作菱形AEFG,并且使∠EAG=60°,连接CG.当点E在线段BC上时,如图①,易证:AB=CG+CE.(1)当点E在线段BC的延长线上时(如图②),猜想AB,CG,CE之间的关系并证明;(2)当点E在线段CB的延长线上时(如图③),直接写出AB,CG,CE之间的关系.答案一、1.C2.D3.C4.A5.C6.B 7.C 8.B9.D10.D二、11.3012.1013.BE=DF(答案不唯一)14.65°15.2.516.5 317.16或20点拨:如图所示.①当AE=2,DE=4时,∵四边形ABCD是平行四边形,∴BC=AD=6,AB=CD,AD∥BC.∴∠AEB=∠CBE.∵BE平分∠ABC,∴∠ABE=∠CBE.∴∠ABE=∠AEB.∴AB=AE=2.∴平行四边形ABCD的周长为2(AB+AD)=16.②当AE=4,DE=2时,同理可得AB=AE=4,平行四边形ABCD的周长为2(AB+AD)=20.综上所述,这个平行四边形的周长为16或20.18.26三、19.证明:(1)∵四边形ABCD为平行四边形,∴DA=BC,DA∥BC.∴∠DAC=∠BCA.∵∠DAC+∠EAD=180°,∠BCA+∠FCB=180°,∴∠EAD=∠FCB.在△ADE和△CBF中,⎩⎨⎧AE =CF ,∠EAD =∠FCB ,AD =CB ,∴△ADE ≌△CBF (SAS). (2)由(1)知△ADE ≌△CBF , ∴∠E =∠F . ∴ED ∥BF .20.(1)证明:∵O 分别是AB ,CD 的中点,∴OA =OB ,OC =OD .∴四边形ADBC 为平行四边形. (2)解:∵α=90°, ∴AB ⊥CD .又∵四边形ADBC 为平行四边形, ∴四边形ADBC 为菱形. ∵AB =4,CD =2, ∴OA =2,OD =1. ∴AD =12+22= 5. ∴四边形ADBC 的周长为4 5.21.(1)证明:∵D ,E 分别是AB ,AC 的中点,F 是BC 延长线上的一点,∴ED 是Rt △ABC 的中位线. ∴ED ∥FC . 又∵EF ∥DC ,∴四边形CDEF 是平行四边形. (2)解:∵四边形CDEF 是平行四边形, ∴DC =EF .∵DC 是Rt △ABC 斜边AB 上的中线, ∴AB =2DC .又∵ED 是Rt △ABC 的中位线, ∴BC =2DE .∴四边形CDEF 的周长为AB +BC . ∵在Rt △ABC 中,∠ACB =90°, ∴AB 2=BC 2+AC 2, 即AB 2=(25-AB )2+52, 解得AB =13 cm.∴线段AB 的长度为13 cm.22.(1)证明:∵EF 是AC 的垂直平分线,∴AO =OC ,∠AOE =∠COF =90°. ∵四边形ABCD 是矩形, ∴AD ∥BC . ∴∠EAO =∠FCO . 在△AEO 和△CFO 中,⎩⎨⎧∠EAO =∠FCO ,AO =CO ,∠AOE =∠COF ,∴△AEO ≌△CFO (ASA). ∴OE =OF . 又∵OA =OC ,∴四边形AECF 是平行四边形. 又∵EF ⊥AC ,∴四边形AECF 是菱形. (2)解:设AF =x .∵EF 是AC 的垂直平分线, ∴CF =AF =x . ∴BF =8-x .在Rt △ABF 中,由勾股定理得 AB 2+BF 2=AF 2,即42+(8-x )2=x 2,解得x =5. ∴AF =5.∴菱形AECF 的周长为4×5=20.23.解:(1)BF =DE .证明如下:∵四边形ABCD 是正方形, ∴AB =AD ,∠DAC =∠BAC =45°. ∵AF ⊥AC ,∴∠BAF =∠BAC =∠DAC =45°. 又∵AB =AD ,AF =AE , ∴△AFB ≌△AED (SAS). ∴BF =DE .(2)四边形AFBE 是正方形.证明如下: ∵四边形ABCD 是正方形,E 是AC 的中点, ∴AE =BE .在△ABF 和△ABE 中,⎩⎨⎧AF =AE ,∠FAB =∠EAB =45°,AB =AB ,∴△ABF ≌△ABE (SAS). ∴BF =BE .∴AE =BE =BF =AF . ∴四边形AFBE 是菱形. 又∵AF ⊥AE ,∴四边形AFBE 是正方形. 24.解:(1)AB =CG -CE .证明如下:∵四边形ABCD 是菱形, ∴AB =BC . 又∵∠BAC =60°, ∴△ABC 是等边三角形. ∴AB =AC . ∵∠EAG =60°, ∴∠BAC =∠EAG .∴∠BAC +∠CAE =∠EAG +∠CAE ,即∠BAE =∠CAG .又∵四边形AEFG 是菱形, ∴AE =AG .在△ABE 和△ACG 中,⎩⎨⎧AB =AC ,∠BAE =∠CAG ,AE =AG ,∴△ABE ≌△ACG (SAS). ∴BE =CG .∵AB =BC =BE -CE , ∴AB =CG -CE . (2)AB =CE -CG .第十九章综合素质评价一、选择题(每题3分,共30分)1.【教材P 82习题T 7变式】下列图象中,不能表示y 是x 的函数的是( )2.函数y =4-x 中自变量x 的取值范围是( )A .x >4B .x <4C .x ≥4D .x ≤4 3.一次函数y =-2x +1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 4.数形结合是解决数学问题常用的思想方法.如图,直线y =2x -1与直线y =kx +b (k ≠0)相交于点P (2,3).根据图象可知,不等式2x -1>kx +b 的解集是( )A.x<2 B.x<3 C.x>2 D.x>35.【跨学科题】某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据,如下表:下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20 ℃时,声音5 s可以传播1 740 mD.温度每升高10 ℃,声速增加6 m/s6.已知一次函数y=kx+b,y随着x的增大而减小,且kb>0,则这个函数的大致图象是()7.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x-3 C.y=2x-3 D.y=-x+3 8.匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为一折线).这个容器的形状可能是( )9.把直线y =-x +3向上平移m 个单位长度后,与直线y =2x +4的交点在第一象限,则m 的取值范围是( ) A .1<m <7 B .3<m <4 C .m >1 D .m <410.如图,一次函数y =x +2的图象与x 轴、y 轴分别交于点A ,B ,把直线AB 绕点B 顺时针旋转30°,交x 轴于点C ,则线段AC 的长为( )A.6+ 2 B .3 2 C .2+ 3 D.3+2二、填空题(每题3分,共24分)11.函数y =(m -3)x +m 2-9是正比例函数,则m =________. 12.一次函数y =2x -6的图象与x 轴的交点坐标为__________. 13.若点A (-1,y 1),B (3,y 2)是直线y =kx +b (k <0)上的两点,则y 1-y 2________(填“>”或“<”)0.14.如图,在同一平面直角坐标系中,直线l 1:y =14x +12与直线l 2:y=kx +3相交于点A ,则方程组⎩⎨⎧y =14x +12,y =kx +3的解为________.15.若直线y =2x +b 与坐标轴围成三角形的面积为6,则b =________. 16.若一次函数y =(2m -1)x +3-2m 的图象经过第一、二、四象限,则m 的取值范围是________.17.如图,直线y =2x +4与x 轴交于点A ,与y 轴交于点B ,点D为OB 的中点,▱OCDE 的顶点C 在x 轴上,顶点E 在直线AB 上,则▱OCDE 的面积为________.18.为落实“双减”政策,某校利用课后服务时间举行趣味运动会,在直线跑道上,甲同学从A 处匀速跑向B 处,乙同学从B 处匀速跑向A 处,两人同时出发,到达各自终点后立即停止运动,设甲同学跑步的时间为x (秒),甲、乙两人之间的距离为y (米),y 与x 之间的函数关系如图所示,则图中t 的值是________. 三、解答题(19题8分,20,21题每题10分,22,23题每题12分,24题14分,共66分)19.已知一次函数的图象与直线y =-x +1平行,且过点(8,2),求此一次函数的解析式.20.【教材P 108复习题T 9变式】把一个长10 cm ,宽5 cm 的长方形的长减少x cm,宽不变,得到的长方形的面积为y cm2.(1)请写出y与x之间的函数关系式;(2)请写出自变量x的取值范围;(3)画出函数的图象.21.函数y1=x+1与y2=ax+b(a≠0)的图象如图所示,这两个函数图象的交点在y轴上,试求:(1)函数y2=ax+b的解析式;(2)使y1,y2的值都大于零的x的取值范围.22.根据数学家凯勒的“百米赛跑数学模型”,前30 m为“加速期”,30 m~80 m为“中途期”,80 m~100 m为“冲刺期”,市田径队把运动员小斌某次百米跑训练时速度y(m/s)与路程x(m)之间的观测数据,绘制成曲线如图所示.(1)y是关于x的函数吗?为什么?(2)“加速期”结束时,小斌的速度为多少?(3)根据如图提供的信息,给小斌提一条训练建议.23.如图,在平面直角坐标系中,线段AB的端点为A(-8,19),B(6,5).(1)求AB所在直线的解析式;(2)某同学设计了一个动画:在函数y=mx+n(m≠0,y≥0)中,分别输入m和n的值,便得到射线CD,其中C(c,0),当c=2时,会从C处弹出一个光点P,并沿CD飞行;当c≠2时,只发出射线而无光点弹出.①若有光点P弹出,试推算m,n应满足的数量关系;②当有光点P弹出,并击中线段AB上的整点(横、纵坐标都是整数)时,线段AB就会发光,求此时整数m的个数.24.北京冬奥会期间各类机器人大显神通.为了共享绿色生活,倡导对垃圾进行归类,某机器人公司研发出A型和B型两款垃圾分拣机器人,已知2台A型机器人和3台B型机器人同时工作3小时共分拣垃圾4.2吨,3台A型机器人和4台B型机器人同时工作5小时共分拣垃圾10吨.(1)1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划从该机器人公司购进一批A型和B型垃圾分拣机器人,这批机器人每小时一共需要分拣垃圾20吨,设购买A型机器人a台(10≤a≤45),B型机器人b台,请用含a 的代数式表示b;(3)机器人公司的报价如下表.在(2)的条件下,设购买总费用为w万元,如何购买总费用w最少?请说明理由.答案一、1.B 2.D 3.C 4.C 5.C 6.B7.D8.A9.C10.A点拨:在一次函数y=x+2中,令x=0,则y=2;令y=0,则x=-2,∴A(-2,0),B(0,2).∴△OAB为等腰直角三角形,∠OAB=45°.∴AB=(2)2+(2)2=2.如图,过点C作CD⊥AB,垂足为点D.∵∠CAD=∠OAB=45°,∴△ACD为等腰直角三角形.设CD=AD=a,∴AC=AD2+CD2=2a.∵直线AB绕点B顺时针旋转30°得到直线CB,∴∠ABC=30°.∴BC=2CD=2a.∴BD=BC2-CD2=3a.又∵BD=AB+AD=2+a,∴2+a=3a,解得a=3+1.∴AC =2a =2(3+1)=6+ 2.二、11.-3 12.(3,0) 13.> 14.⎩⎪⎨⎪⎧x =2y =1 15.±2616.m <12 17.2 18.403三、19.解:设一次函数的解析式为y =kx +b .∵一次函数的图象与直线y =-x +1平行,∴k =-1.∴一次函数的解析式为y =-x +b .∵一次函数的图象经过点(8,2),∴2=-8+b ,解得b =10.∴一次函数的解析式为y =-x +10.20.解:(1)y =5(10-x ),整理,得y =-5x +50.(2)0≤x <10.(3)如图所示.21.解:(1)对于函数y 1=x +1,当x =0时,y 1=1.将点(0,1),(2,0)的坐标分别代入y 2=ax +b ,得⎩⎪⎨⎪⎧b =1,2a +b =0,解得⎩⎨⎧a =-12,b =1. ∴y 2=-12x +1. (2)由y 1>0,即x +1>0,得x >-1; 由y 2>0,即-12x +1>0,得x <2. 故使y 1>0且y 2>0的x 的取值范围为-1<x <2. 22.解:(1)y 是关于x 的函数,在这个变化过程中,对于x 的每一个确定的值,y 都有唯一确定的值与之对应. (2)“加速期”结束时,小斌的速度为10.4 m/s. (3)答案不唯一,例如:根据图象信息,小斌在80 m 后速度下降明显,建议增加耐力训练,提高成绩. 23.解:(1)设直线AB 的解析式为y =kx +b .把点A (-8,19),B (6,5)的坐标分别代入y =kx +b ,得⎩⎪⎨⎪⎧-8k +b =19,6k +b =5,解得⎩⎪⎨⎪⎧k =-1,b =11.∴直线AB 的解析式为y =-x +11.(2)①由题意知,直线y =mx +n 经过点C (2,0),∴2m +n =0;②设线段AB 上的整点为(t ,-t +11),则tm +n =-t +11,∵2m +n =0,∴(t -2)m =-t +11.易知t -2≠0.∴m =-t +11t -2=-1+9t -2. ∵-8≤t ≤6,且t 为整数,m 也是整数,∴t -2=±1或±3或±9.解得t =1,3,5,-1,-7或-11.∵当t =1时,m =-10;当t =3时,m =8;当t =5时,m =2;当t =-1时,m =-4;当t =-7时,m =-2;当t =11时,m =0(不符合题意,舍去).∴符合题意的整数m 的个数为5.24.解:(1)设1台A 型机器人和1台B 型机器人每小时各分拣垃圾x吨和y 吨,由题意可知⎩⎪⎨⎪⎧(2x +3y )×3=4.2,(3x +4y )×5=10,解得⎩⎪⎨⎪⎧x =0.4,y =0.2. 答:1台A 型机器人和1台B 型机器人每小时各分拣垃圾0.4吨和0.2吨.(2)由题意可知0.4a +0.2b =20,∴b =100-2a (10≤a ≤45).(3)当10≤a <20时,此时60<b ≤80,∴w =20×a +0.8×12(100-2a )=0.8a +960.∵0.8>0,∴w 随a 的增大而增大,∴当a=10时,此时w有最小值,为968;当20≤a≤40时,此时20≤b≤60,∴w=0.9×20a+0.8×12(100-2a)=-1.2a+960.∵-1.2<0,∴w随a的增大而减小,∴当a=40时,此时w有最小值,为912;当40<a≤45时,此时10≤b<20,∴w=0.9×20a+12(100-2a)=-6a+1 200.∵-6<0,∴w随a的增大而减小,∴当a=45时,此时w有最小值,为930.综上所述,当a=40,b=20时,w最小.答:购买A型机器人40台,B型机器人20台总费用w最少.第二十章综合素质评价一、选择题(每题3分,共30分)1.一组数据6,3,9,4,3,5,12的中位数是()A.3 B.4 C.5 D.62.在端午节到来之前,学校食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子进行调查,以决定最终向哪家店采购,下面的统计量最值得关注的是()A.方差B.平均数C.中位数D.众数3.已知某班10名同学的身高(单位:cm)如下:160,152,163,152,160,160,170,160,165,158,则这10名同学身高数据的平均数是()A.155 B.160 C.165 D.1704.【教材P124问题变式】【2022·十堰】甲、乙两人在相同的条件下,各射击10次,经计算:甲射击成绩的平均数是8环,方差是1.1;乙射击成绩的平均数是8环,方差是1.5.下列说法中不一定正确的是()A.甲、乙的总环数相同B.甲的成绩比乙的成绩稳定C.乙的成绩比甲的成绩波动大D.甲、乙成绩的众数相同5.班主任为了解学生周末在家的学习情况,家访了班内六名学生,了解到他们在家的学习时间如下表:那么这六名学生学习时间的众数与中位数分别是()A.4时和4.5时B.4.5时和4时C.4时和3.5时D.3.5时和4时6.下列说法中,正确的是()A.一组数据的众数一定只有一个B.一组数据的众数是6,则这组数据中出现次数最多的数据是6 C.一组数据的中位数一定是这组数据中的某一个数据D.一组数据中的最大的数据增大时,这组数据的中位数也随之增大7.为了传承传统手工技艺,提高同学们的手工制作能力,某中学七年级一班的美术老师特地给学生们开了一节手工课,教同学们编织“中国结”,为了了解同学们的学习情况,便随机抽取了20名学生,对他们的编织数量进行统计,统计结果如下表:请根据上表,判断下列说法正确的是()A.样本为20名学生B.众数是4个C.中位数是3个D.平均数是3.8个8.一组数据2,0,1,x,3的平均数是2,则这组数据的方差是() A.2 B.4 C.1 D.39.某地一个月的前两周从星期一到星期五每天的最低气温(单位:℃)依次是x1,x2,x3,x4,x5和x1+1,x2+2,x3+3,x4+4,x5+5.若第一周的五天的平均最低气温是7 ℃,则第二周的五天的平均最低气温是()A.7 ℃ B.8 ℃ C.9 ℃ D.10 ℃10.下面为某班某次数学测验成绩的分布表.已知全班共有38人,且众数为50分,中位数为60分,则x2-2y的值为()A.33 B.50 C.69 D.60二、填空题(每题3分,共24分)11.数据4,7,7,8,9的众数是________.12.小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,__________(填“小林”或“小明”)的发挥更稳定.13.今年4月23日是第27个世界读书日,某校举行了演讲大赛,演讲得分按“演讲内容”占40%、“语言表达”占40%、“形象风度”占10%、“整体效果”占10%进行计算,小芳这四项的得分依次为85分,88分,92分,90分,则她的最后得分是________分.14.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数.现抽取8个排球,通过检测所得数据如下(单位:g):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是________.15.两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为________.16.已知一组数据x1,x2,…,x n的方差是s2,则新的一组数据ax1+1,ax2+1,…,ax n+1(a为非零常数)的方差是____________(用含a和s2的式子表示).17.跳远运动员小刚对训练效果进行测试,6次跳远的成绩如下(单位:m):7.6,7.8,7.7,7.8,8.0,7.9.这6次成绩的平均数为7.8 m,方差为160,如果小刚再跳两次,成绩分别为7.6 m,8.0 m,则小刚最后跳远成绩的方差__________(填“变大”“变小”或“不变”).18.一组数据1,5,7,x的中位数和平均数相等,则x的值是______________.三、解答题(19题11分,20题13分,其余每题14分,共66分) 19.【教材P113练习T2变式】洋洋九年级上学期的数学成绩(单位:分)如下表:(1)计算洋洋该学期的数学平时平均成绩;(2)如果学期的总评成绩是根据如图所示的权重计算的,请计算出洋洋该学期的数学总评成绩.。

人教版初中数学八年级下册十六至二十章全册检测题测试卷期末考试附答案

人教版初中数学八年级下册十六至二十章全册检测题测试卷期末考试附答案

第十六章测试题一、选择题(每题3分,共30分)1.代数式x -3在实数范围内有意义,则x 的取值范围是( )A .x ≥3B .x >3C .x ≤3D .x <32.当x >2时,(2-x )2=( )A .2-xB .x -2C .2+xD .±(x -2)3.下列二次根式中,最简二次根式是( ) A.30 B.12 C.8 D.12 4.下列运算正确的是( )A.2+3= 5 B .30=0 C .(-2a )3=-8a 3 D .a 6÷a 3=a 2 5.化简二次根式(-5)2×3的结果为( )A .-5 3B .5 3C .±5 3 D.306.估计⎝ ⎛⎭⎪⎫10+43×3的值在( ) A .4和5之间 B .5和6之间 C .6和7之间 D .7和8之间 7.若实数a ,b 满足ab >0,则化简a-b a 2的结果为( ) A .--b B.b C.-b D .-b8.若x 为实数,在“(3+1) x ”的“ ”中添上一种运算符号(在“+,-,×,÷”中选择)后,其运算的结果为有理数,则x 不可能是( ) A.3+1 B.3-1 C .2 3 D .1-39.【教材P 19复习题T 5改编】若x =2+1,则代数式x 2-2x +2的值为( )A .7B .4C .3D .3-2210.一块长为7 dm 、宽为5 dm 的木板,采用如图的方式在这块木板上截出两块面积分别是8 dm 2和18 dm 2的小正方形木板,甲同学说:想要截出来的两块小正方形木板的边长均小于木板的宽,所以可以截出;乙同学说:想要截出来的两块小正方形木板的边长之和大于木板的长,所以不能截出.下面对于甲、乙两名同学说法判断正确的是()A.甲同学说的对B.乙同学说的对C.甲、乙同学说的都对D.无法判断二、填空题(每题3分,共24分)11.计算:2×8=________.12.如果两个最简二次根式3a-1与2a+3能合并,那么a=________.13.比较:5-12________12(填“>”“=”或“<”).14.实数a在数轴上对应的点的位置如图所示,则(a-4)2+(a-11)2化简后为________.15.若实数m,n满足|m-n-5|+2m+n-4=0,则3m+n=________.16.【教材P10练习T3变式】△ABC的面积S=12 cm2,底边a=2 3 cm,则底边上的高为________cm.17.【数学建模】某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使BP扩大到原来的n(n>1)倍,且钢梁保持水平,则弹簧秤读数为________(N)(用含n,k的代数式表示).18.【规律探索题】观察下列二次根式化简:12+1=2-1,13+2=3-2,….从中找出规律并计算:(12+1+13+2+…+12 023+ 2 022+12 024+ 2 023)×( 2 024+1)=________. 三、解答题(19题16分,20题8分,24题12分,其余每题10分,共66分)19.计算下列各式:(1)(3.14-π)0+|2-1|+⎝ ⎛⎭⎪⎫12-1-8; (2)20+5(2+5);(3)(3+3)(3-3)+8+62; (4)(3+2-6)2-(2-3+6)2.20.【教材P 19复习题T 5改编】若a =3-10,求代数式a 2-6a -2的值.21.阅读下面的解题过程,并回答问题.化简:(1-3x )2-|1-x |.解:由1-3x≥0,得x≤13,∴1-x>0,∴原式=(1-3x)-(1-x)=1-3x-1+x=-2x.按照上面的解法,试化简:(x-3)2-(2-x)2.22.已知一个长方形花坛与一个圆形花坛的面积相等,长方形花坛的长为140πm,宽为35πm,求这个圆形花坛的半径.23.【跨学科题】据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=h5(不考虑风速的影响).(1)求从40 m高空抛物到落地的时间.(2)小明说从80 m高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由.(3)已知高空坠落物体动能(单位:焦耳)=10×物体质量×高度,某质量为0.05 kg的鸡蛋经过6 s后落在地上,这个鸡蛋产生的动能是多少?你能得到什么启示?(注:杀伤无防护人体只需要65焦耳的动能)24.【数学抽象】(1)用“=”“>”“<”填空:4+3________24×3,1+1 6________21×16,5+5________25×5.(2)由(1)中各式猜想m+n与2mn(m≥0,n≥0)的大小,并说明理由.(3)请利用上述结论解决下面问题:某园林设计师要对园林的一个区域进行设计改造,将该区域用篱笆围成长方形的花圃,如图所示,花圃恰好可以借用一段墙体,为了围成面积为200 m2的花圃,所用的篱笆至少为多少米?答案一、1.A 2.B 3.A 4.C 5.B 6.D7.A8.C9.C10.B点拨:∵两块小正方形木板的面积分别是8 dm2和18 dm2,∴边长分别为8=22(dm),18=32(dm).∴两块小正方形木板的边长之和为22+32=52(dm)>7 dm.∴不能截出.二、11.412.413.>14.715.716.4317.kn点拨:设装有大象的铁笼重力为a N,将弹簧秤移动到B′的位置时,弹簧秤读数为k′N.由题意可得BP·k=P A·a,B′P·k′=P A·a,∴BP·k=B′P·k′.又∵B′P=nBP,∴k′=BP·kB′P=BP·knBP=kn.18.2 023点思路:先将第一个括号内的各项分母有理化,此时发现,除第二项和倒数第二项外,其他各项的和为0,由此可计算出第一个括号内式子的值,然后再计算其与第二个括号内式子的乘积.三、19.解:(1)原式=1+2-1+2-22=2-2;(2)原式=25+25+(5)2=45+5;(3)原式=32-(3)2+(2+3)=9-3+2+3=8+3;(4)原式=(3+2-6+2-3+6)×(3+2-6-2+3-6)=22×(23-26)=46-8 3.将a=3-10代入上式,得原式=(a-3)2-11=(3-10-3)2-11=10-11=-1.21.解:∵2-x≥0,∴x≤2.∴x-3<0.∴(x-3)2-(2-x)2=|x-3|-(2-x)=3-x-2+x=1. 22.解:长方形花坛的面积为140π×35π=70π(m2),∴圆形花坛的面积为70πm2.设圆形花坛的面积为S m2,半径为r m,则S=πr2,即70π=πr2,∴r=70ππ=70.故这个圆形花坛的半径为70 m. 23.解:(1)由题意知h=40 m,∴t=h5=405=8=22(s).(2)不正确.理由如下:当h=80 m时,t=805=16=4(s).∵4≠2×22,∴不正确.(3)当t=6 s时,6=h5,∴h=180 m.∴鸡蛋产生的动能为10×0.05×180=90(焦耳).启示:严禁高空抛物.24.解:(1)>;>;=(2)m+n≥2mn.理由如下:当m≥0,n≥0时,(m-n)2≥0,∴(m)2-2mn+(n)2≥0.∴m-2mn+n≥0.∴m+n≥2mn.(3)设花圃平行于墙的一边长为a m,垂直于墙的一边长为b m,则a>0,b>0,ab=200.根据(2)中的结论可得a+2b≥2a·2b=22ab=22×200=2×20=40,∴所用的篱笆至少为40 m.第十七章综合素质评价一、选择题(每题3分,共30分)1.设直角三角形的两条直角边长分别为a和b,斜边长为c,已知b=12,c=13,则a=()A.1 B.5 C.10 D.252.在三边分别为下列长度的三角形中,不是直角三角形的为() A.1,2, 3 B.2,3, 5 C.6,8,10 D.4,7,53.在Rt△ABC中,∠ACB=90°,AB=3,则AB2+BC2+AC2=() A.9 B.18 C.20 D.244.把命题“如果x=y,那么x=y”作为原命题,下列对原命题和它的逆命题真假判断正确的是()A.原命题和逆命题都是真命题B.原命题和逆命题都是假命题C.原命题是真命题,逆命题是假命题D.原命题是假命题,逆命题是真命题5.在三边分别为4、4、6的等腰三角形中,底边上的高是() A.5 B.3 C.4 D.76.如图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD的长为()A. 3 B.2 3 C.3 3 D.4 3(第6题)(第7题)(第8题)(第9题)7.【教材P27图17.1­10变式】如图,A(8,0),C(-2,0),以点A为圆心,AC 长为半径画弧,交y轴正半轴于点B,则点B的坐标为()A.(0,5) B.(5,0)C.(6,0) D.(0,6)8.某工程的测量人员在规划一块如图所示的三角形土地时,在BC上有一处古建筑D,使得BC的长不能直接测出,工作人员测得AB=130米,AD=120米,BD=50米,在测出AC=150米后,测量工具坏了,使得DC的长无法测出,请你想办法求出BC的长度为()A.90米B.120米C.140米D.150米9.如图,小巷左右两侧都是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左端墙脚的距离为0.7 m,顶端距离地面2.4 m,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2 m,则小巷的宽度为()A.0.7 m B.1.5 m C.2.2 m D.2.4 m10.【直观想象】如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短路程是()A.20 B.25 C.30 D.32二、填空题(每题3分,共24分)11.勾股数为一组连续自然数的是__________.12.【数学运算】已知在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,∠C=90°,c=10,a b=34,则a=________.13.已知正方形的面积为8,则其对角线的长为________.14.已知a,b,c是△ABC的三边长,且满足关系式c2-a2-b2+|a-b|=0,则△ABC的形状为______________.15.《九章算术》是我国古代数学名著,书中有下列问题:今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?其意思为:今有一门,高比宽多6尺8寸,门对角线距离恰好为1丈.问门高、宽各是多少?(1丈=10尺,1尺=10寸)如图,设门高AB为x尺,根据题意,可列方程为____________________.(第15题)(第16题)(第17题)(第18题) 16.如图,已知△ABO为等腰三角形,且OA=AB=5,B(-6,0),则点A的坐标为__________.17.【传统文化】“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为________.18.如图,正方形ABCD的边长为8,点E是CD的中点,HG垂直平分AE且分别交AE,BC于点H,G,则BG=________.三、解答题(19~22题每题10分,23题12分,24题14分,共66分)19.如图,在△ABC中,CD⊥AB于D,AB=AC=13,BD=1.求:(1)CD的长;(2)BC的长.20.【教材P39复习题T9变式】如图,在边长为1的小正方形组成的网格中,点A,B,C都在格点上,请按要求完成下列各题.(1)线段AB的长为________;(2)若三角形ABC是直角三角形,且边BC的长度为5,请在图中确定点C的位置,并补全三角形ABC.21.【教材P38复习题T8变式】如图,已知AD是△ABC的中线,DE⊥AC于点E,CE=1,DE=2,AE=4.(1)求AD的长;(2)求证:AD垂直平分线段BC.22.【数学建模】小渝和小川是一对好朋友.如图,小渝家住在A处,小川家住在B处,两家相距10千米,小渝家A在一条笔直的公路AC边上,小川家到这条公路的距离BC为6千米,两人相约在公路D处见面,且两家到见面地点D的距离相等.求小渝家A到见面地点D的距离.23.【数学抽象】阅读下面一段文字,然后回答问题.已知在平面内两点P1(x1,y1),P2(x2,y2),其两点间的距离P1P2=(x1-x2)2+(y1-y2)2,同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2-x1|或|y2-y1|.(1)已知A(2,4),B(-3,-8),试求A,B两点间的距离.(2)已知M,N在平行于y轴的直线上,点M的纵坐标为4,点N的纵坐标为-1,试求M,N两点之间的距离.(3)已知一个三角形各顶点坐标为D(1,6),E(-2,2),F(4,2),你能判定此三角形的形状吗?说明理由.24.【阅读理解题】在学习完《勾股定理》这一章后,小力和小美进行了如下对话:根据对话回答问题:(1)判断:等腰直角三角形________“类勾股三角形”(填“是”或“不是”).(2)已知△ABC其中两边长分别为1,7,若△ABC为“类勾股三角形”,则另一边长为________.(3)如果Rt△ABC是“类勾股三角形”,它的三边长分别为a,b,c(a,b为直角边长且a<b,c为斜边长),用只含有a的式子表示其周长和面积.答案一、1.B 2.D 3.B 4.D 5.D 6.D7.D8.C9.C10.B二、11.3,4,512.613.414.等腰直角三角形15.(x-6.8)2+x2=10216.(-3,4)17.318.1点思路:连接AG,EG.设CG=x,则BG=8-x,易得AG=EG,根据勾股定理可得AB2+BG2=AG2=EG2=CE2+CG2,可求得x的值,进而求出BG 的长.三、19.解:(1)∵AB=13,BD=1,∴AD=13-1=12.在Rt△ACD中,CD=AC2-AD2=132-122=5.(2)在Rt△BCD中,BC=BD2+CD2=12+52=26.20.解:(1)5(2)当AC为斜边时,AC=AB2+BC2=5+52=30,即AC2=30.∵30无法表示成两个整数的平方和,∴此时无法满足C点在格点上,故舍去.当BC为斜边时,AC=BC2-AB2=52-5=25,即AC2=20=42+22,此时C点可以在格点上.作图如下:21.(1)解:∵DE⊥AC于点E,∴∠AED=90°.在Rt△ADE中,AD2=AE2+DE2=42+22=20,∴AD=2 5.(2)证明:由(1)知AD2=20.同理可得CD2=5,∴AD2+CD2=25.∵AC=AE+CE=4+1=5,∴AC2=25.∴AD2+CD2=AC2.∴△ADC是直角三角形.∴∠ADC=90°.∵AD是△ABC的中线,∴AD垂直平分线段BC.22.解:由题意得AB=10千米,BC=6千米,AD=BD,BC⊥AC,∴AC=AB2-BC2=102-62=8(千米).设AD=BD=x千米,则CD=AC-AD=(8-x)千米,在Rt△BCD中,BC2+CD2=BD2,即62+(8-x)2=x2,解得x=25 4.答:小渝家A到见面地点D的距离为254千米.点方法:运用勾股定理解决实际问题的一般步骤:1.从实际问题中抽象出几何图形;2.确定要求的线段所在的直角三角形;3.找准直角边和斜边,根据勾股定理建立等量关系;4.求得结果.23.解:(1)由题意可知A,B两点间的距离为(2+3)2+(4+8)2=13.(2)由题意可知,直线MN平行于y轴,∴M,N两点之间的距离为4-(-1)=5.(3)△DEF是等腰三角形.理由如下:DE=(-2-1)2+(2-6)2=5,EF=(4+2)2+(2-2)2=6,DF=(4-1)2+(2-6)2=5,∴DE=DF. ∴△DEF是等腰三角形.24.解:(1)不是(2)2或13(3)∵a<b<c,∴c2+b2>2a2,a2+b2<2c2.∵Rt△ABC是“类勾股三角形”,∴c2+a2=2b2.又∵c2=b2+a2,∴b2+a2+a2=2b2,解得b=2a.∴c=a2+b2=a2+2a2=3a.∴S=12ab=12a·2a=22a2,C=a+b+c=a+2a+3a=(1+2+3)a.第十八章综合素质评价一、选择题(每题3分,共30分)1.已知在▱ABCD中,∠B+∠D=200°,则∠B的度数为() A.100°B.160°C.80°D.60°2.如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()A.14 B.12C.1 D.2(第2题)(第4题)(第5题)(第8题) 3.依据所标数据,下列一定为平行四边形的是()4.【教材P44例2改编】如图,在▱ABCD中,AB=13,AD=5,AC⊥BC,则▱ABCD 的面积为()A.30 B.60 C.65 D.65 25.【教材P53例1改编】如图,在矩形ABCD中,对角线AC,BD交于点O,∠AOB=60°,AB=5,则BD的长为()A.20 B.15 C.10 D.56.关于菱形的性质,以下说法不正确...的是()A.四条边相等B.对角线相等C.对角线互相垂直D.是轴对称图形7.下列命题中,是真命题的为()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形8.如图,已知在菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A.16 3 B.16 C.8 3 D.89.如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB =2,则OE的长度为()A.62 B. 6 C.2 2 D.23(第9题)(第10题)(第11题)(第13题)10.如图,在四边形ABCD中,∠A=∠B=90°,AD=10 cm,BC=8 cm,点P从点D出发,以1 cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是()A.当t=4时,四边形ABMP为矩形B.当t=5时,四边形CDPM为平行四边形C.当CD=PM时,t=4D.当CD=PM时,t=4或6二、填空题(每题3分,共24分)11.如图,在▱ABCD中,AB=5,AC=8,BD=12,则△COD的周长是________.12.在Rt△ABC中,∠C=90°,AC=5,BC=12,则斜边上的中线CD=________. 13.如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC=BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是________(限填序号).14.如图,平行四边形ABCD的三个顶点的坐标分别为A(1,1),B(4,1),D(2,3),要把顶点A平移到顶点C的位置,则其平移方式可以是:先向右平移________个单位长度,再向上平移________个单位长度.(第14题)(第15题)(第16题)(第17题)15.如图,菱形ABCD的对角线AC,BD相交于点O.点E在OB上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为________.16.如图,在矩形ABCD中,E是BC边上一点,AE=AD,DF⊥AE于点F,连接DE,AE=5,BE=4,则DF=________.17.如图,在平行四边形ABCD中,AB⊥AC, AB=3, AC=4,分别以A,C为圆心,大于12AC的长为半径画弧,两弧相交于点M,N,过M,N两点作直线,与BC交于点E,与AD交于点F,连接AE,CF.则四边形AECF的周长为________.18.以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是____________.三、解答题(19,20题每题8分,21,22题每题12分,其余每题13分,共66分)19.如图,在▱ABCD中,点E和点F是对角线BD上的两点,且BF=DE.(1)求证:BE=DF;(2)求证:△ABE≌△CDF.20.如图,四边形ABCD中,AB=DC,将对角线AC向两端分别延长至点E,F,使AE=CF, 连接BE,DF.若BE=DF,证明:四边形ABCD是平行四边形.21.如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4.(1)求证:▱ABCD是矩形;(2)求AD的长.22.【如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠F AC=30°,∠B=45°,求AB的长.23.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF;(2)若正方形的边长是5,BE=2,求AF的长.24.在▱ABCD中,AB≠AD,对角线AC,BD交于点O,AC=10,BD=16.点M,N在对角线BD上,点M从点B出发以每秒1个单位长度的速度向点D运动,到达点D时停止运动,同时点N从点D出发,运动至点B后立即返回,点M停止运动的同时,点N也停止运动,设运动时间为t秒(t>0).(1)若点N的速度为每秒1个单位长度,①如图,当0<t<8时,求证:四边形AMCN是平行四边形;②点M,N运动的过程中,四边形AMCN可能出现的形状是________.A.矩形B.菱形C.正方形(2)若点N的速度为每秒2个单位长度,运动过程中,t为何值时,四边形AMCN是平行四边形?答案一、1.A 2.D 3.D 4.B 5.C 6.B7.D8.C9.B10.D点拨:根据题意,可得DP=t cm,BM=t cm.∵AD=10 cm,BC=8 cm,∴AP=(10-t)cm,CM=(8-t)cm.当四边形ABMP为矩形时,AP=BM,即10-t=t,解得t=5.故A选项错误.当四边形CDPM为平行四边形时,DP=CM,即t=8-t,解得t=4.故B选项错误.当CD=PM时,分两种情况:(1)四边形CDPM是平行四边形,此时CM=PD,即8-t=t,解得t=4.(2)四边形CDPM是等腰梯形,如图,过点M作MG⊥AD于点G,过点C作CH⊥AD于点H,则∠MGP=∠CHD=90°,易得GM=HC.又∵PM=CD,∴Rt△MGP≌Rt△CHD(H L).∴GP=HD.易得GP=t-(8-t)2cm.∴AG=AP+GP=[10-t+t-(8-t)2]cm.又∵BM=t cm,易得AG=BM,∴10-t+t-(8-t)2=t,解得t=6.综上,当CD=PM时,t=4或6.故C选项错误,D选项正确.二、11.1512.13 213.①14.4;215.2516.317.10点思路:根据勾股定理得到BC=AB2+AC2=5,由作图可知,MN是线段AC的垂直平分线,所以EC=EA, AF=CF.易证AE=CE=12BC=2.5.根据平行四边形的性质得到AD=BC=5,CD=AB=3,∠ACD=∠BAC=90°,同理证得AF=CF=2.5,于是得到结论.18.30°或150°点拨:分两种情况.(1)如图,等边三角形ADE在正方形ABCD的内部,则∠CDE=∠CDA-∠ADE=90°-60°=30°.又∵CD=AD=DE,∴∠DCE=75°.∴∠ECB=15°.同理,∠EBC=15°.∴∠BEC=150°.(2)如图,等边三角形ADE在正方形ABCD的外部,则∠CDE=∠CDA+∠ADE=90°+60°=150°.又∵CD=AD=DE,∴∠CED=15°.同理,∠AEB=15°.∴∠BEC=∠AED-∠CED-∠AEB=60°-15°-15°=30°.三、19.证明:(1)∵BF =DE ,∴BF -EF =DE -EF ,即BE =DF . (2)∵四边形ABCD 为平行四边形, ∴AB =CD ,且AB ∥CD . ∴∠ABE =∠CDF . 在△ABE 和△CDF 中,⎩⎨⎧AB =CD ,∠ABE =∠CDF ,BE =DF ,∴△ABE ≌△CDF (SAS ).20.证明:在△BEA 和△DFC 中,⎩⎨⎧AB =CD ,AE =CF ,BE =DF ,∴△BEA ≌△DFC (SSS ). ∴∠EAB =∠FCD . ∴∠BAC =∠DCA . ∴AB ∥DC .∵AB =DC ,∴四边形ABCD 是平行四边形. 21.(1)证明:∵△AOB 是等边三角形,∴OA =OB .∵四边形ABCD 是平行四边形, ∴OB =OD =12BD ,OA =OC =12AC . ∴BD =AC . ∴▱ABCD 是矩形. (2)解:∵▱ABCD 是矩形, ∴∠BAD =90°. 又易知∠ABO =60°,∴∠ADB =90°-60°=30°.∴BD =2AB =8.∴AD =BD 2-AB 2=82-42=4 3.22.(1)证明:在△ABC 中,点D 是AC 的中点,∴AD=DC.∵AF∥BC,∴∠F AD=∠ECD,∠AFD=∠CED.∴△AFD≌△CED(AAS).∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.又∵EF⊥AC,∴平行四边形AECF是菱形.(2)解:如图,过点A作AG⊥BC于点G.由(1)知四边形AECF是菱形,又CF=2,∠F AC=30°,∴AE=CF=2,∠F AE=2∠F AC=60°.∵AF∥BC,∴∠AEB=∠F AE=60°.∴∠GAE=30°.∴GE=12AE=1.∴AG=AE2-GE2= 3.∵∠B=45°,∴AG=BG= 3.∴AB=AG2+BG2= 6.23.(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=∠D=90°.∴∠BAE+∠AEB=90°.∵BH⊥AE,∴∠BHE=90°.∴∠AEB+∠EBH=90°.∴∠BAE=∠EBH.在△ABE 和△BCF 中,⎩⎨⎧∠BAE =∠CBF ,AB =BC ,∠ABE =∠BCF ,∴△ABE ≌△BCF (ASA ). ∴AE =BF .(2)解:由(1)得△ABE ≌△BCF , ∴BE =CF .∵正方形的边长是5,BE =2, ∴DF =CD -CF =CD -BE =5-2=3.在Rt △ADF 中,由勾股定理得AF =AD 2+DF 2=52+32=34. 24.(1)①证明:当0<t <8时,根据题意,得BM =DN =t .∵四边形ABCD 是平行四边形, ∴OA =OC ,OB =OD . ∴OB -BM =OD -DN . ∴OM =ON .∴四边形AMCN 是平行四边形. ②A(2)解:若点N 的速度为每秒2个单位长度,则0<t ≤8时,点N 从点D 向点B 运动,点M 在线段OB 上;当8<t ≤16时,点N 从点B 向点D 运动,点M 在线段OD 上.若四边形AMCN 是平行四边形,则OM =ON 且点M ,N 在点O 的两侧,当0<t ≤4时,ON =8-2t ,OM =8-t ,OM 与ON 不可能相等,不存在四边形AMCN 是平行四边形;当4<t ≤8时,点M ,N 在点O 的同侧,不存在四边形AMCN 是平行四边形; 当8<t ≤12时,点M ,N 在点O 的两侧,OM =t -8,ON =24-2t ,此时存在OM =ON ,即t -8=24-2t ,解得t =323;当12<t ≤16时,点M ,N 都在线段OD 上,点M ,N 在点O 的同侧,不存在四边形AMCN 是平行四边形.综上,当t =323时,四边形AMCN 是平行四边形.点思路:(1)② ∵AB ≠AD ,∴四边形ABCD 不可能是菱形或正方形. ∴AC 与MN 不能垂直.∴四边形AMCN 不可能是正方形或菱形. ∴当MN =AC 时,四边形AMCN 可以是矩形.第十九章综合素质评价一、选择题(每题3分,共30分)1.寒冷的冬天里我们在利用空调制热调控室内温度的过程中,空调的每小时用电量随开机设置温度的高低而变化,这个问题中自变量是( ) A .每小时用电量 B .室内温度 C .开机设置温度 D .用电时间 2.函数y =x +1x -3的自变量x 的取值范围是( )A .x ≠3B .x ≥3C .x ≥-1且x ≠3D .x ≥-13.下列图象中,表示y 是x 的函数的是( )4.一个正比例函数的图象经过点(2,-1),则它的解析式为( )A .y =-2xB .y =2xC .y =-12xD .y =12x5.把直线y =x 向上平移3个单位长度,下列点在该平移后的直线上的是( )A .(2,2)B .(2,3)C .(2,4)D .(2,5)6.在直角坐标系中,已知点A ⎝ ⎛⎭⎪⎫32,m ,点B ⎝ ⎛⎭⎪⎫72,n 是直线y =kx +b (k <0)上的两点,则m ,n 的大小关系是( ) A .m <n B .m >n C .m ≥n D .m ≤n7.李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽误了几分钟,为了按时到单位,李叔叔在不违反交通规则的前提下加快了速度,仍保持匀速行驶,则汽车行驶的路程y(千米)与行驶的时间t(小时)的函数关系的大致图象是()8.表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象可能是()9.某品牌鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16 cm,44码鞋子的长度为27 cm,则38码鞋子的长度为()A.23 cm B.24 cm C.25 cm D.26 cm10.北京冬奥会开幕式上,以“二十四节气”为主题的倒计时短片,用“中国式浪漫”美学惊艳了世界,下图是一年中部分节气所对应的白昼时长示意图,给出下列结论:①从立春到大寒,白昼时长先增大再减小;②夏至时白昼时长最长;③春分和秋分,昼夜时长大致相等.其中正确的是()A.①②B.②③C.②D.③二、填空题(每题3分,共24分)11.函数y=(m-2)x|m|-1+m+2是关于x的一次函数,则m=________.12.已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:______________.13.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.14.如图,直线y=x+2与直线y=ax+4相交于点A(1,3),则关于x的不等式ax+4≥x+2的解集为__________.(第14题)(第17题)(第18题)15.关于x的一次函数y=(2-m)x-3m的图象经过第一、三、四象限,则m的取值范围为__________.16.声音在空气中传播的速度简称音速,科学研究发现声音在空气中传播的速度(m/s)与气温(℃)有关,下表列出了一组不同气温时的音速:用y(m/s)表示音速,用x(℃)表示气温,则y与x之间的关系式为____________.17.如图,AB,CB表示某工厂甲、乙两车间产品的总量y(t)与生产时间x(天)之间的函数图象,第30天结束时,甲、乙两车间产品总量为________t. 18.日常生活中常用的二维码是由许多大小相同的黑白两色小正方形按某种规律组成的一个大正方形,图①是一个20×20格式(即黑白两色小正方形个数的和是400)的二维码,左上角、左下角、右上角是三个相同的7×7格式的正方形,将其中一个放大后如图②,除这三个正方形外,图①中其他的黑色小正方形个数y与白色小正方形个数x正好满足图③所示的函数图象,则图①所示的二维码中共有个白色小正方形.三、解答题(19,20题每题12分,其余每题14分,共66分)19.【教材P107复习题T4(2)改编】一次函数的图象经过(-2,1)和(1,4)两点.(1)求这个一次函数的解析式;(2)当x=3时,求y的值.20.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=-x -2与坐标轴交于B、D两点,两线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)利用图象求当x取何值时,y1>y2.21.随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18 km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数解析式;(2)何时乙骑行在甲的前面?22.某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.23.如图,在平面直角坐标系中,线段AB的端点为A(-8,19),B(6,5).(1)求AB所在直线的解析式;(2)某同学设计了一个动画:在函数y=mx+n(m≠0,y≥0)中,分别输入m和n的值,便得到射线CD,其中C(c,0),当c=2时,会从C处弹出一个光点P,并沿CD飞行;当c≠2时,只发出射线而无光点弹出.①若有光点P弹出,试推算m,n应满足的数量关系;②当有光点P弹出,并击中线段AB上的整点(横、纵坐标都是整数)时,线段AB就会发光,求此时整数m的个数.答案一、1.C 2.C 3.D 4.C 5.D 6.A 7.B 8.A 9.B 10.B二、11.-2 12.y =-x +1(答案不唯一) 13.-2 14.x ≤1 15.0<m <2 16.y =2x +330 17.1 50018.198 点拨:设y =kx +b ,由题意得⎩⎨⎧b =28,-56k +b =0,解得⎩⎪⎨⎪⎧b =28,k =12.∴y =12x +28.∵黑白两色小正方形个数的和是400, ∴7×7×3+x +12x +28=400,解得x =150.∵三个7×7格式的正方形中白色小正方形的个数为16×3=48, ∴该20×20格式的二维码中共有白色小正方形150+48=198(个). 三、19.解:(1)设一次函数的解析式为y =kx +b .将点(-2,1)和(1,4)的坐标代入解析式,得 ⎩⎨⎧-2k +b =1,k +b =4,解得⎩⎨⎧k =1,b =3. ∴一次函数的解析式为y =x +3. (2)当x =3时,y =3+3=6.20.解:(1)当y 1=y 2时,有2x +1=-x -2,解得x =-1,∴y =-1.∴P (-1,-1). (2)令x =0,得y 1=1,y 2=-2, ∴A (0,1),B (0,-2).∴AB =3. ∴S △APB =12×1×3=32.(3)由图象可知:当y 1>y 2时,x 的取值范围是x >-1.21.解:(1)s 与t 之间的函数解析式为s =⎩⎨⎧15t (0≤t ≤0.2),20t -1(t >0.2).(2)设a h 后乙骑行在甲的前面. 根据题意,得20a -1>18a , 解得a >0.5.答:0.5 h 后乙骑行在甲的前面.22.解:(1)设每桶甲消毒液的价格是x 元,每桶乙消毒液的价格是y 元.根据题意,得⎩⎨⎧9x +6y =615,8x +12y =780,解得⎩⎨⎧x =45,y =35.答:每桶甲消毒液的价格是45元,每桶乙消毒液的价格是35元. (2)根据题意,得W =45a +35(30-a )=10a +1 050. ∵10>0,∴W 随a 的增大而增大.∵甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍,∴⎩⎨⎧a ≥30-a +5,a ≤2(30-a ), 解得17.5≤a ≤20. ∵a 为整数,∴当a =18时,W 取得最小值,此时W =1 230,30-a =12.答:购买甲消毒液18桶、乙消毒液12桶,才能使总费用W 最少,最少费用是1 230元.23.解:(1)设AB 所在直线的解析式为y =kx +b .把点A (-8,19),B (6,5)的坐标分别代入y =kx +b ,得⎩⎨⎧-8k +b =19,6k +b =5,解得⎩⎨⎧k =-1,b =11.∴AB 所在直线的解析式为y =-x +11.(2)①由题意知,直线y =mx +n 经过点C (2,0),∴2m+n=0;②设线段AB上的整点为(t,-t+11),则tm+n=-t+11.∵2m+n=0,∴(t-2)m=-t+11.易知t-2≠0,∴m=-t+11t-2=-1+9t-2.∵-8≤t≤6,且t为整数,m也是整数,∴t-2=±1,±3或±9,解得t=1,3,5,-1,-7或11.∵当t=1时,m=-10;当t=3时,m=8;当t=5时,m=2;当t=-1时,m=-4;当t=-7时,m=-2;当t=11时,m=0(不符合题意,舍去).∴符合题意的整数m的个数为5.第二十章综合素质评价一、选择题(每题3分,共30分)1.某班5名同学参加学校“感党恩,跟党走”主题演讲比赛,他们的成绩(单位:分)分别是8,6,8,7,9,这组数据的中位数是()A.6 B.7 C.8 D.92.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表所示.所售30双女鞋尺码的众数是()A.25 cm B.24 cm C.23.5 cm D.23 cm3.某校健美操队共有10名队员,统计队员的年龄情况,结果如下:13岁3人,14岁5人,15岁2人,该健美操队队员的平均年龄为()A.14.2岁B.14.1岁C.13.9岁D.13.7岁4.在学校举行的“庆祝百周年,赞歌献给党”合唱比赛中,七位评委给某班的评分去掉一个最高分、一个最低分后得到五个有效评分,分别为:9.0,9.2,9.0,8.8,9.0(单位:分).这五个有效评分的平均数和众数分别是()A.9.0分,8.9分B.8.9分,8.9分C.9.0分,9.0分D.8.9分,9.0分5.甲、乙两人在相同的条件下,各射击10次,经计算:甲射击成绩的平均数是8环,方差是1.1;乙射击成绩的平均数是8环,方差是1.5.下列说法中不一..定.正确的是()A.甲、乙的总环数相同B.甲的成绩比乙的成绩稳定C.乙的成绩比甲的成绩波动大D.甲、乙成绩的众数相同6.为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间条形统计图(如图),则所调查学生睡眠时间的众数、中位数分别为()A.7 h,7 h B.8 h,7.5 hC.7 h,7.5 h D.8 h,8 h7.甲、乙两人进行飞镖比赛,每人各投6次,他们的成绩如下表(单位:环):如果两人的比赛成绩的中位数相同,那么乙第三次的成绩是()A.6环B.7环C.8环D.9环8.从小到大的一组数据-1,1,2,x,6,8的中位数为2,则这组数据的众数和平均数分别是()A.2,4 B.2,3 C.1,4 D.1,39.学校朗诵比赛,共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉一个最高分、一个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数据特征是()A.平均数B.中位数C.众数D.方差10.【数据分析】为了解某小区居民的用水情况,随机抽查了若干户家庭的某月用水量,统计结果如下表所示.关于这若干户家庭的该月用水量的数据统计分析,下列说法正确的是() A.众数是5 B.平均数是7C.中位数是5 D.方差是1二、填空题(每题3分,共24分)11.学校为落实立德树人,发展素质教育,加强美育,需要招聘两位艺术老师,对学历、笔试、上课和现场答辩四个项目进行测试,以最终得分择优录取.甲、乙、丙三位应聘者的测试成绩(10分制)如表所记,如果四项得分按照“1:1:1:1”的比例确定每人的最终得分,丙得分最高,甲与乙得分相同,分不出谁将被淘汰;鉴于教师行业应在“上课”项目上权重大一些(其他项目比例相同),为此设计了新的计分比例,你认为三位应聘者中________将被淘汰(填:甲、乙或丙).12.今年4月23日是第27个世界读书日,某校举行了演讲大赛,演讲得分按“演。

最新人教版八年级数学下册单元测试题及答案全册

最新人教版八年级数学下册单元测试题及答案全册

最新人教版八年级数学下册单元测试题及答案全册含期末试题第十六章达标检测卷一、选择题(每题3分,共30分)1.要使二次根式x -3有意义,x 必须满足( ) A .x ≤3 B .x ≥3 C .x >3 D .x <3 2.下列二次根式中,不能与2合并的是( ) A .12B .8C .12D .18 3.下列二次根式中,最简二次根式是( ) A .25a B .a 2+b 2 C .a2D .0.5 4.下列计算正确的是( )A .53-23=2B .22×32=6 2C .3+23=3D .33÷3=3 5.下列各式中,一定成立的是( )A .(-2.5)2=( 2.5)2 C .x 2-2x +1=x -1 D 6.若k ,m ,n ,180=6n ,则下列关于k ,m ,n 的大小关系,正确的是( )A .k <m =nB .m =n <kC .m <n <kD .m <k <n 7.计算912÷5412×36的结果为( ) A .312 B .36 C .33 D .3348.已知a ,b ,c 为△ABC 的三边长,且a 2-2ab +b 2+|b -c|=0,则△ABC 的形状是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰直角三角形9.已知x ,y 为实数,且3x +4+y 2-6y +9=0.若axy -3x =y ,则实数a 的值为( ) A .14 B .-14 C .74 D .-7410.已知实数x ,y 满足:y =x 2-16+16-x 2+24x -4,则xy +13的值为( )A .0B .37C .13D .5二、填空题(每题3分,共30分) 11.计算:24-323=________.12.若最简二次根式3a -1与2a +3可以合并,则a 的值为________. 13.已知x -1x =6,则x 2+1x2=________.14.当x =5-1时,代数式x 2+2x +3的值是________.15.有一个密码系统,其原理如图所示,当输出的值为3时,则输入的x =________.输入x →x +26→ 输出 (第15题)16.设一个三角形的一边长为a ,这条边上的高为63,其面积与一个边长为32的正方形的面积相等,则a =________.17.实数a 在数轴上的位置如图,化简|a -1|+(a -2)2=________.(第17题)18.若实数m 满足(m -2)2=m +1,且0<m <3,则m 的值为________. 19.若xy >0,则二次根式x-yx2化简的结果为________. 20.若x +y =5+3,xy =15-3,则x +y =________.三、解答题(21题12分,26,27题每题10分,其余每题7分,共60分) 21.计算:(1)312-248+8; (2)⎝⎛⎭⎫13+27×3;(3)48÷3-215×30+(22+3)2;(4)(2-3)2 017(2+3)2 018-|-3|-(-2)0.22.先化简,再求值:a 2-b 2a ÷⎝⎛⎭⎫a -2ab -b 2a ,其中a =5+2,b =5-2.23.已知a ,b ,c 是△ABC 的三边长,化简:(a +b +c )2-(b +c -a )2+(c -b -a )2.24.已知a +b =-2,ab =12,求ba+ab的值.25.已知长方形的长a =1232,宽b =1318.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.26.观察下列各式: ①2-25=85=225;②3-310=2710=3310;③4-417=6417=4417. (1)根据你发现的规律填空:5-526=________=________; (2)猜想n -nn 2+1(n ≥2,n 为自然数)等于什么?并通过计算证实你的猜想.27.(1)已知|2 017-x|+x -2 018=x ,求x -2 0182的值;(2)已知a >0,b >0且a(a +b)=3b(a +5b),求2a +3b +aba -b +ab 的值.答案一、1.B 2.C 3.B 4.D 5.A 6.D7.B点拨:原式=912×1254×36=36×6=36.8.B点拨:原等式可化为|a-b|+|b-c|=0,∴a-b=0且b-c=0,∴a=b=c,即△ABC是等边三角形.9.A10.D二、11.612.4 点拨:∵最简二次根式3a -1与2a +3可以合并,∴它们的被开方数相同,即3a -1=2a +3,解得a =4.13.8 点拨:x 2+1x 2=x 2+1x2-2+2=⎝⎛⎭⎫x -1x 2+2=(6)2+2=6+2=8.14.7 15.22 16.23 17.1 18.1219.--y 点拨:由题意知x <0,y <0,所以x -yx2=--y.解此类题要注意二次根式的隐含条件:被开方数是非负数.20.8+23三、21.解:(1)原式=-23+2 2. (2)原式=10. (3)原式=15+2 6. (4)原式=1.22.解:原式=(a +b )(a -b )a ÷a 2-2ab +b 2a =(a +b )(a -b )a ·a(a -b )2=a +b a -b ,当a =5+2,b =5-2时,原式=5+2+5-25+2-5+2=254=52.23.解:∵a ,b ,c 是△ABC 的三边长,∴a +b +c >0,b +c -a >0,c -b -a <0-(b +c -a)+(a +b -c)=3a +b -c. 24.解:由题意,知a <0,b <0=ab a 2+ab b 2=ab -a +ab-b=-(a +b )ab ab =-(-2)×1212=2 2.点拨:此题易出现以下错误:原式=b a +a b =a +b ab=-212=-2 2.出错的原因在于忽视了隐含条件,进而导致在解答过程中进行了非等价变形.事实上,由a +b =-2,ab =12,可知a <0,b <0,所以将b a+a b 变形成b a +ab是不成立的. 25.解:(1)2(a +b)=2×⎝⎛⎭⎫1232+1318=2×(22+2)=6 2.故长方形的周长为6 2. (2)4ab =41232×1318=422×2=4×2=8.因为62>8,所以长方形的周长大. 26.解:(1)12526;5526(2)猜想:n -nn 2+1=n nn 2+1.验证如下:当n ≥2,n 为自然数时,n -n n 2+1=n 3+n n 2+1-nn 2+1=n 3n 2+1=n n n 2+1.27.解:(1)∵x -2 018≥0,∴x ≥2 018, ∴原等式可化为x -2 017+x -2 018=x , ∴x -2 018=2 017. ∴x -2 018=2 0172. ∴x =2 0172+2 018.∴x -2 0182=2 0172-2 0182+2 018=(2 017-2 018)×(2 017+2 018)+2 018=-(2 017+2 018)+2 018=-2 017.(2)∵a(a +b)=3b(a +5b), ∴a +ab =3ab +15b , ∴a -2ab -15b =0, ∴(a -5b)(a +3b)=0. ∵a >0,b >0, ∴a +3b >0, ∴a -5b =0, ∴a =25b.∴原式=2×25b +3b +25b 225b -b +25b 2=58b29b =2.第十七章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列长度的三条线段能组成直角三角形的是( ) A .2,3,4 B .3,2,7 C .6,22,10 D .3,5,8 2.在平面直角坐标系中,点P(3,4)到原点的距离是( ) A .3 B .4 C .5 D .±5(第3题)3.如图所示,数轴上点A 所表示的数为a ,则a 的值是( ) A .5+1 B .-5+1 C .5-1 D .54.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12∶13.其中直角三角形有() A.1个B.2个C.3个D.4个5.已知直角三角形两边的长分别为3和4,则此三角形的周长为()A.12 B.7+7 C.12或7+7 D.以上都不对6.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC交AB于D,E是垂足,连接CD,若BD =1,则AC的长是()A.2 3 B.2 C.4 3 D.4(第6题)(第7题)(第8题)(第9题)(第10题)7.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.4 B.16 C.22 D.558.如图是台阶的示意图,已知每个台阶的宽度都是30 cm,每个台阶的高度都是15 cm,则A,B两点之间的距离等于()A.195 cm B.200 cm C.205 cm D.210 cm9.如图是一个圆柱形的饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一根到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13 B.12≤a≤15 C.5≤a≤12 D.5≤a≤1310.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,3),点C 的坐标为⎝⎛⎭⎫12,0,点P 为斜边OB 上的一个动点,则PA +PC 的最小值为( )A .132B .312 C .3+192D .27二、填空题(每题3分,共30分)11.已知一个直角三角形的木板三边的平方和为1 800 cm 2,则斜边长为________. 12.命题“角平分线上的点到角两边的距离相等”的逆命题是______________________. 13.若一个三角形的三边之比为345,且周长为24 cm ,则它的面积为________cm 2.14.飞机在空中水平飞行,某一时刻刚好飞到一个男孩正上方4 000 m 处,过了10 s ,飞机距离这个男孩头顶5 000 m ,则飞机平均每小时飞行__________km .15.已知a ,b ,c 是△ABC 的三边长,且满足关系c 2-a 2-b 2+|a -b|=0,则△ABC 的形状为____________.16.如图,在平面直角坐标系中,将长方形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处.若点D 的坐标为(10,8),则点E 的坐标为________.(第16题)(第17题)(第18题)(第19题)(第20题)17.如图,正方形ABCD 的边长为1,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH,如此下去,第n个正方形的边长为________.18.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到△ABC,则△ABC中BC边上的高是________.19.如图,圆柱形无盖容器高18 cm,底面周长为24 cm,在容器内壁离容器底4 cm的点B处有一滴蜂蜜,此时蚂蚁正好在容器外壁,离容器上沿2 cm与蜂蜜相对的A处,则蚂蚁从外壁A处到达内壁B处的最短距离为________cm.20.如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300 m是盆景园B,从盆景园B向左转90°后直走400 m 到达梅花阁C,则点C的坐标是________.三、解答题(26,27题每题10分,其余每题8分,共60分)21.如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.(第21题)(1)求△ABC的周长;(2)判断△ABC是否是直角三角形.22.如图,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向行了100 3 km到达B点,然后再沿北偏西30°方向行了100 km到达目的地C点,求出A,C两点之间的距离.(第22题)23.若△ABC的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,判断△ABC的形状.24.我们把满足方程x2+y2=z2的正整数解(x,y,z)叫做勾股数,如(3,4,5)就是一组勾股数.(1)请你再写出两组勾股数:(________,________,________),(________,________,________);(2)在研究直角三角形的勾股数时,古希腊的哲学家柏拉图曾指出:如果n表示大于1的整数,x=2n,y=n2-1,z=n2+1,那么以x,y,z为三边长的三角形为直角三角形(即x,y,z为勾股数),请你加以证明.25.如图,∠ABC=90°,AB=6 cm,AD=24 cm,BC+CD=34 cm,C是直线l上一动点,请你探索当点C离点B多远时,△ACD是一个以CD为斜边的直角三角形.(第25题)26.如图,在梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°,折叠纸片使BC经过点D,点C 落在点E处,BF是折痕,且BF=CF=8.求AB的长.(第26题)27.“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN上限速60千米/时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由(参考数据:2≈1.41,3≈1.73).(第27题)答案一、1.B 2.C 3.C 4.C 5.C 6.A 7.B 8.A 9.A 10.B 二、11.30 cm12.到角两边距离相等的点在角的平分线上 13.24 14.1 08015.等腰直角三角形 点拨:由题意知:⎩⎪⎨⎪⎧c 2-a 2-b 2=0,a -b =0,∴⎩⎪⎨⎪⎧a 2+b 2=c 2,a =b. ∴△ABC 为等腰直角三角形. 16.(10,3) 17.(2)n -118.322 点拨:在网格中求三角形的高,应借助三角形的面积求解.以AC ,AB ,BC 为斜边的三个直角三角形的面积分别为1,1,12,因此△ABC 的面积为2×2-1-1-12=32;用勾股定理计算出BC 的长为2,因此BC 边上的高为322.19.2020.(400,800) 点拨:如图,连接AC.由题意可得OA =500 m ,AB =300 m ,BC =400 m .在△AOD 和△ACB 中,AD =AB ,∠ODA =∠ABC =90°,OD =CB ,∴△AOD ≌△ACB(SAS ),∴AC =AO =500 m ,∠CAB =∠OAD.∵点B ,A ,O 在一条直线上,∴点C ,A ,D 也在一条直线上,∴CD =AC +AD =800 m ,∴点C 的坐标为(400,800).(第20题)三、21.解:(1)∵AD ⊥BC ,∴△ABD 和△ACD 均为直角三角形. ∴AB 2=AD 2+BD 2,AC 2=AD 2+CD 2. 又∵AD =12,BD =16,CD =5,∴AB =20,AC =13.∴△ABC 的周长为20+13+16+5=54.(2)由(1)知AB =20,AC =13,BC =21,∵AB 2+AC 2=202+132=569,BC 2=212=441,∴AB 2+AC 2≠BC 2.∴△ABC 不是直角三角形.22.解:∵AD ∥BE , ∴∠ABE =∠DAB =60°. 又∵∠CBF =30°,∴∠ABC =180°-∠ABE -∠CBF =180°-60°-30°=90°.在Rt △ABC 中,AB =100 3 km ,BC =100 km ,∴AC =AB 2+BC 2=(1003)2+1002=200(km ), ∴A ,C 两点之间的距离为200 km . 23.解:∵a 2+b 2+c 2+50=6a +8b +10c ,∴a 2+b 2+c 2-6a -8b -10c +50=0,即(a -3)2+(b -4)2+(c -5)2=0, ∴a =3,b =4,c =5. ∵32+42=52,即a 2+b 2=c 2,∴根据勾股定理的逆定理可判定△ABC 是直角三角形.点拨:本题利用配方法,先求出a ,b ,c 的值,再利用勾股定理的逆定理进行判断. 24.(1)(答案不唯一)6;8;10;9;12;15(2)证明:x 2+y 2=(2n)2+(n 2-1)2=4n 2+n 4-2n 2+1=n 4+2n 2+1=(n 2+1)2=z 2, 即以x ,y ,z 为三边长的三角形为直角三角形.25.解:设当BC =x cm 时,△ACD 是一个以CD 为斜边的直角三角形. ∵BC +CD =34 cm , ∴CD =(34-x)cm .∵∠ABC =90°,AB =6 cm ,∴在Rt △ABC 中,由勾股定理得AC 2=AB 2+BC 2=36+x 2.在Rt △ACD 中,AD =24 cm ,由勾股定理得AC 2=CD 2-AD 2=(34-x)2-576, ∴36+x 2=(34-x)2-576,解得x =8.∴当点C 离点B 8 cm 时,△ACD 是一个以CD 为斜边的直角三角形. 26.解:∵BF =CF =8,∠C =30°,∴∠FBC =∠C =30°,∴∠DFB =60°.由题易知BE 与BC 关于直线BF 对称, ∴∠DBF =∠FBC =30°, ∴∠BDC =90°.∴DF =12BF =4,∴BD =BF 2-DF 2=64-16=4 3. ∵∠A =90°,AD ∥BC ,∴∠ABC =90°, ∴∠ABD =30°,∴AD =12BD =23,∴AB =BD 2-AD 2=48-12=6.27.解:此车没有超速.理由如下:如图,过点C 作CH ⊥MN 于H ,∵∠CBH =60°,∴∠BCH =30°,又BC =200米,∴BH =12BC =100米,∴CH =BC 2-BH 2=1003米.∵∠CAH =45°,∠CHA =90°, ∴AH =CH =1003米. ∴AB =1003-100≈73(米). ∴73÷5=735(米/秒).又∵60千米/时=503米/秒,735<503,∴此车没有超速.第十八章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.已知四边形ABCD 是平行四边形,下列结论中,错误的是( ) A .AB =CD B .AC =BDC .当AC ⊥BD 时,它是菱形 D .当∠ABC =90°时,它是矩形2.已知在▱ABCD 中,BC -AB =2 cm ,BC =4 cm ,则▱ABCD 的周长是( ) A .6 cm B .12 cm C .8 cm D .10 cm3.如图,跷跷板AB 的支柱OD 经过它的中点O ,且垂直于地面BC ,垂足为D ,OD =50 cm ,当它的一端B 着地时,另一端A 离地面的高度AC 为( )A .25 cmB .50 cmC .75 cmD .100 cm(第3题)(第6题)(第8题)(第9题)(第10题)4.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形5.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是() A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,在矩形ABCD中,对角线AC,BD相交于点O,过O的直线EF分别交AB,CD于点E,F,若图中阴影部分的面积为6,则矩形ABCD的面积为()A.12 B.18 C.24 D.307.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判定这个四边形是正方形?()A.①②B.①③C.①④D.④⑤8.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B. 2 C.4-2 2 D.3 2-49.如图,将边长为2 cm的菱形ABCD沿边AB所在的直线l翻折得到四边形ABEF.若∠DAB=30°,则四边形CDFE的面积为()A.2 cm2B.3 cm2C.4 cm2D.6 cm210.如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()A.2个B.3个C.4个D.5个二、填空题(每题3分,共30分)11.如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为________.(第11题)(第12题)(第13题)(第14题)12.如图,在菱形ABCD 中,对角线AC =6,BD =10,则菱形ABCD 的面积为________. 13.如图,∠ACB =90°,D 为AB 的中点,连接DC 并延长到E ,使CE =13CD ,过点B 作BF ∥DE ,与AE 的延长线交于点F.若AB =6,则BF 的长为________.14.如图,在矩形ABCD 中,对角线AC ,BD 相交于O ,DE ⊥AC 于点E ,∠EDC ∶∠EDA =1∶2,且AC =10,则EC 的长度是________.15.如图,在四边形ABCD 中,点E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,如果四边形EFGH 为菱形,那么四边形ABCD 是对角线__________的四边形.(第15题)(第16题)(第18题)(第19题)(第20题)16.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB的中点)所在的直线上的点C′处,得到经过点D的折痕DE.则∠DEC的大小为________.17.正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点,若△PBE是等腰三角形,则腰长为____________________.18.菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,3),动点P从点A出发,沿A→B→C→D→A→B→……的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2 016秒时,点P的坐标为________.19.如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y-4)2的值为________.20.如图,Rt△ABC中,∠ACB=90°,以斜边AB为边向外作正方形ABDE,且正方形的对角线交于点O,连接OC.已知AC=5,OC=62,则另一直角边BC的长为________.三、解答题(21题8分,26题12分,其余每题分,共60分)21.如图,四边形ABCD是菱形,DE⊥AB交BA的延长线于点E,DF⊥BC交BC的延长线于点F.求证:DE=DF.(第21题)22.如图,正方形ABCD的边长为4,E,F分别为DC,BC的中点.(1)求证:△ADE≌△ABF;(2)求△AEF的面积.(第22题)23.如图,▱ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥AC,AB=4,BC=213,当四边形BEDF为矩形时,求线段AE的长.(第23题)24.如图,在矩形ABCD中,点E,F分别在边BC,AD上,连接EF,交AC于点O,连接AE,CF.若沿EF折叠矩形ABCD,则点A与点C重合.(1)求证:四边形AECF为菱形;(2)若AB=4, BC=8,求菱形AECF的边长;(3)在(2)的条件下求EF的长.(第24题)25.如图,已知在Rt △ABC 中,∠ACB =90°,现按如下步骤作图: ①分别以A ,C 为圆心,a 为半径(a >12AC)作弧,两弧分别交于M ,N 两点;②过M ,N 两点作直线MN 交AB 于点D ,交AC 于点E ; ③将△ADE 绕点E 顺时针旋转180°,设点D 的对应点为点F. (1)请在图中直接标出点F 并连接CF ; (2)求证:四边形BCFD 是平行四边形; (3)当∠B 为多少度时,四边形BCFD 是菱形?(第25题)26.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图①;(2)若∠PAB=20°,求∠ADF的度数;(3)如图②,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.(第26题)答案一、1.B 2.B 3.D 4.C5.D 点拨:运用三角形的中位线定理和矩形的性质解答.6.C 点拨:根据题意易知△COF 的面积与△AOE 的面积相等,阴影部分的面积为矩形面积的四分之一.7.C8.C 点拨:根据正方形的对角线平分一组对角可得∠ABD =∠ADB =45°,再求出∠DAE 的度数.根据三角形的内角和定理求∠AED ,从而得到∠DAE =∠AED ,再根据等角对等边得到AD =DE ,然后求出正方形的对角线BD ,再求出BE ,进而在等腰直角三角形中利用勾股定理求出EF 的长.9.C10.C 点拨:∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠B =∠BCD =∠D =∠BAD =90°. ∵△AEF 是等边三角形, ∴AE =EF =AF ,∠EAF =60°. ∴∠BAE +∠DAF =30°.在Rt △ABE 和Rt △ADF 中,⎩⎪⎨⎪⎧AE =AF ,AB =AD ,∴Rt △ABE ≌Rt △ADF(HL ), ∴BE =DF(故①正确). ∠BAE =∠DAF.∴∠DAF +∠DAF =30°,即∠DAF =15°(故②正确). ∵BC =CD ,∴BC -BE =CD -DF ,即CE =CF , 又∵AE =AF ,∴AC 垂直平分EF(故③正确).设EC =x ,由勾股定理,得EF =AE =2x ,∴EG =CG =22x ,∴AG =62x , ∴AC =6x +2x2, ∴AB =BC =3x +x2, ∴BE =3x +x 2-x =3x -x2,∴BE +DF =3x -x ≠2x(故④错误), ∵S △CEF =x 22,S △ABE =3x -x 2·3x +x22=x 24,∴2S △ABE =x 22=S △CEF (故⑤正确).综上所述,正确的有4个.二、11.110° 12.30 13.8 14.2.5 15.相等16.75° 点拨:如图,连接BD ,由菱形的性质及∠A =60°,得到三角形ABD 为等边三角形.由P 为AB 的中点,利用等腰三角形三线合一的性质得到∠ADP =30°.由题意易得∠ADC =120°,∠C =60°,进而求出∠PDC =90°,由折叠的性质得到∠CDE =∠PDE =45°,利用三角形的内角和定理即可求出∠DEC =75°.(第16题)17.25或52或65218.(1,0)19.16 点拨:∵四边形ABCD 是矩形,AB =x ,AD =y ,∴CD =AB =x ,BC =AD =y ,∠BCD =90°.又∵BD ⊥DE ,点F 是BE 的中点,DF =4,∴BF =DF =EF =4,∴CF =4-BC =4-y.在Rt △DCF 中,DC 2+CF 2=DF 2,即x 2+(4-y)2=42=16.∴x 2+(y -4)2=16.20.7 点拨:如图所示,过点O 作OM ⊥CA ,交CA 的延长线于点M ;过点O 作ON ⊥BC 于点N ,易证△OMA ≌△ONB ,CN =OM ,∴OM =ON ,MA =NB. ∴O 点在∠ACB 的平分线上. ∴△OCM 为等腰直角三角形. ∵OC =62,∴CM =OM =6. ∴MA =CM -AC =6-5=1.∴BC =CN +NB =OM +MA =6+1=7. 故答案为7.(第20题)三、21.证明:连接DB.∵四边形ABCD 是菱形,∴BD 平分∠ABC. 又∵DE ⊥AB ,DF ⊥BC ,∴DE =DF.22.(1)证明:∵四边形ABCD 为正方形,∴AB =AD =DC =CB ,∠D =∠B =90°.∵E ,F 分别为DC ,BC 的中点,∴DE =12DC ,BF =12BC ,∴DE =BF.在△ADE 和△ABF 中,⎩⎪⎨⎪⎧AD =AB ,∠D =∠B ,DE =BF ,∴△ADE ≌△ABF(SAS ).(2)解:由题知△ABF ,△ADE ,△CEF 均为直角三角形,且AB =AD =4,DE =BF =CE =CF =12×4=2,∴S △AEF =S 正方形ABCD -S △ADE -S △ABF -S △CEF =4×4-12×4×2-12×4×2-12×2×2=6.23.(1)证明:如图,连接BD ,设BD 交AC 于点O. ∵四边形ABCD 是平行四边形, ∴OB =OD.由BE ∥DF ,得∠BEO =∠DFO.而∠EOB =∠FOD , ∴△BEO ≌△DFO. ∴BE =DF.又BE ∥DF , ∴四边形BEDF 是平行四边形.(第23题)(2)解:∵AB ⊥AC ,AB =4,BC =213,∴AC =6,AO =3. ∴在Rt △BAO 中,BO =AB 2+AO 2=42+32=5. 又∵四边形BEDF 是矩形, ∴OE =OB =5.∴点E 在OA 的延长线上,且AE =2.24.(1)证明:由题意可知,OA =OC ,EF ⊥AC.∵AD ∥BC , ∴∠FAC =∠ECA.在△AOF 和△COE 中,⎩⎪⎨⎪⎧∠FAO =∠ECO ,AO =CO ,∠AOF =∠COE ,∴△AOF ≌△COE.∴OF =OE. ∵OA =OC ,EF ⊥AC , ∴四边形AECF 为菱形.(2)解:设菱形AECF 的边长为x ,则AE =x ,BE =BC -CE =8-x.在Rt △ABE 中,BE 2+AB 2=AE 2, ∴(8-x)2+42=x 2,解得x =5.即菱形AECF 的边长为5. (3)解:在Rt △ABC 中,AC =AB 2+BC 2=42+82=45,∴OA =12AC =2 5.在Rt △AOE 中,OE =AE 2-AO 2=52-(25)2=5, ∴EF =2OE =2 5. 25.(1)解:如图所示.(第25题)(2)证明:连接AF ,DC.∵△CFE 是由△ADE 顺时针旋转180°后得到的,A 与C 是对应点,D 与F 是对应点, ∴AE =CE ,DE =FE.∴四边形ADCF 是平行四边形. ∴AD ∥CF.由作图可知MN 垂直平分AC ,又∠ACB =90°,∴MN ∥BC. ∴四边形BCFD 是平行四边形.(3)解:当∠B =60°时,四边形BCFD 是菱形.理由如下: ∵∠B =60°,∠ACB =90°, ∴∠BAC =30°.∴BC =12AB.又易知BD =12AB ,∴DB =CB.∵四边形BCFD 是平行四边形,∴四边形BCFD 是菱形. 26.解:(1)如图①所示.(2)如图②,连接AE ,∵点E 是点B 关于直线AP 的对称点, ∴∠PAE =∠PAB =20°,AE =AB. ∵四边形ABCD 是正方形, ∴AE =AB =AD ,∠BAD =90°,∴∠AED =∠ADE ,∠EAD =∠DAB +∠BAP +∠PAE =130°, ∴∠ADF =180°-130°2=25°. (3)如图③,连接AE ,BF ,BD ,由轴对称和正方形的性质可得,EF =BF ,AE =AB =AD ,易得∠ABF =∠AEF =∠ADF ,又∵∠BAD =90°.∴∠ABF +∠FBD +∠ADB =90°, ∴∠ADF +∠ADB +∠FBD =90°,∴∠BFD =90°.在Rt △BFD 中,由勾股定理得BF 2+FD 2=BD 2.在Rt △ABD 中,由勾股定理得BD 2=AB 2+AD 2=2AB 2, ∴EF 2+FD 2=2AB 2.(第26题)第十九章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列各选项中表示y 是x 的函数的是( )2.在函数y =x +4x中,自变量x 的取值范围是( ) A .x >0 B .x ≥-4 C .x ≥-4且x ≠0 D .x >0且x ≠-4 3.一次函数y =-2x +1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.若一次函数y =(1-2m)x +m 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1<y 2,且与y 轴相交于正半轴,则m 的取值范围是( )A .m >0B .m <12C .0<m <12D .m >125.一艘轮船在长江航线上往返于甲、乙两地,若轮船在静水中的速度不变,轮船先从甲地顺水航行到乙地,停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用的时间为t(h ),航行的路程为s(km ),则s 与t 的函数图象大致是( )6.如图,直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx -1的解集在数轴上表示正确的是()(第6题)7.已知一次函数y=kx+b,y随着x的增大而减小,且kb>0,则这个函数的大致图象是()8.把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是()A.1<m<7 B.3<m<4 C.m>1 D.m<49.已知一次函数y=32x+m和y=-12x+n的图象都经过点A(-2,0),且与y轴分别交于点B,C,那么△ABC的面积是()A.2 B.3 C.4 D.6(第10题)10.小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(m)与小文出发时间t(min)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480.其中正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题(每题3分,共30分)11.函数y=(m-2)x+m2-4是正比例函数,则m=________.12.一次函数y=2x-6的图象与x轴的交点坐标为________.13.如果直线y =12x +n 与直线y =mx -1的交点坐标为(1,-2),那么m =________,n =________.14.如图,一次函数y =kx +b 的图象与x 轴的交点坐标为(2,0),则下列说法:①y 随x 的增大而减小;②b >0;③关于x 的方程kx +b =0的解为x =2.其中说法正确的有________(把你认为说法正确的序号都填上).(第14题)(第16题)(第17题)(第18题)(第19题)15.若一次函数y =(2m -1)x +3-2m 的图象经过第一、二、四象限,则m 的取值范围是__________. 16.如图,在平面直角坐标系中,点O 为坐标原点,直线y =kx +b 经过A(-6,0),B(0,3)两点,点C ,D 在直线AB 上,C 的纵坐标为4,点D 在第三象限,且△OBC 与△OAD 的面积相等,则点D 的坐标为__________.17.如图,直线l 1,l 2交于点A ,观察图象,点A 的坐标可以看作方程组__________的解. 18.如图,在平面直角坐标系中,点A 的坐标为(0,6),将△OAB 沿x 轴向左平移得到△O′A′B′,点A 的对应点A′落在直线y =-34x 上,则点B 与其对应点B′间的距离为________.(第20题)19.如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1都是等腰直角三角形,其中点A1,A2,…,A n在x轴上,点B1,B2,…,B n在直线y=x上,已知OA2=1,则OA2 015的长为________.20.一次越野赛跑中,当小明跑了1 600 m时,小刚跑了1 400 m,小明、小刚在此后所跑的路程y(m)与时间t(s)之间的函数关系如图,则这次越野赛跑的全程为________m.三、解答题(21题6分,26题10分,27题12分,其余每题8分,共60分)21.已知关于x的一次函数y=(6+3m)x+(n-4).(1)当m,n为何值时,y随x的增大而减小?(2)当m,n为何值时,函数图象与y轴的交点在x轴的下方?(3)当m,n为何值时,函数图象经过原点?22.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),求此一次函数的解析式.23.函数y1=x+1与y2=ax+b(a≠0)的图象如图所示,这两个函数图象的交点在y轴上,试求:(1)y2=ax+b的函数解析式;(2)使y1,y2的值都大于零的x的取值范围.(第23题)24.已知一次函数y =ax +2与y =kx +b 的图象如图,且方程组⎩⎪⎨⎪⎧y =ax +2,y =kx +b 的解为⎩⎪⎨⎪⎧x =2,y =1,点B 的坐标为(0,-1),请你确定这两个一次函数的解析式.(第24题)25.如图所示,已知直线y =x +3与x 轴、y 轴分别交于A ,B 两点,直线l 经过原点,与线段AB 交于点C ,把△AOB 的面积分为21的两部分,求直线l 对应的函数解析式.(第25题)26.一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元;(2)在甲、乙两店各配货10箱(按整箱配货),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?27.甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地,40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/小时,结果与甲车同时到达B地.甲、乙两车距A地的路程y(千米)与乙车行驶时间x(小时)之间的函数图象如图所示.请结合图象信息解答下列问题:(1)直接写出a的值,并求甲车的速度;(2)求图中线段EF所表示的y与x之间的函数关系式,并直接写出自变量x的取值范围;(3)乙车出发多少小时与甲车相距15千米?(第27题)答案一、1.D点拨:根据函数的定义可知,对于自变量x的任何值,y都有唯一确定的值与之对应,只有D才满足这一条件.故选D.2.C 3.C 4.C 5.B 6.A7.B 点拨:∵y 随x 的增大而减小, ∴k<0.又∵kb>0,∴b<0,故选B . 8.C 9.C10.B 点拨:由图象得出小文步行720 m ,需要9 min , 所以小文的速度为720÷9=80(m /min ),当第15 min 时,小亮骑了15-9=6(min ),骑的路程为15×80=1 200(m ), ∴小亮的速度为1 200÷6=200(m /min ), ∴200÷80=2.5,故②正确;当第19 min 以后两人之间距离越来越近,说明小亮已经到达终点,则小亮先到达青少年宫,故①正确; 此时小亮骑了19-9=10(min ),骑的总路程为10×200=2 000(m ),∴小文的步行时间为2 000÷80=25(min ), 故a 的值为25,故③错误;∵小文19 min 步行的路程为19×80=1 520(m ),∴b =2 000-1 520=480,故④正确.∴正确的有①②④.故选B .二、11.-2 点拨:∵函数是正比例函数,∴⎩⎪⎨⎪⎧m 2-4=0,m -2≠0.∴m =-2.12.(3,0) 13.-1;-5214.①②③15.m <12 点拨:根据题意可知:⎩⎪⎨⎪⎧2m -1<0,3-2m >0,解不等式组即可.16.(-8,-1)17.⎩⎪⎨⎪⎧y =-x +2,y =2x -1 18.8 点拨:由题意可知,点A 移动到点A′位置时,纵坐标不变,∴点A′的纵坐标为6,-34x =6,解得x =-8,∴△OAB 沿x 轴向左平移了8个单位长度到△O′A′B′位置,∴点B 与其对应点B′间的距离为8.19.22 013 点拨:因为OA 2=1,所以OA 1=12,进而得出OA 3=2,OA 4=4,OA 5=8,由此得出OA n=2n -2,所以OA 2 015=22 013.20.2 200 点拨:设小明的速度为a m /s ,小刚的速度为b m /s ,由题意,得⎩⎪⎨⎪⎧1 600+100a =1 400+100b ,1 600+300a =1 400+200b ,解得⎩⎪⎨⎪⎧a =2,b =4.故这次越野赛跑的全程为1 600+300×2=2 200(m ).三、21.解:(1)由题意知,6+3m<0,解得m<-2,所以当m <-2且n 为任意实数时,y 随x 的增大而减小;(2)由题意知,6+3m ≠0,且n -4<0,故当m ≠-2且n <4时,函数图象与y 轴的交点在x 轴的下方; (3)由题意知,6+3m ≠0,且n -4=0,故当m ≠-2且n =4时,函数图象经过原点. 22.解:设一次函数的解析式为y =kx +b ,∵一次函数的图象与直线y =-x +1平行,∴k =-1, ∴一次函数的解析式为y =-x +b , ∵图象经过点(8,2), ∴2=-8+b ,解得b =10, ∴一次函数的解析式为y =-x +10.23.解:(1)对于函数y 1=x +1,当x =0时,y =1.∴将点(0,1),点(2,0)的坐标分别代入y 2=ax +b 中,得⎩⎪⎨⎪⎧b =1,2a +b =0,解得⎩⎪⎨⎪⎧a =-12,b =1,∴y 2=-12x +1;(2)由y 1>0,即x +1>0,得x>-1, 由y 2>0,即-12x +1>0,得x<2.故使y 1>0,y 2>0的x 的取值范围为-1<x <2.24.解:因为方程组⎩⎪⎨⎪⎧y =ax +2,y =kx +b 的解为⎩⎪⎨⎪⎧x =2,y =1,所以交点A 的坐标为(2,1),所以2a +2=1,解得a =-12.又因为函数y =kx +b 的图象过交点A(2,1)和点B(0,-1),所以⎩⎪⎨⎪⎧2k +b =1,b =-1,解得⎩⎪⎨⎪⎧k =1,b =-1.所以这两个一次函数的解析式分别为y =-12x +2,y =x -1.点拨:此类问题的解题规律是明确方程组的解就是两条直线的交点坐标,再利用待定系数法求解.本题中确定这两个函数的解析式的关键..是确定a ,k ,b 的值. 25.解:∵直线y =x +3与x ,y 轴分别交于A ,B 两点, ∴A 点坐标为(-3,0),B 点坐标为(0,3),∴OA =3,OB =3, ∴S △AOB =12OA·OB =12×3×3=92,设直线l 对应的函数解析式为y =kx(k ≠0),∵直线l 把△AOB 的面积分为21的两部分,直线l 与线段AB 交于点C ,∴分两种情况来讨论:①当S △AOCS △BOC =21时,设C 点坐标为(x 1,y 1),又∵S △AOB =S △AOC +S △BOC =92,∴S △AOC =92×23=3,即S △AOC =12·OA·|y 1|=12×3×|y 1|=3,∴y 1=±2,由图可知取y 1=2. 又∵点C 在直线AB 上, ∴2=x 1+3.∴x 1=-1.∴C 点坐标为(-1,2).把C 点坐标(-1,2)代入y =kx 中,得2=-1×k , ∴k =-2.∴直线l 对应的函数解析式为y =-2x. ②当S △AOCS △BOC =12时,设C 点坐标为(x 2,y 2).又∵S △AOB =S △AOC +S △BOC =92,∴S △AOC =92×13=32,即S △AOC =12·OA·|y 2|=12×3×|y 2|=32.∴y 2=±1,由图可知取y 2=1.又∵点C 在直线AB 上,∴1=x 2+3,∴x 2=-2,∴C 点坐标为(-2,1).把C 点坐标(-2,1)代入y =kx 中,得1=-2k ,∴k =-12,∴直线l 对应的函数解析式为y =-12x ,综上所述,直线l 对应的函数解析式为y =-2x 或y =-12x.26.解:(1)经销商能盈利5×11+5×17+5×9+5×13=250(元);(2)设甲店配A 种水果x 箱,则甲店配B 种水果(10-x)箱,乙店配A 种水果(10-x)箱,乙店配B 种水果10-(10-x)=x(箱).∵9(10-x)+13x ≥100,∴x ≥2.5.设经销商盈利为w 元,则w =11x +17(10-x)+9(10-x)+13x =-2x +260.∵-2<0,∴w 随x 的增大而减小,∴当x =3时,w 值最大,最大值为-2×3+260=254(元). 答:使水果经销商盈利最大的配货方案为甲店配A 种水果3箱,B 种水果7箱,乙店配A 种水果7箱,B 种水果3箱.最大盈利为254元.27.解:(1)a =4.5,甲车的速度为46023+7=60(千米/小时);(2)设乙开始的速度为v 千米/小时,则4v +(7-4.5)×(v -50)=460,解得v =90,4v =360,则D(4,360),E(4.5,360),设直线EF 对应的函数关系式为y =kx +b ,把点E(4.5,360),点F(7,460)的坐标分别代入,得⎩⎪⎨⎪⎧4.5k +b =360,7k +b =460,解得⎩⎪⎨⎪⎧k =40,b =180.所以线段EF 所表示的y 与x 之间的函数关系式为y =40x +180(4.5≤x ≤7);(3)60×23=40(千米),则C(0,40),设直线CF 对应的函数解析式为y =mx +n.把点C(0,40),点F(7,460)的坐标分别代入,得⎩⎪⎨⎪⎧n =40,7m +n =460,解得⎩⎪⎨⎪⎧m =60,n =40,所以直线CF 对应的函数解析式为y =60x +40,易得线段OD 对应的函数解析式为y =90x(0≤x ≤4),当60x +40-90x =15,解得x =56;当90x -(60x +40)=15,解得x =116;当40x +180-(60x +40)=15,解得x =254.所以乙车出发56小时或116小时或254小时,乙车与甲车相距15千米.第二十章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.一组数据6,3,9,4,3,5,12的中位数是( ) A .3 B .4 C .5 D .62.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的这三项成绩(百分制)分别为95分,90分,88分,则小彤这学期的体育成绩为( )A .89分B .90分C .92分D .93分3.制鞋厂准备生产一批男皮鞋,经抽样(120名中年男子),得知所需鞋号和人数如下:并求出鞋号的中位数是25.5 cm ,众数是26 cm ,平均数约是25.5 cm ,下列说法正确的是( ) A .因为需要鞋号为27 cm 的人数太少,所以鞋号为27 cm 的鞋可以不生产 B .因为平均数约是25.5 cm ,所以这批男鞋可以一律按25.5 cm 的鞋生产 C .因为中位数是25.5 cm ,所以25.5 cm 的鞋的生产量应占首位 D .因为众数是26 cm ,所以26 cm 的鞋的生产量应占首位4.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的平均数、中位数分别是( ) A .4,4 B .3,4 C .4,3 D .3,35.济南某中学足球队的18名队员的年龄如下表所示:。

(完整版)北师大版八年级数学下册各章测试题带答案(全册)

(完整版)北师大版八年级数学下册各章测试题带答案(全册)

第一章《三角形的证明》水平测试一、精心选一选,慧眼识金(每小题2 分,共 20 分), 现在他要到玻璃店去配一块完全一样形 )去配 . ①和② 1.如图 1, 某同学把一块三角形的玻璃打碎成三片状的玻璃 . 那么最省事的办法是带(A. ①B. ②③C. D. 2.下列说法中,正确的是().A .两腰对应相等的两个等腰三角形全等B .两角及其夹边对应相等的两个三角形全等C .两锐角对应相等的两个直角三角形全等D .面积相等的两个三角形全等3.如图 2, AB ⊥ CD ,△ ABD 、△ BCE 都是等腰三角形,如果 CD=8cm , B E=3cm ,那么 AC长为( ) . A .4cm B . 5cm C .8cm D . 34cm ABC 中, D,E 分别是 BC,AC 上的点,且 CE , AD 与 BE 相交4.如图 3,在等边 BD12 的度数是( 于点 P ,则 ). 0A . 45B . 55C . 60D . 75.如图 5 ,在 4 中, ,A36 ,和 分别是 和 的平分ABC AB=AC BD CE ABC ACB).线,且相交于点 A . 9 个P. 在图 4 中,等腰三角形(不再添加线段和字母 )的个数为( B .8 个C . 7 个D . 6 个6.如图 5 , l 1,l 2,l3表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有( ) .A . 1 处B . 2 处C . 3 处D . 4 处7.如图 6, A 、 C 、 E 三点在同一条直线上,△DAC 和△ EBC 都是 等边三角形, AE 、 BD 分别与CD 、 CE 交于点M 、 N ,有如下结 论:① △ ACE ≌△ DCB ;② CM =CN ;③AC = DN.其中,正确结论的个数是() .A . 3 个B . 2 个C . 1 个D . 0 个8.要测量河两岸相对的两点A 、B 的距离,先在 AB 的垂线 BF 上取两点C ,D ,使 CD=BC , 再作出 BF 的垂线DE ,使 A , C , E 在同一条直线上(如图7),可以证明 ABC ≌EDC ,得 ED=AB.因此,测得DE 的长就是 AB 的长,在这里判定 ABC ≌ EDC 的条件是 ( ).A .ASA 9.如图 8,将长方形B . SAS ABCD 沿对角线 C . SSS BD 翻折,点D . HL C 落在点 E的位置, BE 交 AD 于点F.求证:重叠部分(证明:∵四边形 即 BDF )是等腰三角形 .ABCD 是长方形,∴AD ∥BCBDE 与 BDC 关于 BD 对称,又∵图 8 ∴2 3. ∴BDF 是等腰三角形 . 请思考:以上证明过程中,涂黑部分正确的应该依次是以下四项中的哪两项? () .① 2;②3;③4;④C .②① ABC ,使 AB = AC ,且 1 A .①③13BDCBDE D .③④B .②③a ,h 作等腰△ 10. 如 图 9,已知线段 BC =a , BC 边上的高AD = h. 张红的作法是:( 1)作线段 BC= a ;( 2)作线段 BC 的垂直平分线 MN , MN 与 BC 相交于点 D ; ( 3)在直线 MN 上截取线段h ;( 4)连结 AB , AC ,则△ ABC 为所求的等腰三角形. ).D. ( 4)上述作法的四个步骤中,有错误的一步你认为是(A. ( 1)B. ( 2)C. ( 3)二、细心填一填,一锤定音(每小题 2 分,共 20 分)1.如图 10,已知,在△ ABC 和△ DCB 中, AC=DB ,若不增加任何字母与辅助线,要使△ ABC ≌△ DCB ,则还需增加一个条件是.2.如图 11,在 Rt ABC中,AC ,分别过点B,C 作经过点 A 的直线BAC 90 ,AB的垂线段 BD , CE ,若 BD=3厘米, CE=4厘米,则DE 的长为 .3.如图 12, P , Q 是△ ABC 的边 BC 上的两点,且 于 _ 度.BP = PQ =QC = AP =AQ ,则∠ ABC等 4.如图 13,在等腰 ABC 中, AB=27,AB 的垂直平分线交AB 于点D ,交 AC 于点E , 若 BCE 的周长为50,则底边 BC 的长为 .5.在 ABC 中, AB=AC , AB 的垂直平分线与AC 所在的直线相交所得的锐角为50 ,则底角 B 的大小为 .6.在《证明二》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等; ④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到 这个角两边的距离相等 . 在上述定理中,存在逆定理的是.( 填序号 )7.如图 与点 14,有一张直角三角形纸片,两直角边AC=5cm , B C=10cm ,将△ ABC 折叠,点 BA 重合,折痕为DE ,则 CD 的长为.8.如图15,在ABC 中,AB=AC ,120 , D 是 BC 上任意一点,分别做DE ⊥ ABA于 E , DF ⊥AC 于 F ,如果BC=20cm ,那么 DE+DF= cm. 9.如图 16,在 Rt △ ABC 中,∠ C=90° , ∠ B=15°, DE 是 AB 的中垂线,垂足为D ,交 BC于点 E ,若 BE 4,则 AC . 10.如图 17,有一块边长为 24m 的长方形绿地,在绿地旁边B 处有健身器A 处立一个标 材,由于居住在 A 处的居民践踏了绿地,小颖想在牌“少走 步,踏之何忍?”但小颖不知在“”处应填什么数字,请你帮助她填上好吗?( 三、耐心做一做,马到成功(本大题共 假设两步为 48 分) 1 米)?1.( 7 分)如图 18,在 ABC 中,90 ,CD 是 AB 边上的高,ACBA30 . 求证: AB=4BD.中, C90 CAB.( 分)如图 27,在, AC=BC , AD平分19 ABC BDE的交 BC 于点 D , DE ⊥AB 于点 E ,若 AB=6cm.你能否求出 周长?若能,请求出;若不能,请说明理由 .3.( 10 分)如图 20, D 、 E 分别为△ ABC 的边 AB 、 A C 上的点, BE 与CD 相交于 O 点 . 现有四个条件:① ③∠ ABE =∠ ACD ;④ BE = CD. AB =AC ;② OB = OC ;(1) 请你选出两个条件作为题设,余下的两个作为结论,写出一个正 确的命题: ..命题的条件是(2) 证明你写出的命题已知:求证:证明:和.,命题的结论是和( 均填序号).4.(8 分)如图21 ,在ABC中,A90 ,AB=AC,ABC的平分线BD交AC于D,CE⊥BD的延长线于点E.图211 BD.求证:CE25.(8 分)如图22,在ABC中,C 90 .(1)用圆规和直尺在AC上作点P,使点P 到A、B 的距离相等.(保留作图痕迹,不写作法和证明);(2)当满足(1)的点P 到AB、BC的距离相等时,求∠A 的度数.6.(8 分)如图23,AOB90,OM平分AOB,将直角三角板的顶点P 在射线OM上移动,两直角边分别与PC与PD相等吗?试说明理由. OA、OB相交于点C、D,问图23四、拓广探索(本大题12 分)如图24,在ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若A40 .(1)求NMB的度数;(2)如果将(1)中 A 的度数改为70 ,其余条件不变,再求图24 NMB的度数;(3)你发现有什么样的规律性,试证明之;(4)若将(1)中的A 改为钝角,你对这个规律性的认识是否需要加以修改?答案:一、精心选一选,慧眼识金 1. C ; 2. B ;3. D .点拨: BC=BE=3cm , A B=BD=5cm ; 4. C .点拨:利用 5. B ;ABD ≌ BCE ;6. D .点拨:三角形的内角平分线或外角平分线的交点处均满足条件; 7. B .点拨:① 8. A ; 9. C ;②正确;10. C .点拨:在直线 MN 上截取线段 h ,带有随意性,与作图语言的准确性不相符 .二、细心填一填,一锤定音 1.答案不惟一 . 如 ACB 2. 7 厘米 . 点拨:利用 DBC ;CAE ;ABD ≌3. 30 ;4. 23.点拨:由 CE AC AB27,可得 5027 23;BE BC5. 70 或 20. 点拨;当 ABC 为锐角三角形时,B70 ;当 ABC 为钝角三角形时,B20 ;6.①、③、④、⑤ 不存在逆定理;15. 点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②7.cm. 点拨:设 x ,则易证得 10 x. 在 ACD 中,CD BDAD Rt42225,解得 x.15 (10x) x418. 10.点拨:利用含 30 角的直角三角形的性质得, BC.DE DF 1 BD CD22点拨:在 AEC中,30 ,由 . Rt AECAE=BE=4 ,则得 ;9 2.AC=2米,故少 走 10. 16.点拨: AB=26 米, AC+BC=34 三、耐心做一做,马到成功 8 米,即 16 步 .90 , A30 ,∴ AB=2BC ,1.∵ACBB 60 .30 ,∴ BC=2BD.DCB 又∵ CD ⊥ AB ,∴2.根据题意能求 出∴ AB=2BC=4BD.BDE 的周长 .C90 , DEA90 ,又∵ AD 平分 CAB ,∴ DE=DC. ∵ 在 RtADC 和RtADE中, DE=DC , AD=AD ,∴ RtADC ≌ RtADE ( HL ) .精品学习资料精品学习资料5精品学习资料 精品学习资料∴ AC=AE ,又∵ AC=BC ,∴ AE=BC. ∴ BDE 的周长 DEDBEBBCEBAEEBAB.∵ AB=6cm ,∴BDE 的周长=6cm.3.( 1)①,③;②,④ .( 2)已知: D 、 E 分别为△ ABC 的边 AB 、 AC 上的点, AB = AC ,∠ ABE =∠ ACD.求证: OB =OC , BE =CD.证明:∵ AB=AC ,∠ ABE =∠ ACD ,∠ A=∠A ,∴△ BE 与 CD 相交于 O 点,且ABE ≌△ ACD ( ASA ). ∴ BE=CD. 又∵∴ ACB ,∴ABCBCD O B = OC.ACBACDABCABECBEBOC 是等腰三角形,∴4.延长 CE 、 BA 相交于点F.∵ EBF 90 ,∴F 90 , ACFF EBF ACF.在 RtABD 和 RtACF 中,∵ ∴ RtABD ≌ RtACF ( ASA ). ∴ BD 在 RtBCE 和 RtBFE 中,∵ BE=BE , ∴ RtBCE ≌ RtBFE ( ASA ) .ACF , A B=AC , CF. DBAEBF ,EBC1 1∴CE ∴ CEEF. BD. CF225.( 1)图略 . 点拨:作线段AB 的垂直平分线.( 2)连结 BP.∵点 P 到 AB 、 BC 的距离相等,∴ BP 是 ABC 的平分线,∴ ABP PBC. PA=PB ,∴ 又∵点 P 在线段 AB 的垂直平分线上,∴ A ABP.1900 3 AABP PBC 30 . ∴ 6.过点 P 作 PE ⊥OA 于点 E , PF ⊥ OB 于点 F. 0AOB ,点 P 在 OM 上,∴ PE=PF.又∵AOB 90 ,∴ EPF90 .∵ OM 平分EPFCPD ,∴ EPC FPD . ∴ RtPCE ≌RtPDF (ASA ),∴PC=PD.∴ 四、拓广探索 110 04070 .180180 BACB.∴BA( 1)∵ AB=AC ,∴22NMB90B 907020 . ∴ 1) . 同理可得, 0NMB35 .( 2)解法同( NMB 的度数等于顶角 A 度数的一半 ( 3)规律:证明: 设. 0A BB11802180.C ,∴ . ∵ AB=AC ,∴190 ,∴BNMNMB 90B901 2.∵ 2NMB 的度数等于顶角A 度数的一半 即 .( 4)将( 1)中的 A 改为钝角,这个规律不需要修改. 仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的 一半.精品学习资料精品学习资料6精品学习资料精品学习资料全全品品中考网第二章一元一次不等式(组)检测试题一、选择题(每小题 3 分, 共36 分)的和是一个非负数1.x 与y 的差的5 倍与2 , 可表示为()(A)5xy22.下列说法中正确的是(0(B)5xy 20(C)x5y 20(D)5x2y20 )的一个解.的唯一解.(A)x (C)x 3是3(B)x(D)x3 是2x3 不是2x2x333 的解集.3 的解.2x3. 不等式2x 2 x 2 的非负整数解的个数是()(A)1 (B)2 (C)3 (D)47精品学习资料精品学习资料4.已知正比例函数y 2m1x的图象上两点,Bx 2,y 2, 当x1 x2 时, 有Ax1,x 2y1 y2, 那么m的取值范围是()1 1(A)m (B)m (D)m0(C)m22 22x 6 0, 1的解集是(5.不等式组)x 5 3. 2(A)2 x3(B)8x 3(C)8 x3(D)x 8 或x3 6.若 a b 0, 且0,则a,b 的大小关系是(b a,b, )(A (C )a)ab ababba aba(B)(D)ab bb在 5 上的函数值总是正的7.已知关于x 的一次函数y mx 2m 7 1 x , 则的取m 值范围是()(B)m(A)m 7 1 (C)1 m 7 (D)以上答案都不对8 y 2k 4 ,则x y3x xy3yk3.1, 的解为x、,且的取值范围是().如果方程组()0A x y 1()B10xy (C)1xy1 (D)3xy 12的解是负数,5x 则3mx 1 1 m3 x m的取值范围是(9.若方程)5 5 5 5(A)m (B)m (C)m (D)m4 43 的值的符号相同,则(C)1x21,则4 410.两个代数式(A)x3 x 1 与x x 的取值范围是()(B)x1 (D)x 1 或x3a 的取值范围是11.若不等式 a 3x a 3 的解集是x ()(A)a3 (B)a34,那么(C)a (D)a3312.若4 2m 2mm的取值范围是()2(A)不小于 2 (B)不大于(C)大于2 (D)等于2二、填空题(每题133 分, 共24 分). 当x 时, 代数式3x 4 的值是非正数.14 .2x a 1,1 x 1, 那么ab 的值等于. 若不等式的解集为x 2b 3.精品学习资料精品学习资料15. 若x 同时满足不等式 3 0 与0, 则x 的取值范围是2x x 2 .8精品学习资料 精品学习资料16 . 5 2x 1,已知 x 关于的不等式组无解 , 则 a 的取值范围是.x a0. 17. 18 .如果关于 x 的不等式 1xa5 和 2x 4 的解集相同 , 则 a 的值为 .a小马用 100 元钱去购买笔记本和笔共30 件 , 已知每本笔记本 2 元, 每枝钢笔 5 元 , 那么小马最多能买 枝钢笔 .19. 一个两位数 , 十位上的数字比个位数上的数字小 2, 若这个两位数处在 40 至 60 之间 , 那么这个两位数是 .20 .已知四个连续自然数的和不大于 34, 这样的自然数组有 组 .三、解答题(每题 分 , 共 40 分) 8 x2x21.解不等式, 并把它的解集在数轴上表示出来 .3x52x 2 3322. 求不等式组112x3 3x1,(1)的偶数解.x21 2x .3(2)23.已知关于 x,y 的方程组2xym3,(1)的解 x,y 均为负数 , 求 m 的取值范围 .x y 2m. (2)精品学习资料精品学习资料9精品学习资料精品学习资料2y 5 3y y7t,24. 关于y 的不等式组y t 3,2,1,0,1 ,求参数t 的取值范的整数解是.2 3 6围.25. 甲乙两人先后去同一家商场买了一种每块0.50 元的小手帕. 商场规定凡购买不少于10 块小手帕可优惠20%,结果甲比乙多花了 4 元钱,又知甲所花的钱不超过8 元,在充分享受优惠的条件下,甲乙两人各买了多少块小手帕?参考答案一、选择题(每小题 3 分, 共36 分)y 的差的 5 倍是5xy, 再与2 的和是5xy2, 是一个非负数1.解:x 与为:5xy 2 0.故选(B)2.解:2x 3, 根据不等式基本性质2, 两边都除以2, 得 3 . 由此, 可知x3 只是2x32x的一个解.故选(A)10精品学习资料 精品学习资料2x x4 2.x 2.3. 解:去括号,得解得所以原不等式的非负数整数解 为x 0,1,2, 共 3 个.故选( C )4.解 : 因为点 Ax 1,x 2,Bx 2,y 在函数 2m 1x 的图象上 y ,2所以 y 12m1x 1,y 22m1x 2.所以 y 1 y 2 2m1x 1 x 2.因为当 x 2 时 , 有 y 1y 2, 即当 x 1x 1 x 2,y y 2 0,1 所以 2m10. 所以 m1. 2故选( A ) 5.解 : 由(1)由(2) 得 得 x8 .3.x 所以不等式组的解集是故选( C ) 8 x36.解 : 由 ab0, 且 0,得 a 0 且 bab. 又根据不等式的性 质 2, 得 a0,b0.ab,ab.所以 a 故选( D )bba7.解 : 根据题意 , 令 x1, 则 y m70,得 m7; 令 x 5, 则 y7m70, 得 m1.得 m7 综上 , .故选( A )18.解:两个不等式相减后整理,得xy2 .k 2由 2 k4,得 k22. 0 xy1所以 0故选( A )19.解 : 方程 3mx的解为 x, 511m3x5x 4m5. 4要使解为负数,必须 50,即 4m m故选( A ) 10.解 : 因为代数式 1 与 3的 值的符号相同,可得 xx精品学习资料精品学习资料11精品学习资料精品学习资料x 1 0, x 1 0,或0.x 3 x 33 0.x x 1., ,由第一个不等式组得故选(D); 由第二个不等式组得a3xa3 x1 a30 a3 11.解: 因为不等式的解集是,所以. 所以.故选(C)42m 2m 4, 得2m 4 0 , 所以.12.解: 由m2故选(A)二、填空题(每题 3 分, 共24 分)4.313. 解: 根据题意, 得3x 4 0. 解得x1 a2xa 1,x , 所以得3. 3 a2 2b x 114. 解: 由.x 2b 2x 3 2b.1 a1, a 1,1, 所以又因为 1 x 2 解得b 2.3 2b 1.所以ab 1 2 2.315. 解: 由 3 0, 得, 由 2 0, 得 2.2x x x x23所以x 2.2x 3,16. 解: 原不等式组可化为x a.若不等式组有解故当a3 时, , 则a x 3..a 3. 不等式组无解所以a 的取值范围是 a2. 3.17. 解: 由2x 4 得xa 1x a 5 和 4 的解集相同因为不等式2x ,5 的解集为a 1x a aa 5. 1所以不等式xa52. 解得7.aa 118. 解: 设小马最多能买x 枝钢笔.精品学习资料精品学习资料根据题意, 得100。

人教版八年级数学下册全册单元测试题全套及答案

人教版八年级数学下册全册单元测试题全套及答案

最新人教版八年级数学下册单元测试题全套及答案(含期中,期末试题,带答案)第十六章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.二次根式2-x有意义,则x的取值范围是( D)A.x>2 B.x<2 C.x≥2 D.x≤22.(2016·自贡)下列根式中,不是最简二次根式的是( B)A.10B.8C. 6D. 23.下列计算结果正确的是( D)A.3+4=7 B.35-5=3 C.2×5=10 D.18÷2=34.如果a+a2-6a+9=3成立,那么实数ɑ的取值范围是( B)A.a≤0 B.a≤3 C.a≥-3 D.a≥35.估计32×12+20的运算结果应在( C)A.6到7之间 B.7到8之间 C.8到9之间 D.9到10之间6.12x4x+6xx9-4x x的值一定是( B)A.正数 B.非正数 C.非负数 D.负数7.化简9x2-6x+1-(3x-5)2,结果是( D)A.6x-6 B.-6x+6 C.-4 D.48.若k,m,n都是整数,且135=k15,450=15m,180=6n,则下列关于k,m,n的大小关系,正确的是( D)A.k<m=n B.m=n>k C.m<n<k D.m<k<n9.下列选项错误的是( C)A.3-2的倒数是3+ 2B.x2-x一定是非负数C.若x<2,则(x-1)2=1-x D.当x<0时,-2x在实数范围内有意义10.如图,数轴上A,B两点对应的实数分别是1和3,若A点关于B点的对称点为点C,则点C 所对应的实数为( A )A .23-1B .1+ 3C .2+ 3D .23+1 二、填空题(每小题3分,共24分)11.如果两个最简二次根式3a -1与2a +3能合并,那么a =__4__. 12.计算:(1)(2016·潍坊)3(3+27)=__12__; (2)(2016·天津)(5+3)(5-3)=__2__.13.若x ,y 为实数,且满足|x -3|+y +3=0,则(x y)2018的值是__1__.14.已知实数a ,b 在数轴上对应的位置如图所示,则a 2+2ab +b 2-b 2=__-a __.,第17题图)15.已知50n 是整数,则正整数n 的最小值为__2__.16.在实数范围内分解因式:(1)x 3-5x =__x (x +5)(x -5)__;(2)m 2-23m +3=__(m -3)2__.17.有一个密码系统,其原理如图所示,输出的值为3时,则输入的x =__22__. 18.若xy >0,则化简二次根式x -yx2的结果为__--y . 三、解答题(共66分) 19.(12分)计算: (1)48÷3-12×12+24; (2)(318+1672-418)÷42; 解:(1)4+ 6 (2)94(3)(2-3)98(2+3)99-2|-32|-(2)0. 解:120.(5分)解方程:(3+1)(3-1)x =72-18. 解:x =32221.(10分)(1)已知x =5-12,y =5+12,求y x +xy的值; 解:∵x +y =252=5,xy =5-14=1,∴y x +x y =y 2+x 2xy =(x +y )2-2xy xy =(5)2-2×11=3(2)已知x ,y 是实数,且y <x -2+2-x +14,化简:y 2-4y +4-(x -2+2)2.解:由已知得⎩⎨⎧x -2≥0,2-x ≥0,∴x =2,∴y <x -2+2-x +14=14,即y <14<2,则y -2<0,∴y 2-4y +4-(x -2+2)2=(y -2)2-(2-2+2)2=|y -2|-(2)2=2-y -2=-y22.(10分)先化简,再求值:(1)[x +2x (x -1)-1x -1]·xx -1,其中x =2+1;解:原式=2(x-1)2,将x=2+1代入得,原式=1(2)a2-1a-1-a2+2a+1a2+a-1a,其中a=-1- 3.解:∵a+1=-3<0,∴原式=a+1+a+1a(a+1)-1a=a+1=-323.(7分)先化简,再求值:2a-a2-4a+4,其中a= 3.小刚的解法如下:2a-a2-4a+4=2a-(a-2)2=2a-(a-2)=2a-a+2=a+2,当a=3时,2a-a2-4a+4=3+2.小刚的解法对吗?若不对,请改正.解:不对.2a-a2-4a+4=2a-(a-2)2=2a-|a-2|.当a=3时,a-2=3-2<0,∴原式=2a+a-2=3a-2=33-224.(10分)已知长方形的长a=1232,宽b=1318.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.解:(1)2(a+b)=2×(1232+1318)=62,∴长方形周长为62(2)4×ab=4×1232×1318=4×22×2=8,∵62>8,∴长方形周长大25.(12分)观察下列各式及其验证过程:223=2+23,验证:223=233=23-2+222-1=2(22-1)+222-1=2+23;338=3+38,验证:338=338=33-3+332-1=3(32-1)+332-1=3+38. (1)按照上述两个等式及其验证过程的基本思路,猜想4415的变形结果,并进行验证;(2)针对上述各式反映的规律,写出用n(n为任意自然数,且n≥2)表示的等式,并给出证明.解:(1)猜想:4415=4+415,验证:4415=4315=43-4+442-1=4(42-1)+442-1=4+415(2)nnn2-1=n+nn2-1,证明:nnn2-1=n3n2-1=n3-n+n n2-1=n(n2-1)+nn2-1=n+nn2-1第十七章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知Rt△ABC的三边长分别为a,b,c,且∠C=90°,c=37,a=12,则b的值为( B) A.50 B.35 C.34 D.262.由下列线段a,b,c不能组成直角三角形的是( D)A.a=1,b=2,c= 3 B.a=1,b=2,c= 5C.a=3,b=4,c=5 D.a=2,b=23,c=33.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( A)A.365B.1225C.94D.3344.已知三角形三边长为a,b,c,如果a-6+|b-8|+(c-10)2=0,则△ABC是( C) A.以a为斜边的直角三角形 B.以b为斜边的直角三角形C.以c为斜边的直角三角形 D.不是直角三角形5.(2016·株洲)如图,以直角三角形a,b,c为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有( D)A.1 B.2 C.3 D.46.设a,b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab 的值是( D)A.1.5 B.2 C.2.5 D.37.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC交AB于点D,E是垂足,连接CD,若BD=1,则AC的长是( A)A.2 3 B.2 C.4 3 D.4,第7题图) ,第9题图) ,第10题图)8.一木工师傅测量一个等腰三角形的腰、底边和底边上的高的长,但他把这三个数据与其他数据弄混了,请你帮他找出来,应该是( C)A.13,12,12 B.12,12,8 C.13,10,12 D.5,8,49.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)( D)A.12 m B.13 m C.16 m D.17 m10.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,3),点C的坐标为(12,0),点P为斜边OB上的一个动点,则PA+PC的最小值为( B)A.132B.312C.3+192D.27二、填空题(每小题3分,共24分)11.把命题“对顶角相等”的逆命题改写成“如果…那么…”的形式:__如果两个角相等,那么它们是对顶角__.12.平面直角坐标系中,已知点A(-1,-3)和点B(1,-2),则线段AB的长为__5__.13.三角形的三边a,b,c满足(a-b)2=c2-2ab,则这个三角形是__直角三角形__.14.如图,在平面直角坐标系中,点A,B的坐标分别为(-6,0),(0,8).以点A为圆心,以AB为半径画弧交x轴正半轴于点C,则点C的坐标为__(4,0)__.,第14题图) ,第15题图),第17题图)15.如图,阴影部分是两个正方形,其他三个图形是一个正方形和两个直角三角形,则阴影部分的面积之和为__64__.16.有一段斜坡,水平距离为120米,高50米,在这段斜坡上每隔6.5米种一棵树(两端各种一棵树),则从上到下共种__21__棵树.17.如图,OP=1,过P作PP1⊥OP且PP1=1,得OP1=2;再过P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2017=__2018__.18.在△ABC中,AB=22,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为__13或5__.三、解答题(共66分)19.(8分)如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是否是直角三角形.解:(1)可求得AB=20,AC=13,所以△ABC的周长为20+13+21=54(2)∵AB2+AC2=202+132=569,BC2=212=441,∴AB2+AC2≠BC2,∴△ABC不是直角三角形20.(10分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,以格点为顶点按下列要求画图:(1)在图①中画一条线段MN,使MN=17;(2)在图②中画一个三边长均为无理数,且各边都不相等的直角△DEF.解:如图:21.(8分)如图,已知CD=6,AB=4,∠ABC=∠D=90°,BD=DC,求AC的长.解:在Rt△BDC,Rt△ABC中,BC2=BD2+DC2,AC2=AB2+BC2,则AC2=AB2+BD2+DC2,又因为BD=DC,则AC2=AB2+2CD2=42+2×62=88,∴AC=222,即AC的长为22222.(8分)如图,在△ABC中,∠A=90°,D是BC中点,且DE⊥BC于点D,交AB于点E.求证:BE2-EA2=AC2.解:连接CE,∵ED垂直平分BC,∴EB=EC,又∵∠A=90°,∴EA2+AC2=EC2,∴BE2-EA2=AC223.(10分)如图,已知某学校A与直线公路BD相距3000米,且与该公路上的一个车站D相距5000米,现要在公路边建一个超市C,使之与学校A及车站D的距离相等,那么该超市与车站D的距离是多少米?解:设超市C与车站D的距离是x米,则AC=CD=x米,BC=(BD-x)米,在Rt△ABD 中,BD=AD2-AB2=4000米,所以BC=(4000-x)米,在Rt△ABC中,AC2=AB2+BC2,即x2=30002+(4000-x)2,解得x=3125,因此该超市与车站D的距离是3125米24.(10分)一块长方体木块的各棱长如图所示,一只蜘蛛在木块的一个顶点A处,一只苍蝇在这个长方体上和蜘蛛相对的顶点B处,蜘蛛急于捉住苍蝇,沿着长方体的表面向上爬.(1)如果D是棱的中点,蜘蛛沿“AD→DB”路线爬行,它从A点爬到B点所走的路程为多少?(2)你认为“AD→DB”是最短路线吗?如果你认为不是,请计算出最短的路程.解:(1)从点A爬到点B所走的路程为AD+BD=42+32+22+32=(5+13)cm(2)不是,分三种情况讨论:①将下面和右面展到一个平面内,AB=(4+6)2+22=104=226 (cm);②将前面与右面展到一个平面内,AB=(4+2)2+62=72=62(cm);③将前面与上面展到一个平面内,AB=(6+2)2+42=80=45(cm),∵62<45<226,∴蜘蛛从A点爬到B点所走的最短路程为6 2 cm25.(12分)如图,已知正方形OABC 的边长为2,顶点A ,C 分别在x 轴的负半轴和y 轴的正半轴上,M 是BC 的中点,P(0,m)是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D.(1)求点D 的坐标(用含m 的代数式表示);(2)当△APD 是以AP 为腰的等腰三角形时,求m 的值;解:(1)先证△DBM ≌△PCM ,从中可得BD =PC =2-m ,则AD =2-m +2=4-m ,∴点D 的坐标为(-2,4-m ) (2)分两种情况:①当AP =AD 时,AP 2=AD 2,∴22+m 2=(4-m )2,解得m =32;②当AP =PD 时,过点P 作PH ⊥AD 于点H ,∴AH =12AD ,∵AH =OP ,∴OP =12AD ,∴m=12(4-m ),∴m =43,综上可得,m 的值为32或43第十八章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.若平行四边形中两个内角的度数比为1∶3,则其中较小的内角是( B ) A .30° B.45° C.60° D.75°2.(2016·株洲)如图,已知四边形ABCD 是平行四边形,对角线AC ,BD 相交于点O ,E是BC的中点,以下说法错误的是( D)A.OE=12DC B.OA=OC C.∠BOE=∠OBA D.∠OBE=∠OCE,第2题图) ,第3题图) ,第6题图)3.如图,矩形ABCD的对角线AC=8 cm,∠AOD=120°,则AB的长为( D)A. 3 cm B.2 cm C.2 3 cm D.4 cm4.已知四边形ABCD是平行四边形,下列结论中不正确的是( D)A.当AB=BC时,它是菱形 B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形 D.当AC=BD时,它是正方形5.若顺次连接四边形各边中点所得的四边形是菱形,则该四边形一定是( C)A.矩形 B.一组对边相等,另一组对边平行的四边形C.对角线相等的四边形 D.对角线互相垂直的四边形6.如图,已知点E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为( C)A.20° B.25° C.30° D.35°7.(2016·菏泽)在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下结论正确的有( B)①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③ B.①②④ C.②③④ D.①③④8.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB′=60°,则矩形ABCD的面积是( D)A.12 B.24 C.12 3 D.16 3,第8题图) ,第9题图) ,第10题图)9.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( C)A.1 B. 2 C.4-2 2 D.32-410.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF 沿EF 折叠,点D恰好落在BE上点M处,延长BC,EF交于点N,有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S△BEF =3S△DEF,其中正确的结论是( B)A.①②③ B.①②④ C.②③④ D.①②③④二、填空题(每小题3分,共24分)11.如图,在▱ABCD中,AB=5,AC=6,当BD=__8__时,四边形ABCD是菱形.,第11题图) ,第12题图),第14题图)12.(2016·江西)如图,在▱ABCD中,∠C=40°,过点D作CB的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为__50°__.13.在四边形ABCD中,AD∥BC,分别添加下列条件之一:①AB∥CD;②AB=CD;③∠A =∠C;④∠B=∠C.能使四边形ABCD为平行四边形的条件的序号是__①或③__.14.如图,∠ACB=90°,D为AB中点,连接DC并延长到点E,使CE=14CD,过点B作BF∥DE交AE的延长线于点F,若BF=10,则AB的长为__8__.15.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是__22.5__度.,第15题图) ,第16题图) ,第17题图),第18题图)16.如图,在四边形ABCD中,对角线AC⊥BD,垂足为点O,E,F,G,H分别为边AD,AB,BC,CD的中点,若AC=8,BD=6,则四边形EFGH的面积为__12__.17.已知菱形ABCD的两条对角线长分别为6和8,M,N分别是边BC,CD的中点,P是对角线BD上一点,则PM+PN的最小值是__5__.18.(2016·天津)如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则S正方形MNPQS正方形AEFG的值等于__89__.三、解答题(共66分)19.(8分)如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF.(1)请你判断所画四边形的形状,并说明理由;(2)连接EF,若AE=8 cm,∠A=60°,求线段EF的长.解:(1)菱形,理由:根据题意得AE=AF=ED=DF,∴四边形AEDF是菱形(2)∵AE=AF,∠A=60°,∴△EAF是等边三角形,∴EF=AE=8 cm20.(8分)(2016·宿迁)如图,已知BD是△ABC的角平分线,点E,F分别在边AB,BC 上,ED∥BC,EF∥AC.求证:BE=CF.解:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD =∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF21.(9分)(2016·南通)如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD,CE,若∠BFD=2∠A,求证:四边形BECD是矩形.解:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∵BE=AB,∴BE=CD.∵AB∥CD,∴∠BEF=∠CDF,∠EBF=∠DCF,∴△BEF≌△CDF(ASA) (2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠A=∠DCB,∵AB=BE,∴CD=EB,∴四边形BECD是平行四边形,∴BF =CF,EF=DF,∵∠BFD=2∠A,∴∠BFD=2∠DCF,∴∠DCF=∠FDC,∴DF=CF,∴DE=BC,∴四边形BECD是矩形22.(9分)如图,在▱ABCD中,E,F两点在对角线BD上,BE=DF.(1)求证:AE=CF;(2)当四边形AECF为矩形时,请求出BD-ACBE的值.解:(1)由SAS证△ABE≌△CDF即可(2)连接CE,AF,AC.∵四边形AECF是矩形,∴AC=EF ,∴BD -AC BE =BD -EF BE =BE +DF BE =2BEBE=223.(10分)如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点.(1)求证:△ABM≌△DCM;(2)填空:当AB∶AD=__1∶2__时,四边形MENF 是正方形,并说明理由.解:(1)由SAS 可证 (2)理由:∵AB ∶AD =1∶2,∴AB =12AD ,∵AM =12AD ,∴AB =AM ,∴∠ABM =∠AMB ,∵∠A =90°,∴∠AMB =45°,∵△ABM ≌△DCM ,∴BM =CM ,∠DMC =∠AMB =45°,∴∠BMC =90°,∵E ,F ,N 分别是BM ,CM ,BC 的中点,∴EN ∥CM ,FN ∥BM ,EM =MF ,∴四边形MENF 是菱形,∵∠BMC =90°,∴菱形MENF 是正方形24.(10分)(2016·遵义)如图,在Rt △ABC 中,∠BAC=90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF∥BC 交BE 的延长线于点F.(1)求证:△AEF≌△DEB; (2)求证:四边形ADCF 是菱形;(3)若AC =4,AB =5,求菱形ADCF 的面积.解:(1)由AAS 易证△AFE ≌△DBE (2)由(1)知,△AEF ≌△DEB ,则AF =DB ,∵DB =DC ,∴AF =CD ,∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,D 是BC 的中点,∴AD =DC =12BC ,∴四边形ADCF 是菱形 (3)连接DF ,由(2)知AF 綊BD ,∴四边形ABDF 是平行四边形,∴DF =AB =5,∴S 菱形ADCF =12AC·DF =12×4×5=1025.(12分)如图,在正方形ABCD 中,AC 是对角线,今有较大的直角三角板,一边始终经过点B ,直角顶点P 在射线AC 上移动,另一边交DC 于点Q.(1)如图①,当点Q 在DC 边上时,猜想并写出PB 与PQ 所满足的数量关系,并加以证明; (2)如图②,当点Q 落在DC 的延长线上时,猜想并写出PB 与PQ 满足的数量关系,并证明你的猜想.解:(1)PB =PQ.证明:连接PD ,∵四边形ABCD 是正方形,∴∠ACB =∠ACD ,∠BCD =90°,BC =CD ,又∵PC =PC ,∴△DCP ≌△BCP (SAS ),∴PD =PB ,∠PBC =∠PDC ,∵∠PBC +∠PQC =180°,∠PQD +∠PQC =180°,∴∠PBC =∠PQD ,∴∠PDC =∠PQD ,∴PQ =PD ,∴PB =PQ (2)PB =PQ.证明:连接PD ,同(1)可证△DCP ≌△BCP ,∴PD =PB ,∠PBC =∠PDC ,∵∠PBC =∠Q ,∴∠PDC =∠Q ,∴PD =PQ ,∴PB =PQ第十九章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.(2016·扬州)函数y=x-1中,自变量x的取值范围是( B) A.x>1 B.x≥1 C.x<1 D.x≤12.若函数y=kx的图象经过点(1,-2),那么它一定经过点( B)A.(2,-1) B.(-12,1) C.(-2,1) D.(-1,12)3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车的速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是( D)4.已知一次函数y=kx+b的图象如图所示,当x<0时,y的取值范围是( C) A.y>0 B.y<0 C.y>-2 D.-2<y<0,第4题图) ,第9题图),第10题图)5.当kb<0时,一次函数y=kx+b的图象一定经过( B)A.第一、三象限 B.第一、四象限 C.第二、三象限 D.第二、四象限6.已知一次函数y=(2m-1)x+1的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y 1<y2,那么m的取值范围是( B)A.m<12B.m>12C.m<2 D.m>07.已知一次函数的图象过点(3,5)与(-4,-9),则该函数的图象与y轴交点的坐标为( A )A .(0,-1)B .(-1,0)C .(0,2)D .(-2,0)8.把直线y =-x -3向上平移m 个单位后,与直线y =2x +4的交点在第二象限,则m 的取值范围是( A )A .1<m <7B .3<m <4C .m >1D .m <49.(2016·天门)在一次自行车越野赛中,出发m h 后,小明骑行了25 km ,小刚骑行了18 km ,此后两人分别以a km /h ,b km /h 匀速骑行,他们骑行的时间t(h )与骑行的路程s(km )之间的函数关系如图,观察图象,下列说法:①出发m h 内小明的速度比小刚快;②a=26;③小刚追上小明时离起点43 km ;④此次越野赛的全程为90 km .其中正确的说法有( C )A .1个B .2个C .3个D .4个10.(2016·苏州)矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( B )A .(3,1)B .(3,43)C .(3,53) D .(3,2)二、填空题(每小题3分,共24分) 11.(2015·上海)同一温度的华氏度数y()与摄氏度数x(℃)之间的函数关系是y =95x+32,如果某一温度的摄氏度数是25 ℃,那么它的华氏度数是__77__.12.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是__0.2__千米/分钟.,第12题图) ,第14题图),第16题图)13.一次函数y =(m -1)x +m 2 的图象过点(0,4),且y 随x 的增大而增大,则m =__2__. 14.如图,利用函数图象回答下列问题:(1)方程组⎩⎨⎧x +y =3,y =2x 的解为__⎩⎨⎧x =1,y =2__;(2)不等式2x >-x +3的解集为__x >1__.15.已知一次函数y =-2x -3的图象上有三点(x 1,y 1),(x 2,y 2),(3,y 0),并且x 1>3>x 2,则y 0,y 1,y 2这三个数的大小关系是__y 1<y 0<y 2__.16.如图,在平面直角坐标系中,点A 的坐标为(0,6),将△OAB 沿x 轴向左平移得到△O′A′B′,点A 的对应点A′落在直线y =-34x 上,则点B 与其对应点B′间的距离为__8__.17.过点(-1,7)的一条直线与x 轴、y 轴分别相交于点A ,B ,且与直线y =-32x +1平行,则在线段AB 上,横、纵坐标都是整数的点坐标是__(3,1),(1,4)__.18.设直线y =kx +k -1和直线y =(k +1)x +k(k 为正整数)与x 轴所围成的图形的面积为S k (k =1,2,3,…,8),那么S 1+S 2+…+S 8的值为__49__.三、解答题(共66分)19.(8分)已知2y -3与3x +1成正比例,且x =2时,y =5. (1)求x 与y 之间的函数关系,并指出它是什么函数; (2)若点(a ,2)在这个函数的图象上,求a 的值. 解:(1)y =32x +2,是一次函数 (2)a =020.(8分)已知一次函数y =(a +8)x +(6-b). (1)a ,b 为何值时,y 随x 的增大而增大? (2)a ,b 为何值时,图象过第一、二、四象限? (3)a ,b 为何值时,图象与y 轴的交点在x 轴上方? (4)a ,b 为何值时,图象过原点?解:(1)a >-8,b 为全体实数 (2)a <-8,b <6 (3)a ≠-8,b <6 (4)a ≠-8,b =621.(9分)画出函数y =2x +6的图象,利用图象:(1)求方程2x +6=0的解; (2)求不等式2x +6>0的解; (3)若-1≤y≤3,求x 的取值范围.解:图略,(1)x =-3 (2)x >-3 (3)当-1≤y ≤3,即-1≤2x +6≤3,解得-72≤x ≤-3222.(9分)电力公司为鼓励市民节约用电,采取按月用电量分段收费的办法,已知某户居民每月应缴电费y(元)与用电量x(度)的函数图象是一条折线(如图),根据图象解答下列问题.(1)分别写出当0≤x≤100和x >100时,y 与x 间的函数关系式;(2)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元,则该用户该月用了多少度电?解:(1)y =⎩⎨⎧0.65x (0≤x ≤100)0.8x -15(x >100) (2)40.3元;150度23.(10分)如图,在平面直角坐标系xOy 中,矩形ABCD 的边AD =3,A(12,0),B(2,0),直线l 经过B ,D 两点.(1)求直线l 的解析式;(2)将直线l 平移得到直线y =kx +b ,若它与矩形有公共点,直接写出b 的取值范围.解:(1)y =-2x +4 (2)1≤b ≤724.(10分)今年我市水果大丰收,A ,B 两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两个销售点,从A 基地运往甲、乙两销售点的费用分别为每件40元和20元,从B 基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.(1)设从A 基地运往甲销售点水果x 件,总运费为W 元,请用含x 的代数式表示W ,并写出x 的取值范围;(2)若总运费不超过18300元,且A 地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.解:(1)W =35x +11200(80≤x ≤380) (2)∵⎩⎨⎧W ≤18300,x ≥200,∴⎩⎨⎧35x +11200≤18300,x ≥200,解得200≤x ≤20267,∵35>0,∴W 随x 的增大而增大,∴当x =200时,W 最小=18200,∴运费最低的运输方案为:A →甲:200件,A →乙:180件,B →甲:200件,B →乙:120件,最低运费为18200元25.(12分)一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车,设慢车行驶的时间为x 小时,两车之间的距离为y 千米,图中折线表示y 与x 之间的函数图象,请根据图象解决下列问题:(1)甲、乙两地之间的距离为__560__千米; (2)求快车与慢车的速度;(3)求线段DE 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围.解:(2)设快车速度为m 千米/时,慢车速度为n 千米/时,则有⎩⎨⎧4(m +n )=560,3m =4n ,解得⎩⎨⎧m =80,n =60,∴快车速度为80千米/时,慢车速度为60千米/时 (3)D (8,60),E (9,0),线段DE 的解析式为y =-60x +540(8≤x ≤9)期中检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列二次根式中属于最简二次根式的是( A)A. 5B.8C.12D.0.32.(2016·泸州)如图,▱ABCD的对角线AC,BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是( B)A.10 B.14 C.20 D.22,第2题图) ,第5题图) ,第8题图) ,第9题图)3.在下列以线段a,b,c的长为三边的三角形中,不能构成直角三角形的是( D) A.a=9,b=41,c=40 B.a=5,b=5,c=5 2C.a∶b∶c=3∶4∶5 D.a=11,b=12,c=154.(2016·南充)下列计算正确的是( A)A.12=2 3B.32=32C.-x3=x-xD.x2=x5.如图,在△ABC中,点D,E分别是边AB,BC的中点,若△DBE的周长是6,则△ABC 的周长是( C)A.8 B.10 C.12 D.146.(2016·益阳)下列判断错误的是( D)A.两组对边分别相等的四边形是平行四边形 B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形 D.两条对角线垂直且平分的四边形是正方形7.若x-1-1-x=(x+y)2,则x-y的值为( C)A.-1 B.1 C.2 D.38.如图,在△ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是( A)A.2 3 B.3 3 C.4 D.4 39.如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD=52,如果Rt△ABC的面积为1,则它的周长为( D)A.5+12B.5+1C.5+2D.5+310.(2016·眉山)如图,在矩形ABCD中,O为AC的中点,过点O的直线分别与AB,CD 交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE ∶S△BCM=2∶3.其中正确结论的个数是( B)A.4个 B.3个 C.2个 D.1个二、填空题(每小题3分,共24分)11.若代数式xx-1有意义,则x的取值范围为__x≥0且x≠1__.12.如图,在平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于点F,则CF=__2__.,第12题图) ,第13题图) ,第14题图) ,第15题图)13.如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2=__16__时,∠ACB=90°.14.如图,它是一个数值转换机,若输入的a值为2,则输出的结果应为__-233.15.如图,四边形ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件__答案不唯一,如:OA=OC__,使ABCD成为菱形.(只需添加一个即可)16.如图,在△ABC中,AB=5,AC=3,AD,AE分别为△ABC的中线和角平分线,过点C 作CH⊥AE于点H,并延长交AB于点F,连接DH,则线段DH的长为__1__.,第16题图) ,第17题图),第18题图)17.(2016·南京)如图,菱形ABCD的面积为120 cm2,正方形AECF的面积为50 cm2,则菱形的边长为__13__ cm.18.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A,C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P为线段BC上的点.小明同学写出了一个以OD为腰的等腰三角形ODP的顶点P的坐标(3,4),请你写出其余所有符合这个条件的P 点坐标__(2,4)或(8,4)__.三、解答题(共66分)19.(8分)计算:(1)8+23-(27-2); (2)(43-613)÷3-(5+3)(5-3).解:(1)32- 3 (2)020.(8分)已知a=7-5,b=7+5,求值:(1)ba+ab; (2)3a2-ab+3b2.解:a+b=27,ab=2,(1)ba+ab=(a+b)2-2abab=12(2)3a2-ab+3b2=3(a+b)2-7ab=7021.(8分)如图,四边形ABCD是平行四边形,E,F为对角线AC上两点,连接ED,EB,FD,FB.给出以下结论:①BE∥DF;②BE=DF;③AE=CF.请你从中选取一个条件,使∠1=∠2成立,并给出证明.解:答案不唯一,如:补充条件①BE∥DF.证明:∵BE∥DF,∴∠BEC=∠DFA,∴∠BEA =∠DFC,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF,∴△ABE≌△CDF(AAS),∴BE=DF,∴四边形BFDE是平行四边形,∴ED∥BF,∴∠1=∠222.(7分)如图,在B港有甲、乙两艘渔船,若甲船沿北偏东60°的方向以每小时8海里的速度前进,乙船沿南偏东某方向以每小时15海里的速度前进,2小时后甲船到M岛,乙船到P岛,两岛相距34海里,你能知道乙船沿哪个方向航行吗?解:(1)由题意得BM=2×8=16(海里),BP=2×15=30(海里),∵BM2+BP2=162+302=1156,MP2=342=1156,∴BM2+BP2=MP2,∴∠MBP=90°,∴乙船沿南偏东30°的方向航行23.(8分)如图,四边形ABCD是菱形,BE⊥AD,BF⊥CD,垂足分别为点E,F.(1)求证:BE=BF;(2)当菱形ABCD 的对角线AC =8,BD =6时,求BE 的长.解:(1)由AAS 证△ABE ≌△CBF 可得 (2)∵四边形ABCD 是菱形,∴OA =12AC =4,OB =12BD =3,∠AOB =90°,∴AB =OA 2+OB 2=5,∵S 菱形ABCD =AD ·BE =12AC ·BD ,∴5BE =12×8×6,∴BE =24524.(8分)如图,在四边形ABCD 中,AB =AD =2,∠A=60°,BC =25,CD =4.(1)求∠ADC 的度数; (2)求四边形ABCD 的面积.解:(1)连接BD ,∵AB =AD =2,∠A =60°,∴△ABD 是等边三角形,∴BD =2,∠ADB =60°,在△BDC 中,BD =2,DC =4,BC =25,∴BD 2+DC 2=BC 2,∴△BDC 是直角三角形,∴∠BDC =90°,∴∠ADC =∠ADB +∠BDC =150° (2)S 四边形ABCD=S △ABD +S △BDC =12×2×3+12×2×4=3+425.(9分)如图,在▱ABCD 中,O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E. (1)求证:△AOD≌△EOC;(2)连接AC ,DE ,当∠B=∠AEB=____°时,四边形ACED 是正方形,请说明理由.解:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠D =∠OCE ,∠DAO =∠E ,∵O 是CD 的中点,∴OD =OC ,∴△AOD ≌△EOC (AAS ) (2)当∠B =∠AEB =45°时,四边形ACED 是正方形,理由:∵△AOD ≌△EOC ,∴OA =OE ,又∵OC =OD ,∴四边形ACED 是平行四边形,∵∠B =∠AEB =45°,∴AB =AE ,∠BAE =90°,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∴∠COE =∠BAE =90°,∴▱ACED 是菱形,∵AB =AE ,AB =CD ,∴AE =CD ,∴菱形ACED 是正方形26.(10分)已知正方形ABCD 和正方形EBGF 共顶点B ,连接AF ,H 为AF 的中点,连接EH ,正方形EBGF 绕点B 旋转.(1)如图①,当F 点落在BC 上时,求证:EH =12CF ;(2)如图②,当点E 落在BC 上时,连接BH ,若AB =5,BG =2,求BH 的长.解:(1)延长FE 交AB 于点Q ,∵四边形EBGF 是正方形,∴EF =EB ,∠EFB =∠EBF =45°,∵四边形ABCD 是正方形,∴∠ABC =90°,AB =BC ,∴∠BQF =∠QBE =45°,∴QE =EB ,∴QE =EF ,又∵AH =FH ,∴EH =12AQ ,∵∠BQF =∠BFQ =45°,∴BQ =BF ,∵AB =BC ,∴AQ =CF ,∴EH =12CF (2)延长EH 交AB 于点N ,∵四边形EBGF 是正方形,∴EF ∥BG ,EF =EB =BG =2,∵EF ∥AG ,∴∠FEH =∠ANH ,∠EFH =∠NAH.又∵AH =FH ,∴△ANH ≌△FEH (AAS ),∴NH =EH ,AN =EF.∵AB =5,AN =EF =2,∴BN =AB -AN =3,∵∠NBE =90°,BE =2,BN =3,∴EN =22+32=13.∵∠NBE =90°,EH =NH ,∴BH =12EN =132期末检测题(一)(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列根式有意义的范围为x≥5的是( D )A.x+5B.1x-5C.1x+5D.x-52.(2016·来宾)下列计算正确的是( B) A.5-3= 2 B.35×23=615C.(22)2=16 D.33=13.由线段a,b,c组成的三角形不是直角三角形的是( D) A.a=7,b=24,c=25 B.a=41,b=4,c=5C.a=54,b=1,c=34D.a=13,b=14,c=154.若一次函数y=x+4的图象上有两点A(-12,y1),B(1,y2),则下列说法正确的是( C)A.y1>y2 B.y1≥y2 C.y1<y2 D.y1≤y25.已知A样本的数据如下:72,73,76,76,77,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是( B)A.平均数 B.方差 C.中位数 D.众数6.如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论正确的是( A) A.S▱ABCD=4S△AOB B.AC=BDC.AC⊥BD D.▱ABCD是轴对称图形,第6题图) ,第9题图),第10题图)7.李大伯在承包的果园里种植了100棵樱桃树,今年已经进入收获期,收获时,从中任意采摘了6棵树上的樱桃,分别称得每棵树的产量(单位:千克)如下表:序号 1 2 3 4 5 6产量17 21 19 18 20 19) A.18,2000 B.19,1900 C.18.5,1900 D.19,18508.下列说法中,错误的是( B)A.两条对角线互相平分的四边形是平行四边形 B.两条对角线相等的四边形是矩形C.两条对角线互相垂直的平行四边形是菱形 D.两条对角线相等的菱形是正方形9.如图,在矩形ABCD中,AD=2AB,点M,N分别在边AD,BC上,连接BM,DN,若四边形MBND是菱形,则AMMD等于( C)A.38B.23C.35D.4510.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息,已知甲先出发2秒,在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是( A) A.①②③ B.仅有①② C.仅有①③ D.仅有②③二、填空题(每小题3分,共24分)11.已知x,y为实数,且x-1+3(y-2)2=0,则x-y的值为__-1__.12.(2016·天津)若一次函数y=-2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是__-1(答案不唯一,b<0即可)__.(写出一个即可)13.某食堂午餐供应10元、16元、20元三种价格的盒饭,根据食堂某月销售午餐盒饭的统计图,可计算出该月食堂午餐盒饭的平均价格是__13__元.,第13题图) ,第14题图) ,第16题图) ,第18题图)14.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是__x<2__.15.(2016·邵阳)学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:选手甲乙平均数(环) 9.5 9.5方差0.035 0.015__乙__.16.如图,矩形ABCD中,点E,F分别是AB,CD的中点,连接DE和BF,分别取DE,BF 的中点M,N,连接AM,CN,MN,若AB=22,BC=23,则图中阴影部分的面积为__26__.17.在平面直角坐标系中,直线y=kx+x+1过一定点A,坐标系中有点B(2,0)和点C,要使以A,O,B,C为顶点的四边形为平行四边形,则点C的坐标为__(2,1)或(2,-1)或(-2,1)__.18.如图,长方形纸片ABCD中,AB=6 cm,BC=8 cm,点E是BC边上一点,连接AE并将△AEB沿AE折叠,得到△AEB′,以C,E,B′为顶点的三角形是直角三角形时,BE的长为__3或6__cm.三、解答题(共66分)19.(8分)计算:(1)27-12+45; (2)27×13-(5+3)(5-3).解:(1)原式=3+3 5 (2)原式=120.(8分)如图,四边形ABCD是平行四边形,E,F是对角线BD上的点,∠1=∠2.求证:(1)BE=DF;(2)AF∥CE.解:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵∠1=∠2,∴∠AEB=∠CFD,∴△ABE≌△CDF(AAS),∴BE=DF(2)由(1)得△ABE≌△CDF,∴AE=CF,∵∠1=∠2,∴AE∥CF,∴四边形AECF是平行四边形,∴AF∥CE21.(8分)在直角坐标系中,一条直线经过A(-1,5),P(-2,a),B(3,-3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.解:(1)直线解析式为y=-2x+3,把P(-2,a)代入y=-2x+3中,得a=7(2)由(1)得点P(-2,7),当x=0时,y=3,∴D(0,3),∴S△OPD =12×3×2=322.(7分)如图,这是一个供滑板爱好者使用的U 型池,该U 型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4 m 的半圆,其边缘AB =CD =20 m ,点E 在CD 上,CE =4 m ,一滑行爱好者从A 点到E 点,则他滑行的最短距离是多少?(边缘部分的厚度可以忽略不计,π取3)解:展开图如图,作EF ⊥AB ,由于平铺,∴四边形ABCD 是矩形,∴∠C=∠B =90°,∵EF ⊥AB ,∴∠EFA =∠EFB =90°,∴四边形CBFE 是矩形,∴EF =BC =4×2×3×12=12(m ),FB =CE =4 m ,∴AF =20-4=16(m ),∴AE =122+162=20(m ),即他滑行的最短距离为20 m23.(8分)(2016·乐山)甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图所示.根据图中信息,回答下列问题:(1)甲的平均数是__8__,乙的中位数是__7.5__;(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?解:x 乙=8,s 甲2=1.6,s 乙2=1.2,∵s 甲2>s 乙2,∴乙运动员的射击成绩更稳定。

人教版初中数学八年级下册16-20章全册测试卷及期中期末附答案

人教版初中数学八年级下册16-20章全册测试卷及期中期末附答案

第十六章测试卷一、选择题(每题3分,共30分)1.若x+2在实数范围内有意义,则x的取值范围是()A.x≥0 B.x≤2 C.x≥-2 D.x≥2 2.下列等式正确的是()A.(7)2=7 B.(-7)2=-7C.73=7 D.(-7)2=-73.下列二次根式中,最简二次根式是()A.30B.12C.8D.1 24.下列等式成立的是()A.3+42=7 2 B.3×2=5C.3÷16=2 3 D.(-3)2=35.∵23=22×3=12,①-23=(-2)2×3=12,②∴23=-23,③∴2=-2.④以上推导中的错误出在第几步?()A.①B.②C.③D.④6.下列计算正确的是()A.a+b=abB.(-a2)2=-a4C.1a=aD.a÷b=ab(a≥0,b>0)7.估计5+2×10的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间8.若x为实数,在“(3+1)x”的“”中添上一种运算符号(在“+,-,×,÷”中选择)后,其运算的结果为有理数,则x不可能是()A.3+1B.3-1C.2 3 D.1-39.已知a,b,c为△ABC的三边长,且a2-2ab+b2+|b-c|=0,则△ABC的形状是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形10.已知m=1+2,n=1-2,则代数式m2+n2-3mn的值为() A.9 B.±3C.3 D.5二、填空题(每题3分,共24分)11.计算:23÷5×15=________.12.如果两个最简二次根式3a-1与2a+3能合并,那么a=________.13.比较:5-12________12(填“>”“=”或“<”).14.实数a在数轴上对应的点的位置如图所示,则(a-4)2+(a-11)2化简后为________.15.实数a,b满足a+1+4a2+4ab+b2=0,则b a的值为________.16.【教材P10练习T3变式】△ABC的面积S=12 cm2,底边a=2 3 cm,则底边上的高为__________.17.若xy <0,则x 2y 化简的结果是__________.18.【教材P 16阅读与思考改编】已知三角形的三边长分别为a ,b ,c ,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式S =p (p -a )(p -b )(p -c ),其中p =a +b +c2;我国南宋时期数学家秦九韶曾提出利用三角形的三边求其面积的秦九韶公式S =12a 2b 2-⎝⎛⎭⎪⎫a 2+b 2-c 222,若一个三角形的三边长分别为2,3,4,则其面积是________.三、解答题(19题16分,20题8分,24题12分,其余每题10分,共66分) 19.计算下列各式: (1)20+5(2+5);(2)【教材P 14例3(2)改编】(46-32)÷22;(3)218-418+332;(4)(3+2-6)2-(2-3+6)2.20.若二次根式2x-6无意义,化简|x-4|-|7-x|.21.【教材P19复习题T5改编】若a=3-10,求代数式a2-6a-2的值.22.已知a ,b ,c 满足|a -8|+b -5-(c -18)2=0. (1)求a ,b ,c 的值.(2)试问以a ,b ,c 为边能否构成三角形?若能构成三角形,请求出三角形的周长;若不能,请说明理由.23.阅读理解:我们把⎪⎪⎪⎪⎪⎪a b c d 称为二阶行列式,规定其运算法则为⎪⎪⎪⎪⎪⎪a b c d =ad -bc .如⎪⎪⎪⎪⎪⎪2345=2×5-3×4=-2. (1)计算:⎪⎪⎪⎪⎪⎪2261224; (2)如果⎪⎪⎪⎪⎪⎪3x +12x =0,求x 的值.24.我们学习了二次根式,那么所有的非负数都可以看成是一个数的平方,如3=(3)2,5=(5)2,下面我们观察:(2-1)2=(2)2-2×1×2+12=2-22+1=3-22;反之,3-22=2-22+1=(2-1)2,∴3-22=(2-1)2,∴3-22=2-1.(1)化简3+2 2.(2)化简4+2 3.(3)化简4-12.(4)若a±2 b=m±n,则m,n与a,b的关系是什么?并说明理由.答案一、1.C 2.A 3.A 4.D 5.B 6.D 7.B 8.C 9.B10.C 点拨:∵m -n =(1+2)-(1-2)=22,mn =(1+2)(1-2)=-1,∴m 2+n 2-3mn =(m -n )2-mn =(22)2-(-1)=9=3. 二、11.235 12.4 13.> 14.7 15.12 16.43 cm17.-x y 点拨:∵xy <0,x 2y >0,∴x <0,y >0. ∴x 2y =-x y . 18.3154三、19.解:(1)原式=25+25+(5)2=45+5;(2)原式=46÷22-32÷22=23-32; (3)原式=62-2+122=172;(4)原式=(3+2-6+2-3+6)·(3+2-6-2+3-6) =22×(23-26) =46-8 3.20.解:∵二次根式2x -6无意义,∴2x -6<0,∴x <3, ∴x -4<0,7-x >0.∴|x -4|-|7-x |=4-x -(7-x )=4-x -7+x =-3. 21.解:a 2-6a -2=(a -3)2-11,将a =3-10代入上式,得(3-10-3)2-11=10-11=-1,∴a 2-6a -2=-1.22.解:(1)a =22,b =5,c =3 2.(2)∵22+32=52>5,32-22=2<5, ∴以a ,b ,c 为边能构成三角形. 三角形的周长为22+32+5=52+5.23.解:(1)⎪⎪⎪⎪⎪⎪2261224=2×24-12×26=43-23=2 3.(2)因为⎪⎪⎪⎪⎪⎪3x +12x =0, 所以3x -2(x +1)=0, 即(3-2)x =2. 则x =23-2=-2(3+2)=-23-4. 24.解:(1)3+22=(2+1)2=2+1.(2)4+23=(3+1)2=3+1.(3)4-12=4-23=(3-1)2=3-1. (4)⎩⎨⎧m +n =a ,mn =b .理由:把a ±2b =m ±n 两边平方,得a ±2b =m +n ±2mn ,∴⎩⎨⎧m +n =a ,mn =b .第十七章达标测试卷一、选择题(每题3分,共30分)1.设直角三角形的两条直角边长分别为a 和b ,斜边长为c ,已知b =12,c =13,则a =( ) A .1B .5C .10D .252.在Rt △ABC 中,∠ACB =90°,AB =3,则AB 2+BC 2+AC 2=( )A .9B .18C .20D .243.把命题“如果x =y ,那么x =y ”作为原命题,下列对原命题和它的逆命题真假判断正确的是( ) A .原命题和逆命题都是真命题 B .原命题和逆命题都是假命题 C .原命题是真命题,逆命题是假命题 D .原命题是假命题,逆命题是真命题4.如图,在三角形纸片ABC 中,AB =AC ,∠BAC =90°,点E 为AB 的中点.沿过点E 的直线折叠,使点B 与点A 重合,折痕EF 交BC 于点F .已知EF =32,则BC 的长是( ) A.322B .3 2C .3D .33(第4题) (第5题) (第6题)5.如图,△ABC 和△DCE 都是边长为4的等边三角形,点B ,C ,E 在同一条直线上,连接BD ,则BD 的长为( ) A. 3B .2 3C .3 3D .4 36.如图,在平面直角坐标系中,点P 的坐标为(-2,3),以点O 为圆心,以OP的长为半径画弧,交x 轴的负半轴于点A ,则点A 的横坐标介于( ) A .-4和-3之间 B .3和4之间 C .-5和-4之间D .4和5之间7.如图,小巷左右两侧都是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左端墙脚的距离为0.7 m ,顶端距离地面2.4 m ,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2 m,则小巷的宽度为()A.0.7 m B.1.5 m C.2.2 m D.2.4 m(第7题)(第8题)8.如图是台阶的示意图,已知每级台阶的宽度都是30 cm,每级台阶的高度都是15 cm,连接AB,则AB等于()A.195 cm B.200 cm C.205 cm D.210 cm 9.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短路程是() A.20 B.25 C.30 D.32(第9题) (第10题)10.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3二、填空题(每题3分,共24分)11.已知在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,∠C=90°,c=10,a∶b=3∶4,则a=________.12.已知正方形的面积为8,则其对角线的长为________.13.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:____________________________________,该逆命题是________(填“真”或“假”)命题.14.已知a,b,c是△ABC的三边长,且满足关系式c2-a2-b2+|a-b|=0,则△ABC的形状为__________________________________________.15.一艘轮船以16 n mile/h的速度离开港口向东南方向航行,另一艘轮船在同时同地以12 n mile/h的速度向西南方向航行,则1.5 h后两船相距________n mile.16.如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB于点E,则DE=________.(第16题)(第17题)17.定义:点M,N把线段AB分割成三条线段AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称M,N是线段AB的勾股分割点.如图,M,N是线段AB的勾股分割点,若AM=2,MN=3,则BN的长为________.18.我们定义:有一组邻边相等的凸边形叫做“等邻边四边形”.在Rt△ABC中,∠ACB=90°,AB=4,AC=2,D是BC的中点,M是AB边上一点,当四边形ACDM是“等邻边四边形”时,BM的长为__________.三、解答题(19~22题每题10分,23题12分,24题14分,共66分)19.如图,在△ABC中,CD⊥AB于D,AB=AC=13,BD=1.求:(1)CD的长;(2)BC的长.20.如图,分别以Rt△ABC的三边为斜边向外作等腰直角三角形,若斜边AB=4,求图中阴影部分的面积.21.如图,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P从点A 开始沿AB边向B点以1 cm/s的速度移动;点Q从点B开始沿BC边向点C 以2 cm/s的速度移动.如果同时出发,经过3 s,△PBQ的面积为多少?22.如图,OA⊥OB,OA=45 cm,OB=15 cm,一机器人在B处发现有一个小球自A点出发沿着AO方向匀速滚向点O,机器人立即从B处出发以相同的速度匀速直线前进去拦截小球,在点C处截住了小球,求机器人行走的路程BC.23.如图,某沿海城市A接到台风警报,在该城市正南方向260 km的B处有一台风中心,沿BC方向以15 km/h的速度向C移动,已知城市A到BC的距离AD=100 km,那么台风中心经过多长时间从B点移动到D点?如果在距台风中心30 km的圆形区域内都将受到台风的影响,正在D点休息的游人在接到台风警报后的几小时内撤离才可以免受台风的影响?24.问题背景在△ABC中,AB,BC,AC的长分别为5,10,13,求这个三角形的面积.晓辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长均为1),再在网格中画出格点三角形ABC(即△ABC的三个顶点都在小正方形的顶点处),如图①所示,这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你直接写出△ABC的面积:________.(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC的三边长分别为5a,22a,17a(a>0),请利用图②的正方形网格(每个小正方形的边长均为a)画出相应的△ABC,并求出它的面积.探索创新(3)若△ABC的三边长分别为m2+16n2,9m2+4n2,2m2+n2(m>0,n>0,且m≠n),试运用构图法(自己重新设计一个符合结构特征的网格)求出这个三角形的面积.答案一、1.B 2.B 3.D 4.B 5.D 6.A 7.C 8.A 9.B 10.D 二、11.6 12.413.如果两个三角形的面积相等,那么这两个三角形全等;假 14.等腰直角三角形15.30 点拨:如图,东南方向即南偏东45°,西南方向即南偏西45°,故两艘轮船航行的方向OA ,OB 成直角,OA =16×1.5=24(n mile),OB =12×1.5=18(n mile).连接AB ,在Rt △AOB 中,由勾股定理得AB 2=AO 2+BO 2=242+182=900,所以AB =30 n mile.16.6013 17.5或1318.2,3或135三、19.解:(1)∵AB =13,BD =1,∴AD =13-1=12.在Rt △ACD 中,CD =AC 2-AD 2=132-122=5. (2)在Rt △BCD 中,BC =BD 2+CD 2=12+52=26. 20.解:设阴影部分三个三角形的直角边长分别为a ,b ,c ,则S 阴影=12a 2+12b 2+12c 2, AC 2=2a 2,BC 2=2b 2,AB 2=2c 2. 在Rt △ABC 中,AC 2+BC 2=AB 2, ∴12a 2+12b 2+12c 2=12AB 2. ∵AB =4, ∴S 阴影=12×42=8.21.解:依题意,设AB =3k cm ,BC =4k cm ,AC =5k cm ,则3k +4k +5k =36,∴k =3.∴AB =9 cm ,BC =12 cm ,AC =15 cm. ∵AB 2+BC 2=AC 2,∴△ABC 是直角三角形且∠B =90°.点P ,Q 分别从点A ,B 同时出发3 s 后,BP =9-1×3=6 (cm),BQ =2×3=6 (cm),∴S △PBQ =12BP ·BQ =12×6×6=18 (cm 2).22.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC =CA .设BC =CA =x cm ,则OC =(45-x )cm ,由勾股定理可知OB 2+OC 2=BC 2,即152+(45-x )2=x 2,解得x =25. 答:机器人行走的路程BC 是25 cm. 23.解:由题意可知∠ADB =90°.在Rt △ABD 中,∵AB =260 km ,AD =100 km , ∴BD =2602-1002=240(km).∴台风中心从B 点移动到D 点所用的时间为24015=16(h).在D 点休息的游人应在台风中心距D 点30 km 前撤离,30÷15=2(h),16-2=14(h).∴在接到台风警报后的14 h 内撤离才可以免受台风的影响. 24.解:(1)72(2)△ABC 如图①所示.(位置不唯一)S △ABC =2a ×4a -12×a ×2a -12×2a ×2a -12×a ×4a =3a 2. (3)构造△ABC 如图②所示.S △ABC =3m ×4n -12×m ×4n -12×3m ×2n -12×2m ×2n =12mn -2mn -3mn -2mn =5mn .第十八章达标测试卷一、选择题(每题3分,共30分)1.已知在▱ABCD中,∠B+∠D=200°,则∠A的度数为()A.100° B.160° C.80° D.60°2.如图,▱ABCD中,对角线AC,BD交于点O,点E是BC的中点.若OE=3 cm,则AB的长为()A.12 cm B.9 cm C.6 cm D.3 cm(第2题)(第3题)3.如图,在菱形ABCD中,下列结论错误的是()A.AC=BD B.AC⊥BD C.AB=AD D.∠1=∠2 4.如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10 cm,BD=6 cm,则AD的长为()A.4 cm B.5 cm C.6 cm D.8 cm(第4题)(第5题)5.如图,在菱形ABCD中,∠B=60°,AB=4,则以AC为一边的正方形ACEF的周长为()A.14 B.15 C.16 D.176.下列说法中,正确的个数有( )①对顶角相等;②两直线平行,同旁内角相等; ③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形. A .1个B .2个C .3个D .4个7.如图,已知在菱形ABCD 中,对角线AC 与BD 交于点O ,∠BAD =120°,AC =4,则该菱形的面积是( ) A .16 3B .16C .8 3D .8(第7题) (第8题)8.将五个边长都为2 cm 的正方形按如图所示摆放,点A ,B ,C ,D 分别是四个正方形的中心,则图中四块阴影部分面积的和为( ) A .2 cm 2B .4 cm 2C .6 cm 2D .8 cm 29.如图,在矩形ABCD 中,AD =3AB ,点G ,H 分别在AD ,BC 上,连接BG ,DH ,且BG ∥DH ,当AGAD =( )时,四边形BHDG 为菱形. A.45 B.35 C.49D.38(第9题) (第10题)10.如图是一个矩形的储物柜,它被分成4个大小不同的正方形①②③④和一个矩形⑤,若要计算⑤的周长,则只需要知道哪个小正方形的周长?你的选择是( ) A .①B .②C .③D .④二、填空题(每题3分,共24分)11.如图,▱ABCD 中,AC ,BD 相交于点O ,若AD =6,AC +BD =16,则△BOC的周长为________.(第11题)(第12题)12.如图,四边形ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件:____________,使四边形ABCD成为菱形(只需添加一个即可).13.若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在第________象限.14.如图,在菱形ABCD中,AB=13 cm,BC边上的高AH=5 cm,那么对角线AC 的长为________cm.(第14题)(第15题)15.如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC于点E,延长BC 到点F,使CF=CE,连接DF.若CE=1 cm,则BF=__________.16.矩形ABCD中,AB=3,AD=4,P是AD上一动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为________.17.以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是__________.18.如图,在边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连接AE,再以AE为边作第三个菱形AEGH,使∠HAE=60°……按此规律所作的第n个菱形的边长是________.三、解答题(19题8分,20~22题每题10分,其余每题14分,共66分)19.如图,在▱ABCD中,点E,F分别在边CB,AD的延长线上,且BE=DF,EF 分别与AB,CD交于点G,H.求证AG=CH.20.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证AE=BF;(2)若正方形的边长是5,BE=2,求AF的长.21.已知:如图,在▱ABCD中,延长CB至点E,延长AD至点F,使得DF=BE,连接EF与对角线AC交于点O.求证:OE=OF.22.在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.23.如图,△ABC中,∠ACB=90°,D为AB的中点,四边形BCED为平行四边形,DE,AC相交于F.连接DC,AE.(1)试确定四边形ADCE的形状,并说明理由.(2)若AB=16,AC=12,求四边形ADCE的面积.(3)当△ABC满足什么条件时,四边形ADCE为正方形?请给予证明.24.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形.(1)如图①,在四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点,求证:中点四边形EFGH是平行四边形;(2)如图②,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,判断中点四边形EFGH 的形状,并说明理由;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状(不必证明).答案一、1.C 2.C 3.A 4.A 5.C 6.B 7.C 8.B9.C 点拨:在矩形ABCD 中,AD =3AB ,设AB =1,则AD =3,由AD ∥BC ,BG ∥DH 得四边形BHDG 为平行四边形.若四边形BHDG 为菱形,则BG =GD ,设BG =GD =x ,则AG =3-x ,在Rt △ABG 中,12+()3-x 2=x 2,解得x =53 ,所以AG AD =3-533=49. 10.C 二、11.1412.OA =OC (答案不唯一) 13.三 14.2615.(2+2)cm 点拨:过点E 作EG ⊥BD 于点G .∵BE 平分∠DBC ,∠EGB =∠BCE =90°, ∴EG =EC =1 cm.易知△DEG 为等腰直角三角形, ∴DE =2EG =2cm. ∴CD =(1+2)cm , ∴BC =(1+2)cm. 又∵CF =CE =1 cm , ∴BF =(2+2)cm.16.125 点拨:设AC 与BD 交于点O ,连接PO ,过D 作DG ⊥AC 于G ,由△AOD的面积=△AOP 的面积+△POD 的面积,可得PE +PF =DG ,易得PE +PF =125.17.30°或150° 点拨:分两种情况.(1)如图①,等边三角形ADE 在正方形ABCD 的内部,则∠CDE =∠CDA -∠ADE =90°-60°=30°. 又∵CD =AD =DE , ∴∠DCE =75°. ∴∠ECB =15°. 同理∠EBC =15°. ∴∠BEC =150°.(2)如图②,等边三角形ADE 在正方形ABCD 的外部,则∠CDE =∠CDA +∠ADE =90°+60°=150°. 又∵CD =AD =DE , ∴∠CED =15°. 同理∠AEB =15°.∴∠BEC =∠AED -∠CED -∠AEB =60°-15°-15°=30°.18.(3)n -1 点拨:连接DB ,与AC 相交于M .∵四边形ABCD 是菱形,∴AD =AB ,AC ⊥DB . ∵∠DAB =60°, ∴△ADB 是等边三角形. ∴DB =AD =1. ∴DM =12. ∴AM =32. ∴AC =3.同理可得AE =3AC =(3)2,AG =3AE =33=(3)3,…,按此规律所作的第n 个菱形的边长为(3)n -1.三、19.证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∠A =∠C . ∴∠F =∠E . ∵BE =DF ,∴AD +DF =CB +BE ,即AF =CE . 在△AGF 和△CHE 中,⎩⎨⎧∠A =∠C ,AF =CE ,∠F =∠E ,∴△AGF ≌△CHE (ASA). ∴AG =CH .20.(1)证明:∵四边形ABCD 是正方形,∴AB =BC ,∠ABE =∠BCF =∠D =90°. ∴∠BAE +∠AEB =90°. ∵BH ⊥AE , ∴∠BHE =90°. ∴∠AEB +∠EBH =90°. ∴∠BAE =∠EBH . 在△ABE 和△BCF 中,⎩⎨⎧∠BAE =∠CBF ,AB =BC ,∠ABE =∠BCF ,∴△ABE ≌△BCF (ASA). ∴AE =BF .(2)解:由(1)得△ABE ≌△BCF , ∴BE =CF .∵正方形的边长是5,BE =2,∴DF =CD -CF =CD -BE =5-2=3.在Rt △ADF 中,由勾股定理得AF =AD 2+DF 2=52+32=34. 21.证明:连接AE ,CF .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC . 又∵BE =DF ,∴AD +DF =BC +BE ,即AF =EC . 又∵AF ∥EC ,∴四边形AECF 为平行四边形. ∴OE =OF .22.(1)证明:∵AF ∥BC ,∴∠AFE =∠DBE . ∵E 是AD 的中点, ∴AE =DE .在△AFE 和△DBE 中,⎩⎨⎧∠AFE =∠DBE ,∠FEA =∠BED ,AE =DE ,∴△AFE ≌△DBE (AAS). ∴AF =BD .∵AD 是BC 边上的中线, ∴DC =BD . ∴AF =DC .(2)解:四边形ADCF 是菱形. 证明:由(1)得AF =DC , 又∵AF ∥BC ,∴四边形ADCF 是平行四边形. ∵AC ⊥AB ,AD 是斜边BC 上的中线, ∴AD =12BC =DC .∴四边形ADCF是菱形.23.解:(1)四边形ADCE是菱形.理由:∵四边形BCED为平行四边形,∴CE∥BD,CE=BD,BC∥DE.∵D为AB的中点,∴AD=BD.∴CE=AD.又∵CE∥AD,∴四边形ADCE为平行四边形.∵BC∥DF,∴∠AFD=∠ACB=90°,即AC⊥DE.∴四边形ADCE为菱形.(2)在Rt△ABC中,∵AB=16,AC=12,∴BC=47.又易知BC=DE,∴DE=47.∴四边形ADCE的面积=12AC·DE=247.(3)当AC=BC时,四边形ADCE为正方形.证明:∵AC=BC,D为AB的中点,∴CD⊥AB,即∠ADC=90°.∴四边形ADCE为正方形.24.(1)证明:如图①,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=12BD.∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=12BD.∴EH∥FG,EH=FG.∴中点四边形EFGH 是平行四边形. (2)解:中点四边形EFGH 是菱形. 理由:如图②,连接AC ,BD . ∵∠APB =∠CPD ,∴∠APB +∠APD =∠CPD +∠APD , 即∠BPD =∠APC . 在△APC 和△BPD 中,⎩⎨⎧PA =PB ,∠APC =∠BPD ,PC =PD ,∴△APC ≌△BPD (SAS). ∴AC =BD .∵点E ,F ,G 分别为边AB ,BC ,CD 的中点, ∴EF =12AC ,FG =12BD . ∴EF =FG .又由(1)中结论知中点四边形EFGH 是平行四边形, ∴中点四边形EFGH 是菱形. (3)解:中点四边形EFGH 是正方形.第十九章达标测试卷一、选择题(每题3分,共30分)1.函数y =1x -3+x -1的自变量x 的取值范围是( )A.x≥1B.x≥1且x≠3C.x≠3D.1≤x≤3 2.下列图象中,表示y是x的函数的是()3.如果函数y=kx+b(k,b是常数)的图象不经过第三象限,那么k,b应满足的条件是()A.k≤0且b≥0 B.k<0且b≥0C.k≤0且b>0 D.k<0且b>04.把直线y=x向上平移3个单位长度,下列在该平移后的直线上的点是() A.(2,2) B.(2,3) C.(2,4) D.(2,5) 5.一个正比例函数的图象经过点(2,-1),则它的解析式为()A.y=-2x B.y=2x C.y=-12x D.y=12x6.如图所示,表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象可能是()7.某学习小组做了一个实验:从100 m高的楼顶随手放下一个苹果,测得有关数据如下:则下列说法错误的是()A.苹果每秒下落的路程越来越长B.苹果每秒下落的路程不变C.苹果下落的速度越来越快D.可以推测,苹果落到地面的时间不超过5 s8.若直线y=-2x+m与直线y=2x-1的交点在第四象限,则m的取值范围是()A.m>-1 B.m<1C.-1<m<1 D.-1≤m≤19.双胞胎兄弟小明和小亮在同一班读书,周五16:00放学后,小明和同学走路回家,途中没有停留,小亮骑车回家,他们各自离学校的路程s(米)与用去的时间t(分)之间的关系如图所示,根据图象提供的有关信息,下列说法中错误的是()A.兄弟俩的家离学校1 000米B.他们同时到家,用时30分C.小明的速度为50米/分D.小亮中间停留了一段时间后,再以80米/分的速度骑回家10.如图,点P是菱形ABCD边上的一动点,它从点A出发沿着A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()二、填空题(每题3分,共24分)11.直线y=2x+1经过点(a,0),则a=________.12.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.13.图中直线是由直线l向上平移1个单位长度、向左平移2个单位长度得到的,则直线l对应的函数解析式为__________.(第13题)(第16题)(第18题)14.直线y=2x+b经过点(3,5),则关于x的不等式2x+b≥0的解集是__________.15.若一次函数y=-x+a与一次函数y=x+b的图象的交点坐标为(m,8),则a +b=________.16.某天,某巡逻艇凌晨1:00出发巡逻,预计准点到达指定区域,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(n mile)与所用时间t(h)的函数图象,则该巡逻艇原计划准点到达的时刻是__________.17.已知一次函数y=(m+2)x+(1-m),若y随x的增大而减小,且该函数的图象与x轴的交点在原点的右侧,则m的取值范围是__________.18.如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<13x时,x的取值范围为__________.三、解答题(19~21题每题10分,其余每题12分,共66分)19.一次函数的图象经过(-2,1)和(1,4)两点.(1)求这个一次函数的解析式;(2)当x=3时,求y的值.20.在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当-2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m-n=4,求点P的坐标.21.如图,在平面直角坐标系中,已知点A(6,0),点B(x,y)在第一象限内,且x +y=8,设△AOB的面积是S.(1)写出S与x之间的函数解析式,并求出x的取值范围;(2)画出(1)中所求函数的图象.22.某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:(1)该地出租车的起步价是________元;(2)当x>2时,求y与x之间的函数解析式;(3)若某乘客有一次乘出租车的里程为18 km,则这位乘客需付出租车车费多少元?23.为了落实党的“精准扶贫”政策,A,B两城决定向C,D两乡运送肥料以支持农村生产,已知A,B两城分别有肥料210吨和290吨,从A城往C,D两乡运送肥料的费用分别为20元/吨和25元/吨;从B城往C,D两乡运送肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)设从A城运往C乡的肥料有x吨.①用含x的代数式完成下表:②设总运费为y元,写出y与x的函数关系式,并求出最少总运费.(2)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时A城运往C乡的肥料有多少吨时总运费最少?24.新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/m2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120 m2.若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/m2)与楼层x(1≤x≤23,x取整数)之间的函数解析式;(2)老王要购买第十六层的一套楼房,若他一次性付清所有房款,请帮他计算哪种优惠方案更合算.答案一、1.B 2.D 3.A 4.D 5.C 6.A 7.B8.C点拨:由题意得⎩⎨⎧y =-2x +m ,y =2x -1,解得⎩⎪⎨⎪⎧x =m +14,y =m -12.∵交点在第四象限,∴⎩⎪⎨⎪⎧m +14>0,m -12<0.解不等式组,得-1<m <1. 9.C 10.B二、11.-12 12.-2 13.y =x -2 14.x ≥12 15.16 16.7:0017.m <-2 点拨:∵y 随x 的增大而减小,∴m +2<0,解得m <-2.又∵该函数的图象与x 轴的交点在原点的右侧, ∴图象过第一、二、四象限. ∴图象与y 轴的交点在正半轴上, 故1-m >0,解得m <1. ∴m 的取值范围是m <-2. 18.x >3三、19.解:(1)设一次函数的解析式为y =kx +b .将点(-2,1)和(1,4)的坐标代入解析式中得: ⎩⎨⎧-2k +b =1,k +b =4,解得⎩⎨⎧k =1,b =3. ∴一次函数的解析式是y =x +3. (2)当x =3时,y =3+3=6.20.解:将点(1,0),(0,2)的坐标分别代入y =kx +b ,得⎩⎨⎧k +b =0,b =2,解得⎩⎨⎧k =-2,b =2.∴这个函数的解析式为y =-2x +2. (1)把x =-2代入y =-2x +2, 得y =6;把x =3代入y =-2x +2, 得y =-4.∴y 的取值范围是-4≤y <6. (2)∵点P (m ,n )在该函数的图象上, ∴n =-2m +2. ∵m -n =4, ∴m -(-2m +2)=4, 解得m =2. ∴n =-2.∴点P 的坐标为(2,-2). 21.解:(1)过点B 作BC ⊥OA 于点C .∵点A 和点B 的坐标分别是(6,0),(x ,y ),且点B 在第一象限内, ∴S =12OA ·BC =12×6y =3y . ∵x +y =8, ∴y =8-x .∴S =3(8-x )=24-3x .即所求函数解析式为S =-3x +24.由⎩⎨⎧x >0,-3x +24>0,解得0<x <8.(2)S =-3x +24(0<x <8)的图象如图所示.22.解:(1)7(2)设当x >2时,y 与x 之间的函数解析式为y =kx +b ,分别代入点(2,7),(4,10)的坐标,得⎩⎨⎧2k +b =7,4k +b =10,解得⎩⎪⎨⎪⎧k =32,b =4.∴y 与x 之间的函数解析式为y =32x +4(x >2). (3)∵18>2,∴把x =18代入y =32x +4,得y =32×18+4=31.答:这位乘客需付出租车车费31元. 23.解:(1)①210-x ;240-x ;50+x②y =20x +25(210-x )+15(240-x )+24(x +50)=4x +10 050. 因为y =4x +10 050是一次函数,k =4>0, 所以y 随x 的增大而增大.因为x ≥0,所以当x =0时,总运费最少,最少总运费是10 050元. (2)y =(20-a )x +25(210-x )+15(240-x )+24(x +50)=(4-a )x +10 050. 当0<a <4时,4-a >0,∴当x =0时,总运费最少是10 050元; 当4<a <6时,∵4-a <0,∴当x 最大时,总运费最少.即当x =210时,总运费最少.当a =4时,不管A 城运往C 乡的肥料有多少吨(不超过210吨),总运费都是10 050元.综上所述,当0<a <4时,A 城不向C 乡运送肥料时,总运费最少;当a =4时,不管A 城运往C 乡的肥料有多少吨(不超过210吨),总运费都是10 050元;当4<a <6时,当A 城运往C 乡的肥料有210吨时,总运费最少. 24.解:(1)当1≤x ≤8,x 取整数时,y =4 000-(8-x )×30=30x +3 760;当9≤x ≤23,x 取整数时,y =4 000+(x -8)×50=50x +3 600.∴y =⎩⎨⎧30x +3 760(1≤x ≤8,x 取整数),50x +3 600(9≤x ≤23,x 取整数).(2)第十六层楼房的售价为50×16+3 600=4 400(元/m 2). 设按照方案一所交房款为:W 1=4 400×120×(1-8%)-a =(485 760-a )元, 设按照方案二所交房款为:W 2=4 400×120×(1-10%)=475 200(元).当W 1=W 2时,即485 760-a =475 200,解得a =10 560; 当W 1>W 2时,即485 760-a >475 200,解得a <10 560; 当W 1<W 2时,即485 760-a <475 200,解得a >10 560. ∴当0<a <10 560时,方案二更合算; 当a =10 560时,两种方案一样合算; 当a >10 560时,方案一更合算.第二十章达标测试卷一、选择题(每题3分,共30分)1.一组数据2,4,6,4,8的中位数为( )A .2B .4C .6D .82.若一组数据2,3,4,x ,6的平均数是4,则x 的值是( )A .2B .3C .4D .53.已知一组数据:66,66,62,67,63,这组数据的众数和中位数分别是( )A .66,62B .66,66C .67,62D .67,664.在音乐比赛中,经常采用这样的办法来得到一名选手的最后成绩:将所有评委的打分组成一组数据,去掉一个最高分和一个最低分,得到一组新的数据,再计算平均分.假设评委不少于10人,则比较两组数据,一定不会发生变化的是( ) A .平均数B .中位数C .众数D .方差5.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵树,每棵树产量的平均数x (单位:千克)及方差s 2如下表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树扩大种植,应选的品种是()A.甲B.乙C.丙D.丁6.下表是某公司员工月收入的资料:能够反映该公司全体员工月收入水平的统计量是()A.平均数和众数B.平均数和中位数C.中位数和众数D.平均数和方差7.超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如下表:将创新能力、综合知识和语言表达三项测试成绩按5∶3∶2的比确定,则该应聘者的平均成绩是()A.77分B.77.2分C.77.3分D.77.4分8.李大伯承包了一个果园,种植了100棵樱桃树,2021年已进入收获期,收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:据调查,市场上今年樱桃的批发价格为每千克15元.用所学的统计知识估计今年此果园樱桃的总产量与按批发价格销售樱桃所得的总收入分别约为()A.200 kg,3 000元B.1 900 kg,28 500元C.2 000 kg,30 000元D.1 850 kg,27 750元9.甲、乙两地去年12月前5天的日平均气温如图所示,下列描述错误的是()A.两地气温的平均数相同B.甲地气温的中位数是6 ℃C.乙地气温的众数是4 ℃D.乙地气温相对比较稳定10.某篮球队10名队员的年龄结构如下表,已知该队队员年龄的中位数为21.5岁,这组数据的众数与方差分别为()A.22,3 B.22,4 C.21,3 D.21,4二、填空题(每题3分,共24分)11.在综合实践课上,六名同学的作品数量(单位:件)分别为3,5,2,5,5,7,则这组数据的众数为________.12.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是________分.13.一组数据2,x,4,3,3的平均数是3,则这组数据的中位数是________.14.某同学用计算器计算30个数据的平均数时,错将其中一个数据105输成了15,那么由此求得的平均数与实际平均数的差是________.15.某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如右表,则这20户家庭这个月的平均用水量是________t.16.在射击比赛中,某运动员的6次射击成绩(单位:环)为7,8,10,8,9,6,则这组数据的方差为__________.17.一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组⎩⎨⎧x -3≥0,5-x >0的整数,则这组数据的平均数是________.18.若一组数据1,2,3,4,x 的平均数与中位数相同,则实数x 的值可能是____________.三、解答题(19~21题每题10分,其余每题12分,共66分)19.某部队为测量一批新制造的炮弹的杀伤半径,从中抽查了50枚炮弹,它们的杀伤半径如下表:估计这批炮弹的平均杀伤半径是多少?20.随机抽取某理发店一周的营业额如下表(单位:元):(1)求该店本周的日平均营业额.(2)如果用该店本周星期一到星期五的日平均营业额估计当月的营业总额,你认为是否合理?如果合理,请说明理由;如果不合理,请设计一个方案,并估计该店当月(按30天计算)的营业总额.。

新北师大版八年级数学下册各章测试题附答案(全册)

新北师大版八年级数学下册各章测试题附答案(全册)

第一章《三角形的证明》水平测试一、精心选一选,慧眼识金(每小题2分,共20分)1.如图1,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()去配. A. ① B. ②C.③D. ①和②2.下列说法中,正确的是().A .两腰对应相等的两个等腰三角形全等B .两角及其夹边对应相等的两个三角形全等C .两锐角对应相等的两个直角三角形全等D .面积相等的两个三角形全等3.如图2,AB ⊥CD ,△ABD 、△BCE 都是等腰三角形,如果CD =8cm ,BE=3cm ,那么AC长为().A .4cmB .5cmC .8cmD .34cm4.如图3,在等边ABC 中,,D E 分别是,BC AC 上的点,且BD CE ,AD 与BE 相交于点P ,则12的度数是(). A .045B .055C .060D .0755.如图4,在ABC 中,AB=AC ,36A ,BD 和CE 分别是ABC 和ACB 的平分线,且相交于点P. 在图4中,等腰三角形(不再添加线段和字母)的个数为().A .9个B .8个C .7个D .6个6.如图5,123,,l l l 表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有().A .1处B .2处C .3处D .4处7.如图6,A 、C 、E 三点在同一条直线上,△DAC 和△EBC 都是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:①△ACE ≌△DCB ;②CM =CN ;③AC =DN. 其中,正确结论的个数是().A .3个B .2个C .1个D .0个8.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C ,D ,使CD=BC ,再作出BF 的垂线DE ,使A ,C ,E 在同一条直线上(如图7),可以证明ABC ≌EDC ,得ED=AB. 因此,测得DE 的长就是AB 的长,在这里判定ABC ≌EDC 的条件是().A .ASAB .SASC .SSSD .HL9.如图8,将长方形ABCD 沿对角线BD 翻折,点C 落在点E 的位置,BE 交AD 于点F. 求证:重叠部分(即BDF )是等腰三角形.证明:∵四边形ABCD 是长方形,∴AD ∥BC又∵BDE 与BDC 关于BD 对称,∴23. ∴BDF 是等腰三角形.请思考:以上证明过程中,涂黑部分正确的应该依次是以下四项中的哪两项?().①12;②13;③34;④BDC BDEA .①③B .②③C .②①D .③④10.如图9,已知线段a ,h 作等腰△ABC ,使AB =AC ,且BC =a ,BC 边上的高AD =h. 张红的作法是:(1)作线段BC =a ;(2)作线段BC 的垂直平分线MN ,MN 与BC 相交于点D ;(3)在直线MN 上截取线段h ;(4)连结AB ,AC ,则△ABC 为所求的等腰三角形.上述作法的四个步骤中,有错误的一步你认为是().A. (1)B. (2)C. (3)D. (4)二、细心填一填,一锤定音(每小题2分,共20分)1.如图10,已知,在△ABC 和△DCB 中,AC=DB ,若不增加任何字母与辅助线,要使△ABC ≌△DCB ,则还需增加一个条件是____________.2.如图11,在Rt ABC 中,090,BAC ABAC ,分别过点,B C 作经过点A 的直线的垂线段BD ,CE ,若BD=3厘米,CE=4厘米,则DE 的长为_______.3.如图12,P ,Q 是△ABC 的边BC 上的两点,且BP =PQ =QC =AP =AQ ,则∠ABC 等于_________度.4.如图13,在等腰ABC 中,AB=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若BCE 的周长为50,则底边BC 的长为_________. 5.在ABC 中,AB=AC ,AB 的垂直平分线与AC 所在的直线相交所得的锐角为50,则图8底角B 的大小为________.6.在《证明二》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的距离相等.在上述定理中,存在逆定理的是________.(填序号)7.如图14,有一张直角三角形纸片,两直角边AC=5cm ,BC=10cm ,将△ABC 折叠,点 B与点A 重合,折痕为DE ,则CD 的长为________.8.如图15,在ABC 中,AB=AC ,120A ,D 是BC 上任意一点,分别做DE ⊥AB于E ,DF ⊥AC 于F ,如果BC=20cm ,那么DE+DF= _______cm.9.如图16,在Rt △ABC 中,∠C=90°,∠B=15°,DE 是AB 的中垂线,垂足为D ,交BC于点E ,若4BE,则AC_______ .10.如图17,有一块边长为24m 的长方形绿地,在绿地旁边B 处有健身器材,由于居住在A 处的居民践踏了绿地,小颖想在A 处立一个标牌“少走_____步,踏之何忍?”但小颖不知在“_____”处应填什么数字,请你帮助她填上好吗?(假设两步为1米)?三、耐心做一做,马到成功(本大题共48分)1.(7分)如图18,在ABC 中,090ACB,CD 是AB 边上的高,30A . 求证:AB= 4BD.2.(7分)如图19,在ABC 中,090C ,AC=BC ,AD 平分CAB 交BC 于点D ,DE ⊥AB 于点E ,若AB=6cm. 你能否求出BDE 的周长?若能,请求出;若不能,请说明理由.3.(10分)如图20,D 、E 分别为△ABC 的边AB 、AC 上的点,BE 与CD 相交于O 点. 现有四个条件:①AB =AC ;②OB =OC ;③∠ABE =∠ACD ;④BE =CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正.确.的命题:命题的条件是和,命题的结论是和(均填序号).(2)证明你写出的命题.已知:求证:证明:4.(8分)如图21,在ABC 中,90A ,AB=AC ,ABC 的平分线BD 交AC 于D ,CE ⊥BD 的延长线于点 E.求证:12CEBD .5.(8分)如图22,在ABC 中,90C .(1)用圆规和直尺在AC 上作点P ,使点P 到A 、B 的距离相等.(保留作图痕迹,不写作法和证明);(2)当满足(1)的点P 到AB 、BC 的距离相等时,求∠A 的度数.6.(8分)如图23,90AOB ,OM 平分AOB ,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA 、OB 相交于点C 、D ,问PC 与PD 相等吗?试说明理由.四、拓广探索(本大题12分)如图24,在ABC 中,AB=AC ,AB 的垂直平分线交AB 于点N ,交BC 的延长线于点M ,若40A .(1)求NMB 的度数;(2)如果将(1)中A 的度数改为070,其余条件不变,再求NMB 的度数;(3)你发现有什么样的规律性,试证明之;(4)若将(1)中的A 改为钝角,你对这个规律性的认识是否需要加以修改?图21图24图23答案:一、精心选一选,慧眼识金1.C ;2.B ;3.D .点拨:BC=BE=3cm ,AB=BD=5cm ;4.C .点拨:利用ABD ≌BCE ;5.B ;6.D .点拨:三角形的内角平分线或外角平分线的交点处均满足条件;7.B .点拨:①②正确;8.A ;9.C ;10.C .点拨:在直线MN 上截取线段h ,带有随意性,与作图语言的准确性不相符.二、细心填一填,一锤定音1.答案不惟一.如ACBDBC ;2.7厘米. 点拨:利用ABD ≌CAE ;3.030;4.23.点拨:由27BE CE ACAB,可得502723BC;5.070或020.点拨;当ABC 为锐角三角形时,70B;当ABC 为钝角三角形时,20B ;6.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理;7.154cm . 点拨:设CDx ,则易证得10BDAD x .在Rt ACD 中,222(10)5x x ,解得154x.8.10.点拨:利用含030角的直角三角形的性质得,1122DE DFBD CDBC .9.2. 点拨:在Rt AEC 中,030AEC,由AE=BE= 4,则得AC=2;10.16.点拨:AB=26米,AC+BC=34米,故少走8米,即16步. 三、耐心做一做,马到成功1.∵90ACB ,30A ,∴AB=2BC ,60B .又∵CD ⊥AB ,∴030DCB ,∴BC=2BD.∴AB= 2BC= 4BD.2.根据题意能求出BDE 的周长. ∵090C ,90DEA,又∵AD 平分CAB ,∴DE=DC.在Rt ADC 和Rt ADE 中,DE=DC ,AD=AD ,∴Rt ADC ≌Rt ADE (HL ).∴AC=AE ,又∵AC=BC ,∴AE=BC.∴BDE 的周长DE DB EB BC EB AE EB AB .∵AB=6cm ,∴BDE 的周长=6cm.3.(1)①,③;②,④.(2)已知:D 、E 分别为△ABC 的边AB 、AC 上的点,BE 与CD 相交于O 点,且AB =AC ,∠ABE =∠ACD. 求证:OB =OC ,BE =CD.证明:∵AB=AC ,∠ABE =∠ACD ,∠A =∠A ,∴△ABE ≌△ACD (ASA ).∴BE=CD.又∵ABC ACB ,∴BCD ACB ACD ABC ABE CBE∴BOC 是等腰三角形,∴OB =OC.4.延长CE 、BA 相交于点 F.∵090,90EBF F ACF F ,∴EBF ACF .在Rt ABD 和Rt ACF 中,∵DBA ACF ,AB=AC ,∴Rt ABD ≌Rt ACF (ASA ). ∴BD CF .在Rt BCE 和Rt BFE 中,∵BE=BE ,EBC EBF ,∴RtBCE ≌Rt BFE (ASA ).∴CEEF. ∴1122CECFBD .5.(1)图略. 点拨:作线段AB 的垂直平分线.(2)连结BP.∵点P 到AB 、BC 的距离相等,∴BP 是ABC 的平分线,∴ABPPBC .又∵点P 在线段AB 的垂直平分线上,∴PA=PB ,∴A ABP .∴190303AABPPBC.6.过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点 F.∵OM 平分AOB ,点P 在OM 上,∴PE=PF.又∵090AOB ,∴90EPF .∴EPF CPD ,∴E P CF P D.∴Rt PCE ≌Rt PDF (ASA ),∴PC=PD. 四、拓广探索(1)∵AB=AC ,∴BACB .∴11180180407022BA.∴90907020NMB B. (2)解法同(1).同理可得,035NMB.(3)规律:NMB 的度数等于顶角A 度数的一半.证明:设A.∵AB=AC ,∴BC ,∴11802B .∵090BNM ,∴11909018022NMB B.即NMB 的度数等于顶角A 度数的一半. (4)将(1)中的A 改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.全品中考网全品第二章一元一次不等式(组)检测试题一、选择题(每小题3分,共36分)1.x 与y 的差的5倍与2的和是一个非负数,可表示为()(A )025y x (B )025y x(C )025y x (D )0225y x 2.下列说法中正确的是()(A )3x 是32x 的一个解. (B )3x 是32x 的解集. (C )3x是32x 的唯一解. (D )3x不是32x 的解.3. 不等式222xx 的非负整数解的个数是()(A )1 (B )2(C )3(D )44.已知正比例函数x m y 12的图象上两点2221,,,y x B x x A ,当21x x 时,有21y y ,那么m 的取值范围是()(A )21m(B )21m(C )2m (D )m 5.不等式组2.351,062xx的解集是()(A )32x (B )38x (C )38x (D )8x或3x 6.若,0ba 且0b,则b a b a ,,,的大小关系是()(A )b a b a (B )ba ab (C )baba(D )a b ba7.已知关于x 的一次函数72m mx y在51x上的函数值总是正的,则m 的取值范围是()(A )7m (B )1m (C )71m (D )以上答案都不对8.如果方程组.33,13yxk y x 的解为x 、y ,且42k,则y x的取值范围是()(A )10yx (B )210yx (C )11yx(D )13yx9.若方程x xm x m 53113的解是负数,则的取值范围是()(A )45m(B )45m(C )45m(D )45m10.两个代数式1x 与3x的值的符号相同,则x 的取值范围是()(A )3x (B )1x (C )21x (D )1x 或3x 11.若不等式33a xa 的解集是1x ,则a 的取值范围是()(A )3a (B )3a(C )3a(D )3a 12.若4224m m ,那么m 的取值范围是()(A )不小于 2 (B )不大于 2 (C )大于 2 (D )等于 2 二、填空题(每题3分,共24分)13. 当x _____时,代数式43x 的值是非正数. 14. 若不等式.32,12bxa x 的解集为11x ,那么ab 的值等于_____. 15.若x 同时满足不等式032x 与02x,则x 的取值范围是_____.m16.已知x 关于的不等式组.0,125ax x 无解,则a 的取值范围是_____.17. 如果关于x 的不等式51a x a 和42x 的解集相同,则a 的值为_____.18. 小马用100元钱去购买笔记本和笔共30件,已知每本笔记本2元,每枝钢笔5元,那么小马最多能买_____枝钢笔.19.一个两位数,十位上的数字比个位数上的数字小2,若这个两位数处在40至60之间,那么这个两位数是_____.20. 已知四个连续自然数的和不大于34,这样的自然数组有_____组.三、解答题(每题8分,共40分)21.解不等式3225332xxx x ,并把它的解集在数轴上表示出来.22.求不等式组)2(.3212)1(,133211x xx x 的偶数解.23.已知关于y x,的方程组)2(.2)1(,32m yxm y x 的解y x,均为负数,求m 的取值范围.24. 关于y 的不等式组253,7.236y yt y t y 的整数解是3,2,1,0,1,求参数t 的取值范围.25. 甲乙两人先后去同一家商场买了一种每块0.50元的小手帕.商场规定凡购买不少于10块小手帕可优惠20%,结果甲比乙多花了4元钱,又知甲所花的钱不超过8元,在充分享受优惠的条件下,甲乙两人各买了多少块小手帕?参考答案一、选择题(每小题3分,共36分)1.解:x 与y 的差的5倍是y x 5,再与2的和是25y x ,是一个非负数为:025y x .故选(B )2.解:32x ,根据不等式基本性质2,两边都除以2,得23x.由此,可知3x 只是32x 的一个解.故选(A )3. 解:去括号,得.242x x 解得.2x 所以原不等式的非负数整数解为,2,1,0x共3个.故选(C )4.解:因为点2221,,,y x B x x A 在函数x m y 12的图象上,所以1112x m y ,2212x m y . 所以212112x x m y y . 因为当21x x 时,有21y y ,即当21x x ,021y y ,所以.012m 所以.21m故选(A )5.解: 由(1)得3x . 由(2)得8x.所以不等式组的解集是38x 故选(C )6.解:由,0b a且0b,得0a且b a.又根据不等式的性质2,得0,0ba.b ab a,.所以a b b a 故选(D )7.解:根据题意,令1x,则07my,得7m;令5x ,则077m y ,得1m .综上,得7m.故选(A )8.解:两个不等式相减后整理,得221kyx .由42k,得220k .所以10yx故选(A )9.解:方程x x m x m 53113的解为541mx,要使解为负数,必须054m ,即45m.故选(A )10.解: 因为代数式1x 与3x 的值的符号相同,可得.03,01xx 或.03,01xx 由第一个不等式组得,3x;由第二个不等式组得, 1x .故选(D )11.解:因为不等式33a x a 的解集是1x,所以03a .所以3a.故选(C )12.解:由4224m m ,得042m ,所以2m .故选(A )二、填空题(每题3分,共24分)13.解:根据题意,得043x .解得.34x14.解:由.32,12bxa x 得.23,21b xa x 所以.2123axb 又因为11x ,所以.123,121ba解得.2,1ba 所以.221ab 15.解:由032x ,得23x,由02x ,得2x .所以223x.16.解:原不等式组可化为.,3a x x 若不等式组有解,则3xa.3a.故当3a时, 不等式组无解. 所以a 的取值范围是3a . 17.解:由42x 得2x .因为不等式51a x a 和42x 的解集相同,所以不等式51a xa 的解集为.15a ax 215a a .解得7a.18.解:设小马最多能买x 枝钢笔.根据题意,得1003025x x。

人教版八年级数学下册第17章勾股定理单元测试(有答案)

人教版八年级数学下册第17章勾股定理单元测试(有答案)

《第17章勾股定理》一、填空1.命题:“如果a=0,那么ab=0”的逆命题是;命题内错角相等,两直线平行”的逆命题是.2.测得一块三角形花坛的三边长分別为1.5m,2m,2.5m,则这个花坛的面积为m2.3.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为.4.△ABC中,AB=13cm,BC=10cm,BC边上的中线AD=12cm.则AC= cm.二、选择题5.下列命题:①如果a、b、c为一组勾股数,那么4a、4b、4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2:b2:c2=2:1:1.其中正确的是()A.①②B.①③ C.①④ D.②④三、解答题6.一种机器零件的形状如图所示,按规定这个零件中∠A和∠DBC都应为直角,工人师傅量得这个零件各边尺寸如图所示,这个零件符合要求吗?请说明理由.7.如图,在△ABC中,AC=5,BC=12,AB=13,D是BC的中点,求AD的长和△ABD的面积.8.一艘轮船以16海里/时的速度离开港口(如图),向北偏东40°方向航行,另一艘轮船在同时以12海里/时的速度向北偏西一定的角度的航向行驶,已知它们离港口一个半小时后相距30海里(即BA=30),问另一艘轮船的航行的方向是北偏西多少度?9.如图所示,已知等腰三角形ABC的底边BC=20cm,D是腰AB上一点,且CD=16cm,BD=12cm,求△ABC 的周长.《第17章勾股定理》参考答案与试题解析一、填空1.命题:“如果a=0,那么ab=0”的逆命题是如果ab=0,那么a=0 ;命题内错角相等,两直线平行”的逆命题是两直线平行,内错角相等.【考点】命题与定理.【分析】将原命题的条件与结论互换即得到其逆命题.【解答】解:“如果a=0,那么ab=0”的逆命题是如果ab=0,那么a=0;内错角相等,两直线平行”的逆命题是两直线平行,内错角相等,故答案:如果ab=0,那么a=0;两直线平行,内错角相等.【点评】考查学生对逆命题的定义的理解及运用,分清原命题的题设和结论是解答本题的关键.2.测得一块三角形花坛的三边长分別为1.5m,2m,2.5m,则这个花坛的面积为 1.5 m2.【考点】勾股定理的逆定理.【分析】先根据勾股定理的逆定理判断出三角形花坛的形状,再根据三角形的面积公式即可得出结论.【解答】解:∵1.52+22=6.25=2.52,∴三角形花坛的三边正好构成直角三角形,∴这个花坛的面积=×1.5×2=1.5m2.故答案为:1.5.【点评】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.3.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为24m2.【考点】勾股定理的应用.【分析】连接AC,利用勾股定理可以得出三角形ACD和ABC是直角三角形,△ABC的面积减去△ACD的面积就是所求的面积.【解答】解:如图,连接AC由勾股定理可知AC===5,又AC2+BC2=52+122=132=AB2故三角形ABC是直角三角形故所求面积=△ABC的面积﹣△ACD的面积==24(m2).【点评】考查了直角三角形面积公式以及勾股定理的应用.4.△ABC中,AB=13cm,BC=10cm,BC边上的中线AD=12cm.则AC= 13 cm.【考点】勾股定理的逆定理;勾股定理.【分析】根据已知及勾股定理的逆定理可得△ABD,△ADC是直角三角形,从而不难求得AC的长.【解答】解:∵D是BC的中点,BC=10cm,∴DC=BD=5cm,∵BD2+AD2=144+25=169,AB2=169,∴BD2+AD2=AB2,∴△ABD是直角三角形,且∠ADB=90°∴△ADC也是直角三角形,且AC是斜边∴AC2=AD2+DC2=AB2∴AC=13cm.故答案为:13.【点评】本题考查了勾股定理的应用和直角三角形的判定.二、选择题(共1小题,每小题3分,满分3分)5.下列命题:①如果a、b、c为一组勾股数,那么4a、4b、4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2:b2:c2=2:1:1.其中正确的是()A.①②B.①③ C.①④ D.②④【考点】勾股定理的逆定理;勾股数.【分析】本题主要依据勾股定理的逆定理,判定三角形是否为直角三角形.【解答】解:①正确,∵a2+b2=c2,∴(4a)2+(4b)2=(4c)2,②错误,应为“如果直角三角形的两直角边是3,4,那么斜边必是5”③错误,∵122+212≠252,∴不是直角三角形;④正确,∵b=c,c2+b2=2b2=a2,∴a2:b2:c2=2:1:1,故选C.【点评】此题主要考查勾股定理的逆定理,直角三角形的判定等知识点的综合运用.三、解答题6.一种机器零件的形状如图所示,按规定这个零件中∠A和∠DBC都应为直角,工人师傅量得这个零件各边尺寸如图所示,这个零件符合要求吗?请说明理由.【考点】勾股定理的逆定理.【专题】几何图形问题.【分析】根据勾股定理的逆定理,判断出△ABD、△BDC的形状,从而判断这个零件是否符合要求.【解答】解:∵AD=12,AB=9,DC=17,BC=8,BD=15,∴AB2+AD2=BD2,BD2+BC2=DC2.∴△ABD、△BDC是直角三角形.∴∠A=90°,∠DBC=90°.故这个零件符合要求.【点评】本题考查了勾股定理的逆定理,关键是根据勾股定理的逆定理判断△ABD、△BDC的形状.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7.如图,在△ABC中,AC=5,BC=12,AB=13,D是BC的中点,求AD的长和△ABD的面积.【考点】勾股定理的逆定理;勾股定理.【专题】几何图形问题.【分析】先根据勾股定理的逆定理判断出△ABC的形状,根据中点的定义得到CD的长,根据勾股定理可求出AD的长,再利用三角形的面积公式即可求解.【解答】解:∵在△ABC中,AC=5,BC=12,AB=13,132=52+122,∴AB2=AC2+CB2,∴△ABC是直角三角形,∵D是BC的中点,∴CD=BD=6,∴在Rt△ACD中,AD=,∴△ABD的面积=×BD×AC=15.【点评】本题考查的是勾股定理及勾股定理的逆定理,能根据勾股定理的逆定理判断出△ABD的形状是解答此题的关键.8.一艘轮船以16海里/时的速度离开港口(如图),向北偏东40°方向航行,另一艘轮船在同时以12海里/时的速度向北偏西一定的角度的航向行驶,已知它们离港口一个半小时后相距30海里(即BA=30),问另一艘轮船的航行的方向是北偏西多少度?【考点】勾股定理的应用;方向角.【专题】探究型.【分析】先根据题意得出OA及OB的长,再根据勾股定理的逆定理判断出△OAB的形状,进而可得出结【解答】解:由题意可知,OA=16+16×=24(海里),OB=12+12×=18(海里),AB=30海里,∵242+182=302,即OA2+OB2=AB2,∴△OAB是直角三角形,∵∠AOD=40°,∴∠BOD=90°﹣40°=50°,即另一艘轮船的航行的方向是北偏西50度.【点评】本题考查的是勾股定理的应用,根据题意判断出△AOB是直角三角形是解答此题的关键.9.如图所示,已知等腰三角形ABC的底边BC=20cm,D是腰AB上一点,且CD=16cm,BD=12cm,求△ABC 的周长.【考点】勾股定理;勾股定理的逆定理.【分析】先判断CD⊥AB,在Rt△ACD中,利用勾股定理求出x,得出AC,继而可得出△ABC的周长.【解答】解:在△BCD中,BC=20cm,CD=16cm,BD=12cm,∵BD2+DC2=BC2,∴△BCD中是直角三角形,∠BDC=90°,设AD=x,则AC=x+12,在Rt△ADC中,∵AC2=AD2+DC2,∴x2+162=(x+12)2,解得:.∴△ABC的周长为:( +12)×2+20=cm.【点评】本题考查了勾股定理的知识,解答本题的关键是利用勾股定理求出AD的长度,得出腰的长度,难度一般.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

姓名:
学校:
第十五十六十七章
一、填空题
1.如图,一次函数y=kx+b
B两点,与x轴交于点C
的解析式为__________,
_________.
2.如图,一次函数y ax b
=+
B两点,则关于x的不等式

3.
此菱形的边长为_____cm, _______cm
4.如图,在平行四边形AD=7cm,∠ABC的平分线交AD•于点E,交CD DF=______cm.
5.已知实数x满足4x2-4x
1
二、选择题
6
生故障,
进的路程y•(千米)与行进时间t(小时)的函数图象的示意图,同
学们画出的图象如图所示,你认为正确的是()
7.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()
则CD的长是( )
O,点E是BC的中点.若
12 cm
148
2=148
%)=148
10元,每天可售
1元,日销量减少20千克,现该商场要保证每天盈利6000元,同时又要使
-2 -1
顾客得到实惠,那么每千克应涨价多少元?
12
.先化简,再求值:
2310
x x
++=的根.
13.已知:如图,菱形和BD相交于点O,求13.已知:如图,在正方形ABCD中,AE⊥BF,垂足为P,AE与CD交于
E、F,且点E的坐标为
x,y)是第二象限内的直线
OPA的面积S与x的
的面积为
27
8,并说明理由。

第十五十六十七章 一次函数、四边形、一元二次方程测试题答案 1.y=x+2;4 2.
x 4.2 (提示:有四边形CF=CB=AD=7cm) 6.C 7.C 8.A 11千克,
根据题意:解题得:x=10或x=5
在保证每天盈利6000答:那么每千克应涨价12、解:22444a a a ⎛-- -+⎝∵a 是方程231x x ++=∴a 2+3a=-1
∴2241442a a a a ⎛-- -+-⎝=a 2
+3a 2
=-2
1
13、AC =4 cm , BD
14、证明:∵四边形∴∠BAD=∠D=90°,AB=AD 的面积为
827.。

相关文档
最新文档