车辆大数据挖掘技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
车辆大数据挖掘技术
随着人民生活水平的提高,车辆的拥有量不断的上升,针对车辆的视频分析系统迫切的需要进行升级,来挖掘出更多的结构化信息。
现有的智能交通技术主要集中在卡口和电子警察等传统技术上,抓拍车辆,识别车牌号码,车身颜色,车辆闯红灯,压实线,逆行等违法行为上,很难从图像中挖崛出更深层次的信息。以前的技术大都采用传统的算法,车辆检测跟踪主要采用基于adaboost和svm的训练方法检测车辆,然后采用基于连通区域关联或者meanshift做车辆跟踪;车牌识别主要采用基于颜色和纹理等传统特征做车牌定位,采用基于垂直投影和连通区域方式做字符分割,基于人工神经网络的方式做字符识别。目前针对标准位置下安装的摄像头,传统算法基本上都能达到98%以上的准确率。但传统算法技术已经很难满足现在的应用,随着硬件GPU的发展和深度学习技术的普及,针对公安和交警抓拍下来的图片,可以做更深层次的挖掘,例如可以识别车辆的品牌,子型号和年款,检测年检标的数目,识别年检标的形状,检测遮阳板是否放下,检测车窗上摆放的纸巾盒等物品,是否挂了挂坠,同时可以识别驾驶员的违法行为,例如是否系安全带,是否抽烟和打手机。
图存科技智能交通识别算法引擎采用传统算法加深度学习技术,可以识别车牌号码,车身颜色的同时,识别3000余种车辆款式,检测驾驶员是否系安全带,抽烟,打手机等违法状态,同时可以检测年检标的数目,是否放下遮阳板,车窗内是否挂有挂坠,将这些非结构化的数据进行结构化处理,然后存储,为将来公安办案,抓捕嫌疑车辆提供有力的证据。
图存科技智能交通识别算法引擎,采用深度学习中的分类算法,和faster rcnn等方法进行车辆检测和各类特征的检测,实际场景下测试准确率均超过90%,完全可以实际商用,已经为多家公司提供了识别核心。